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Modeling of Ground Excavation with the Particle
Finite-Element Method

Josep Maria Carbonell1; Eugenio Oñate2; and Benjamín Suárez3

Abstract: An excavation process is a nonlinear dynamic problem that includes geometrical, material, and contact nonlinearities. The
simulation of ground excavation has to face contact interaction in a changing geometry composed by several solid domains. The particle
finite-element method �PFEM� is based on a Lagrangian description for modeling the motion of a continuum medium. The PFEM is
particularly suitable for modeling a fluid motion with free surfaces. The application of the PFEM in ground excavation includes the use
of the remeshing process, �-shape concepts for detecting the domain boundary, contact mechanics laws, material constitutive models, and
surface wear models. Everything is correctly matched to quantify the excavation and the corresponding damage caused to the ground. The
erosion and wear parameters of the soil/rock material govern the evolution of the excavation process. The preliminary results presented
in this paper show that the PFEM it is a very suitable tool for the simulation of ground excavation processes.
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Introduction

The objective of this work is to describe a new procedure for
simulating excavation processes. An excavation is a complex
problem that involves large deformations and displacements and
multiple contacts between solid domains. The solid domains are
composed by the continuum media that represent geomaterials
and the cutting tools.

Material responses are governed by their specific constitutive
equations but the rules for the excavation and for the wear of the
ground surface are not the same. The excavation is controlled by
parameters that have not a direct influence on the constitutive
response. Some materials are easily penetrable and disgregable,
others have a high superficial hardness or a high level of abras-
sivity. These properties vary from material to material and influ-
ence the excavability of a terrain.

Previous attempts to model numerically ground excavation
processes have been made with the discrete element method
�DEM� �Labra et al. 2008�. The difficulties of the DEM include
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the modeling of the complex tool-soil/rock interactions with ad-
equate constitutive models for representing the evolution of the
material properties of the different interacting continua during the
excavation process. Most of these difficulties are overcome with
the particle finite-element method �PFEM� presented in this work.

The overall difficulty is to model a problem that has rapid
dynamical changes in a system full of nonlinearities including
geometrical, material, and frictional contact nonlinearities. The
PFEM used in this work is very suitable for treating large material
deformations and rapidly changing boundaries, which are typical
of excavation processes.

PFEM has its foundation on the Lagrangian description of the
motion of a continuum medium built from a set of particles with
known physical properties. The finite-element method is used to
solve the continuum equations in the global domain.

The origins of the PFEM can be found in computational fluid
dynamics problems �Idelsohn et al. 2003; Oñate et al. 2004�. Cur-
rent research is focused in applications of PFEM in several prob-
lems that go beyond the fluid motion description �Idelsohn et al.
2004; Oñate et al. 2006, 2008�. Fluid-structure interaction prob-
lems with rigid bodies, erosion processes �bed erosion, unsteady
flows�, mixing processes, coupled thermoviscous problems, and
thermal diffusion are some of the applications of the PFEM. A
first application of the PFEM in solid mechanics can be found in
�Oliver et al. 2007�. This work is the first application of the PFEM
for the simulation of ground excavation.

Basis of the PFEM for Continuum Mechanics

In the PFEM, the continuum is described as a cloud of particles of
infinitesimal size. The particles contain all the properties of the
continuum medium �displacements, velocities, strains, stresses,
material properties, internal variables, etc.�. This cloud of par-
ticles is the basis of the PFEM. From the cloud a finite-element
mesh is generated at each time step using a Delaunay triangula-

tion �Calvo et al. 2003�. The properties from the particles are
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transferred to the elements of the mesh for the computation. An
�-shape technique �Edelsbrunner and Mücke 1994� is used to
define the boundaries of the domain and to detect the geometrical
contacts at each time step. The motion is described using an up-
dated Lagrangian �UL� formulation �Belytschko et al. 2000�. The
update of the analysis domain, the boundary recognition, and the
treatment of contact between interacting domains via mesh gen-
eration are the key features of the PFEM.

Updated Lagrangian Formulation for Description

The basis of the PFEM in this work lie in the equations of stan-
dard solid mechanics theory �Bathe 1982; Belytschko et al. 2000�.
The main dependent variables are the initial density �0, the dis-
placement u, and the Lagrangian measures of stress � and strain
e. They depend on the particle position X and time t. The relevant
equations are:
• Mass conservation �continuity equation�

��X,t�J�X,t� = �0�X,t� �1�

where �=density and J=determinant of the deformation gra-
dient tensor.

• Conservation of linear momentum

��

�X
+ �b = �ü �2�

where b=force for unit of mass; ü=accelerations; and �
=Cauchy stress tensor.

• Conservation of angular momentum

� = �T �3�

• Constitutive equation
In our work, we use a standard damage constitutive model

�Oliver et al. 1990�

� = �1 − d�Ce �4�

where e=linear part of the Green-Lagrange strain tensor; d
=damage variable; and C=elastic constitutive tensor.

The integral form of the equilibrium equation is represented by
the virtual work principle �PVW�. Substituting the finite-element
interpolation into the PVW leads to the standard residual equation
in the matrix form

r ª Mün+1 − fext + fint = 0 �5�

where r=residual force vector; M=mass matrix; fext=external
forces; fint= internal forces; and ün+1=acceleration for the time
step n+1.

The solution of above set of equations in time using an UL
formulation requires the definition of the boundary and the initial
conditions for u0 , u̇0 , ü0 and the external forces. Contact forces
have a special treatment in the PFEM. They are not considered as
external forces. Instead contact is produced by a part of the do-
main involving contact elements with no mass but with stiffness

that follows a particular contact law. That is, fint= f̂int+ f̂cont where

f̂cont denotes the contact forces.
In the UL formulation, every time step has the reference

boundary conditions of the previous one. The computation of the

internal and contact forces f̂int and f̂cont, as well as the system
matrices, are based on the updating of displacements and stresses

t+�t t
u = u + �u �6�
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St+�t = �t + �S �7�

where S=second Piola-Kirchhoff stress tensor and �=Cauchy
stress tensor. Note that St=�t.

All incremental variables are computed at the nodes and the
integration points are stored in the particles. Usually, these par-
ticles coincide with mesh nodes. There is no reference to the
origin of the computations.

For solving the main system of equations �Eq. �5��, an implicit
integration scheme is chosen. The system is linearized using the
standard Newton-Raphson method and solved in time with the
Newmark � scheme �Belytschko et al. 2000�. The momentum
equation at time step n+1 can be written as

0 = r�un+1,tn+1� = Mün+1 − fext�un+1,tn+1� + fint�un+1,tn+1� �8�

The linealization of this nonlinear equation yields the following
iterative integration scheme

� M

��t2 + Kmat + Kgeo��u = fint − fext �9�

where Kmat=stiffness matrix; Kgeo=geometric stiffness matrix;
and �=parameter of the Newmark � scheme used to discretize
the equations in time. The displacements for the iteration �+1 are
computed as

�un+1��+1 = �un+1�� + �u �10�

where �u is computed by Eq. �9�.
Details of the matrices and vectors in Eq. �9� can be found in

the classical theory for nonlinear finite-element analysis of con-
tinua �Bathe 1982; Belytschko et al. 2000�. An important aspect
of the integration method is the conservation of energy. Equations
have to be able to represent an ideal dynamic process without any
win or loss of energy. Newmark integration is undamped for the
selected values of its parameters �see Bathe 1982�. Even so, it has
the tendency for high frequency noise to persist in the solution.
By using the Bossack or Hilbert � methods �Kuhl and Crisfield
1999�, numerical dissipation for high frequencies is improved
without degrading the accuracy so much.

Importance of a Particle-Based Method

The PFEM is based on particles for one important reason. After
getting the solution for one time step, a new mesh is created and
the element information is destroyed. That means that particles
must store the information and be the variables container. A par-
ticle is different from a node because it is not only a geometric
position. It contains all the information about the key variables in
the domain and also has the functionality of a node.

In the following we will use the name “particle” or “node”
indistinctly. Finite elements find the equilibrium of the continuum
equations at the integration points. Some variables like stresses
are discontinuous from element to element. When the Gauss point
information is transferred back to the nodes, the domain does not
recover the original state. The transfer of variables between Gauss
points to nodes typically leads to a smoothing of the information.

To minimize the error due to the information transfer, only the
incremental part of the information is transferred to the nodes
�particles�. The increment of a variable at a time step is the only
error that will be carried out along the analysis. The previous
information remains on the particle and is updated at each time
step. This is the natural form of the incremental equations in the
UL formulation but translated to a particle-based technique. The

updating scheme is the following:
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1. Transfer the stresses from particles to elements

�particle�→�node� → �integration point

where the arrow means the transferred variable. Each transfer
implies a smoothing operation using the total value of the
stresses.

2. Calculate the new stresses

�integration point
t+�t

3. Calculate the stress increment

�integration point
t+�t = �integration point

t + ��integration point �11�

4. Transfer the stress increment to the nodes

��integration point → ��particle

This is the second smoothing involving only the stress incre-
ment.

5. Add the nodal stress increment to the historical stress values
at the nodes

�particle
t+�t = �particle

t + ��particle �12�

This process leads to a minimum smoothing of the stress
field.

The accumulated error in the scheme is only due to the
smoothing of the stress increment. This is the only part that is
carried forward along the analysis steps and it is too small to

Fig. 1. Use of the
affect the results.
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Remeshing and Boundary Recognition

The PFEM includes the remeshing of the domain as an important
step in the analysis. By means of the remeshing, the boundary of
the different body entities is identified.

In an excavation process, the geometry of the problem is
changing continuously. Geomaterials are excavated and the cut-
ting tools are worn. The geometry of the excavation domain and
the tools change at the time these phenomena occurs.

The remeshing of the global domain is also essential for the
identification of contact between domains. The particles carry for-
ward enough information to allow the analysis in the new mesh at
each time step.

When a result is computed an update of the position is done.
Nodes �i.e., the particles� have a new relative position in the
space. Delaunay tessellation �Calvo et al. 2003� is used to create
a mesh from a cloud of particles in space. This mesh is generated
in the new analysis domain at each time step �see Fig. 1�.

Through the �-shape technique, the boundary of the bodies is
detected and rebuilt. The �-shape method also provides a criteria
to accept or throw away new generated triangular elements. Alpha
shapes in two dimensions �2D� are related to the Delaunay cir-
cumcircles obtained from a Delaunay triangulation. In three-
dimensional �3D� problems, the � shapes are related to Delaunay
circumspheres. Each particle has a characteristic parameter de-
fined by the mesh size that is compared with the radius of the
Delaunay sphere that includes the particle �Fig. 1�. This method

hing in the PFEM
remes
allows the boundaries to be detected.
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Contact is detected when the two domains are so close as to
generate contact elements between the interacting subdomain
�Fig. 2�. An interface mesh is created anticipating the spatial con-
tact. Hence, a mesh for the domain and a mesh for the interface
are generated. This permits to anticipate the collision of the dif-
ferent subdomains.

Treatment of Contact with the PFEM

Detecting the contact is easy with the PFEM. The interaction
between bodies is modeled with a thin mesh interface. This inter-
face generates large interacting forces due to the interchange of
dynamic energy in the contact region.

Either the penalty method or the Lagrange multipliers method
can be used to treat the interaction between the deformable bodies
in contact �Wriggers 2006�. These two methods have the advan-
tage that the detection of the contact regions is performed in an
easy manner via the �-shape technique. The size of the system
remains the same when a penalty method is used, i.e., there are
not additional degrees of freedom in the system. Even so, the
characterization of the penalty parameters and the convergence of
the numerical solution are two difficulties that remain and pre-
clude obtaining a good result.

Contact implies compressive and friction forces between the
interacting domains. The magnitude of these forces is large for
moderate time steps. Big values for the contact forces change the
condition of the numerical system adversely and push the analysis
toward using small time steps. This jeopardizes the advantages of
using an implicit integration scheme.

These problems can be overcome by treating the contact inter-
face as a part of the continuum via the contact element �Fig. 3�.

Fig. 2. Alpha-shape detects domains and contact elements when they
are close enough

Fig. 3. Contact forces in a contact element
458 / JOURNAL OF ENGINEERING MECHANICS © ASCE / APRIL 2010
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We note that elements lying in the contact interface are not used
to define a spring or to assign a direct correspondence in the
relative movement of the contact domains. These elements are in
fact considered as finite elements with special contact properties.

The first step is to simplify the displacement of the nodes in
the contact elements only in the direction of the normal to the
contact faces as

�u� cn · n� � � 0 → u� cn = �u� cn · n� � · n� �13�

where u� cn=displacement in the contact node and n� =normal to the
contact faces at the contact node. For clarity purposes, in the rest
of equations, an arrow �.�� is used to identify the variables which
are vectors.

The constitutive law in contact elements is a combination of
the properties of the interacting domains governed by a special
volumetric function. For example, the Young’s modulus in a con-
tact element is defined as

Econtact element =
1

n �
node=1

n

Enode · ��active gap�3 �14�

where n=number of nodes per element and �active gap= total volu-
metric deformation of the active contact elements.

The average Young’s modulus is multiplied by a cubic func-
tion to smooth the transition. The activation of this function de-
pends on the gap. The gap function Ggap is a normalized function
that takes the normal distance into account between contact faces
Dface to face as well as the mesh characteristics hnode.

Ggap = 1 −
Dface to face

1

n��node=1

n
hnode�

�15�

�Ggap � �− �,0� ⇒ Ggap = 0

Ggap � �0,1	 
 �16�

where distance hnode=nodal parameter used in the �-shape detec-
tion. Usually, it is the maximum or the average distance of one
particle to their neighbor particles �Edelsbrunner and Mücke
1994�.

The variable �active gap is updated while the contact nodes be-
long to an active element. The total volumetric strain must be
negative to take it into account

�active gap � �0,+ �� ⇒ �active gap = 0 �17�

when �active gap=0 contact is not active, and when �active gap=−1
the domains undergo fully interaction.

This methodology can be viewed as a nonlinear constitutive
law for contact elements. The tangential constitutive tensor is the
elastic tensor for a volumetric deformation with a nonlinear
Young’s modulus. It also introduces certain modifications in the
elemental system to improve convergence.

When this contact scheme is applied, the stresses in the contact
elements only have a nonzero value in the normal direction to the
faces in contact. The resultant forces are projected into the normal
direction and only appear when the interacting domains are com-
pressing each other. They can be expressed as follows:

�F� cn
int · n� � � 0 → F� cn

int = �F� cn
int · n� � · n� �18�

The resultant normal forces are typically quite large. The trans-
formation of the elemental forces is performed in the elemental
system matrix. This softens the influence in the condition number

of the equation system and improves the convergence of the it-
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erative process. Then a new tangent stiffness matrix appears in
the left hand side of the system as

Kceu� ce = F� ce
int ⇒ �F� ce

int · n� � · n� = �n� � n� �F� ce
int �19�

�n� � n� �Kce�n� � n� �u� = �n� � n� �F� ce
int �20�

where Kce and F� ce
int=stiffness matrix and the internal force vector

for a contact element, respectively, and n� =normal to the contact
face associated to each node in the contact element. The preced-
ing transformation maintains the symmetry in the elemental stiff-
ness matrices for the contact elements.

Frictional Effects in the Contact Region

Frictional effects are essential to model excavation processes.
Friction forces between surfaces are included initially as external
forces. The friction process is described by a Coulomb law in the
element interface. The tangential external force appears at the
contact surface and is proportional to the normal contact force

�F� normal
int · n� � � 0 → F� tangencial

frict = − 	�F� normal
int · n� � · t� �21�

where n� and t�=normal and the tangential directions to the contact
face associated to each node in the contact element �Fig. 3�.

Friction resistance to the movement depends on the relative
sliding velocity. A body that starts the movement has more fric-
tion resistance than other that is already in motion. The relative

sliding velocity between the contacting bodies u�̇ t is a relevant
physical variable that is incorporated to the friction law, as

	�u�̇ t� = 	D + �	S − 	D�e−c�u�̇ t� �22�

where 	D and 	S=dynamic and static friction coefficients, re-
spectively. The constitutive parameter c describes how fast the
static coefficient approaches the dynamic one.

To obtain a smooth transition from stick to slip condition, a
square root regularization of the Coulomb law is introduced as

F� tangencial
frict = − 	
�u�̇ t�F� normal

int �23�

where


 =
�u�̇ t�

��u�̇ �t
2 + �2

�24�

and the scalar parameter � denotes the regularization variable,

Fig. 4. Removing ma
which for �→0 yields the classical Coulomb law.
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To improve the convergence of the system, the elemental stiff-
ness matrix is modified as was done for the normal contact inter-
action. Then the frictional force is introduced as an internal force
and has its correspondence in the left hand side of the equation as

Kceu� ce = F� ce
int ⇒ �F� ce

int · n� � · t� = �t� � n� �F� ce
int �25�

�t� � n� �Kce�n� � n� �u� = �t� � n� �F� ce
int �26�

The preceding transformation introduces a nonsymmetry in the
elemental stiffness matrices of the contact elements. The nonsym-
metry is transferred to the global system of equations. With this
scheme, the Jacobian matrix of the global system is not symmet-
ric but the convergence of the problem improves substantially.

Taking all contact forces into account, the resultant system for
a contact element is

��n� � n� � + 	�t� � n� �	Kce�n� � n� �u� = ��n� � n� � + 	�t� � n� �	F� ce
int

�27�

Numerically, there is a difference between the normal forces and
the frictional forces in contact elements. The stress tensor in the
contact elements generates the normal force to the surfaces but
not the tangential one. Hence, the influence of tangential forces is
not included in the geometrical stiffness matrix. Also, these forces
are not taken in account for computing the stress history of the
contact interface elements.

Wear and Excavation Strategy

Wear and excavation of a geomaterial can be predicted by com-
puting the material that is damaged and has to be removed. New
boundaries are defined with the rest of the volume that remains in
the analysis domain. The surface properties of the interacting ma-
terials control the wear occurring during the frictional contact.

Contact Model with Wear

Mass loss in a cutting tool and the amount of excavated material
that is extracted by the machine is modeled via a wear rate func-
tion. When a steady state position in the wear mechanism is
reached, wear rate is described by a linear Archard-type equation

and boundary update
terial
�Rabinowicz 1995� as

RNAL OF ENGINEERING MECHANICS © ASCE / APRIL 2010 / 459

36(4): 455-463 



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

v 
Po

lit
ec

 C
at

al
un

ya
 o

n 
04

/2
5/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.
Vw = K
�F� n�
H

s �28�

where Vw�m3�=volume loss of the material along the contact sur-
face; s�m�=sliding distance; F� n�N�=normal force vector to the
contact surface; and H�N /m2�=hardness of the material. Constant
K is a nondimensional wear coefficient which depends on the
relative contribution of the body under abrasion, adhesion, and
wear processes.

In the PFEM, each node on the contact surface has a mesh of
elements associated to it. The volume of material wear is com-
pared with the volume associated to each contact node. When
both volumes coincide, the node is released and all the elements
associated to it are eliminated. The incremental equation for up-
dating the volume of wear at a node is as follows:

Vw
t+�t = Vw

t + K
�F� n�
H

��u�̇ t� · �t� �29�

where all variables are nodal variables; u̇t=relative tangent veloc-
ity between the contact surfaces; and �t=time step.

Geometry Updating

When the volume of worn material associated to a node and the
volume of material are the same, the node is released. Elements
that contain the released node are eliminated in the next time step.
Some particles are also eliminated and hence the global volume

Fig. 5. �Color� Di
of the problem changes. The historical value of the variables in
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these particles is lost as these particles do not contribute to the
system anymore. A scheme of the process is shown in Fig. 4.

The remeshing process allows the boundary recognition and
the update of the analysis domain due to the excavation process.
The geometry of the analysis domain is changed at each time step
as the excavation moves forward.

PFEM Solution Flowchart

The PFEM flowchart for modeling an excavation problem using
an implicit time integration scheme is as follows:
1. Read the initial conditions and initialization parameters from

a reference mesh:

a. Nodal variables: u� 0, u�̇ 0, u�̈ 0, and �0;
b. Elemental variables: materials, domains, constitutive

laws, . . . ; and
c. Scalar variables: time step ��t� and all needed

coefficients;
2. Compute the nodal distance parameters hnode for the � shape;
3. Transfer the elemental variables to the nodes �particles�;
4. Implicit time integration flowchart t+�t:

a. Estimate a solution u� �, start Newton iterations �+1;
b. Get the elemental variables from their value in the par-

ticles;
c. Compute internal forces u� �, ��→ f�int= f�̂int+ f�̂cont, ex-

ternal forces f�ext, and system Jacobian matrix A
2 mat geo

avating a soft wall
sk exc
= �M /��t �+K +K ;

36(4): 455-463 



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

v 
Po

lit
ec

 C
at

al
un

ya
 o

n 
04

/2
5/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.
d. Solve the linear system: r� −A�u� =0;
e. u� �+1=u� �+�u� ; and
f. Check convergence, if not met, go to �a�. Compute the

variables increment: u� =u� �+1, ��, �� . . . ;
5. Incremental update:

a. Particle positions: x� t+�t=x� t+u� ;

b. Velocities, accelerations: u�̇ =u�̇ �+1, u�̈ =u�̈ �+1;
c. Stresses: �particle

t+�t =�particle
t +��particle;

d. Strains: �particle
t+�t =�particle

t +��particle; and
e. Update the variables of the constitutive law, the wear

and the excavation volumes;
6. Create a new mesh:

a. Check wear and damage on particles: remove exca-
vated particles;

Fig. 6. �Color� Wear and stresses during the excavation of a stiff
wall

Fig. 7. �Color� Simulation o
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b. Transfer the domain particles to the mesher;
c. Apply the �-shape method in the new mesh: Boundary

recognition;
d. Update the variables dimensions: if the number of par-

ticles has changed; and
e. Identify the domains and the interface mesh for contact;

7. Check active contact elements;
8. Estimate the solution for the next timestep; and
9. Output results. If the simulation is not complete, go to 4.

Examples

Some representative examples are presented to show the capaci-
ties of the PFEM for modeling excavation problems. The ex-
amples represents cutting and excavating processes in 2D and 3D
dimensions.

Disk Cutting of a Ground Section

The first example is an elastic disk in 2D. It is pushed against a
solid wall. The disk has an imposed rotation to generate friction
when contacting with the solid wall. The material is modeled with
a simple damage law.

Fig. 5 shows the 2D model. It can be observed that initially the
two bodies are not in contact. When the disk comes near the wall
contact is detected. An interface mesh of contact elements is gen-
erated and it anticipates the contact area. The contacting forces
are transmitted through the contact elements to each domain. This
interaction damages the solid wall until it crashes. Contact forces
are computed in the axis of the disk to yield force and momentum
reactions.

xcavation with a roadheader
f an e
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The mesh is coarse so as to see the process and the contact
interface mesh better. In a fine mesh, contact elements are quite
small and are difficult to visualize. It can be seen how as contact
forces erode the wall, the excavated particles are taken away from
the model. This generates a hollow in the surface while at the
same time the material experiences large deformations. In Fig. 6,
results of stresses and excavating abrasion for a similar example
are presented. In this example the wall material was more rigid
but the rest of conditions were the same.

Roadheader Penetrating in the Ground

The next example is a simulation of a roadheader digging a por-
tion of ground. This is an illustrative example of the capabilities
of the PFEM for modeling ground excavation and wear of the

Fig. 8. �Color� Simulatio
cutting tools at the same time.
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The results are shown in Fig. 7. A rotation and a displacement
have been imposed to the roadheader.

Notice that contact elements only appear in the contact zone.
The cone that models the roadheader loses material on the tip due
to wear. Geometries suffer big changes during the simulation.
Remeshing and detection of the boundary via � shape are crucial
for capturing the fast changes of the domain boundary.

Simulation of an Excavation with a Tunnel Boring
Machine

In Fig. 8, a simulation of a tunnel boring machine �TBM� as
it penetrates a 3D domain is presented. This is an example of the
capability of the PFEM method to model all type of excavation
settings. Fig. 8 shows the stress contour lines on the domain.

n excavation with a TBM
n of a
Far away from the rotating axis, the displacement is bigger for the
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same rotation velocity and it generates larger friction forces at
the end part of the tunneling head. Fig. 8 also shows the geometry
of the interior part of the domain after the excavation. The previ-
ous examples are only preliminary results that illustrate the good
capabilities of the PFEM for modeling ground excavation pro-
cesses.

Conclusions

This work presents advances in the numerical modeling of ground
excavation using a new method, the PFEM, which is an alterna-
tive to the DEM for the simulation of these type of problems. The
examples presented show that the PFEM has an excellent perfor-
mance for the modeling of large problems and global excavation
processes.

The major contributions of the work are:
• The development of PFEM in the field of solid mechanics and

the adaptation for modeling ground excavation;
• The development of contact mechanics in the PFEM. A new

treatment of the contact problem is presented in this work;
• The adaptation of the classical material wear theory to model

numerically tool wear and excavation, via coupling FEM with
automatic geometry shaping; and

• A global PFEM solution scheme is created by assembling all
these single contributions. They set a powerful tool for simu-
lating a wide range of excavation processes, from a full tun-
neling machine to a single cutting tool.
The remarkable advantages of the PFEM are:

• The method is based on the standard FEM, which permits the
use of well-known constitutive equations and all the existing
background knowledge in the method. This is an advantage
compared with the DEM, which lacks this fundamental base in
the constitutive modeling; and

• Preliminary results show that the PFEM is a better alternative
than DEM to model excavation problems, due to its greater
accuracy and computational efficiency for solving large scale

3D problems of practical interest in civil engineering.
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