Stiffness and strength are important structural design criteria. However, most contributions to Topology Optimization (TO) deal with the compliance minimization problem. Controlling stresses in a structure is very important to avoid material failure, but that raises complications in TO, such as: nonlinearity, singularity and high computational cost. The total weight of a structure is also another important criterion in optimal design. The multi-material setting is considered in the present work as it opens the possibility to improve structural performance even further allowing extra weight reduction. Recursive SIMP is used as the material interpolation scheme and design solutions are sought using the ground structure approach. This means that truss-like (lattice) designs are obtained here. The problem is relaxed to the continuum by introducing an artificial density variable and it is solved by a gradientbased algorithm (MMA). A stress-constraint relaxation technique (qp-approach) is applied to overcome the stress singularity phenomenon. A continuation approach is used to guarantee discrete solutions, i.e., only the presence or absence of bars is identified. Therefore, design uniformity in terms of bars cross section areas is ensured. Hence, this work proposes a methodology to perform Multi-Material Topology Optimization (MMTO) of truss structures, with density-based design variables, and subject to stress constraints. To discuss the differences between stiffness and strength-oriented optimal designs, a compliance minimization problem subject to mass constraint is also considered. The example chosen demonstrates the viability of the proposed design methodology and it also reveals differences between the strongest and the stiffest designs.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 11/07/21
Submitted on 11/07/21

Volume IS24 - Optimal Design of Structures and Metamaterials: Innovative Techniques for Engineering Applications, 2021
DOI: 10.23967/coupled.2021.052
Licence: CC BY-NC-SA license

Document Score


Views 75
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?