Since 1947, when Schubauer and Skramstad established the basis of the technology with its revolutionary work about steady state tools and mechanisms for the flow management, the progress of the flow control technology and the development of devices have progressed constantly. Anyway, the applicability of such devices is limited, and only few of them have arrived to the assembly workshop. The problem is that the range of actuation is still limited. Despite their operability limitations, flow control devices are of great interest for the aeronautical industry. The number of projects investigating this technology demonstrates the relevance of in the Fluid Dynamic field. The scientific interest focus not only on the industrial applications and the improvement of the technology, but also on the deep understanding of the physical phenomena associated to the flow separation, turbulence formation associated to the final drag reduction aim. A clear example of what has been mentioned is the EC MARS research project. Its objectives are aimed to a better understanding of the Reynolds Stress and turbulent flow related to both drag reduction and flow control. The research was carried out through the analysis of several flow control devices and the optimization of the parameters for some of them was an important element of the research. When solving a traditional fluid dynamics optimisation problem numerical flow analysis are used instead of experimental ones due to their lower cost and shorter needed time for evaluation of candidate solutions. Nevertheless, in the particular case of the selected flow control plasma devices the experimental measurement of the performance of each candidate configuration has been much quicker than a numerical analysis. For this reason, the corresponding optimisation problem has been solved by coupling an evolutionary optimization algorithm with an experimental device. This paper discusses the design quality and efficiency gained by this innovative coupling.

Back to Top

Document information

Published on 01/01/2020

DOI: 10.1007/978-3-030-29688-9_9
Licence: CC BY-NC-SA license

Document Score


Views 5
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?