Stopping behavior during yellow intervals is one of the critical driver behaviors correlated with intersection safety. As the main index of stopping behavior, stopping time is typically described by Accelerated Failure Time (AFT) model. In this study, the comparison of survival curves of stopping time confirms the existence of group specific effects on drivers. However, the AFT model is developed based on the homogeneity assumption. To overcome this drawback, shared frailty survival models are developed for stopping time analysis, which consider the group heterogeneity of drivers. The results show that log-logistic based frailty model with age as a grouping variable has the best goodness of fit and prediction accuracy. Analysis of the models’ parameters indicates that phone status, maximum deceleration, vehicles’ speed, and the distance to stopping line at the onset of the yellow signal have significant impacts on stopping time. Additionally, heterogeneity analysis illustrates that young, middle-aged, and female drivers are more likely to brake harshly and stop past the stop line, which may block the intersection. Furthermore, drivers, who are more familiar with traffic environments, are more possible to make reasonable stopping decisions approaching intersections. The results can be utilized by traffic authorities to implement road safety strategies, which will help reduce traffic incidents caused by improper stopping behavior at intersections.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

under the license https://creativecommons.org/licenses/by/4.0/
Back to Top

Document information

Published on 01/01/2020

Volume 2020, 2020
DOI: 10.1155/2020/8818496
Licence: Other

Document Score


Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?