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Stopping behavior during yellow intervals is one of the critical driver behaviors correlated with intersection safety. As the main
index of stopping behavior, stopping time is typically described by Accelerated Failure Time (AFT) model. In this study, the
comparison of survival curves of stopping time confirms the existence of group specific effects on drivers. However, the AFT
model is developed based on the homogeneity assumption. To overcome this drawback, shared frailty survival models are
developed for stopping time analysis, which consider the group heterogeneity of drivers. The results show that log-logistic based
frailty model with age as a grouping variable has the best goodness of fit and prediction accuracy. Analysis of the models’
parameters indicates that phone status, maximum deceleration, vehicles’ speed, and the distance to stopping line at the onset of the
yellow signal have significant impacts on stopping time. Additionally, heterogeneity analysis illustrates that young, middle-aged,
and female drivers are more likely to brake harshly and stop past the stop line, which may block the intersection. Furthermore,
drivers, who are more familiar with traffic environments, are more possible to make reasonable stopping decisions approaching
intersections. The results can be utilized by traffic authorities to implement road safety strategies, which will help reduce traffic
incidents caused by improper stopping behavior at intersections.

1. Introduction

Signalized intersections are crucial components in road
networks, where traffic accidents occur frequently [1]. 15,188
vehicles are involved in fatal crashes at intersections and
more than 50 percent of all crashes occurred in intersections
according to the statistics on the National Highway Traffic
Safety Administration (NHTSA) in 2017 and the Federal
Highway Administration (FHWA) in 2018 accordingly
[2, 3]. One of the reasons causing high accident rates at
intersections is drivers’ incorrect decisions of going or
stopping at the onset of a yellow signal. Improper stopping
behavior may lead to stopping at intersections illegally, or
rear-end collision. Recent research has shown that stopping
behavior is a crucial influencing factor for designing traffic

facilities, such as red-light camera and countdown timers
[4, 5], so it is urgent to understand the principle of stopping
behavior if we want to reduce the accident rate at
intersections.

Most driver behavior studies focus on drivers’ decision-
making processes at the onset of yellow signals, especially in
the dilemma zone. Since driving decisions can be seen as a
binary classification problem, methods such as binary lo-
gistic model [6, 7], binary probit model [8, 9], and ordered
probit model [10] are widely adopted in this issue. In ad-
dition, influencing factors on driver behaviors are widely
detected, such as vehicle’s factors (e.g., speed, deceleration
rates, and distance to stop line) [11, 12], driver character-
istics (e.g., age and gender) [13, 14], distracting factors (e.g.,
cell phone use and listening to music) [15-17]. Results have
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indicated that higher approach speeds are always associated
with higher deceleration rates and aggressive driving be-
havior [12, 18]. Older drivers usually employ greater de-
celeration levels compared with younger and middle-aged
drivers [11], while female drivers generally have a greater
level of variability in their driving style [19], and cell phone
use has detrimental effects on both novice and experienced
drivers [20]. However, the major concern of the above
studies is drivers’ stop/go decisions, and few studies in-
vestigate  drivers’ stopping behavior approaching
intersections.

Driver stopping behavior can be divided into four steps:
perception, judgement, manipulation, and stop. Previous
research pays more attention to the driver’s preparation
reaction time (PRT) of braking behavior [21, 22]. Methods
commonly focus on the analysis of variance (ANOVA) and a
series of linear mixed models [23-25]. However, the stop-
ping process is a continuous-time state, while PRT can only
reflect the initial state of the period. Therefore, stopping time
is selected to describe the entire stopping behavior at in-
tersections, and the survival analysis model is an appropriate
and effective way for timing analysis.

In recent years, the survival analysis model has attracted
more attention from researchers as it is convenient and
suitable to analyze time-related data [26, 27]. This model has
also been widely used in the transportation field, including
traffic accident analysis, travel behavior, pedestrian crossing
behavior, and so forth [28-32]. Among survival analysis
models, the nonparametric methods and semiparametric
models are desirable methods if only the duration times are
available or distributional assumptions for the duration data
are unexplicit. For example, Tiwari et al. the select non-
parametric methods to produce the Kaplan-Meier survival
curves analyzing pedestrian risk exposure at signalized in-
tersections [33]. Hao and Cheng conduct nonmotor vehi-
cles’ waiting time survival curve to evaluate nonmotor
vehicles’ street-crossing behavior at signalized crosswalk
[34]. However, the above methods cannot build a rela-
tionship between event time and key affecting factors, re-
spectively. The parametric AFT duration model is approved
by further studies, which can embody specific assumptions
about the distribution of failure times. Bella et al. select the
AFT model with a Weibull distribution to analyze reaction
time and speed reduction time for the evaluation of the
effects on driving performance [35]. Li and Silvestri develop
an AFT duration model to evaluate the intersection crossing
completion time of drivers [36]. Though some key factors
were analyzed in these studies, unobserved heterogeneity
was neglected for the limitation of homogeneity assumption
among objectives in AFT model.

The reasons causing heterogeneity are various, including
unobserved covariates, traffic conditions (e.g., traffic vol-
ume, vehicles’ type, road geometry), and driver characters
(e.g., gender, age, and driving experience) [37-39]. Studies
have shown that there are clear differences in driving sen-
sitivity, crash severity, and decision-making among different
age and gender driver groups when approaching intersec-
tions [40-42]. Therefore, it is necessary to consider be-
havioral differences among driver groups. Methods like

Journal of Advanced Transportation

random parameters model and latent class model have been
combined to develop a mixed logit model and probit model
to reflect these differences in driver decision-making be-
havior [42-44], but these studies mainly focus on unob-
served heterogeneity, few studies explore group
heterogeneity in stopping behavior at intersections.
Considering the group heterogeneity among driver
group, the shared frailty survival model is developed to
predict stopping time approaching intersections. The pri-
mary contribution of the study is that it makes an initial
attempt to avoid the effect of group heterogeneity by in-
corporating a fragility to describe the difference among
driver groups. In this way, the frailty is assumed to be a
random distribution across driver groups. Furthermore, the
relationship between stopping time and influencing factors
has been amply explored. More importantly, the results of
the model can be used to make effective traffic management
and operational strategies, which will reduce the accidents
caused by improper stopping behavior at intersections.

2. Methodology

Because the survival analysis model is well-suitable in an-
alyzing the law between events and time, it is employed as a
basic model to explore various factors that influence vehi-
cles’ stopping time approaching intersections.

2.1. Survival Analysis Model. 'The survival analysis model has
three basic types, nonparametric methods, semiparametric
models, and full-parametric models [26]. If there are only
the duration times available, then life tables and survival
curves can be definitely a good choice to analyze the survival
trend for a dataset, so nonparametric methods usually ap-
plied for the first step in survival analysis. Semiparametric
models, like Cox’s proportional hazards model, are suitable
for modeling duration data with one or more covariates
observed and only minimal assumptions about the under-
lying distribution. This kind of model is more specific than
the nonparametric model undoubtedly, but due to its limited
flexibility, it cannot deal with heterogeneity among objec-
tives. Therefore, for further study, more specific and flexible
models, parametric models are developed for analyzing
survival data.

2.2. AFT Model. AFT model, as a kind of parametric survival
analysis model, can mine the impact directly of different
influencing factors on survival time and hazard function. In
this study, to analyze the different factors that affect the
driver’s stopping behavior, the timing variable T is defined as
the stopping time, which has a probability function f (¢),
survival function S(t), and hazard function k(). The sur-
vival function is defined as the probability that an individual
survives longer than a certain time point t and the hazard
function of survival time T' gives the conditional failure rate,
which is defined as the probability of failure during a small
time interval. The specific functions and their relationships
are as follows:
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According to the meaning of stopping time, the survival
function in this study can reflect the probability of a driver
who has not stopped at a certain time point and the hazard
function represents the probability of stop during a very
small time interval. The greater the hazard rate, the more
likely drivers stop at that time point.

The regression form between the log of stopping time T
and various variables in the AFT model is as follows:

logT; = By + Pyxjy + -+ + Prxiy + 0€;5 (2)

where ¢; is a random disturbance term, x; (j =1,2,...,k)
represents the j variable of individuali, f3, ..., and o are
parameters to be estimated, f3)is the model’s constant term,
Bi>--->Byis the corresponding coefficient ofx;, and T;
represents the survival time of the individual i.

One of the advantages of AFT model is that it can provide
explicit distributions for stopping time, such as exponential,
Weibull, log-normal, log-logistic, and generalized gamma
distributions. In this study, the above distributions were all
considered in conducting models like equation (2), and the
maximum likelihood estimation (MLE) method was used to
select the best model.

2.3. Shared Frailty Survival Model. The shared frailty survival
model is a type of developed mixture AFT model, which can
solve the group heterogeneity among different groups by
setting an unobservable multiplicative effect, called frailty, «,
which is assumed to be random in each cluster [45, 46].

For individuals q(I=1,...,n,g=1,...,n,) in the I
group, the hazard function is set as

hlq (t|(xl) = ‘thlq (t) = alho (t)exp (ﬂTqu), (3)

where X is the covariate vector and j3 is the fixed coefficient
vector to be estimated. h (t) refers to the baseline hazard
function and hyy (¢) represents the individual hazard when
the covariate is Xj,. The frailty, a, is a random positive
quantity and, for identifiability of the model, supposed to
have mean 1 and variance 0. The larger the variance value,
the greater the difference between different driver groups.
For mathematical tractability, we limit the choice of frailty
distribution to either the gamma ((1/6), 8) distribution or
the inverse-Gaussian (1, (1/6)) distribution, and the cor-
responding survival functions are

gamma: . S@ (t) =exp [1 — elog{s (t)}]_(l/e),

inverse — Gaussian: - Sy (t) = exp{é (1 —[201og{S (t)}] (1/2))},
(4)

where S (t) is the survival function under the corresponding
frailty distribution and S(t) is the basic survival function.

It can be seen from the hazard function of the shared
frailty survival model that the model assumes that all
stopping times in a driver group are independent given the
frailty, a. In other words, the model is a conditionally in-
dependent model and mainly deals with differences between
different driver groups.

3. Application to Stopping Time Prediction

3.1. Data Description and Preparation. The dataset comes
from the Driver Behavior Analysis Competition organized
by the Transportation Research Board (TRB) in 2014
[47, 48]. The data study was conducted at the National
Advanced Driving Simulator (NADS) at the University of
Iowa, which is a high-fidelity driving simulator, aiming to
detect the influence of wireless phone use on driver be-
haviors. During the experiment, each participant had three
drives. Each drive consisted of 3 equivalent segments and
each segment had one urban field and one rural field. Be-
sides, five signal intersections were set in each segment, and
two of the intersections’ traffic signals were randomly
triggered to change states to yellow when the driver ap-
proaches. In addition, secondary tasks were randomly ap-
plied, which exposed participants to 3 cell phone interfaces,
including baseline (no phone call), outgoing call (calling
out), and incoming call (answering a call). For each drive,
the participant experienced a different order of segments/
interfaces that are otherwise equivalent. The incoming and
outgoing calls were started before the arrival at each seg-
ment. Therefore, there were 6 times yellow light decisions for
each drive and each participant needed to go through 18
times of that.

The original dataset was collected from 49 participants,
with a total of 1157 observations. After deleting the missing
and abnormal data, there are still 838 observations left,
including 306 “go” observations and 532 “stop” observa-
tions. This study selects 532 “stop” observations as the re-
search object.

In this study, seven factors related to driver’s stopping
behavior were selected as independent variables, including
driver’s age (Age), gender (Gender), phone status (PS),
maximum deceleration (MD), maximum acceleration (MA),
vehicle’s approaching speed (GTYV), and the distance to the
stopping line (GTYD) at the onset of yellow light. The
detailed descriptions and values for each variable are shown
in Table 1. There are more young drivers in the subject
groups and male drivers are a bit more than female, while the
numbers of three kinds of phone status’ drivers are relatively
equal, noticing that maximum decelerations are negative,
and the mean of their absolute value is 6.11 m - s~ 2. Besides,
the mean of the vehicle’s speed at the onset of yellow light is
18.95 m-s™ !, and the mean distance is 62.36 meters.

The stopping time (FST) was selected as the duration
variable, which was the time from the onset of yellow light to
the vehicle stopping completely. Statistics on overall stop-
ping time are shown in Table 2. Vehicles begin to stop at 3.63
seconds after the onset of yellow light and all vehicles stop



The survival curves of stopping time are varied under
different driving times, age, gender, and phone states, as
shown in Figure 2, which presents evidence for the existence
of group heterogeneity. So, in this study, we employ the
shared frailty survival model to analyze stopping time, which
can avoid the homogeneity assumption of the AFT model.

Behavioral characters of different driver groups are
assessed by the dangerous driving index. According to early
research, driver behavior is assumed to be statistically con-
sistent within a certain population when facing certain levels of
conflicts [49, 50]. Therefore, this study employs the possibility
of dangerous stopping in the original dataset to evaluate the
dangerous stopping behavior in different driver groups. The
dangerous driving index can be described as the probability of
dangerous stopping behaviors and can be calculated:

R= b,, (5)
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m

Il
—

r

where Rrepresents the dangerous driving index of each
driver group and mrepresents the number of stopping ob-
servations in each driver group, when the r observation’s
record is over-the-line stopping and the value of b, is 1;
otherwise, b, is set to 0.
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TABLE 1: Statistical description of independent variables.
Variables Description Value Count Mean Std. Dev.
Old (50~60 years) 0 131
Age Middle (30~45 years) 1 197
Young (18~25 years) 2 204
Female 0 242
Gender Male 1 290
Outcoming call (O) 0 178
PS Incoming call (I) 1 181
Baseline (B) 2 173
MD (m-s~?) Maximum deceleration Continuous 532 -6.11 1.53
MA (m-s~2) Maximum acceleration Continuous 532  3.47 0.43
GTYV (m-s!) Vehicle’s speed at the onset of yellow light Continuous 532 1895  2.27
GTYD (m) Distance between the vehicle and the stopping line at the onset of yellow light Continuous 532 6236  10.56
TaBLE 2: Quartile statistics of stopping time.
Quantile 90% 75% 50% 25% Min. Max. Mean Std. Dev.
Stopping time (s) 8.92 7.68 5.84 4.69 3.63 12.97 6.24 0.078
under 12.97 seconds. The mean stopping time is 6.24 sec- 1.0 4 —
onds and 90%, 75%, 50%, and 25% of drivers stop within
8.92 seconds, 7.68 seconds, 5.84 seconds, and 4.69 seconds 08
accordingly. '
To understand the probability that vehicles haven’t :;
stopped at a certain time better, this study conducts an E 0.6
overall survival curve for 532 “stop” data. Figure 1 presents g
that vehicles begin to stop at 3.63 seconds and most vehicles E o4
can stop completely under 10 seconds. e
w
02 -
3.2. Heterogeneity Analysis. Drivers’ stopping behaviors may
be different under different driver groups; therefore survival 0.0
curves under different grouping variables were developed for ' ] "6 - ' 10 ' 15
preliminary verification. o
Stopping time (s)

—— Survival curve

FIGURE 1: Survival curve of overall stopping time.

According to the definition of the dangerous driving
index, the greater it is, the greater the tendency of this driver
group to stop over the line. Table 3 presents the dangerous
driving index for different driver groups. It can be found that
the dangerous driving index of middle-aged drivers is the
highest among age groups, and young drivers in it are also
very high while old drivers’ are the lowest. Besides, female
drivers’ index is higher than male, and the index is a little
higher when there are phone interferences than no phone
call. The results also show that dangerous driving indexes are
changeable under different driving times; especially the
index is the highest under the second drive.

4. Results and Discussion

4.1. Model Results. Based on 532 “stop” observations
approaching intersections, the shared frailty survival models
with grouping variables, including driving times, age, gen-
der, and phone status, are constructed, and parameters can
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FIGURE 2: Survival curves under different grouping variables. (a) Survival curves of different driving times. (b) Survival curves of different
age groups. (c) Survival curves of different gender groups. (d) Survival curves of different phone status.

TaBLE 3: Dangerous driving index of different driver groups.

Group Description Number of drivers Number of unsafe stops Dangerous driving index
Old 131 8 0.061
Age Middle 197 24 0.122
Young 204 24 0.112
Gender Female 242 29 0.120
Male 290 27 0.093
Outcoming call 178 19 0.107
PS Incoming call 181 19 0.105
Baseline 173 18 0.104
Drive 1 162 13 0.080
Drive Drive 2 176 22 0.125

Drive 3 194 21 0.108




be estimated by using the maximum likelihood estimation
method at a significance level of 0.1.

In order to select the best distribution type and grouping
variable for modeling the stopping time, two model selection
statistics, including the Akaike information criterion (AIC)
statistic and the Bayesian information criterion (BIC) sta-
tistic are adopted. In general, the model has better goodness
of fit with smaller values of the AIC and BIC. Criterion
statistics in Table 4 illustrates that generalized gamma dis-
tribution is the best-fitted distribution among AFT models,
while the log-logistic distribution is proved to be the best
distribution among shared frailty survival models, especially
when age is selected as grouping variables.

In addition, better distributions are also selected by
comparing Cox-Snell residuals [51]. Figures 3(a)-3(d) il-
lustrate the Cox—-Snell residuals for different distributions of
AFT models; it can be seen that the plotted points in gen-
eralized gamma distribution of AFT model fall closer to the
reference line with a slope of 1, which confirms the goodness
of fit of the model. At the same time, Figures 3(e)-3(h)
indicate that log-logistic distribution is the best fit distri-
bution among shared frailty survival models.

Table 5 presents the estimated results of the parameters
of the above good fitted models. Among the shared frailty
survival models, except for the model that grouping variable
is gender, in which the frailty « follows gamma distribution,
other shared frailty survival models’ «a follow the inverse
Gaussian distribution. Variances 6 of frailty « are all far
greater than 0, which also indicate the existence of significant
differences between different driver groups. Besides, refer-
ring to Table 4, it is easy to find that all shared frailty survival
models have smaller values of AIC and BIC than that of the
AFT model, which indicates the improved goodness of fit for
the shared frailty survival model. Besides, the model with the
grouping variable of Age has the smallest value of AIC, BIC.
Therefore, the shared frailty survival model with the age
grouping variable is selected to analyze the key factors that
affect the stopping time.

The results of the optimal model in Table 5 show that
phone status, maximum deceleration, vehicle’s speed, and
the distance to the stopping line at the onset of yellow light
are significant variables that affect the stopping time. Dif-
ferent variables’ effects on stopping time can be calculated
referring to equation (2). Table 6 illustrates the influence of
significant variables on the stopping time. It can be seen
when incoming calls (PS =1) that the stopping time is
relatively reduced by 1.0% (e~ *%! - 1) compared to out-
coming calls (PS =0) states where the stopping time is
increased by 1.3% (e*°"* — 1) compared to no phone calls
condition (PS = 2). Besides, the stopping time under in-
coming calls is relatively shorter than that of outcoming
calls, which means that the driver may stop harshly when
receiving a call. The reason for this phenomenon may be that
the driver does not have sufficient psychological preparation
when receiving a call rather than calling out, so greater
distraction is caused, which agrees with the previous re-
search [20, 52]. At the same time, referring to the dangerous
driving index in Table 3, it is found that the dangerous
driving index is higher than no phone call situation when
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there are phoning tasks, indicating that the driver is more
likely to stop over the line when distracted by phone use.
Therefore, when approaching intersections, drivers are
suggested to avoid distractions such as making and receiving
calls. At the same time, because the value of the maximum
deceleration (MD) variable in this study is negative,
according to the sign of variable coeflicients, it is found that
the maximum deceleration (MD) and vehicle’s speed at the
onset of yellow light (GTYV) have a negative impact on the
stopping time. When there is a unit increase in the absolute
value of maximum deceleration and the value of vehicle
speed at the onset of yellow light, the stopping time decreases
by 5.8% and 1.3% accordingly. Therefore, there is a close
relationship between the maximum deceleration, vehicle’s
speed at the onset of yellow light, and the emergency stop
behaviors, so these two factors should be reasonably con-
trolled. Additionally, the distance to the stopping line at the
onset of yellow light (GTYD) has a positive effect on the
stopping time, and for every meter increase of GTYD, the
stopping time increases by 1.1%. Therefore, it is necessary to
reasonably control the braking distance to ensure a smooth
stopping of the vehicle.

Additionally, other model results in Table 5 also show
that Age and Gender variables have an impact on stopping
time. The coefficients of young (Age = 2), middle (Age = 1),
and male (Gender = 1) drivers are all negative at a signifi-
cance level; this means young, middle, and female drivers
have shorter stopping time and stop more urgently than
older and male drivers accordingly, which agree with the
previous research finding [19]. Referring to the dangerous
driving index in Table 3, the dangerous driving index of
young (0.112) and middle (0.122) drivers is higher than that
of old (0.061) drivers, and the index of female drivers (0.120)
is higher than that of male drivers (0.093), indicating that
young, middle, and female drivers are also more likely to
stop over the line, which may cause intersection jams.

4.2. Model Accuracy. The mean absolute percentage error
(MAPE) is used to compare the prediction accuracy of the
model [53]. The smaller the value, the better the prediction
accuracy. The median survival time is selected to calculate
the predicted value in this article:

1 n
MAPE = N Z

i=1

yi_yi|) (6)
Vi

where N is the number of observed individuals, y; is the
actual observed value of the individual i, and y; is the
predicted value.

Table 7 presents values of MAPE for the AFT model
(15.04%) and the shared frailty survival model with the age
grouping variable (13.92%). It can be seen that both models
have a good prediction accuracy [54]. However, compared
with the AFT model from a global perspective, there is a
negligible improvement in MAPE, 1.12%, in the shared
frailty survival model. Therefore, this study adopts a cate-
gorical analysis in prediction accuracy. Note that 75% of
drivers will stop under 7.7 seconds in Table 2, so this study
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TABLE 4: Statistics of criterion based on different distribution types.

AFT model distribution type

Shared frailty survival model distribution type

Criterion
Weibull Log-normal Log-logistic Generalized gamma Loglogistic (d-rive) Log-logistic (age) Log-logistic (gender) Log-logistic (PS)
AIC 90 -88 -101 -508 -517 -526 =529 -500
BIC 146 -33 —46 -448 —474 -491 —482 —457
-In(kaplan-Meier)
-In(Kaplan—Meier) : : : 6 -In(Kaplan-Meier)
10 1 T ] Riaiaed
Reference line ——> 6
4 i
4
5 |
2 4
2
0 A : : - - - 0 4 : [ i
0 5 10 0 2 6 8 0 2 4 6
Cox-Snell residual Cox-Snell residual Cox-Snell residual
(a) ()
6 | -In(Kaplan-Meier) 6 -In(Kaplan-Meier) p -In(Kaplan-Meier)
4 4 4 4
2 2
0 1 2 3 4 5 0 1 2 3 0 1 2 3

Cox-Snell residual

(d)

p -In(Kaplan—Meier)

Cox-Snell residual

()

Cox-Snell residual

Cox-Snell residual

()

| -ln(Kaplaaneier)

Cox-Snell residual

(B)

F1GURe 3: Cox-Snell residuals for different distribution types.(a) Weibull. (b) Log-normal. (c) Log-logistic. (d) General gamma. (e) Log-
logistic (Drive). (f) Log-logistic (Age). (g) Log-logistic (Gender). (h) Log-logistic (PS).

divides the dataset into two categories at this time point and
analyzes the prediction accuracy for each data category.
Table 7 presents the accuracy results.

When the stopping time is less than 7.7 seconds, the
improved shared model can have a very high accurate
prediction (MAPE is 6%) and a small mean prediction error
(0.36 sec); besides, it improves prediction accuracy by 3%
compared with AFT model. Though both the above models
do not have good prediction accuracy when stopping time is
larger than 7.7 seconds, the prediction accuracy is also

acceptable [54]. Therefore, the predictions can be used to
analyze driver stopping behaviors reasonably.

4.3. Effects of Group Heterogeneity. As mentioned above, the
evidence of heterogeneity is seen in the core results of the
models presented in Figure 2 and Table 5. It is found that,
compared with the AFT model, the shared frailty survival
model’s advantages are reflected not only in improving the
model’s goodness of fitting and prediction accuracy but also
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TABLE 5: Model estimation results.

Variables AFT model

Shared frailty survival model

Group variable (drive) Group variable (age) Group variable (gender) Group variable (PS)

Distribution of FST Generalized gamma Log-logistic

Log-logistic Log-logistic Log-logistic

Distribution of « — Inverse Gaussian Inverse Gaussian Gamma Inverse Gaussian
Variable Coeflicient Coeflicient Coeflicient Coefficient Coeflicient
Age=1 —-0.005 -0.007 — —-0.007 —-0.006
Age =2 —0.017*** -0.013** — -0.011* —-0.014**
Gender =1 — — — —0.014*** —
PS=1 0.004 0.001 —0.001 —0.002 0.004
PS=2 0.021%** 0.016*** 0.013** 0.012** 0.019***
MD 0.056*** 0.056*** 0.056*** 0.055*** 0.056***
MA — — — — —
GTYV —0.014*** —0.013*** —0.013*** —0.013*** —0.013***
GTYD 0.011*** 0.011*** 0.011*** 0.011*** 0.011***
Constant 1.511%** 1.483%** 1.472%* 1.477*** 1.481%**
0 — 31.273 27.512 3.380 32.601
0 is the variance of frailty a. ***, **, * mean statistical significance at a=0.01, 0.05, 0.1, respectively.

TaBLE 6: Driver’s stopping risk percentage change.
Variable Coeflicient EXP (B) Percentage change (%)
PS=1 —0.001 0.999 -1.0
PS=2 0.013 1.013 1.3
MD 0.056 1.058 5.8
GTYV -0.013 0.987 -1.3
GTYD 0.011 1.011 1.1

TaBLE 7: Statistics on model accuracy.

Stopping time category (sec) Count Model MAPE (%) Mean prediction error (sec)
Overall 232 Shar{:cf F{Age) gg; i};
FST<77 400 (75%) Sharj(fr{Age) 2 ((;gé
FST>7.7 132 (25%) Shar?cfr{Age) gg izg

in the mining impacts of other potential variables on drivers’
stopping behaviors.

Comparing with the AFT model, the value and sign of
significant variables’ coefficients have changed in the shared
frailty survival model. For example, in the shared frailty
survival model with grouping variable age, the sign of in-
coming calls’ (PS=1) coeflicient changes to negative
compared to the AFT model, which is more in line with the
fact that the incoming distraction situation has a greater
impact on the driver’s behavior. What is more, the reduced
absolute value of coefficients for phoning states and vehicle’s
speed at the onset of yellow light variables, reduced constant
terms of all shared frailty survival models compared to the
AFT model, also illustrates that some of the significant
variables’ effect on stopping time is shared after considering
the heterogeneity of varied driver groups. Besides, other
shared frailty survival models also highlight the significant
effects caused by age, gender, and different driving times on
drivers’” stopping behavior. Table 3 shows that, in the first,
second, and third drives, the dangerous driving indexes
show a trend of increasing first and then decreasing. The

dangerous driving index in the second drive is the highest
with a value of 0.125. The reason for this phenomenon may
be drivers in the second drive have been already familiar
with the driving environment and are not concentrating on
driving enough. While in the third drive, drivers accumulate
the previous two driving experiences and make the stopping
decision more accurate and reduced the probability of
stopping over the line, which reflects that familiarity with the
traffic environment directly affects the safety of driver’s
stopping behavior, drivers who are more familiar with the
traffic environment can make more reasonable stopping
decisions, and these effects are difficult to mine by the AFT
model.

5. Conclusions

To further understand drivers’ stopping behaviors at in-
tersections during the yellow interval, a survival analysis
model was proposed. However, the parameter AFT model
has a homogeneity assumption among drivers. To overcome
this limitation, the developed shared frailty survival models



Journal of Advanced Transportation

with grouping variables, including driving times, age, gen-
der, and phone status, were conducted in this study.

Results show that the shared frailty survival models can
improve the fitness and prediction accuracy compared with the
AFT model, and the model with the grouping variable of age
fits best. In this best-fitting model, variables, including phone
status, maximum deceleration, vehicle’s speed, and the distance
to the stopping line at the onset of yellow light, have significant
effects on stopping time. Drivers stop relatively in emergency
and are easier to stop over the line when there are phoning
tasks’ distraction. The greater the vehicle’s speed at the onset of
yellow light and the absolute value of the maximum decel-
eration, the more likely the vehicle to have an emergency stop,
while the greater the value of the distance to the stopping line at
the onset of yellow light, the smoother the vehicle stop.

By heterogeneity analysis, other potential influencing
factors on stopping time are also explored in this study.
Except for the best-fitting shared frailty survival model,
models with other grouping variables also highlight the
driving behaviors’ significant differences in varied age,
gender, and driving times groups. Results show that young,
middle, and female drivers are more likely to stop emergency
and stop over the line, which may cause intersection jams.
Besides, familiarity with the traffic environment has a direct
impact on the safety of the stopping behavior; drivers who
more familiar with the traffic condition could make a more
reasonable stopping decision.

Based on the above results, drivers are recommended to
reasonably predict the braking distance when approaching
the signalized intersections, control the vehicle’s speed and
deceleration, and avoid distracting behaviors such as having
phone calls. Besides, young, middle-aged, and female drivers
are more likely to stop over the stop line and block the
intersections. These groups of people may need more at-
tention from traffic managers such as intensive observation.
Familiarity with the traffic environment may help drivers
make proper decisions, so intersection safety will be im-
proved if drivers are provided useful road and traffic in-
formation such as speed limits and signal ahead. However,
the dataset in this study only contains three driving times, so
related data collection is needed for further studying the
explicit effects of the familiarity with traffic environment on
drivers’ stopping behaviors. This study can help researchers
better understand driver stopping behavior at the onset of
yellow light and also can be applied to driver assistance
systems and intersection design studies.
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