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Abstract. Stiffness and strength are important structural design criteria. However, most 

contributions to Topology Optimization (TO) deal with the compliance minimization problem. 

Controlling stresses in a structure is very important to avoid material failure, but that raises 

complications in TO, such as: nonlinearity, singularity and high computational cost. The total 

weight of a structure is also another important criterion in optimal design. The multi-material 

setting is considered in the present work as it opens the possibility to improve structural 

performance even further allowing extra weight reduction. Recursive SIMP is used as the 

material interpolation scheme and design solutions are sought using the ground structure 

approach. This means that truss-like (lattice) designs are obtained here. The problem is relaxed 

to the continuum by introducing an artificial density variable and it is solved by a gradient-

based algorithm (MMA). A stress-constraint relaxation technique (qp-approach) is applied to 

overcome the stress singularity phenomenon. A continuation approach is used to guarantee 

discrete solutions, i.e., only the presence or absence of bars is identified. Therefore, design 

uniformity in terms of bars cross section areas is ensured. Hence, this work proposes a 

methodology to perform Multi-Material Topology Optimization (MMTO) of truss structures, 

with density-based design variables, and subject to stress constraints. To discuss the differences 

between stiffness and strength-oriented optimal designs, a compliance minimization problem 

subject to mass constraint is also considered. The example chosen demonstrates the viability of 

the proposed design methodology and it also reveals differences between the strongest and the 

stiffest designs. 
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1 INTRODUCTION 

Recent developments in engineering and technology along with increasing environmental 

awareness have demanded more efficient solutions. Topology Optimization (TO) can be used 

to find improved designs in terms of weight, stiffness, and strength. The TO concept was first 

introduced in 1870 by Maxwell in his pioneer study [1]. Later, in 1964, Dorn et al. [2] 

introduced the Ground Structure Approach to optimize truss structures, where a discrete design 

domain is used.  

TO is a discrete problem by nature. It determines, within a given design domain, either 

discrete or continuous, which points should be void or solid. Such problem can be solved  by 

gradient-free optimization methods such as meta-heuristics or deterministic methods as branch-

and-bound [3,4]. Gradient-based methods can also be used provided that the original TO 

problem is relaxed to the continuum, becoming thus differentiable [5]. The density-based 

methods are one of the most common approaches to attain such relaxation. The pioneer study 

of Bendsøe and Kikuchi [6] introduced for the first time an artificial density variable to analyze 

structures made of porous material microstructures. In 1989, Bendsøe [7] proposed the Solid 

Isotropic Material with Penalization (SIMP) model, one of the most popular density-based 

approaches to solve TO problems. 

In Single Material Topology Optimization (SMTO), truss design domains have been used to 

find design solutions in the aerospace and automotive fields (see e.g. [8,9]). Recently, Multi-

Material Topology Optimization (MMTO) has started to raise interest due to its capability to 

find better solutions with respect to (w.r.t.) some design criteria, e.g. weight, stiffness or 

strength. Density-based approaches have been successively applied to MMTO problems for a 

generalized number of material phases, using either extensions of the classical SIMP method, 

so-called recursive SIMP [10,11], or the Discrete Material Optimization (DMO) method [12]. 

Besides density-based approaches, the level-set method has also been applied to MMTO 

problems [13,14]. 

Recently, Li and Kim [15] and Jung et al. [16], presented similar MMTO problems aiming 

to compare the compliance and weight minimization problems. In both works, the design 

domain is discretized with plane or hexahedral elements (continuous domain). In fact, most 

MMTO contributions deal with continuous design domains. Only a few works focus on multi-

material discrete structures (lattices/trusses), see e.g. [17-22]. Some of these studies use discrete 

variables while others use continuous variables. Continuous variables allow the problem to be 

solved using gradient-based algorithms, typically quite faster than gradient-free algorithms. 

There are not many contributions on truss TO with the density variable, the multi-material 

setting and stress constraints. The present work aims to contribute in these aspects. 

In the case of single-load and single-material problems, uniform material properties, no side 

constraints on design variables (e.g. areas), and under the isostaticity condition, the compliance 

and stress-based TO problems have the same optimum. In contrast, in the multi-load or multi-

material case, the optimal solution is not trivial, as there is no equivalence between the 

compliance and stress problems [23]. Therefore, even though most studies on TO focus on 

stiffness problems, rather than considering stress constraints, this work highlights the 

importance of imposing admissible stresses, as they are important in engineering practice [24]. 

The implementation of stress constraints represents a major challenge mainly due to: (1) the 

local nature of stress constraints; (2) non-linearity of the stress function and (3) singularity 
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phenomenon. The local nature of the stress constraints, assuming a design domain discretized 

with finite elements, means having as many of such constraints as the number of finite elements. 

For problems with a large number of elements one might consider using parallel computing or 

constraint aggregation techniques, like the p-norm, to reduce the computational cost. The 

singularity phenomenon, as shown in [25], occurs when an optimum design is singular, i.e., it 

is located in a degenerated point of the design domain, unreachable by gradient-based 

optimization algorithms. To overcome this difficulty, relaxation techniques can be applied to 

stress constraints, such as the ε-relaxation [26,27] and the qp-approach [28]. The later is used 

in the present work. 

This work is outlined as follows. The multi-material interpolation scheme used is presented 

in Section 2. The optimization problem formulation is presented in Section 3. In Section 4 a 

numerical example is presented, to prove the benefits of performing strength-oriented MMTO. 

Finally, Section 5 outlines the conclusions of this work and highlights the differences between 

stiffness and strength-oriented optimal designs. 

 

2 MULTI-MATERIAL INTERPOLATION SCHEME 

Each truss bar element has a material chosen from a predefined list of materials, with distinct 

properties of volumetric mass density 𝜌𝑒, Young's modulus 𝐸𝑒 and yield stress 𝜎𝑒. To 

determinate which material properties are attributed to each bar element, a multi-material 

interpolation scheme based on the density design variable is implemented. The well-known 

SIMP method is used here in its recursive form to interpolate among n different phases, i.e., 

𝜒𝑒(𝑥𝑒,1, 𝑥𝑒,2, … , 𝑥𝑒,𝑛−1) = ∑ [(1 − (𝑥𝑒,𝑚
𝑝

− 𝑥𝑒,𝑚
𝑝
𝛿𝑚,𝑛))(∏(𝑥𝑒,𝑞)

𝑝
𝑚−1

𝑞=1

)𝜒(𝑛−𝑚+1)]

𝑛

𝑚=1

 

 

(1) 

where 𝑥𝑒,𝑚 is the density variable 𝑚 of element 𝑒 (total of 𝑛 − 1 variables per element), 𝜒𝑒 

represents the material property for element 𝑒 (i.e. 𝜌𝑒, 𝐸𝑒 or 𝜎𝑒), 𝜒(𝑛−𝑚+1) is the material 

property of phase (𝑛 − 𝑚 + 1), 𝛿𝑚,𝑛 is the Kronecker delta (𝛿𝑚,𝑛 = 1 if 𝑚 = 𝑛; 𝛿𝑚,𝑛 = 0 if 𝑚 ≠
𝑛 ) and the exponent 𝑝 imposes a penalization on intermediate densities.  

In the classical Single Material Topology Optimization (SMTO) problem there are just two 

phases to interpolate (𝑛 = 2), i.e., void and solid phases. Therefore, only one design variable is 

required in (1), and it gives: 

𝜒𝑒(𝑥𝑒,1) = 𝑥𝑒,1
𝑝
𝜒1 + (1 − 𝑥𝑒,1

𝑝
)𝜒2 (2) 

where 𝜒1 = 𝜒𝑚𝑎𝑡1 and 𝜒2 = 𝜒𝑣𝑜𝑖𝑑 ≅ 0. 

For Multi-Material Topology Optimization (MMTO), scheme (1) is written, in this work, 

for three and four phases (one of them is void) as seen in (3) and (4), respectively: 

𝜒𝑒(𝑥𝑒,1, 𝑥𝑒,2) = 𝑥𝑒,1
𝑝
(𝑥𝑒,2

𝑝
𝜒1 + (1 − 𝑥𝑒,2

𝑝
)𝜒2) + (1 − 𝑥𝑒,1

𝑝
)𝜒3 (3) 

𝜒𝑒(𝑥𝑒,1, 𝑥𝑒,2, 𝑥𝑒,3) = 𝑥𝑒,1
𝑝
(𝑥𝑒,2

𝑝
(𝑥𝑒,3

𝑝
𝜒1 + (1 − 𝑥𝑒,3

𝑝
)𝜒2) + (1 − 𝑥𝑒,2

𝑝
)𝜒3) + (1 − 𝑥𝑒,1

𝑝
)𝜒4 (4) 

Consider that 𝜒3 and 𝜒4 correspond to the void phase in (3) and (4), respectively. Therefore, the 

density design variable 𝑥𝑒,1 can be seen as a topological design variable as it chooses whether 

the element is void or solid. The remaining design variables are responsible for the material 
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selection, given a pool of predefined materials. 

The penalty 𝑝 plays an important role in penalizing intermediate density values, such that a 

discrete material distribution is obtained at the end of the design iterations. In Figure 1 the 

relation between the design variables (densities) and the interpolated material property, 

considering three phases (see Eq. 3), is plotted for different values of p. For p = 1, the resulting 

interpolation is linear (plane), meaning that the intermediate densities are not penalized. 

Increasing the penalty factor leads to more concave surfaces, making it more uneconomical to 

have intermediate densities. Section 3.4 proposes a continuation approach as regards p changes 

to promote escape from local minima. 

 

3 OPTIMIZATION PROBLEM FORMULATION 

Most topology optimization problems are focused on mass/compliance minimization with 

compliance/mass constraints. This may lead to optimal designs regarding stiffness, yet strength 

can be compromised. Therefore, a mass minimization problem subject to stress constraints is 

formulated in Section 3.1 to obtain strength-oriented designs. In Section 3.2, the common 

compliance minimization problem subject to mass constraint is revisited. These two 

formulations have the purpose of comparing the strongest and stiffest designs, respectively. The 

sensitivity analysis and penalty strategy are presented in Section 3.3 and 3.4, respectively. The 

problems are solved using the Method of Moving Asymptotes (MMA) [29]. 

3.1 Mass minimization with stress constraints 

The mass minimization problem subject to stress constraints is formulated as:  

min
𝐱, 𝑥𝑒,𝑚∈[𝑥,𝑥]

𝑀(𝐱) =∑𝜌𝑒(𝐱)𝐿𝑒𝐴𝑒

𝑁𝐸

𝑒=1

 

𝑠. 𝑡. 

{
 
 

 
 
𝐊𝐮 = 𝐟, 𝐊 = ∑ 𝐊𝑒(𝐸𝑒(𝐱))

𝑁𝐸 
𝑒=1                                                                 

𝑔𝑒
𝜎(𝐱, 𝐮(𝐱)) = (

𝜎𝑒(𝐱,𝐮(𝐱))

�̅�𝑒(𝐱)
)
2

− 1 ≤ 0                                                       

𝑔𝜂(𝐱) =
𝜓(𝐱)−𝜂

𝜂
≤ 0, with 𝜓(𝐱) = ∑ ∑ [(𝑥 − 𝑥𝑒,𝑚)(𝑥𝑒,𝑚 − 𝑥)]

𝑁𝑚𝑎𝑡
𝑚=1

𝑁𝐸
𝑒=1

  

(5) 

Figure 1: Plot of the recursive SIMP interpolation scheme for three phases (two solid and one void) with 

increasing values of penalty factor p. 
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where 𝑀(𝐱) is the mass of the truss structure, 𝐱 is the density variables vector, 𝑥 and 𝑥 are the 

respective upper (=1) and lower (=0.001 to prevent singularities) bounds of 𝑥𝑒,𝑚, 𝐿𝑒 is the 

length and 𝐴𝑒 is the area, 𝑔𝑒
𝜎 is the normalized stress constraint of element 𝑒 and 𝑔𝜂 is the 

normalized intermediate density constraint, where 𝜂 is kept small enough. The total number of 

finite elements is 𝑁𝐸, and  𝑁𝑚𝑎𝑡 is the total number of solid phases, i.e., 𝑛 − 1. The volumetric 

mass density 𝜌𝑒, Young's modulus 𝐸𝑒 and yield stress 𝜎𝑒 are interpolated according to the 

scheme presented in Section 2, using different penalizations as presented in Section 3.4. 

The stress in an element e is computed through the material constitutive law:  

𝜎𝑒(𝐱, 𝐮(𝐱)) = 𝐸𝑒(𝐱)𝜀𝑒(𝐮(𝐱)) (6) 

where 𝜀𝑒 is the strain of element 𝑒 that depends on the displacement field 𝐮 which solves the 

equilibrium problem, 𝐊𝐮 = 𝐟, using a finite element formulation.  

In order to overcome the stress singularity phenomenon, the qp-approach relaxation 

technique is used. This means that the exponent 𝑝𝜎 in the interpolation of the yield stress is 

made slightly lower than 𝑝𝐸 in the interpolation of the Young’s modulus, i.e., 𝑝𝜎 < 𝑝𝐸. 

The compliance has not been included in (5), which is a simplification but its inclusion might 

be pondered to definitely exclude the trivial “no structure” solution. To proceed, if the 

penalization of intermediate densities is not on account of 𝑝𝐸, as it is in the case of compliance, 

the constraint 𝑔𝜂 ensures that one attains a discrete solution, i.e., densities are forced to attain 

their bounds, 0 and 1. A continuation approach for 𝑝𝐸, 𝑝𝜎and 𝜂 is proposed in Section 3.4. 

3.2 Compliance minimization with mass constraint 

To discuss the differences between stiffness and strength-oriented optimal designs, the 

compliance minimization problem is revisited here which is formulated as:  

min
𝐱, 𝑥𝑒,𝑚∈[𝑥,𝑥]

𝐶(𝐮(𝐱)) = 𝐟T𝐮(𝐱) 

𝑠. 𝑡 

{
 
 

 
 𝐊𝐮 = 𝐟, 𝐊 = ∑ 𝐊𝑒(𝐸𝑒(𝐱))

𝑁𝐸 
𝑒=1                                                                

𝑔𝑀(𝐱) =
𝑀(𝐱)

𝑀∗ − 1 ≤ 0                                                                              

𝑔𝜂(𝐱) =
𝜓(𝐱)−𝜂

𝜂
≤ 0, 𝜓(𝐱) = ∑ ∑ [(𝑥 − 𝑥𝑒,𝑚)(𝑥𝑒,𝑚 − 𝑥)]

𝑁𝑚𝑎𝑡
𝑚=1

𝑁𝐸
𝑒=1

  

(7) 

where 𝐶 is the compliance, 𝑀(𝐱) is the structure’s mass, and 𝑀∗ is the optimal mass obtained 

from problem (5) solution. Here, the intermediate densities are penalized using both 𝑝𝐸 > 1 

and constraint 𝑔𝜂. 

When the layouts of the compliance and stress problems differ, one notices that the density 

variables in the compliance problem have difficulty to strictly converge to their discrete values 

as the mass constraint 𝑔𝑀 tends to be activated. In fact, for binary variables, the mass of the 

stiffest structure from (7) may differ from the mass of the strongest structure from (5). By means 

of the formulation (7) one ensures that each density eventually becomes 0 or 1. Finally, although 

stresses are not part of formulation (7), they are measured to compare with the stress distribution 

from (5). 
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3.3 Sensitivity analysis 

The sensitivities of the mass and intermediate densities constraints w.r.t. density design 

variables are: 

𝜕𝑀(𝐱)

𝜕𝑥𝑒,𝑚
=
𝜕𝜌𝑒(𝐱)

𝜕𝑥𝑒,𝑚
𝐿𝑒𝐴𝑒 (8) 

𝜕𝑔𝜂(𝐱)

𝜕𝑥𝑒,𝑚
= −

2𝑥𝑒,𝑚 + 𝑥 + 𝑥

𝜂
 (9) 

The stress constraints 𝑔𝑒
𝜎 and compliance 𝐶 have implicit design dependence, so one uses 

the adjoint method to analytically compute these derivatives. The compliance derivative is 

straightforward to compute, as it results in a self-adjoint problem, and it is given by [5]: 

d𝐶

d𝑥𝑒,𝑚
= −𝐮⊤

𝜕𝐊

𝜕𝑥𝑒,𝑚
𝐮 = −𝐮⊤

𝜕𝐸𝑒(𝐱)

𝜕𝑥𝑒,𝑚

𝐴𝑒
𝐿𝑒
[
   1 −1
−1    1

] 𝐮 (10) 

Regarding the stress constraints 𝑔𝑒
𝜎(𝐱, 𝐮(𝐱)), its sensitivities are computed through: 

d𝑔𝑒
𝜎(𝐱, 𝐮(𝐱))

d𝑥𝑒,𝑚
=
𝜕𝑔𝑒

𝜎

𝜕𝑥𝑒,𝑚
+ 𝛌𝑒

T [
𝜕𝐟

𝜕𝑥𝑒,𝑚
−

𝜕𝐊

𝜕𝑥𝑒,𝑚
𝐮] (11) 

where 𝛌 is the adjoint vector that solves the adjoint problem 𝐊𝛌 = 𝐳 = (
𝜕𝑔𝑒

𝜎

𝜕𝐮
)
T

. The required 

derivatives in (11) are given by: 

𝜕𝑔𝑒
𝜎

𝜕𝑥𝑒,𝑚
= 2

𝐸𝑒(𝐱)

𝜎𝑒(𝐱)
𝜀𝑒
2(𝐮)

𝜕𝐸𝑒(𝐱)
𝜕𝑥𝑒,𝑚

𝜎𝑒(𝐱) − 𝐸𝑒(𝐱)
𝜕𝜎𝑒(𝐱)
𝜕𝑥𝑒,𝑚

𝜎𝑒
2
(𝐱)

 
(12) 

𝜕𝑔𝑒
𝜎

𝜕𝑢
= 2𝜀𝑒(𝐮) (

𝐸𝑒(𝐱)

𝜎𝑒(𝐱)
)

2
𝜕𝜀𝑒(𝐮)

𝜕𝑢
;where 

𝜕𝜀𝑒(𝐮)

𝜕𝑢
=
1

𝐿𝑒
{

  cos(𝛼)

   𝑠𝑒𝑛(𝛼)

− cos(𝛼)

−𝑠𝑒𝑛(𝛼)

} (13) 

The load vector 𝐟 is here considered independent from the design variables, therefore its 

derivatives are zero. The stiffness matrix 𝐊 derivatives are computed as shown in (10). The 𝛼 

is the angle between the global (structure) and the local (element) coordinate systems. 

The derivatives of the material properties of element 𝑒 (𝜌𝑒, 𝐸𝑒 or 𝜎𝑒), simply involves 

differentiating (1) w.r.t. 𝑥𝑒,𝑚. 

3.4 Penalization strategy 

To guarantee that the optimal solutions of problems (5) and (7) are discrete, i.e., all design 

variables are at their bounds (0 or 1), and that a correct relaxation on stress constraints is applied, 

a penalization strategy is adopted. This penalization strategy, so-called continuation approach, 

is actually a twofold process, explained below, in order to prevent the algorithm from getting 

trapped in local minima.  

In the first interval of design iterations, 𝐼1, the values of the penalty exponents 𝑝𝐸and 𝑝𝜎 are 

gradually increased according to Table 1, from non-penalized values (that remain constant 

during the first 5% of 𝐼1, see Fig. 2) to their maximum values at the end of 𝐼1, remaining constant 
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Figure 2: Penalization strategy: Variation of the penalty parameter values 𝒑𝝆, 𝒑𝑬, 𝒑𝝈 and 𝜼 

along the iterations.  

onward. 

Right after the first interval of iterations, 𝐼1, one has the interval of iterations defined as 𝐼2 =
0.4𝐼1, where the value of the parameter 𝜂 is gradually decreased (see Table 1) such that, 

constraint 𝑔𝜂 becomes eventually active. Note that 𝜂 decreases to its minimum value of 0.001 

after 70% of 𝐼2 iterations have elapsed. Remark that, inside the interval 𝐼1, the value of 𝜂 is 

made high enough on purpose such that the constraint 𝑔𝜂 is inactive. Finally, all parameters 𝑝𝐸, 

𝑝𝜎and 𝜂 remain constant during the last iterations allowing the algorithm to stabilise. The total 

number of iterations is then 𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼1 + 𝐼2. To better understand this continuation approach 

just described, please see Fig. 2. 

Table 1: Initial and final values of some algorithm penalty parameters. 

𝑝𝜌 𝑝𝐸 𝑝𝜎 𝜂 𝑐1 𝑐2 

1 → 1 1.1 → 4 1 → 3.5 1.001 × 𝜓𝐼1 → 0.001 106 102 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The optimizer used here, MMA, uses artificial variables in subproblems that approximate 

the original problems, (5) or (7), such that feasibility is always attained. Each constraint has its 

own MMA penalty parameter, referred as 𝑐1 for the stress/mass constraints and 𝑐2 for the 

intermediate density constraint (see Table 1, last two columns). The tuning of the parameters 

presented in Table 1 is crucial. Preferably, these parameters should be as independent as 

possible of the numerical problem being solved. 

4 RESULTS 

In order to apply the proposed formulations, a 110 bar truss ground structure example is 

considered, see Fig 3. The bars have a circular cross-section area of 𝐴 = 400 × 10−6m2, a 

length of 𝐿 = 0.150 m and the load is 36.5 kN. Optimization problems are solved using MMA, 
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implemented within a set of functions developed in MATLAB. Three different class of 

problems are considered, depending on the number of solid phases: (1) SMTO; (2) MMTO2 

and (3) MMTO3. The properties of the solid phases are presented in Table 2. 

 

 

 

 

 

 

 

 

Table 2: Materials properties. 

Material 

Volumetric mass 

density, 𝜌 

[kg/m3] 

Young’s 

modulus, 𝐸 

[Pa] 

Yield stress, 

𝜎 

[Pa] 

Identifier

(Colour) 

RGB 

triplet 

Steel 7850 205 × 109 425 × 106  [1 0 0] 
Aluminium 2700 70 × 109 310 × 106  [0 0 1] 
Magnesium 1700 44 × 109 220 × 106  [0 1 0] 

 

4.1 Mass minimization with stress constraints 

A density design variable 𝑥𝑒,𝑚 for each solid phase and per finite element 𝑒 is required for 

proper interpolation. Therefore, the total number of design variables is obtained multiplying the 

total number of elements, 𝑁𝐸, by the number of solid phases, 𝑁𝑚𝑎𝑡, considered. As regards the 

number of constraints, it equals the total number of finite elements (number of stress 

constraints) plus one (the intermediate density penalization constraint), see (5).  

Figure 4 shows two things for the SMTO, MMTO2 and MMTO3 problems solved. Firstly, 

the material distribution is seen on the left, where different colours represent different materials 

according to Table 2. Notice that hyperstaticity is obtained in every layout. Also, some 

connectivities indicate that a real truss bar groups two aligned bar finite elements from the 

original ground structure. Secondly, the normalized stress (𝜎𝑒/𝜎𝑒) at each bar element is seen 

on the right, and 𝜎𝑒/𝜎𝑒 = 1 means that the yield stress of the actual material is attained.  

The values of the mass, maximum stress attained and compliance for each problem in Figure 

4 are reported in Table 3. As shown, by adding aluminium to the structure (MMTO2) its mass 

can be reduced up to 48% and by adding magnesium (MMTO3) an additional mass reduction 

Figure 3: Ground structure of 110 truss bars (simplified to 56 bars due to symmetry conditions). 
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of 13% is achieved. Notice that the compliance 𝐶𝑀 is neither optimized nor constrained here. 

However, its value is evaluated for comparison purposes when solving the compliance-based 

problem, as presented next. 

 Material distribution Normalized stress distribution Stress scale 
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Figure 4: Optimal layout and material (on the left) and respective normalized stress (on the right) distributions 

for the SMTO, MMTO2 and MMTO3 problems minimizing mass with stress constraints. 

Table 3: Optimal objective function values, maximum stresses, compliances and design iterations for the 

mass minimization problem considering one, two and three solid phases. 

 
Objective function, 𝑀∗ 

[kg] 
Maximum normalized 

stress (𝜎𝑒/𝜎𝑒) 

Compliance, 𝐶𝑀 

[J] 
𝐼1 

SMTO 26.0710 0.8957 690.799 

40 MMTO2 13.6277 0.9015 1346.035 

MMTO3 11.8178 0.9883 1233.475 

4.2 Compliance minimization with mass constraints 

The compliance minimization problem also requires one density design variable 𝑥𝑒,𝑚 for 

each solid phase and per finite element 𝑒. This problem is simpler than the previous one as it 

only requires two constraints, the mass and intermediate density penalization constraints. Figure 

5 presents the optimized material distribution and the normalized stress (𝜎𝑒/𝜎𝑒), for the SMTO, 

MMTO2 and MMTO3 problems. The corresponding values of the compliance, maximum stress 

and mass are in Table 4. 

Table 4, comparing to Table 3, presents better compliances (6%, 34% and 17% less, 

respectively) but stresses are over the limit by 7,4% for approximately the same mass. In this 

Section stresses are evaluated (not constrained) for comparison purposes. The previous optimal 

mass values (𝑀∗), presented in Table 3, are now the mass constraints upper bounds. However, 

one realizes from Table 4 that mass constraints are not actually active for minimum compliance, 

i.e., the obtained masses are slightly lower than 𝑀∗ values (compare third column of Table 4 

with first column of Table 3). Since the strongest and stiffest layouts differ, the respective 

masses are hardly equal as densities take binary values (0 and 1).  

The stiffest and strongest designs are equivalent, as pointed out in [30], under specific 

conditions: single load case, uniform material, isostaticity, and unconstraint design variable, 



Cláudia J. Almeida, Fábio C. Conde, Pedro G. Coelho and Tiago L. Pratas 

 10 

e.g. the cross section area variable. However, the problem presented here uses the artificial 

density as design variable, which has the side constraints 0 and 1. Furthermore, the multi-

material case is considered here and the stress optimal trusses are statically indeterminate, 

which thus explains the difference between the strength and stiffness-oriented optimal designs. 

 Material Distribution Normalized stress Stress scale 
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Figure 5: Optimal layout and material (on the left) and respective normalized stress (on the right) distributions 

for the SMTO, MMTO2 and MMTO3 problems minimizing compliance with mass constraint. 

Table 4: Optimal objective function values, maximum stresses, compliances and design iterations for the 

mass minimization problem considering one, two and three solid phases. 

 
Objective function, 𝐶∗ 

[J] 
Maximum normalized 

stress (𝜎𝑒/𝜎𝑒) 

Mass, 𝑀𝐶 

[kg] 
𝐼1 

SMTO 652.033 1.0736 25.850 400 

MMTO2 890.950 1.0735 13.261 40 

MMTO3 1014.785 1.0735 11.216 40 

 

5 CONCLUSIONS 

Stress-based TO problems are very important in engineering practice and not always the 

strength and stiffness-oriented designs coincide as seen in the present work. Performing TO 

without controlling the stresses in the structure can lead to optimal solutions that do not meet 

the material failure criterion, as seen in the compliance minimization problem in Section 4.2. 

Usually when TO is applied to truss structures, the cross-sectional areas are used as design 

variables. However, keeping stresses under the yielding limit is not enough to prevent that thin 

members, under compression, appear with related buckling instability. Using artificial densities 

as design variables, considering pre-defined areas large enough, it might be seen here as a 

possible approach to avoid or minimize the buckling problems. The buckling problem is not an 

easy one to deal with. For instance, notice the buckling length jump when, at the final layout 

seen in Figure 4, a bar is identified grouping two aligned finite elements from the initial ground 

structure seen in Figure 3. This is the so-called chain effect that deserves careful treatment, out 

of the scope of the present work, yet not fully solved in the literature and thus can be addressed 
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in the future.  

The MMTO formulation proposed in this work, applied to trusses, uses a density-based 

approach. This approach allows a gradient-based optimizer to be used, since the problem is 

defined through differentiable functions that use continuous design variables. Considering more 

than one material in TO problems improves the performance in lightweight design when 

compared to the optimal single-material solution, as demonstrated in Section 4 with the example 

chosen.  

To conclude, this work is a contribution on MMTO of truss structures including stress 

constraints. The numerical example provided shows the viability of the proposed formulations. 

As future work, the authors intend to include the areas as design variables (besides densities) 

as well as buckling constraints. 
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