Published in Journal of Engineering Mechanics, Vol. 136 (4), pp. 455-463, 2010
DOI: 10.1061/(ASCE)EM.1943-7889.0000086

Abstract

An excavation process is a nonlinear dynamic problem that includes geometrical, material, and contact nonlinearities. The simulation of ground excavation has to face contact interaction in a changing geometry composed by several solid domains. The particle finite-element method (PFEM) is based on a Lagrangian description for modeling the motion of a continuum medium. The PFEM is particularly suitable for modeling a fluid motion with free surfaces. The application of the PFEM in ground excavation includes the use of the remeshing process, α-shape concepts for detecting the domain boundary, contact mechanics laws, material constitutive models, and surface wear models. Everything is correctly matched to quantify the excavation and the corresponding damage caused to the ground. The erosion and wear parameters of the soil/rock material govern the evolution of the excavation process. The preliminary results presented in this paper show that the PFEM it is a very suitable tool for the simulation of ground excavation processes.

F. Salazar, E. Oñate, R. Morán. Numerical modeling of landslides in reservoirs using the Particle Finite Element Method (PFEM). (2012) DOI 10.1201/b11588-39

T. Zohdi. A direct particle-based computational framework for electrically enhanced thermo-mechanical sintering of powdered materials. Mathematics and Mechanics of Solids 19(1) (2013) DOI 10.1177/1081286513505472

C. Han, J. Chen, J. Wang, X. Xia. Three-dimensional stability analysis of excavation using limit analysis. J. Shanghai Jiaotong Univ. (Sci.) 18(6) (2013) DOI 10.1007/s12204-013-1445-7

I. Iaconeta, A. Larese, R. Rossi, Z. Guo. Comparison of a Material Point Method and a Galerkin Meshfree Method for the Simulation of Cohesive-Frictional Materials. Materials 10(10) (2017) DOI 10.3390/ma10101150

S. Idelsohn, E. Oñate, P. Becker. Particle Methods in Computational Fluid Dynamics. DOI 10.1002/9781119176817.ecm2113

M. Zhu, I. Elkhetali, M. Scott. Validation of
OpenSees
for Tsunami Loading on Bridge Superstructures. J. Bridge Eng. 23(4) DOI 10.1061/(asce)be.1943-5592.0001221

J. Cante, C. Dávalos, J. Hernández, J. Oliver, P. Jonsén, G. Gustafsson, H. Häggblad. PFEM-based modeling of industrial granular flows. Comp. Part. Mech. 1(1) (2014) DOI 10.1007/s40571-014-0004-9

E. Oñate, M. Celigueta, S. Latorre, G. Casas, R. Rossi, J. Rojek. Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comp. Part. Mech. 1(1) (2014) DOI 10.1007/s40571-014-0012-9

T. Zohdi. Modeling and simulation of the post-impact trajectories of particles in oblique precision shot-peening. Comp. Part. Mech. 3(4) (2015) DOI 10.1007/s40571-015-0048-5

F. Salazar, J. San-Mauro, M. Celigueta, E. Oñate. Air demand estimation in bottom outlets with the particle finite element method. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0117-4

T. Zohdi. On high-frequency radiation scattering sensitivity to surface roughness in particulate media. Comp. Part. Mech. 4(1) (2016) DOI 10.1007/s40571-016-0118-3

J. Rodríguez, P. Jonsén, A. Svoboda. Simulation of metal cutting using the particle finite-element method and a physically based plasticity model. Comp. Part. Mech. 4(1) (2016) DOI 10.1007/s40571-016-0120-9

A. Franci, M. Cremonesi. On the effect of standard PFEM remeshing on volume conservation in free-surface fluid flow problems. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0124-5

L. Monforte, J. Carbonell, M. Arroyo, A. Gens. Performance of mixed formulations for the particle finite element method in soil mechanics problems. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0145-0

A. Larese, R. Rossi, E. Oñate, M. Toledo, R. Morán, H. Campos. Numerical and Experimental Study of Overtopping and Failure of Rockfill Dams. Int. J. Geomech. 15(4) DOI 10.1061/(asce)gm.1943-5622.0000345

W. Zhang, W. Yuan, B. Dai. Smoothed Particle Finite-Element Method for Large-Deformation Problems in Geomechanics. Int. J. Geomech. 18(4) DOI 10.1061/(asce)gm.1943-5622.0001079

E. Oñate, M. Celigueta, S. Idelsohn, F. Salazar, B. Suárez. Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Comput Mech 48(3) (2011) DOI 10.1007/s00466-011-0617-2

A. Larese, R. Rossi, E. Oñate, S. Idelsohn. A coupled PFEM–Eulerian approach for the solution of porous FSI problems. Comput Mech 50(6) (2012) DOI 10.1007/s00466-012-0768-9

K. Kamran, R. Rossi, E. Oñate. A contact algorithm for shell problems via Delaunay-based meshing of the contact domain. Comput Mech 52(1) (2012) DOI 10.1007/s00466-012-0791-x

J. Carbonell, E. Oñate, B. Suárez. Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method. Comput Mech 52(3) (2013) DOI 10.1007/s00466-013-0835-x

T. Zohdi. Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput Mech 54(1) (2014) DOI 10.1007/s00466-014-1012-6

E. Oñate, A. Franci, J. Carbonell. A particle finite element method for analysis of industrial forming processes. Comput Mech 54(1) (2014) DOI 10.1007/s00466-014-1016-2

T. Zohdi. Modeling and simulation of cooling-induced residual stresses in heated particulate mixture depositions in additive manufacturing. Comput Mech 56(4) (2015) DOI 10.1007/s00466-015-1191-9

T. Zohdi. A discrete element and ray framework for rapid simulation of acoustical dispersion of microscale particulate agglomerations. Comput Mech 57(3) (2016) DOI 10.1007/s00466-015-1250-2

T. Zohdi. Modeling and rapid simulation of the propagation and multiple branching of electrical discharges in gaseous atmospheres. Comput Mech 60(3) (2017) DOI 10.1007/s00466-017-1414-3

A. Franci. Unified Stabilized Formulation for Quasi-incompressible Materials. (2016) DOI 10.1007/978-3-319-45662-1_3

H. Wang, J. Cheng, Y. Guo, X. Gao. Failure Mechanism of Soil Nail—Prestressed Anchor Composite Retaining Structure. Geotech Geol Eng 34(6) (2016) DOI 10.1007/s10706-016-9998-5

T. Zohdi. Rapid Simulation of Laser Processing of Discrete Particulate Materials. Arch Computat Methods Eng 20(4) (2013) DOI 10.1007/s11831-013-9092-6

T. Zohdi. Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials. Arch Computat Methods Eng 24(1) (2015) DOI 10.1007/s11831-015-9160-1

R. Rossi, A. Larese, P. Dadvand, E. Oñate. An efficient edge-based level set finite element method for free surface flow problems. Int. J. Numer. Meth. Fluids 71(6) (2012) DOI 10.1002/fld.3680

E. Oñate, A. Franci, J. Carbonell. Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int. J. Numer. Meth. Fluids 74(10) (2014) DOI 10.1002/fld.3870

S. Idelsohn, J. Marti, P. Becker, E. Oñate. Analysis of multifluid flows with large time steps using the particle finite element method. Int. J. Numer. Meth. Fluids 75(9) (2014) DOI 10.1002/fld.3908

A. Franci, E. Oñate, J. Carbonell. On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids. Int. J. Numer. Meth. Engng 102(3-4) (2014) DOI 10.1002/nme.4839

J. Rodriguez, J. Carbonell, J. Cante, J. Oliver. The particle finite element method (PFEM) in thermo-mechanical problems. Int. J. Numer. Meth. Engng 107(9) (2016) DOI 10.1002/nme.5186

M. Zhu, M. Scott. Unified fractional step method for Lagrangian analysis of quasi-incompressible fluid and nonlinear structure interaction using the PFEM. Int. J. Numer. Meth. Engng 109(9) (2016) DOI 10.1002/nme.5321