You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
Published in ''Computational Mechanics'', Vol. 54 (6), pp. 1583-1596, 2014<br />
2
DOI: 10.1007/s00466-014-1078-1
3
4
==Abstract==
5
6
We present a mixed velocity-pressure finite element formulation for solving the updated Lagrangian equations for quasi and fully incompressible fluids. Details of the governing equations for the conservation of momentum and mass are given in both differential and variational form. The finite element interpolation  uses an equal  order approximation for the velocity and pressure unknowns. The procedure for obtaining stabilized FEM solutions is outlined. The  solution in time of the discretized governing conservation equations using an incremental iterative segregated scheme is described. The linearization of these equations and the derivation of the corresponding tangent stiffness matrices is detailed. Other iterative  schemes for the direct computation of  the nodal velocities and pressures at the updated configuration are presented. The advantages and disadvantages of choosing the current or the updated configuration as the reference configuration in the Lagrangian formulation are discussed.
7
8
'''Keywords''': Updated Lagrangian formulation, incompressible fluids, finite element method, incremental solution, tangent matrix, mixed formulation, stabilized method
9
10
==1 INTRODUCTION==
11
12
In Lagrangian analysis procedures, the motion of the particles of a deforming body is followed in time. In  Eulerian formulations, on the other hand, attention is focused in the motion of the material through a stationary control volume. Lagrangian methods have been traditionally used for the numerical analysis of solids and structures, while Eulerian methods are typical in computational fluid dynamics <span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-36'></span><span id='citeF-40'></span><span id='citeF-41'></span>[[#cite-2|[2,4,5,36,40,41]]].
13
14
Despite this evidence,  the use of a Lagrangian description for solving fluid dynamics problems using the finite element method (FEM) <span id='citeF-10'></span><span id='citeF-41'></span>[[#cite-10|[10,41]]] and different meshless and mesh-based particle-based numerical techniques <span id='citeF-6'></span><span id='citeF-7'></span><span id='citeF-12'></span>[[#cite-6|[6,7,12]]],<span id='citeF-16'></span>[[#cite-16|[16]]]&#8211;<span id='citeF-20'></span>[[#cite-20|[20]]],<span id='citeF-25'></span><span id='citeF-26'></span>[[#cite-25|[25,26]]] <span id='citeF-29'></span>[[#cite-29|[29]]]&#8211;<span id='citeF-35'></span>[[#cite-35|[35]]],<span id='citeF-37'></span><span id='citeF-38'></span>[[#cite-37|[37,38]]] has received much attention in recent years. Of particular interest are numerical procedures, such as the Particle Finite Element Method (PFEM) <span id='citeF-16'></span><span id='citeF-25'></span><span id='citeF-26'></span><span id='citeF-29'></span><span id='citeF-31'></span>[[#cite-16|[16,25,26,29,31]]], that combine the advantage of particle-based procedures with the formalism and accuracy of the FEM.
15
16
Despite the increasing interest in the Lagrangian approach for solving the equations of   fluid mechanics using the FEM, there are few references to the derivation of incremental iterative solution schemes using linearized forms of the discretized Lagrangian equations for fluid flow problems. An early attempt in this direction was reported by Radovitzky and Ortiz <span id='citeF-34'></span>[[#cite-34|[34]]] who derived the tangent matrix for the FEM Lagrangian analysis of compressible flows using a Newton-Rapsohn type iterative scheme.
17
18
The goal of this paper is to present a mixed velocity-pressure formulation for the finite element analysis of quasi and fully incompressible fluids using an updated Lagrangian formulation. We advocate an equal order interpolation for the velocity and pressure variables which invariably requires using an adequate stabilization scheme for the mass balance equation in order to obtain accurate numerical results. In the paper we derive in some detail both the continuum and discretized (FEM) forms of the  equations governing the motion of the fluid in the updated Lagrangian description. An incremental Newton-Raphson type  iterative staggered scheme for the solution in time of the non linear discretized equations is detailed. The derivations are carried out first using the current configuration as the reference configuration in the Lagrangian description of the motion.  The expression of the different matrices and vectors involved in the incremental iterative scheme is given. The particular form of the FEM equations when the updated configuration is taken as the reference configuration is presented. The  direct transient solution of the nodal velocities and pressures using  monolithic and staggered schemes is also presented for completeness.
19
20
The chapter concludes with a discussion of the computational advantages and disadvantages of choosing the current or the the updated configuration as the reference configuration in the Lagrangian description.
21
22
In the next section the basic concepts of the motion of a fluid are briefly revisited. These concepts are standard and can be found in many books on computational solid and fluid mechanics and fluid-structure interaction, among others <span id='citeF-2'></span><span id='citeF-3'></span><span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-13'></span><span id='citeF-36'></span>[[#cite-2|[2,3,4,5,13,36]]]. This introductory section  aims to set up the updated Lagrangian framework where the governing equations for the fluid are written and subsequently solved with the FEM using a mixed velocity-pressure formulation.
23
24
==2 MOTION. DISPLACEMENT, VELOCITY AND ACCELERATION==
25
26
We will consider a domain containing a fluid which evolves in time due to external and internal forces and prescribed velocities from an ''initial configuration'' at time <math display="inline">t={}^0 t</math> (typically <math display="inline">{}^0t =0</math>) to a ''current configuration'' at time <math display="inline">t={}^n t</math>. The fluid volume <math display="inline">V</math> and its boundary <math display="inline">\Gamma </math> at the initial and current configurations are denoted as (<math display="inline">{}^0 V, {}^0 \Gamma </math>) and (<math display="inline">{}^n V, {}^n \Gamma </math>), respectively. The goal is to find the domain that the fluid occupies, as well as the velocities, strain rates and stresses (the deviatoric stresses and the pressure) in the so-called ''updated configuration'' at time <math display="inline">{}^{n+1} t= {}^n t+\Delta t</math> (Figure 1). In the following a left superindex denotes the configuration of the fluid domain where the variable is computed.
27
28
<div id='img-1'></div>
29
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
30
|-
31
|[[Image:draft_Samper_857768298-Figura1.png|600px|Initial (t =⁰t), current (t=ⁿt) and updated (t=ⁿ⁺¹ t) configurations of a fluid domain V with Neumann (Γₜ) and Dirichlet (Γ<sub>v</sub>) boundaries. Trajectory of a material point i and velocity  (v<sub>i</sub>) and displacement (u<sub>i</sub>) vectors of the point at each configuration. ⁿu, ⁿ⁺¹, u and ∆u denote schematically the trajectories of the overall domain between two configurations.]]
32
|- style="text-align: center; font-size: 75%;"
33
| colspan="1" | '''Figure 1:''' Initial (<math>t ={}^0 t</math>), current (<math>t={}^n t</math>) and updated (<math>t={}^{n+1} t</math>) configurations of a fluid domain <math>V</math> with Neumann (<math>\Gamma _t</math>) and Dirichlet (<math>\Gamma _v</math>) boundaries. Trajectory of a material point <math>i</math> and velocity  (<math>{v}_i</math>) and displacement (<math>{u}_i</math>) vectors of the point at each configuration. <math>{}^n {u}</math>, <math>{}^{n+1}, {u}</math> and <math>\Delta {u}</math> denote schematically the trajectories of the overall domain between two configurations.
34
|}
35
36
The motion of the fluid domain is described by
37
38
<span id="eq-1"></span>
39
{| class="formulaSCP" style="width: 100%; text-align: left;" 
40
|-
41
| 
42
{| style="text-align: left; margin:auto;width: 100%;" 
43
|-
44
| style="text-align: center;" | <math>{}^t{x} =  \boldsymbol{\phi } ({}^0 {x} ,t) \quad \hbox{or}\quad {}^t x_i = \phi _i ({}^0 {x} ,t)    </math>
45
|}
46
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
47
|}
48
49
where <math display="inline">{}^t{x}</math> is the position of the material point <math display="inline">{}^0 {x}</math> laying on the initial configuration at time <math display="inline">t</math>. The coordinates <math display="inline">{}^t{x}</math> give the spatial position of a point and are called ''spatial'' or ''Eulerian coordinates''. The function <math display="inline">\boldsymbol{\phi }</math> maps the initial configuration into the current configuration at  time <math display="inline">t</math>. The position of the points in the current  and initial configurations at time <math display="inline">t={}^n t</math> and <math display="inline">t={}^0  t</math>, respectively are expressed by
50
51
<span id="eq-2"></span>
52
{| class="formulaSCP" style="width: 100%; text-align: left;" 
53
|-
54
| 
55
{| style="text-align: left; margin:auto;width: 100%;" 
56
|-
57
| style="text-align: center;" | <math>\begin{array}{l}{}^n {x} = \boldsymbol{\phi }({}^0 {x} ,{}^n t) \quad \hbox{or}\quad {}^n x_i = \phi _i ({}^n {x} ,{}^n t)\\ {}^0 {x} = \boldsymbol{\phi } ({}^0 {x} ,{}^0 t) \quad \hbox{or}\quad {}^0 x_i = \phi _i ({}^0 {x} ,{}^0 t)  \end{array}    </math>
58
|}
59
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
60
|}
61
62
Thus the mapping <math display="inline">\boldsymbol{\phi }({}^0 {x} , {}^0t)</math> is the identity mapping.
63
64
In the Lagrangian description (also called the ''material description'') the independent variables are the material coordinates <math display="inline">{}^0 {x}</math> of the point on the initial configuration and the time <math display="inline">t</math>. In the Eulerian description, on the other hand, the independent coordinates are the spatial coordinates <math display="inline">{}^t{x}</math> and the time <math display="inline">t</math> <span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-4|[4,5]]].
65
66
The displacement of a material point is given by the difference between its position at time <math display="inline">t</math> and its original position, so
67
68
<span id="eq-3"></span>
69
{| class="formulaSCP" style="width: 100%; text-align: left;" 
70
|-
71
| 
72
{| style="text-align: left; margin:auto;width: 100%;" 
73
|-
74
| style="text-align: center;" | <math>{u} ({}^0 {x} ,t) = \boldsymbol{\phi } ({}^0 {x} ,t) - \boldsymbol{\phi }({}^0 {x} ,{}^0 t) = {}^t{x} - {}^0 {x}    </math>
75
|}
76
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
77
|}
78
79
where <math display="inline">{u} = [u_1,u_2,u_3]^T</math> is the displacement vector of a point.
80
81
For <math display="inline">t = {}^n t</math> we have
82
83
<span id="eq-4"></span>
84
{| class="formulaSCP" style="width: 100%; text-align: left;" 
85
|-
86
| 
87
{| style="text-align: left; margin:auto;width: 100%;" 
88
|-
89
| style="text-align: center;" | <math>{}^n{u} \equiv {u} ({}^0{x} ,{}^n t)  = {}^n {x} - {}^0 {x}    </math>
90
|}
91
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
92
|}
93
94
The velocity vector  is the rate of change of the position vector for a material point, i.e. the time derivative of <math display="inline">\phi ({}^0 {x} ,t)</math>  with <math display="inline">{}^0 {x}</math> held constant (also called ''the material time derivative'' or ''total derivative''). The velocity vector is usually written as (using Eq.([[#eq-3|3]]) and noting that the coordinates <math display="inline">{}^0 {x}</math> are fixed)
95
96
<span id="eq-5"></span>
97
{| class="formulaSCP" style="width: 100%; text-align: left;" 
98
|-
99
| 
100
{| style="text-align: left; margin:auto;width: 100%;" 
101
|-
102
| style="text-align: center;" | <math>{}^t{v} = [{}^tv_1,{}^tv_2,{}^tv_3]^T  \equiv {v} ({}^0 {x} ,t) = \frac{\partial \boldsymbol{\phi }({}^0 {x} ,t) }{\partial t}= \frac{\partial {u} ({}^0 {x} ,t) }{\partial t} \equiv  \dot {u}    </math>
103
|}
104
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
105
|}
106
107
The velocity vector of a material point in the current configuration is written as
108
109
<span id="eq-6"></span>
110
{| class="formulaSCP" style="width: 100%; text-align: left;" 
111
|-
112
| 
113
{| style="text-align: left; margin:auto;width: 100%;" 
114
|-
115
| style="text-align: center;" | <math>{}^n{v} = [{}^n v_1,{}^n v_2,{}^n v_3]^T \equiv  {v} ({}^0{x} ,{}^n t)    </math>
116
|}
117
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
118
|}
119
120
The acceleration vector  is the rate of change of the velocity vector of a material point (i.e. the material time derivative of the velocity vector) and it can be written as
121
122
<span id="eq-7"></span>
123
{| class="formulaSCP" style="width: 100%; text-align: left;" 
124
|-
125
| 
126
{| style="text-align: left; margin:auto;width: 100%;" 
127
|-
128
| style="text-align: center;" | <math>{}^t {a} = {a} ({}^0{x} ,t) \equiv  \frac{\partial {v}({}^0 {x} ,t) }{\partial t}= \frac{\partial ^2 {u} ({}^0 {x} ,t) }{\partial t^2} =   \ddot {u}    </math>
129
|}
130
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
131
|}
132
133
and
134
135
<span id="eq-8"></span>
136
{| class="formulaSCP" style="width: 100%; text-align: left;" 
137
|-
138
| 
139
{| style="text-align: left; margin:auto;width: 100%;" 
140
|-
141
| style="text-align: center;" | <math>{}^n{a} =[{}^n a_1,{}^n a_2,{}^n a_3]^T = {a} ({}^0{x} ,{}^n t)    </math>
142
|}
143
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
144
|}
145
146
Eq.([[#eq-7|7]]) is the ''material form'' of the acceleration. Note the difference of Eq.([[#eq-7|7]]) with the expression of the acceleration written in the Eulerian description which involves the convective terms <span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-13'></span><span id='citeF-36'></span><span id='citeF-41'></span>[[#cite-2|[2,4,5,13,36,41]]].
147
148
In the ''total Lagrangian description''  the various equations and variables are referred to the initial configuration which is taken as the ''reference configuration''. In the ''updated Lagrangian description'',  either the current or the updated configurations can be taken as the ''reference configuration'' <span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-13'></span><span id='citeF-36'></span>[[#cite-2|[2,4,5,13,36]]].
149
150
For simplicity, in the first part of this work the current configuration will be taken  as the reference configuration for the derivation of the incremental FEM equations. The reason is that the current configuration remain fixed during the iterative solution process. The particularization for the case when the updated configuration is taken as the reference configuration is presented in the last part of the paper.
151
152
The displacement increment vector <math display="inline">\Delta {u}({}^0 {x} ,t) = [\Delta u_1,\Delta u_2,\Delta u_3]^T</math>  of a material point between the updated and the current configurations is defined as
153
154
<span id="eq-9"></span>
155
{| class="formulaSCP" style="width: 100%; text-align: left;" 
156
|-
157
| 
158
{| style="text-align: left; margin:auto;width: 100%;" 
159
|-
160
| style="text-align: center;" | <math>\Delta {u} \equiv \Delta {u}({}^0 {x} ,t) = \boldsymbol{\phi } ({}^0 {x} , {}^{n+1}t) - \boldsymbol{\phi }({}^0 {x} ,{}^n t) = {}^{n+1}{x} - {}^n {x}    </math>
161
|}
162
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
163
|}
164
165
The displacement increment of a material point can be computed from the velocity as
166
167
<span id="eq-10"></span>
168
{| class="formulaSCP" style="width: 100%; text-align: left;" 
169
|-
170
| 
171
{| style="text-align: left; margin:auto;width: 100%;" 
172
|-
173
| style="text-align: center;" | <math>\Delta {u} = \int _{{}^n t}^{{}^{n+1}t} {}^\tau {v}d\tau    </math>
174
|}
175
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
176
|}
177
178
where <math display="inline">{}^\tau {v}</math> is the velocity vector of the points laying on the trajectory followed by the material point between times <math display="inline">{}^n t</math> and <math display="inline">{}^{n+1}t</math> (Figure [[#img-1|1]]). The integral of Eq.([[#eq-10|10]]) can be approximated in a number of ways (see Remark 4).
179
180
==3 MOMENTUM EQUATIONS AND BOUNDARY CONDITIONS==
181
182
Let us assume that at time <math display="inline">{}^{n+1} t</math> the fluid occupies a volume <math display="inline">{}^{n+1} V</math> with a boundary <math display="inline">{}^{n+1}\Gamma </math>.  The fluid is subjected to body forces <math display="inline">{}^{n+1}b_i</math> acting over the volume <math display="inline">{}^{n+1} V</math> and surface tractions <math display="inline">{}^{n+1} t_i^p</math> acting on the part of the boundary termed as <math display="inline">{}^{n+1}\Gamma _t</math>, where index <math display="inline">i</math> denotes the component of the force along the <math display="inline">i</math>th cartesian axis (Figure 1).
183
184
The equations of internal equilibrium between the applied body forces and the Cauchy stresses <math display="inline">\sigma _{ij}</math> in the fluid are expressed by the ''momentum equations'' written in the ''updated configuration'' as <span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-13'></span><span id='citeF-36'></span>[[#cite-2|[2,4,5,13,36]]]
185
186
<span id="eq-11"></span>
187
{| class="formulaSCP" style="width: 100%; text-align: left;" 
188
|-
189
| 
190
{| style="text-align: left; margin:auto;width: 100%;" 
191
|-
192
| style="text-align: center;" | <math>{}^{n+1} r_{m_i}  :={}^{n+1} \rho ~ {}^{n+1} a_i-{\partial \sigma _{ij} \over \partial x_j}- {}^{n+1}b_i=0 \quad \hbox{in }{}^{n+1} V\quad ,\quad i,j = 1,\cdots ,n_s  </math>
193
|}
194
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
195
|}
196
197
where <math display="inline">{}^{n+1} r_{m_i}</math> is the <math display="inline">i</math>th momentum equation, <math display="inline">{}^{n+1} \rho </math>, <math display="inline">{}^{n+1} v_i</math> and <math display="inline">{}^{n+1} a_i</math> are the fluid density and the <math display="inline">i</math>th component of the velocity and the acceleration at time <math display="inline">{}^{n+1} t</math> and <math display="inline">n_s</math> is the number of space dimensions (<math display="inline">n_s=3</math> for three dimensional (3D) problems). Note that <math display="inline">\sigma _{ij}</math> is always referred to the updated configuration, i.e. <math display="inline">\sigma _{ij} \equiv {}^{n+1}\sigma _{ij}</math>.
198
199
In Eq.([[#eq-11|11]]) and in the following, the standard summation convention for repeated indices is adopted, unless otherwise specified.
200
201
The boundary conditions are
202
203
<span id="eq-12"></span>
204
{| class="formulaSCP" style="width: 100%; text-align: left;" 
205
|-
206
| 
207
{| style="text-align: left; margin:auto;width: 100%;" 
208
|-
209
| style="text-align: center;" | <math>{}^{n+1} v_i-{}^{n+1} v_i^p =0 \quad \hbox{on }{}^{n+1} \Gamma _v  </math>
210
|}
211
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
212
|}
213
214
<span id="eq-13"></span>
215
{| class="formulaSCP" style="width: 100%; text-align: left;" 
216
|-
217
| 
218
{| style="text-align: left; margin:auto;width: 100%;" 
219
|-
220
| style="text-align: center;" | <math>\sigma _{ij}n_j - {}^{n+1} t_i^p =0 \quad \hbox{on }{}^{n+1} \Gamma _t  </math>
221
|}
222
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
223
|}
224
225
where <math display="inline">{}^{n+1}v_i^p</math>  is the prescribed value of the <math display="inline">i</math>th velocity component at the external boundary <math display="inline">{}^{n+1} \Gamma _v</math>  with <math display="inline">{}^{n+1} \Gamma _v \cup {}^{n+1} \Gamma _t = {}^{n+1} \Gamma </math>. In Eq.([[#eq-13|13]]) <math display="inline">n_j</math> is the <math display="inline">j</math>th component of the unit normal to the boundary <math display="inline">{}^{n+1}\Gamma _t</math> where the prescribed surface tractions <math display="inline">{}^{n+1} t_i^p</math> are applied.
226
227
The goal is to obtain the geometry of the updated configuration <math display="inline">{}^{n+1}V</math>, as well as the velocities and stresses in <math display="inline">{}^{n+1}V</math> that satisfy Eqs.([[#eq-11|11]])&#8211;([[#eq-13|13]]).
228
229
==4 PRINCIPLE OF VIRTUAL POWER IN THE UPDATED CONFIGURATION==
230
231
The principle of virtual power (PVP) can be written in the updated configuration  as <span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-2|[2,4,5]]]
232
233
<span id="eq-14"></span>
234
{| class="formulaSCP" style="width: 100%; text-align: left;" 
235
|-
236
| 
237
{| style="text-align: left; margin:auto;width: 100%;" 
238
|-
239
| style="text-align: center;" | <math>{}^{n+1} \delta A + {}^{n+1} \delta U - {}^{n+1}\delta W=0  </math>
240
|}
241
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
242
|}
243
244
where <math display="inline">{}^{n+1} \delta A</math>, <math display="inline">{}^{n+1}\delta U</math> and <math display="inline">{}^{n+1}\delta W</math> are the virtual powers due to the acceleration terms, the stresses and the external loads acting on <math display="inline">{}^{n+1}V</math>, respectively given by <span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-2|[2,4,5]]]
245
246
<span id="eq-15"></span>
247
<span id="eq-16"></span>
248
<span id="eq-16"></span>
249
{| class="formulaSCP" style="width: 100%; text-align: left;" 
250
|-
251
| 
252
{| style="text-align: left; margin:auto;width: 100%;" 
253
|-
254
| style="text-align: center;" | <math>{}^{n+1}\delta A = \int _{{}^{n+1}V}\delta{v}^T {~}^{n+1}\rho ~ {}^{n+1} {a} ~ d ~{}^{n+1}V</math>
255
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
256
|-
257
| style="text-align: center;" | <math>   {}^{n+1}\delta U = \int _{{}^{n+1}V}\left\{\delta {D}\right\}^T  \left\{{\boldsymbol \sigma }\right\}d ~ {}^{n+1}V </math>
258
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
259
|-
260
| style="text-align: center;" | <math> {}^{n+1}\delta W = \int _{{}^{n+1}V} \delta{v}^T   {~}^{n+1} {b} ~ d{~}^{n+1}V + \int _{{}^{n+1}\Gamma _t} \delta{v}^T {~}^{n+1}{t}~ d ~ {}^{n+1}\Gamma  </math>
261
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
262
|}
263
|}
264
265
In Eq.([[#eq-15|15]])&#8211;([[#eq-16|16]]) <math display="inline">\delta{v}</math>, <math display="inline">{b}</math> and <math display="inline">{t}</math> are the virtual velocity vector, the body forces vector and the surface tractions vector, respectively defined for 3D problems as
266
267
<span id="eq-18"></span>
268
{| class="formulaSCP" style="width: 100%; text-align: left;" 
269
|-
270
| 
271
{| style="text-align: left; margin:auto;width: 100%;" 
272
|-
273
| style="text-align: center;" | <math>\delta{v} = [\delta v_1,\delta v_2,\delta v_3]^T ~~,~~  {b}= [b_1,b_2,b_3]^T ~~,~~ {t}= [t_1,t_2,t_3]^T    </math>
274
|}
275
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
276
|}
277
278
In Eq.([[#eq-16|16]]) <math display="inline">{\boldsymbol \sigma }</math> is the Cauchy stress tensor and <math display="inline">\delta {D}</math> is the virtual rate of deformation tensor defined as
279
280
<span id="eq-19"></span>
281
{| class="formulaSCP" style="width: 100%; text-align: left;" 
282
|-
283
| 
284
{| style="text-align: left; margin:auto;width: 100%;" 
285
|-
286
| style="text-align: center;" | <math>\delta {D}_{ij}= \frac{1}{2} \left({\partial \delta v_i \over \partial {~}^{n+1} x_j}  +  {\partial \delta v_j \over \partial {~}^{n+1} x_i}\right)  </math>
287
|}
288
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
289
|}
290
291
where <math display="inline">\delta v_i</math> is the <math display="inline">i</math>th component of the virtual velocity.
292
293
In the following <math display="inline">\left\{{A} \right\}</math>, where '''A''' is a symmetric tensor, will denote the vector representation of '''A'''. Hence, in Eq.([[#eq-16|16]]) <math display="inline">\left\{{\boldsymbol \sigma }\right\}</math> and <math display="inline">\left\{\delta {D}\right\}</math> are the Cauchy stress vector and the rate of deformation vector, respectively defined in Voigt notation <span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-4|[4,5]]] as
294
295
<span id="eq-20.a"></span>
296
<span id="eq-20.b"></span>
297
<span id="eq-20.b"></span>
298
{| class="formulaSCP" style="width: 100%; text-align: left;" 
299
|-
300
| 
301
{| style="text-align: left; margin:auto;width: 100%;" 
302
|-
303
| style="text-align: center;" | <math>\left\{{\boldsymbol \sigma }\right\}=  \left[\sigma _{11},\sigma _{22},\sigma _{33},\sigma _{12},\sigma _{13},\sigma _{23}   \right]^T</math>
304
| style="width: 5px;text-align: right;white-space: nowrap;" | (20.a)
305
|-
306
| style="text-align: center;" | <math>   \left\{\delta {D}\right\}=  \left[\delta D_{11},\delta D_{22}, \delta D_{33},\delta D_{12},\delta D_{13},\delta D_{23} \right]^T    </math>
307
| style="width: 5px;text-align: right;white-space: nowrap;" | (20.b)
308
|}
309
|}
310
311
Similarly, <math display="inline">\left[{A} \right]</math> will denote hereonwards the matrix form of tensor <math display="inline">A</math>.
312
313
'''Remark 1.''' The PVP can be obtained by applying the standard weighted residual method to the governing equations ([[#eq-11|11]]) and ([[#eq-13|13]]) using the virtual velocities <math display="inline">\delta v_i</math> as weighting functions <span id='citeF-4'></span>[[#cite-4|[4]]].
314
315
'''Remark 2.''' Tensor <math display="inline">\delta {D}</math> can be interpreted as the variation of the rate of deformation tensor <math display="inline">D</math> defined in terms of the velocities at the updated configuration as
316
317
<span id="eq-21"></span>
318
{| class="formulaSCP" style="width: 100%; text-align: left;" 
319
|-
320
| 
321
{| style="text-align: left; margin:auto;width: 100%;" 
322
|-
323
| style="text-align: center;" | <math>{D}_{ij} = \frac{1}{2} \left({\partial {~}^{n+1} v_i \over \partial {~}^{n+1}x_j}+{\partial {~}^{n+1} v_j \over \partial {~}^{n+1}x_i}   \right)        </math>
324
|}
325
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
326
|}
327
328
==5 TRANSFORMATION TO THE CURRENT CONFIGURATION. LAGRANGIAN STRESS AND STRAIN MEASURES==
329
330
In the following sections we will use the current configuration as the reference configuration for computing the internal virtual due to the acceleration terms and the stresses, as well as  for subsequently performing  the linearization of its discretized  form via the FEM. The alternative of using the updated configuration as the reference configuration is presented in Section 12.
331
332
After the standard transformations  of continuum mechanics  <span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-13'></span><span id='citeF-36'></span>[[#cite-2|[2,4,5,13,36]]] the internal virtual power at the updated configuration due to the acceleration terms and the stresses can be expressed in terms of material parameters, integrals, strain rates and stress measures evaluated at the ''current configuration'' <math display="inline">{}^{n}V</math> as
333
334
<span id="eq-22.a"></span>
335
{| class="formulaSCP" style="width: 100%; text-align: left;" 
336
|-
337
| 
338
{| style="text-align: left; margin:auto;width: 100%;" 
339
|-
340
| style="text-align: center;" | <math>{}^{n+1}\delta A = \int _{{}^{n}V} \delta{v}^T {~}^n \rho {~}^{n+1} {a} ~d {~}^{n}V  </math>
341
|}
342
| style="width: 5px;text-align: right;white-space: nowrap;" | (22.a)
343
|}
344
345
<span id="eq-22.b"></span>
346
{| class="formulaSCP" style="width: 100%; text-align: left;" 
347
|-
348
| 
349
{| style="text-align: left; margin:auto;width: 100%;" 
350
|-
351
| style="text-align: center;" | <math>{}^{n+1}\delta U = \int _{{}^{n}V} \left\{\delta \dot{E} \right\}^T  \left\{{S}\right\}d {}^{n}V  </math>
352
|}
353
| style="width: 5px;text-align: right;white-space: nowrap;" | (22.b)
354
|}
355
356
where <math display="inline">\delta \dot{E}</math> and <math display="inline">{S}</math> are the material virtual strain rate tensor and the second Piola-Kirchhoff stress tensor, respectively. The relationship between the material strain rate tensor <math display="inline">\dot{E}</math> and the rate of deformation tensor <math display="inline">{D}</math> and between the stress tensors <math display="inline">{\boldsymbol \sigma }</math> and <math display="inline">{S}</math> is <span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-13'></span><span id='citeF-36'></span>[[#cite-2|[2,4,5,13,36]]]
357
358
<span id="eq-23"></span>
359
{| class="formulaSCP" style="width: 100%; text-align: left;" 
360
|-
361
| 
362
{| style="text-align: left; margin:auto;width: 100%;" 
363
|-
364
| style="text-align: center;" | <math>\dot{E}=  {F}^T  {D}{F} \quad , \quad {S} =J {F}^{-1} {\boldsymbol \sigma } {F}^{-T}  </math>
365
|}
366
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
367
|}
368
369
where '''F''' is the deformation gradient and <math display="inline">J</math> is the Jacobian, respectively defined as
370
371
<span id="eq-24"></span>
372
{| class="formulaSCP" style="width: 100%; text-align: left;" 
373
|-
374
| 
375
{| style="text-align: left; margin:auto;width: 100%;" 
376
|-
377
| style="text-align: center;" | <math>F_{ij}= \frac{\partial {~}^{n+1}{x}_i}{\partial {~}^n {x}_j}\quad ,\quad J=\vert {F}\vert   </math>
378
|}
379
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
380
|}
381
382
From the expression of <math display="inline">\dot{E}</math> of Eq.([[#eq-23|23]]) we can deduce
383
384
<span id="eq-25"></span>
385
{| class="formulaSCP" style="width: 100%; text-align: left;" 
386
|-
387
| 
388
{| style="text-align: left; margin:auto;width: 100%;" 
389
|-
390
| style="text-align: center;" | <math>\delta \dot{E}= {F}^T \delta {D}{F}  </math>
391
|}
392
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
393
|}
394
395
'''Remark 3.''' The material strain rate tensor can also be obtained from the time derivative of the Green-Lagrange strain tensor <math display="inline">{E}</math> as <span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-2|[2,4,5]]]
396
397
<span id="eq-26"></span>
398
{| class="formulaSCP" style="width: 100%; text-align: left;" 
399
|-
400
| 
401
{| style="text-align: left; margin:auto;width: 100%;" 
402
|-
403
| style="text-align: center;" | <math>\dot{E} = \frac{d}{dt}({E}) = \frac{d}{dt} \left(\frac{1}{2}\left({C}-{I}   \right)\right)=\frac{1}{2}  \frac{d}{dt}{C}= \frac{1}{2}  \frac{d}{dt} ({F}^T {F}) = \frac{1}{2} ({F}^T \dot {F} + \dot {F}^T {F} )     </math>
404
|}
405
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
406
|}
407
408
where <math display="inline">{C}=  {F}^T {F}</math>  is the right Cauchy-Green tensor and <math display="inline">\dot {F} = \frac{d}{dt}({F})</math>.  The expression of <math display="inline">\delta \dot{E}</math>  is obtained by writing the variation of <math display="inline"> \dot{E}</math> with respect to the velocities as
409
410
<span id="eq-27"></span>
411
{| class="formulaSCP" style="width: 100%; text-align: left;" 
412
|-
413
| 
414
{| style="text-align: left; margin:auto;width: 100%;" 
415
|-
416
| style="text-align: center;" | <math>\delta \dot{E} =\frac{1}{2} \left({F}^T \delta \dot {F}+ \delta \dot {F}^T {F} \right)  </math>
417
|}
418
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
419
|}
420
421
A useful explicit expression of the material strain rate tensor components in terms of the velocities <math display="inline">{}^{n+1}v_i</math> and the displacement increments <math display="inline">\Delta u_i</math> is
422
423
<span id="eq-28.a"></span>
424
{| class="formulaSCP" style="width: 100%; text-align: left;" 
425
|-
426
| 
427
{| style="text-align: left; margin:auto;width: 100%;" 
428
|-
429
| style="text-align: center;" | <math>\dot E_{ij}= \frac{1}{2} \left({}^{n+1}_n v_{i,j} +{}^{n+1}_n v_{j,i} + {}^{n+1}_n v_{k,i} ~{}_n \Delta u_{k,j} + {}^{n+1}_n v_{k,j} ~{}_n \Delta  u_{k,i}   \right)  </math>
430
|}
431
| style="width: 5px;text-align: right;white-space: nowrap;" | (28.a)
432
|}
433
434
with
435
436
<span id="eq-28.b"></span>
437
{| class="formulaSCP" style="width: 100%; text-align: left;" 
438
|-
439
| 
440
{| style="text-align: left; margin:auto;width: 100%;" 
441
|-
442
| style="text-align: center;" | <math>{}^{n+1}_n v_{i,j} = {\partial {~}^{n+1} v_i \over \partial {~}^n x_j}\quad ,\quad ~{}_n \Delta u_{i,j} = {\partial \Delta u_i \over \partial {~}^n x_j}  </math>
443
|}
444
| style="width: 5px;text-align: right;white-space: nowrap;" | (28.b)
445
|}
446
447
From Eqs.([[#5 TRANSFORMATION TO THE CURRENT CONFIGURATION. LAGRANGIAN STRESS AND STRAIN MEASURES|5]]) we deduce
448
449
<span id="eq-29.a"></span>
450
{| class="formulaSCP" style="width: 100%; text-align: left;" 
451
|-
452
| 
453
{| style="text-align: left; margin:auto;width: 100%;" 
454
|-
455
| style="text-align: center;" | <math>\delta \dot{E}_{ij}= \frac{1}{2} \left({}_n \delta v_{i,j}~ +  {}_n \delta  v_{j,i}+{}_n \delta v_{k,i}~ {}_n \Delta u_ {k,j}+ {}_n \delta v_{k,j} ~{}_n \Delta u_{k,i} \right)  </math>
456
|}
457
| style="width: 5px;text-align: right;white-space: nowrap;" | (29.a)
458
|}
459
460
with
461
462
<span id="eq-29.b"></span>
463
{| class="formulaSCP" style="width: 100%; text-align: left;" 
464
|-
465
| 
466
{| style="text-align: left; margin:auto;width: 100%;" 
467
|-
468
| style="text-align: center;" | <math>{}_n \delta v_{i,j} = \frac{\partial \delta v_i}{\partial {}^n x_j}  </math>
469
|}
470
| style="width: 5px;text-align: right;white-space: nowrap;" | (29.b)
471
|}
472
473
==6 SPLIT OF THE INTERNAL VIRTUAL POWER INTO DEVIATORIC AND VOLUMETRIC COMPONENTS==
474
475
The Cauchy stress tensor can be split in its deviatoric component <math display="inline">{\boldsymbol \sigma }'</math> and the hydrostatic pressure component <math display="inline">p</math> as
476
477
<span id="eq-30"></span>
478
{| class="formulaSCP" style="width: 100%; text-align: left;" 
479
|-
480
| 
481
{| style="text-align: left; margin:auto;width: 100%;" 
482
|-
483
| style="text-align: center;" | <math>{\boldsymbol \sigma } ={\boldsymbol \sigma }' + p {I}_3  </math>
484
|}
485
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
486
|}
487
488
where <math display="inline">{I}_3</math>  is the <math display="inline">3\times 3</math> identity matrix.
489
490
Note that in incompressible fluid mechanics the pressure <math display="inline">p</math> is an independent variable. Also, unless otherwise specified we will assume that <math display="inline">p</math> is the pressure at the updated configuration (i.e. <math display="inline">p= {~}^{n+1}p</math>).
491
492
Substituting Eq.([[#eq-30|30]]) into the internal virtual power expression in Eq.([[#eq-16|16]]) gives
493
494
<span id="eq-31"></span>
495
{| class="formulaSCP" style="width: 100%; text-align: left;" 
496
|-
497
| 
498
{| style="text-align: left; margin:auto;width: 100%;" 
499
|-
500
| style="text-align: center;" | <math>{}^{n+1} \delta U = \int _{{}^{n+1}V}\left\{\delta {D}\right\}^T \left(\left\{{\boldsymbol \sigma }'\right\}+{m} p  \right)d{~}^{n+1}V = \left(\int _{{}^{n+1}V}\left\{\delta {D}\right\}^T \left\{{\boldsymbol \sigma }'\right\}+ \delta D_v p \right)d{~}^{n+1}V  </math>
501
|}
502
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
503
|}
504
505
where <math display="inline">D_v</math> is the ''volumetric strain rate'' given by
506
507
<span id="eq-32"></span>
508
{| class="formulaSCP" style="width: 100%; text-align: left;" 
509
|-
510
| 
511
{| style="text-align: left; margin:auto;width: 100%;" 
512
|-
513
| style="text-align: center;" | <math>D_v = D_{ii}= {m}^T \left\{{D}\right\}\quad \hbox{with}\quad {m}= [1,1,1,0,0,0]^T  </math>
514
|}
515
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
516
|}
517
518
It can be proven that  <span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-13'></span><span id='citeF-36'></span>[[#cite-4|[4,5,13,36]]]
519
520
<span id="eq-33"></span>
521
{| class="formulaSCP" style="width: 100%; text-align: left;" 
522
|-
523
| 
524
{| style="text-align: left; margin:auto;width: 100%;" 
525
|-
526
| style="text-align: center;" | <math>D_v = \dot E_v \quad \hbox{with}\quad \dot E_v= \left\{\dot {E}\right\}^T \left\{{C}^{-1} \right\}  </math>
527
|}
528
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
529
|}
530
531
where <math display="inline"> \dot E_v</math> is the volumetric material strain rate,
532
533
<span id="eq-34.a"></span>
534
{| class="formulaSCP" style="width: 100%; text-align: left;" 
535
|-
536
| 
537
{| style="text-align: left; margin:auto;width: 100%;" 
538
|-
539
| style="text-align: center;" | <math>\left\{{E}' \right\}= \left[\dot E_{11},  \dot E_{22},\dot E_{33},2\dot E_{12},2\dot E_{13},2\dot E_{23}  \right]^T  </math>
540
|}
541
| style="width: 5px;text-align: right;white-space: nowrap;" | (34.a)
542
|}
543
544
<span id="eq-34.b"></span>
545
{| class="formulaSCP" style="width: 100%; text-align: left;" 
546
|-
547
| 
548
{| style="text-align: left; margin:auto;width: 100%;" 
549
|-
550
| style="text-align: center;" | <math>\left\{{C}^{-1} \right\}=\left[C^{-1}_{11},  C^{-1}_{22},C^{-1}_{33},C^{-1}_{12},C^{-1}_{13},C^{-1}_{23}  \right]^T  </math>
551
|}
552
| style="width: 5px;text-align: right;white-space: nowrap;" | (34.b)
553
|}
554
555
and <math display="inline">C_{ij}^{-1}</math> is the element <math display="inline">ij</math> of tensor <math display="inline">{C}^{-1}</math>.
556
557
The  internal virtual power expression of Eq.([[#eq-31|31]]) can be written in the ''current configuration'' as follows.
558
559
Substituting the Cauchy stress split of Eq.([[#eq-30|30]]) into the expression of the second Piola-Kirchhoff  stress tensor of Eq.([[#eq-23|23]]) gives
560
561
<span id="eq-35"></span>
562
{| class="formulaSCP" style="width: 100%; text-align: left;" 
563
|-
564
| 
565
{| style="text-align: left; margin:auto;width: 100%;" 
566
|-
567
| style="text-align: center;" | <math>{S} = J {F}^{-1} {\boldsymbol \sigma }'  {F}^{-T} + p J {C}^{-1} = {S}' + p J {C}^{-1}  </math>
568
|}
569
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
570
|}
571
572
where
573
574
<span id="eq-36"></span>
575
{| class="formulaSCP" style="width: 100%; text-align: left;" 
576
|-
577
| 
578
{| style="text-align: left; margin:auto;width: 100%;" 
579
|-
580
| style="text-align: center;" | <math>{S}' = J {F}^{-1} {\boldsymbol \sigma }'  {F}^{-T}  </math>
581
|}
582
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
583
|}
584
585
is the  deviatoric second Piola-Kirchhoff stress tensor. <math display="inline"> {S}'</math> is usually called the ''(true) deviatoric component'' of <math display="inline">S</math> <span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-13'></span><span id='citeF-36'></span>[[#cite-4|[4,5,13,36]]].
586
587
Substituting Eq.([[#eq-35|35]]) into ([[#eq-22.b|22.b]]) gives
588
589
<span id="eq-37"></span>
590
{| class="formulaSCP" style="width: 100%; text-align: left;" 
591
|-
592
| 
593
{| style="text-align: left; margin:auto;width: 100%;" 
594
|-
595
| style="text-align: center;" | <math>{}^{n+1}\delta U = \int _{{}^{n}V} \left(\left\{\delta \dot {E}\right\}^T  \left\{{S}'\right\}+ J\delta \dot E_v p \right)d{}^{n}V  </math>
596
|}
597
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
598
|}
599
600
with
601
602
<span id="eq-38"></span>
603
{| class="formulaSCP" style="width: 100%; text-align: left;" 
604
|-
605
| 
606
{| style="text-align: left; margin:auto;width: 100%;" 
607
|-
608
| style="text-align: center;" | <math>\left\{{S}'\right\}{= [S'}_{11}{,S'}_{22}{,S'}_{33}{,S'}_{12}{,S'}_{13}{,S'}_{23}]^T\quad , \quad  \delta \dot E_v = \left\{\delta \dot {E}\right\}^T  \left\{{C}^{-1}\right\}  </math>
609
|}
610
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
611
|}
612
613
Eq.([[#eq-37|37]]) can also be obtained from Eq.([[#eq-31|31]]) using the relationship between <math display="inline">{D},~{\boldsymbol \sigma }'</math> and <math display="inline">D_v</math> with <math display="inline">\dot {E}</math>, <math display="inline">{S}'</math> and <math display="inline">\dot E_v</math>, respectively and the expression <math display="inline">d^{n+1}V =Jd^nV</math> <span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-2|[2,4,5]]].
614
615
Substituting Eqs.([[#eq-15|15]]), ([[#eq-22.a|22.a]]) and ([[#eq-37|37]]) into ([[#eq-14|14]]), the PVP in the updated configuration can be written in terms of the pressure,  the deviatoric second Piola-Kirchhoff stresses and the virtual Green-Lagrange strains computed in the current configuration as
616
617
<span id="eq-39"></span>
618
{| class="formulaSCP" style="width: 100%; text-align: left;" 
619
|-
620
| 
621
{| style="text-align: left; margin:auto;width: 100%;" 
622
|-
623
| style="text-align: center;" | <math>\begin{array}{r}  \displaystyle \int _{{}^{n}V} \delta{v}^T {~}^n \rho {~}^{n+1} {a}  d {~}^{n}V   +\int _{{}^{n}V} \left(\left\{\delta \dot {E}\right\}^T  \left\{{S}'\right\}+ J\delta \dot E_v p \right)d{~}^{n}V -\\ - \displaystyle \int _{{}^{n+1}V} \delta{v}^T  {~}^{n+1}{b}~ d{~}^{n+1} V - \int _{{}^{n+1}\Gamma _t} \delta{v}^T {~}^{n+1} {t}~d {~}^{n+1} \Gamma = 0\end{array} </math>
624
|}
625
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
626
|}
627
628
The vector form of tensors <math display="inline">\delta \dot {E}</math> and <math display="inline">{S}</math> in Eq.([[#eq-39|39]]) is
629
630
<span id="eq-40.a"></span>
631
{| class="formulaSCP" style="width: 100%; text-align: left;" 
632
|-
633
| 
634
{| style="text-align: left; margin:auto;width: 100%;" 
635
|-
636
| style="text-align: center;" | <math>\left\{\delta \dot {E}\right\}= [\delta \dot E_{11}, \delta \dot E_{22},\delta \dot E_{33},2\delta \dot E_{12},2\delta \dot E_{13},2\delta \dot E_{23}]^T  </math>
637
|}
638
| style="width: 5px;text-align: right;white-space: nowrap;" | (40.a)
639
|}
640
641
<span id="eq-40.b"></span>
642
{| class="formulaSCP" style="width: 100%; text-align: left;" 
643
|-
644
| 
645
{| style="text-align: left; margin:auto;width: 100%;" 
646
|-
647
| style="text-align: center;" | <math>\left\{{S}\right\}= [S_{11},S_{22},S_{33},S_{12},S_{13},S_{23}]^T  </math>
648
|}
649
| style="width: 5px;text-align: right;white-space: nowrap;" | (40.b)
650
|}
651
652
Note that the contribution of the external forces in Eq.([[#eq-39|39]]) is computed at the updated configuration and this requires using the correct expression for the density and the surface tractions on <math display="inline">{}^{n+1}V</math> (see also Remark 5).
653
654
==7 CONSTITUTIVE RELATIONSHIP FOR THE DEVIATORIC STRESSES==
655
656
The relationship between the deviatoric Cauchy stresses <math display="inline">{\sigma '}_{ij}</math> and the rates of deformation <math display="inline">D_{ij}</math> for a Newtonian fluid is written as
657
658
<span id="eq-41"></span>
659
{| class="formulaSCP" style="width: 100%; text-align: left;" 
660
|-
661
| 
662
{| style="text-align: left; margin:auto;width: 100%;" 
663
|-
664
| style="text-align: center;" | <math>{\sigma '}_{ij} ={c}_{ijkl}{ D'}_{kl} = {c}_{ijkl} \left(D_{kl}- \frac{1}{3} D_v \delta _{kl}\right)  </math>
665
|}
666
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
667
|}
668
669
where <math display="inline">{D'}_{kl}</math> are the deviatoric rates of deformation. The rates of deformation <math display="inline">D_{ij}</math> are obtained in terms of the velocities by Eq.([[#eq-21|21]]).
670
671
The components of the fourth order constitutive tensor <math display="inline">{c}</math> in the updated configuration are
672
673
<span id="eq-42"></span>
674
{| class="formulaSCP" style="width: 100%; text-align: left;" 
675
|-
676
| 
677
{| style="text-align: left; margin:auto;width: 100%;" 
678
|-
679
| style="text-align: center;" | <math>{c}_{ijkl} =\mu \left(\delta _{ik} \delta _{jl} + \delta _{il} \delta _{jk}\right)  </math>
680
|}
681
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
682
|}
683
684
where <math display="inline">\mu </math> is the viscosity of the fluid.
685
686
Eq.([[#eq-41|41]]) can be written in vector form as
687
688
<span id="eq-43"></span>
689
{| class="formulaSCP" style="width: 100%; text-align: left;" 
690
|-
691
| 
692
{| style="text-align: left; margin:auto;width: 100%;" 
693
|-
694
| style="text-align: center;" | <math>\left\{{\boldsymbol \sigma }'\right\}= \left[{c}\right]\left\{{D}\right\}  </math>
695
|}
696
| style="width: 5px;text-align: right;white-space: nowrap;" | (43)
697
|}
698
699
with
700
701
<span id="eq-44"></span>
702
{| class="formulaSCP" style="width: 100%; text-align: left;" 
703
|-
704
| 
705
{| style="text-align: left; margin:auto;width: 100%;" 
706
|-
707
| style="text-align: center;" | <math>\begin{array}{l}\left\{{\boldsymbol \sigma }'\right\}=  \left[\sigma' _{11},  \sigma' _{22},\sigma' _{33},\sigma' _{12},\sigma' _{13},\sigma' _{23}  \right]^T\\ \left\{{D}\right\}= \left[D_{11},  D_{22},D_{33},2D_{12},2D_{13},2D_{23}  \right]^T  \end{array}  </math>
708
|}
709
| style="width: 5px;text-align: right;white-space: nowrap;" | (44)
710
|}
711
712
and the constitutive matrix <math display="inline">[{c}]</math> is given by (for 3D problems)
713
714
<span id="eq-45"></span>
715
{| class="formulaSCP" style="width: 100%; text-align: left;" 
716
|-
717
| 
718
{| style="text-align: left; margin:auto;width: 100%;" 
719
|-
720
| style="text-align: center;" | <math>\left[{c}\right]=\mu \left[\displaystyle \begin{matrix}\displaystyle \frac{4}{3} & \displaystyle -\frac{2}{3} & \displaystyle -\frac{2}{3} &0&0&0\\[.25cm] & \displaystyle \frac{4}{3} & \displaystyle -\frac{2}{3} &0&0&0\\[.25cm] & &\displaystyle \frac{4}{3} &0&0&0\\ \hbox{ Sym.} &&& 1 &0&0\\ &&&&1&0\\ &&&&&1  \end{matrix} \right]  </math>
721
|}
722
| style="width: 5px;text-align: right;white-space: nowrap;" | (45)
723
|}
724
725
The constitutive equation ([[#eq-41|41]]) can be transformed to the current configuration to yield the relationship between the deviatoric second Piola-Kirchhoff stresses and the material strain rates  as
726
727
<span id="eq-46"></span>
728
{| class="formulaSCP" style="width: 100%; text-align: left;" 
729
|-
730
| 
731
{| style="text-align: left; margin:auto;width: 100%;" 
732
|-
733
| style="text-align: center;" | <math>{S'}_{ij} = {\cal C}_{ijkl} \dot E_{kl}  </math>
734
|}
735
| style="width: 5px;text-align: right;white-space: nowrap;" | (46)
736
|}
737
738
The constitutive tensor in the current configuration <math display="inline">\left[\boldsymbol{\cal C}\right]</math> is obtained from its counterpart in the updated configuration as <span id='citeF-36'></span>[[#cite-36|[36]]]
739
740
<span id="eq-47"></span>
741
{| class="formulaSCP" style="width: 100%; text-align: left;" 
742
|-
743
| 
744
{| style="text-align: left; margin:auto;width: 100%;" 
745
|-
746
| style="text-align: center;" | <math>{\cal C}_{ijkl} = F^{-1}_{Ai} F^{-1}_{Bj}F^{-1}_{Ck}F^{-1}_{Dl} c_{ABCD}  </math>
747
|}
748
| style="width: 5px;text-align: right;white-space: nowrap;" | (47)
749
|}
750
751
The vector form of Eq.([[#eq-46|46]]) is written as
752
753
<span id="eq-48"></span>
754
{| class="formulaSCP" style="width: 100%; text-align: left;" 
755
|-
756
| 
757
{| style="text-align: left; margin:auto;width: 100%;" 
758
|-
759
| style="text-align: center;" | <math>\left\{\mathbf{S}' \right\}= \left[\boldsymbol{\cal C}\right]\left\{\dot {E}\right\}  </math>
760
|}
761
| style="width: 5px;text-align: right;white-space: nowrap;" | (48)
762
|}
763
764
Matrix <math display="inline">\left[\boldsymbol{\cal C}\right]</math> is obtained by applying Voigt rule to the terms of tensor <math display="inline">\boldsymbol{\cal C}</math> <span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-4|[4,5]]].
765
766
==8 THE MASS BALANCE EQUATION==
767
768
The mass balance equation in the updated configuration is written for a quasi-incompressible fluid as
769
770
<span id="eq-49"></span>
771
{| class="formulaSCP" style="width: 100%; text-align: left;" 
772
|-
773
| 
774
{| style="text-align: left; margin:auto;width: 100%;" 
775
|-
776
| style="text-align: center;" | <math>{}^{n+1} r_v:= - \frac{1}{{}^{n+1}\rho c^2}\frac{\partial p}{\partial t}+D_v =0 \quad \hbox{in } {}^{n+1}V   </math>
777
|}
778
| style="width: 5px;text-align: right;white-space: nowrap;" | (49)
779
|}
780
781
where <math display="inline">c</math> is the speed of sound in the fluid. For a fully incompressible fluid <math display="inline">c=\infty </math> and Eq.([[#eq-49|49]]) reduces to the standard form <math display="inline">D_v =0</math>. The quasi-incompressible form will be retained here and this will allow us to account for the effect of the (small) compressibility in most fluids.
782
783
Eq.([[#eq-49|49]]) can be written in terms of the ''bulk modulus'' of the fluid <math display="inline">\kappa </math> defined as <math display="inline">\kappa = \rho c^2</math>. For convenience we will retain the form of Eq.([[#eq-49|49]]).
784
785
The variational form of the mass balance equation is obtained via the standard weighted residual method <span id='citeF-41'></span>[[#cite-41|[41]]] as
786
787
<span id="eq-50"></span>
788
{| class="formulaSCP" style="width: 100%; text-align: left;" 
789
|-
790
| 
791
{| style="text-align: left; margin:auto;width: 100%;" 
792
|-
793
| style="text-align: center;" | <math>\int _{{}^{n+1}V} q \left(- \frac{1}{{}^{n+1}\rho c^2}\frac{\partial p}{\partial t}+D_v   \right)d {~}^{n+1}V=0  </math>
794
|}
795
| style="width: 5px;text-align: right;white-space: nowrap;" | (50)
796
|}
797
798
where <math display="inline">q</math> are appropriate  test functions with dimensions of pressure <span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-41'></span>[[#cite-4|[4,5,41]]].
799
800
The integral expression ([[#eq-50|50]]) can be written in the current configuration  using Eq.([[#eq-33|33]]) as
801
802
<span id="eq-51"></span>
803
{| class="formulaSCP" style="width: 100%; text-align: left;" 
804
|-
805
| 
806
{| style="text-align: left; margin:auto;width: 100%;" 
807
|-
808
| style="text-align: center;" | <math>\displaystyle \int _{{}^{n}V} q \left(- \frac{J^2}{{}^{n}\rho c^2}\frac{\partial p}{\partial t}+J\dot E_v   \right)d{~}^{n}V=0  </math>
809
|}
810
| style="width: 5px;text-align: right;white-space: nowrap;" | (51)
811
|}
812
813
In the derivation of Eq.([[#eq-51|51]]) we have used the standard expressions <span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-4|[4,5]]]
814
815
<span id="eq-52"></span>
816
{| class="formulaSCP" style="width: 100%; text-align: left;" 
817
|-
818
| 
819
{| style="text-align: left; margin:auto;width: 100%;" 
820
|-
821
| style="text-align: center;" | <math>{}^{n}\rho = {}^{n+1}\rho J \quad \hbox{and}\quad d {~}^{n+1}V = J d {~}^{n}V    </math>
822
|}
823
| style="width: 5px;text-align: right;white-space: nowrap;" | (52)
824
|}
825
826
Eqs.([[#eq-39|39]]) and ([[#eq-51|51]]) together with the constitutive relationship ([[#eq-47|47]]) and the  boundary conditions ([[#eq-12|12]]) complete the set of governing variational equations for a  fluid in the updated Lagrangian description. The solution of these equations with the FEM is described in the next section.
827
828
==9 FINITE ELEMENT DISCRETIZATION==
829
830
We interpolate the velocities and the pressure in terms of their nodal values in the standard finite element fashion <span id='citeF-28'></span><span id='citeF-39'></span><span id='citeF-41'></span>[[#cite-28|[28,39,41]]]. For a mesh of <math display="inline">n</math>-noded <math display="inline">C^\circ </math> continuous elements we can write
831
832
<span id="eq-53"></span>
833
{| class="formulaSCP" style="width: 100%; text-align: left;" 
834
|-
835
| 
836
{| style="text-align: left; margin:auto;width: 100%;" 
837
|-
838
| style="text-align: center;" | <math>{}^{n+1} {v}= {N}_v {}^{n+1} \bar{v}\quad ,\quad p = {N}_p  {}^{n+1}\bar{p}  </math>
839
|}
840
| style="width: 5px;text-align: right;white-space: nowrap;" | (53)
841
|}
842
843
where
844
845
<span id="eq-54.a"></span>
846
{| class="formulaSCP" style="width: 100%; text-align: left;" 
847
|-
848
| 
849
{| style="text-align: left; margin:auto;width: 100%;" 
850
|-
851
| style="text-align: center;" | <math>\bar{v} = \left\{\begin{matrix}\bar{v}^1\\ \bar{v}^2\\\vdots \\ \bar{v}^N    \end{matrix} \right\}\quad \hbox{with } \bar{v}^i = [\bar v^i_1,\bar v^i_2, \bar v^i_3]^T\quad ,\quad  \bar{p} = [\bar p_1,\bar p_2,\cdots ,\bar p_N]^T  </math>
852
|}
853
| style="width: 5px;text-align: right;white-space: nowrap;" | (54.a)
854
|}
855
856
where <math display="inline">N</math> is the total number of nodes in the mesh, <math display="inline">\bar v^i_j</math> and <math display="inline">\bar{p}^i</math> are <math display="inline">j</math>th velocity component and the pressure unknowns for node <math display="inline">i</math>,
857
858
<span id="eq-54.b"></span>
859
{| class="formulaSCP" style="width: 100%; text-align: left;" 
860
|-
861
| 
862
{| style="text-align: left; margin:auto;width: 100%;" 
863
|-
864
| style="text-align: center;" | <math>\begin{array}{l}{N}_v = [{N}^v_1,{N}^v_2,\cdots ,{N}^v_N ]\quad ,\quad {N}^v_i= N^v_i{I}_3\\ {N}_p = [{N}^p_1,{N}^p_2,\cdots ,{N}^p_N ]\end{array}    </math>
865
|}
866
| style="width: 5px;text-align: right;white-space: nowrap;" | (54.b)
867
|}
868
869
In Eq.([[#eq-54.b|54.b]]) <math display="inline">{N}^v_i</math> and <math display="inline">N^p_i</math> are the ''global  shape functions'' <span id='citeF-28'></span><span id='citeF-39'></span>[[#cite-28|[28,39]]] for the velocity and pressure interpolations for node <math display="inline">i</math>, respectively.
870
871
The velocity and pressure increments and the virtual velocities are interpolated in terms of their nodal values in the same fashion as in Eq.([[#eq-53|53]]).
872
873
The  strain rate vector <math display="inline">\left\{\dot {E}\right\}</math> and its virtual expression <math display="inline">\left\{\delta \dot {E}\right\}</math> are respectively expressed in terms of the nodal velocities <math display="inline">\bar{v}</math> and their virtual values <math display="inline">\delta \bar{v}</math> via Eqs.([[#eq-28.a|28.a]]), ([[#eq-29.a|29.a]]) and ([[#eq-53|53]]) as
874
875
<span id="eq-55"></span>
876
{| class="formulaSCP" style="width: 100%; text-align: left;" 
877
|-
878
| 
879
{| style="text-align: left; margin:auto;width: 100%;" 
880
|-
881
| style="text-align: center;" | <math>\left\{\dot {E}\right\}= {B} {}^{n+1} \bar{v} \quad ,\quad \left\{\delta \dot {E}\right\}= {B} \delta \bar {v}  </math>
882
|}
883
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
884
|}
885
886
The actual and virtual volumetric material strain rates are related to the virtual velocities as
887
888
<span id="eq-56"></span>
889
{| class="formulaSCP" style="width: 100%; text-align: left;" 
890
|-
891
| 
892
{| style="text-align: left; margin:auto;width: 100%;" 
893
|-
894
| style="text-align: center;" | <math>\dot {E}_v  = \left\{{C}^{-T}\right\}{B}{~}^{n+1} \bar{v} \quad ,\quad \delta \dot {E}_v =\delta \bar{v}^T {B}^T\left\{{C}^{-1}\right\}  </math>
895
|}
896
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
897
|}
898
899
In the above equations <math display="inline">{B}</math> is the material strain rate matrix given by
900
901
<span id="eq-57"></span>
902
{| class="formulaSCP" style="width: 100%; text-align: left;" 
903
|-
904
| 
905
{| style="text-align: left; margin:auto;width: 100%;" 
906
|-
907
| style="text-align: center;" | <math>{B} = [{B}_1,{B}_2,\cdots , {B}_N]^T \quad , \quad {B}_i =  {}_n{B}_i^0+{B}_i^L  </math>
908
|}
909
| style="width: 5px;text-align: right;white-space: nowrap;" | (57)
910
|}
911
912
where
913
914
<span id="eq-58.a"></span>
915
{| class="formulaSCP" style="width: 100%; text-align: left;" 
916
|-
917
| 
918
{| style="text-align: left; margin:auto;width: 100%;" 
919
|-
920
| style="text-align: center;" | <math>\begin{array}{l}{}_n{B}_i^0 = \left[ \begin{matrix}{}_nN^v_{i,1} &0&0\\ 0&{}_nN^v_{i,2} &0\\ 0&0&{}_nN^v_{i,3}\\ {}_nN^v_{i,2} &{}_nN^v_{i,1} &0\\ {}_nN^v_{i,3}&0&{}_nN^v_{i,1}\\  0&{}_nN^v_{i,3}&{}_nN^v_{i,2}  \end{matrix}\right]~~\hbox{and}~~  {B}_i^L ={}_n{B}_i^0 {L}^T  ~~\hbox{with}~~ {L}= \left[\begin{matrix}l_{11} & l_{12} & l_{13}\\ l_{21} & l_{22} & l_{23}\\ l_{31} & l_{32} & l_{33}  \end{matrix}\right]         \end{array}    </math>
921
|}
922
| style="width: 5px;text-align: right;white-space: nowrap;" | (58.a)
923
|}
924
925
are the linear and non linear counterparts of the material strain rate matrix, respectively. The components of <math display="inline"> {}_n{B}_i^0</math> and <math display="inline">{L}</math> are
926
927
<span id="eq-58.b"></span>
928
{| class="formulaSCP" style="width: 100%; text-align: left;" 
929
|-
930
| 
931
{| style="text-align: left; margin:auto;width: 100%;" 
932
|-
933
| style="text-align: center;" | <math>{}_nN^v_{i,j}= {\partial N^v_i \over \partial {}^n x_j}  \quad , \quad  l_{ij} =\sum \limits _{k=1}^n {}_nN^v_{k,j} \Delta u_k    </math>
934
|}
935
| style="width: 5px;text-align: right;white-space: nowrap;" | (58.b)
936
|}
937
938
The deviatoric second Piola-Kirchhoff stresses are related to the nodal velocities via Eqs.([[#eq-47|47]]) and ([[#eq-55|55]]) as
939
940
<span id="eq-59"></span>
941
{| class="formulaSCP" style="width: 100%; text-align: left;" 
942
|-
943
| 
944
{| style="text-align: left; margin:auto;width: 100%;" 
945
|-
946
| style="text-align: center;" | <math>\left\{\mathbf{S}' \right\}=\left[\boldsymbol{\cal C}\right]\left\{\dot {E}\right\}= \left[\boldsymbol{\cal C}\right]{B} {~}^{n+1} \bar{v}  </math>
947
|}
948
| style="width: 5px;text-align: right;white-space: nowrap;" | (59)
949
|}
950
951
'''Remark 4.''' The displacement increment <math display="inline">\Delta u_i</math> can be computed in terms of the velocity in a  number of ways. A popular choice is
952
953
<span id="eq-60.a"></span>
954
{| class="formulaSCP" style="width: 100%; text-align: left;" 
955
|-
956
| 
957
{| style="text-align: left; margin:auto;width: 100%;" 
958
|-
959
| style="text-align: center;" | <math>\Delta u_i =  \Delta t   {~}^{n+\alpha } v_i            </math>
960
|}
961
| style="width: 5px;text-align: right;white-space: nowrap;" | (60.a)
962
|}
963
964
where <math display="inline">{~}^{n+\alpha } v_i </math> is the velocity at <math display="inline">t=t_n + \alpha \Delta t</math> where <math display="inline">\alpha </math> is a positive number (<math display="inline">0\le \alpha \le 1</math>). The value of <math display="inline">{~}^{n+\alpha } v_i </math> is typically computed as
965
966
<span id="eq-60.b"></span>
967
{| class="formulaSCP" style="width: 100%; text-align: left;" 
968
|-
969
| 
970
{| style="text-align: left; margin:auto;width: 100%;" 
971
|-
972
| style="text-align: center;" | <math>{~}^{n+\alpha } v_i  = (1-\alpha )^n v_i +  \alpha {}^{n+1} v_i            </math>
973
|}
974
| style="width: 5px;text-align: right;white-space: nowrap;" | (60.b)
975
|}
976
977
===9.1 Discretized form of the PVP===
978
979
Substituting Eqs.([[#eq-53|53]]),  ([[#eq-55|55]]) and ([[#eq-56|56]]) into the PVP (Eq.([[#eq-39|39]])) we obtain, after simplifying the virtual velocities
980
981
<span id="eq-61"></span>
982
{| class="formulaSCP" style="width: 100%; text-align: left;" 
983
|-
984
| 
985
{| style="text-align: left; margin:auto;width: 100%;" 
986
|-
987
| style="text-align: center;" | <math>{}^{n+1} \bar {r}_m := \int _{{}^{n}V} {}^n\rho {N}_v^T {N}_v {\dot{\bar {v}}}d {~}^{n}V   +\int _{{}^{n}V} {B}^T \left[\left\{\mathbf{S}' \right\}+ J  \left\{{C}^{-1}\right\}{p} \right]d {~}^{n}V - </math>
988
|-
989
| style="text-align: center;" | <math> \int _{{}^{n+1}V} {N}_v^T {~}^{n+1}{b} ~ d {~}^{n+1} V - \int _{{}^{n+1}\Gamma } {N}_v^T {~}^{n+1} {t}~d{~}^{n+1}\Gamma ={0}  </math>
990
|}
991
| style="width: 5px;text-align: right;white-space: nowrap;" | (61)
992
|}
993
994
where <math display="inline">{}^{n+1} \bar {r}_m</math> is the residual vector of the discretized momentum equations in the updated configuration and <math display="inline"> {\dot{\bar {v}}} \equiv {\partial {}^{n+1} \bar {v} \over \partial t}</math> is the nodal acceleration vector.
995
996
Eq.([[#eq-61|61]]) can be written in a more compact form as
997
998
<span id="eq-62"></span>
999
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1000
|-
1001
| 
1002
{| style="text-align: left; margin:auto;width: 100%;" 
1003
|-
1004
| style="text-align: center;" | <math>\displaystyle {}^{n+1} \bar {r}_m := {M}_v {\dot{\bar{v}}} + {}^{n+1} {g}_v + {}^{n+1} {g}_p - {}^{n+1} {f}_m    </math>
1005
|}
1006
| style="width: 5px;text-align: right;white-space: nowrap;" | (62)
1007
|}
1008
1009
where
1010
1011
<span id="eq-63"></span>
1012
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1013
|-
1014
| 
1015
{| style="text-align: left; margin:auto;width: 100%;" 
1016
|-
1017
| style="text-align: center;" | <math>{M}_v = \!\!\int _{{}^{n}V} {}^n\rho {N}_v^T {N}_v d ~{}^nV ~ , ~   {}^{n+1}{g}_v = \!\!\int _{{}^{n}V} {B}^T {S}' d {~}^{n} V  ~,~  {}^{n+1}{g}_p= \!\!\int _{{}^{n}V} {B}^T  J \left\{{C}^{-1}\right\}p d {~}^{n} V</math>
1018
|-
1019
| style="text-align: center;" | <math>   {}^{n+1} {f}_m = \!\!\int _{{}^{n+1}V}  {N}_v^T {~}^{n+1}~{b} ~d{~}^{n+1} V + \!\!\int _{{}^{n+1}\Gamma }  {N}_v^T {~}^{n+1}{t}~ d{~}^{n+1} V    </math>
1020
|}
1021
| style="width: 5px;text-align: right;white-space: nowrap;" | (63)
1022
|}
1023
1024
In Eq.([[#eq-62|62]]) <math display="inline">{}^{n+1} {g}_v</math>  and <math display="inline">{}^{n+1}{g}_p</math> are internal force vectors contributed by the deviatoric second Piola-Kirchhoff stresses and the pressure, respectively and <math display="inline">{}^{n+1} {f}_m</math> is the external force vector.
1025
1026
Recall that the internal force vectors at the current configuration are obtained in terms of expressions at the updated configuration.
1027
1028
'''Remark 5.''' The computation of the body force vector <math display="inline">{}^{n+1}{b}</math> in Eq.([[#eq-63|63]]) for the case of selfweight requires computing the density at the updated configuration as <math display="inline">{}^{n+1}\rho = \frac{1}{J}{}^n\rho </math>. We also note that the surface tractions <math display="inline">{}^{n+1}{t}</math> are applied on the boundary of the updated configuration <math display="inline">{}^{n+1}\Gamma </math>, which requires the accurate identification of this boundary.
1029
1030
The acceleration term in Eq.([[#eq-62|62]]) can be approximated in a number of manners. A backward Euler scheme gives
1031
1032
<span id="eq-64"></span>
1033
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1034
|-
1035
| 
1036
{| style="text-align: left; margin:auto;width: 100%;" 
1037
|-
1038
| style="text-align: center;" | <math>{}^{n+1} \bar {r}_m := {M}_v \frac{{}^{n+1} \bar{v}-{}^{n}  \bar{v} }{\Delta t}+ {}^{n+1} {g}_v + {}^{n+1} {g}_p - {}^{n+1} {f}_m =0    </math>
1039
|}
1040
| style="width: 5px;text-align: right;white-space: nowrap;" | (64)
1041
|}
1042
1043
===9.2 Discretization of the mass conservation equation===
1044
1045
The arbitrary pressure test functions <math display="inline">q</math> are interpolated in the same fashion as the pressure as
1046
1047
<span id="eq-65"></span>
1048
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1049
|-
1050
| 
1051
{| style="text-align: left; margin:auto;width: 100%;" 
1052
|-
1053
| style="text-align: center;" | <math>q= {N}_p \bar{q}= \bar {q}^T{N}_p^T  </math>
1054
|}
1055
| style="width: 5px;text-align: right;white-space: nowrap;" | (65)
1056
|}
1057
1058
where vector <math display="inline"> \bar{q}</math> contains the nodal values of <math display="inline">q</math>.
1059
1060
Substituting the expression of <math display="inline">\dot {E}_v</math> in term of <math display="inline">{}^{n+1} \bar{v}</math> from Eq.([[#eq-56|56]]) and Eq.([[#eq-65|65]]) in the variational form of the mass balance equation (Eq.([[#eq-51|51]])) we obtain, after eliminating the pressure test functions <math display="inline">\bar{q}</math>
1061
1062
<span id="eq-66"></span>
1063
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1064
|-
1065
| 
1066
{| style="text-align: left; margin:auto;width: 100%;" 
1067
|-
1068
| style="text-align: center;" | <math>\displaystyle {}^{n+1} \bar {r}_v : = - {M}_p {\dot{\bar{p}}} + {Q}^T {~}^{n+1} \bar {v}={0}  </math>
1069
|}
1070
| style="width: 5px;text-align: right;white-space: nowrap;" | (66)
1071
|}
1072
1073
where <math display="inline">{}^{n+1} \bar {r}_v</math> is the residual vector of the discretized mass conservation equation, <math display="inline"> {\dot{\bar {p}}} = {\partial {~}^{n+1} \bar {p} \over \partial t}</math> and the terms of <math display="inline">{M}_p</math> and <math display="inline">{}^{n}{Q}</math> are
1074
1075
<span id="eq-67"></span>
1076
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1077
|-
1078
| 
1079
{| style="text-align: left; margin:auto;width: 100%;" 
1080
|-
1081
| style="text-align: center;" | <math>M_{p_{ij}}=\int _{{}^{n}V} \frac{J^2}{^n\rho c^2}N^p_i N^p_j d{~}^{n}V ~~,~~{Q}= \int _{{}^{n}V} {B}^T \left\{{C}^{-1}\right\}{N}_p J d {~}^{n} V   </math>
1082
|}
1083
| style="width: 5px;text-align: right;white-space: nowrap;" | (67)
1084
|}
1085
1086
===9.3 Stabilization of the mass conservation equation===
1087
1088
It is well known that  the FEM  solutions for the fully incompressible limit are unstable for some particular forms of the approximation for the velocities and the pressure <span id='citeF-10'></span><span id='citeF-39'></span><span id='citeF-41'></span>[[#cite-10|[10,39,41]]]. This is the case, for instance, when an equal order interpolation is chosen for the velocity components and the pressure (i.e. <math display="inline">N^v_i = N^p_i</math>). This problem can be overcome by using finite element approximations for <math display="inline">{v}</math> and <math display="inline">p</math> satisfying the so-called LBB conditions <span id='citeF-10'></span><span id='citeF-39'></span><span id='citeF-41'></span>[[#cite-10|[10,39,41]]], or else by introducing stabilization terms into the discretized mass balance equation <span id='citeF-10'></span><span id='citeF-41'></span>[[#cite-10|[10,41]]]. In this work the later approach is chosen for obtaining stabilized numerical solutions.
1089
1090
In essence all stabilized formulations modify the discretized form of the  mass balance equation as
1091
1092
<span id="eq-68"></span>
1093
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1094
|-
1095
| 
1096
{| style="text-align: left; margin:auto;width: 100%;" 
1097
|-
1098
| style="text-align: center;" | <math>\displaystyle  {}^{n+1} \hat {r}_v := {}^{n+1} \bar {r}_v +  ^{n+1} \bar {r}_s =0  </math>
1099
|}
1100
| style="width: 5px;text-align: right;white-space: nowrap;" | (68)
1101
|}
1102
1103
where <math display="inline">{}^{n+1} \bar {r}_v</math> was defined in Eq.([[#eq-66|66]])  and <math display="inline">{}^{n+1} \bar {r}_s</math> is a stabilization mass balance vector which expression can be typically written as
1104
1105
<span id="eq-69"></span>
1106
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1107
|-
1108
| 
1109
{| style="text-align: left; margin:auto;width: 100%;" 
1110
|-
1111
| style="text-align: center;" | <math>{}^{n+1} \bar {r}_s = -  \boldsymbol{\cal S} {~}^{n+1} \bar {p}+  {}^{n+1} {f}_s   </math>
1112
|}
1113
| style="width: 5px;text-align: right;white-space: nowrap;" | (69)
1114
|}
1115
1116
where <math display="inline">\boldsymbol{\cal S}</math> is a stabilization matrix and <math display="inline">{}^{n+1}{f}_s</math> is a force vector that depends on the nodal velocities and pressures. The form of <math display="inline">\boldsymbol{\cal S}</math> and <math display="inline">{f}_s</math> is different for each stabilization method. Typically, <math display="inline">\boldsymbol{\cal S}</math> and <math display="inline">{}^{n+1}{f}_s</math> contain integrals  over the volume and the Neumann boundary of the analysis domain and are both a function of the so-called stabilization parameters which expression also depends on the particular stabilization method chosen <span id='citeF-3'></span><span id='citeF-8'></span><span id='citeF-9'></span><span id='citeF-10'></span><span id='citeF-15'></span><span id='citeF-31'></span><span id='citeF-37'></span><span id='citeF-41'></span>[[#cite-3|[3,8,9,10,15,31,37,41]]].
1117
1118
The derivation of a stabilized  mixed velocity-pressure formulation for incompressible fluids exceeds the objectives of this paper. Details can be obtained in the references cited in the previous paragraphs.
1119
1120
A particular stabilized Lagrangian formulation with excellent mass conservation features based on the Finite Calculus (FIC) theory <span id='citeF-21'></span>[[#cite-21|[21]]]&#8211;<span id='citeF-24'></span>[[#cite-24|[24]]],<span id='citeF-27'></span><span id='citeF-30'></span>[[#cite-27|[27,30]]] can be found in <span id='citeF-31'></span>[[#cite-31|[31]]].
1121
1122
==10 INCREMENTAL SOLUTION FOR THE NODAL VELOCITIES AND PRESSURES==
1123
1124
We will derive next an incremental iterative procedure for solving the discretized form of the equations for conservation of linear momentum and mass conservation in a segregated form. This requires the linearization of Eqs.([[#eq-61|61]]) and ([[#eq-68|68]]) with respect to the nodal velocity and pressure unknowns, respectively. The linearization procedure takes advantage from the fact that the reference configuration (i.e. the current configuration <math display="inline">{}^{n}V</math>) remains fixed during the linearization process.
1125
1126
===10.1 Linearization of the discretized  momentum equations with respect to the nodal velocities===
1127
1128
We linearize the residual vector <math display="inline">{}^{n+1} \bar {r}_m</math> of Eq.([[#eq-61|61]]) with respect to the nodal velocities <math display="inline">\bar {v}</math> as
1129
1130
<span id="eq-70"></span>
1131
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1132
|-
1133
| 
1134
{| style="text-align: left; margin:auto;width: 100%;" 
1135
|-
1136
| style="text-align: center;" | <math>\delta _{\bar v} {}^{n+1} \bar {r}_m ({x},\bar {v},\bar {p})   = \frac{d}{d\epsilon }\Bigg|_{\epsilon =0}  {}^{n+1} \bar {r}_m  ({x},\bar {v}+\epsilon d\bar{v},\bar {p})    </math>
1137
|}
1138
| style="width: 5px;text-align: right;white-space: nowrap;" | (70)
1139
|}
1140
1141
Expression ([[#eq-70|70]]) is the directional derivative of the residual vector <math display="inline">{}^{n+1} \bar {r}_m</math> at a point <math display="inline">{x}</math> in the direction of the nodal velocity vector <math display="inline">d\bar {v}</math> (hereafter called ''nodal velocity pseudo-increment vector''). The same definition applies to the directional derivative of a matrix or a scalar depending on the space coordinate <math display="inline">{x}</math>, the nodal velocities <math display="inline">\bar {v}</math> and the nodal pressures <math display="inline">\bar {p}</math> <span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-36'></span>[[#cite-4|[4,5,36]]].
1142
1143
Using the expression of vector <math display="inline">{}^{n+1} \bar {r}_m</math> of Eq.([[#eq-62|62]]) in Eq.([[#eq-70|70]]) and neglecting the changes of vector <math display="inline">{}^{n+1} {f}_m</math> with the  velocity,  gives
1144
1145
<span id="eq-71"></span>
1146
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1147
|-
1148
| 
1149
{| style="text-align: left; margin:auto;width: 100%;" 
1150
|-
1151
| style="text-align: center;" | <math>\delta _{\bar v} {}^{n+1} \bar {r}_m = \frac{1}{\Delta t}{M}_v d \bar {v}+      \int _{{}^{n}V} \Big\{{B}^T \Big[\delta _{\bar v}\left\{\mathbf{S}' \right\}+ \left(\delta _{\bar v} J\left\{{C}^{-1}\right\}+ {J} \delta _{\bar v} \left\{{C}^{-1}\right\}\right)p + </math>
1152
|-
1153
| style="text-align: center;" | <math>  + J \left\{{C}^{-1}\right\}\delta _{\bar v}p\Big]+ \delta _{\bar v} {B}^T  \left\{\mathbf{S}' \right\}\Big\}d{~}^{n} V  </math>
1154
|}
1155
| style="width: 5px;text-align: right;white-space: nowrap;" | (71)
1156
|}
1157
1158
After some algebra detailed in the Appendix, the following linearized form of <math display="inline">{}^{n+1}\bar{r}_m</math> with respect to the nodal velocities is found
1159
1160
<span id="eq-72"></span>
1161
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1162
|-
1163
| 
1164
{| style="text-align: left; margin:auto;width: 100%;" 
1165
|-
1166
| style="text-align: center;" | <math>\delta _v  {}^{n+1}\bar{r}_m   = \left(\frac{1}{\Delta t}{M}_v +  {K}_c + {K}_\sigma \right)  d \bar {v}+  {Q}  {\delta }_{\bar v}^{n+1}\bar {p}    </math>
1167
|}
1168
| style="width: 5px;text-align: right;white-space: nowrap;" | (72)
1169
|}
1170
1171
where matrices <math display="inline">{M}_v</math> and <math display="inline">{}^{n} {Q}</math> were given in Eq.([[#eq-67|67]]) and <math display="inline">{}^n{K}_c</math> and <math display="inline">{K}_\sigma </math> are the constitutive and initial stress matrices, respectively. The expression of these matrices is
1172
1173
<span id="eq-73"></span>
1174
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1175
|-
1176
| 
1177
{| style="text-align: left; margin:auto;width: 100%;" 
1178
|-
1179
| style="text-align: center;" | <math>{K}_c = \!\!\int _{{}^{n}V}{B}^T [\boldsymbol{\cal C}_T] {B} d {~}^{n}V ~~ ,~~  {K}_\sigma = \Delta t \!\int _{{}^{n}V}{G}^T \hat{S}' {G}d {~}^{n}V  </math>
1180
|}
1181
| style="width: 5px;text-align: right;white-space: nowrap;" | (73)
1182
|}
1183
1184
The form of matrices <math display="inline">{G}</math> and <math display="inline">\hat{S}'</math> is given in the Appendix.
1185
1186
The expression of the tangent constitutive tensor <math display="inline">\boldsymbol{\cal C}_T</math> is (see Appendix)
1187
1188
<span id="eq-74"></span>
1189
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1190
|-
1191
| 
1192
{| style="text-align: left; margin:auto;width: 100%;" 
1193
|-
1194
| style="text-align: center;" | <math>\boldsymbol{\cal C}_T = \boldsymbol{\cal C} + J  \Delta t ~p ({C}^{-1}\otimes {C}^{-1} - 2 \boldsymbol{\cal I})    </math>
1195
|}
1196
| style="width: 5px;text-align: right;white-space: nowrap;" | (74)
1197
|}
1198
1199
Tensor <math display="inline">\boldsymbol{\cal C}_T</math> contains contributions from the  constitutive tensor <math display="inline">\boldsymbol{\cal C}</math> of Eq.([[#eq-46|46]]), the time step and  the pressure. This form of <math display="inline">\boldsymbol{\cal C}_T</math> is very similar to that used for incompressible continua <span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-13'></span><span id='citeF-36'></span>[[#cite-4|[4,5,13,36]]].  It can be shown that tensor <math display="inline">\boldsymbol{\cal I}</math> is symmetric (see Appendix) and, hence, the tangent constitutive tensor <math display="inline">\boldsymbol{\cal C}_T</math> is symmetric <span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-13'></span><span id='citeF-36'></span>[[#cite-4|[4,5,13,36]]].
1200
1201
===10.2 Linearization of the nodal pressures with respect to the nodal velocities. Derivation of the tangent matrix===
1202
1203
From  Eq.([[#eq-66|66]]) we can obtain the directional derivative of the nodal pressure variables in the direction of the nodal velocity increments. Using a trapezoidal rule for approximating the time derivative term gives
1204
1205
<span id="eq-75"></span>
1206
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1207
|-
1208
| 
1209
{| style="text-align: left; margin:auto;width: 100%;" 
1210
|-
1211
| style="text-align: center;" | <math>{M}_p\frac{1}{\theta \Delta t} ({~}^{n+1}\bar {p} - {}^{n+\theta }\bar {p}) + {Q}^T \bar {v} = {0}    </math>
1212
|}
1213
| style="width: 5px;text-align: right;white-space: nowrap;" | (75)
1214
|}
1215
1216
where <math display="inline">\theta </math> is a time parameter such that <math display="inline">0<\theta \le 1</math>. A value <math display="inline">\theta =1</math> defines a backward Euler scheme <span id='citeF-39'></span><span id='citeF-41'></span>[[#cite-39|[39,41]]].
1217
1218
From Eq.([[#eq-75|75]]) it is straightforward to obtain
1219
1220
<span id="eq-76"></span>
1221
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1222
|-
1223
| 
1224
{| style="text-align: left; margin:auto;width: 100%;" 
1225
|-
1226
| style="text-align: center;" | <math>{\delta }_{\bar v} {~}^{n+1}\bar {p}= \theta \Delta t {M}_p^{-1} {Q}^T d \bar {v}  </math>
1227
|}
1228
| style="width: 5px;text-align: right;white-space: nowrap;" | (76)
1229
|}
1230
1231
Substituting Eq.([[#eq-76|76]]) into ([[#eq-72|72]]) gives the final linearized form of the momentum equations in terms of the nodal velocities increments as
1232
1233
<span id="eq-77"></span>
1234
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1235
|-
1236
| 
1237
{| style="text-align: left; margin:auto;width: 100%;" 
1238
|-
1239
| style="text-align: center;" | <math>{\delta }_{\bar v} {}^{n+1}\bar {r}_m =  {K}_T^i d \bar {v}    </math>
1240
|}
1241
| style="width: 5px;text-align: right;white-space: nowrap;" | (77)
1242
|}
1243
1244
where <math display="inline">(\cdot )^i</math> denotes values at the <math display="inline">i</math>th iteration and the tangent matrix <math display="inline"> ^n {K}_T</math> is
1245
1246
<span id="eq-78"></span>
1247
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1248
|-
1249
| 
1250
{| style="text-align: left; margin:auto;width: 100%;" 
1251
|-
1252
| style="text-align: center;" | <math>\displaystyle  {K}_T = \frac{1}{\Delta t} {M}_v +  {K}_c +  {K}_\sigma +  {K}_p   </math>
1253
|}
1254
| style="width: 5px;text-align: right;white-space: nowrap;" | (78)
1255
|}
1256
1257
with <math display="inline">{M}_v</math>, <math display="inline"> {K}_c</math> and <math display="inline">{K}_\sigma </math>  defined in Eqs.([[#eq-63|63]]) and ([[#eq-72|72]]) and the tangent “bulk” matrix <math display="inline">{K}_p</math> is
1258
1259
<span id="eq-79"></span>
1260
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1261
|-
1262
| 
1263
{| style="text-align: left; margin:auto;width: 100%;" 
1264
|-
1265
| style="text-align: center;" | <math>{K}_p = \theta \Delta t  {Q} {M}_p^{-1}  {Q}^T  </math>
1266
|}
1267
| style="width: 5px;text-align: right;white-space: nowrap;" | (79)
1268
|}
1269
1270
In practice, <math display="inline"> {K}_p</math> is computed using the diagonal form of <math display="inline">{M}_p</math>, i.e.
1271
1272
<span id="eq-80"></span>
1273
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1274
|-
1275
| 
1276
{| style="text-align: left; margin:auto;width: 100%;" 
1277
|-
1278
| style="text-align: center;" | <math>{K}_p = \theta \Delta t {Q} {M}_{pD}^{-1}  \bar{Q}^T  </math>
1279
|}
1280
| style="width: 5px;text-align: right;white-space: nowrap;" | (80)
1281
|}
1282
1283
where <math display="inline">{M}_{pD} ={diag}({M}_p)</math>.
1284
1285
The incremental form of the momentum equations can written as
1286
1287
<span id="eq-81"></span>
1288
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1289
|-
1290
| 
1291
{| style="text-align: left; margin:auto;width: 100%;" 
1292
|-
1293
| style="text-align: center;" | <math>{}^{n+1}\bar {r}_{m} \simeq {}^{n+1}\bar {r}_{m}^i + {\delta }_{\bar v} {~}^{n+1}\bar {r}_m = {}^{n+1}\bar {r}_m^i + {K}_T^i d \bar {v} =0  </math>
1294
|}
1295
| style="width: 5px;text-align: right;white-space: nowrap;" | (81)
1296
|}
1297
1298
Solution of Eq.([[#eq-81|81]]) yields the nodal velocity increments <math display="inline">d \bar {v}</math> for the <math display="inline">i</math>th iteration.
1299
1300
'''Remark 6.''' For fully incompressible fluids (<math display="inline">c=\infty </math>) a large but finite value of <math display="inline">c</math> is used in practice. This allows to eliminate the pressure DOFs in the momentum equations via Eq.(([[#eq-76|76]])).
1301
1302
'''Remark 7.''' The tangent “bulk” stiffness matrix <math display="inline">\mathbf{K}_p</math> in the tangent matrix <math display="inline">\mathbf{K}_T</math>  accounts for the changes of the pressure due to the velocity. Including matrix <math display="inline">\mathbf{K}_p</math> in <math display="inline">\mathbf{K}_T</math> has proven to be essential for the fast convergence, mass preservation and overall accuracy of the iterative solution in all cases <span id='citeF-11'></span>[[#cite-11|[11]]].      The <math display="inline">\theta </math> parameter in <math display="inline">{K}_p</math> (Eq.([[#eq-79|79]]))  has the role of preventing the ill-conditioning of <math display="inline">\mathbf{K}_T</math> for very large values of the speed of sound in the fluid that lead to a dominant role of the terms of the tangent bulk stiffness matrix <math display="inline">{K}_p</math>. Clearly, the value of the terms of <math display="inline">{K}_p</math> can also be limited by reducing the time step size. This, however, leads to an increase in the overall cost of the computations <span id='citeF-11'></span>[[#cite-11|[11]]]. An adequate selection of <math display="inline">\theta </math>  improves the convergence of the iterative process and leads to a more accurate numerical solution with reduced mass loss, even for large time steps <span id='citeF-11'></span>[[#cite-11|[11]]]. These considerations, however, do not affect the value of <math display="inline">c</math> within matrix <math display="inline">{M}_p</math> in Eq.([[#eq-67|67]]) that vanishes for the fully incompressible case (<math display="inline">c =\infty </math>).
1303
1304
===10.3 Linearization of the stabilized mass conservation equation with respect to the nodal pressures===
1305
1306
The stabilized mass conservation equation ([[#eq-68|68]]) is linearized with respect to the nodal pressure pseudo-increment vector <math display="inline">d \bar {p}</math> using Eqs.([[#eq-66|66]]), ([[#eq-68|68]]) and ([[#eq-69|69]])  as
1307
1308
<span id="eq-82"></span>
1309
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1310
|-
1311
| 
1312
{| style="text-align: left; margin:auto;width: 100%;" 
1313
|-
1314
| style="text-align: center;" | <math>\delta _{\bar p} {}^{n+1} \hat {r}_v ({x},\bar {v},\bar {p})= \frac{d}{d\epsilon }\Bigg|_{\epsilon =0} {}^{n+1} \hat{r}_v ({x},\bar {v},\bar {p}+\epsilon d \bar {p})    </math>
1315
|}
1316
| style="width: 5px;text-align: right;white-space: nowrap;" | (82)
1317
|}
1318
1319
Using  Eqs.([[#eq-67|67]])&#8211;([[#eq-68|68]]) and a backward Euler scheme for approximating the time derivative of the nodal pressure in Eq.([[#eq-67|67]]) gives
1320
1321
<span id="eq-83"></span>
1322
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1323
|-
1324
| 
1325
{| style="text-align: left; margin:auto;width: 100%;" 
1326
|-
1327
| style="text-align: center;" | <math>\delta _{\bar p} {~}^{n+1} \hat {r}_v   = - \left(\frac{1}{\Delta t} {M}_p + \boldsymbol{\cal S}\right)d \bar {p}   </math>
1328
|}
1329
| style="width: 5px;text-align: right;white-space: nowrap;" | (83)
1330
|}
1331
1332
In the derivation of Eq.([[#eq-83|83]]) we have neglected the pressure dependence of the terms of matrix <math display="inline"> \boldsymbol{\cal S}</math> and <math display="inline">{}^{n+1} {f}_s</math> in Eq.([[#eq-69|69]]).
1333
1334
The incremental form of the mass balance equation is therefore
1335
1336
<span id="eq-84"></span>
1337
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1338
|-
1339
| 
1340
{| style="text-align: left; margin:auto;width: 100%;" 
1341
|-
1342
| style="text-align: center;" | <math>{}^{n+1}{\hat{r}}_v \simeq {}^{n+1}{\hat{r}}_v^i +  \delta _{\bar p} {~}^{n+1}{\hat{r}}_v = {}^{n+1}{\hat{r}}_v^i - \left(\frac{1}{\Delta t}{M}_p + \boldsymbol{\cal S}^i   \right)d \bar {p}=0  </math>
1343
|}
1344
| style="width: 5px;text-align: right;white-space: nowrap;" | (84)
1345
|}
1346
1347
Solution of Eq.([[#eq-84|84]])  yields the ''nodal pressure pseudo-increment vector'' <math display="inline">d \bar {p}</math> at the <math display="inline">i</math>th iteration.
1348
1349
===10.4 Incremental solution of the discretized equations===
1350
1351
An incremental Newton-Raphson type iterative solution scheme for the stabilized velocity-pressure formulation is as follows.
1352
1353
Within a time increment <math display="inline">[n,n+1]</math>:
1354
1355
*  Initialize variables: <math display="inline">({}^{n+1} {x}, {}^{n+1}\bar {v}^{1}, {}^{n+1}\bar {p}^{1}, {}^{n+1}\bar {r}_m, {}^{n+1}\hat {r}_v) \equiv ({}^{n} {x},{}^{n}\bar {v},{}^{n}\bar {p},{}^{n}\bar {r}_m, {}^{n}\hat{r}_v)</math>.
1356
* Iteration loop = <math display="inline">i=1,\cdots , NITER</math>
1357
1358
<br/>
1359
1360
''For each iteration''
1361
1362
<br/>
1363
1364
<ol>
1365
1366
<li>'''Compute the nodal velocity pseudo-increments''' , <math display="inline">d \bar {v}</math> (from Eq.([[#eq-81|81]])) from
1367
1368
<span id="eq-85"></span>
1369
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1370
|-
1371
| 
1372
{| style="text-align: left; margin:auto;width: 100%;" 
1373
|-
1374
| style="text-align: center;" | <math>
1375
1376
{K}_T^i d \bar {v}= - {}^{n+1}\bar {r}_m^i ({}^{n+1}{\bar{v}}^i, {}^{n+1}{\bar{p}}^i)    </li>
1377
1378
</math>
1379
|}
1380
| style="width: 5px;text-align: right;white-space: nowrap;" | (85)
1381
|}
1382
<li>'''Update the nodal velocities''' :
1383
1384
<span id="eq-86"></span>
1385
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1386
|-
1387
| 
1388
{| style="text-align: left; margin:auto;width: 100%;" 
1389
|-
1390
| style="text-align: center;" | <math>
1391
1392
^{n+1} \bar {v}^{i+1}=^{n+1} \bar {v}^i + d \bar {v}    </li>
1393
1394
</math>
1395
|}
1396
| style="width: 5px;text-align: right;white-space: nowrap;" | (86)
1397
|}
1398
<li>'''Compute the nodal pressure pseudo-increments''' , <math display="inline">d\bar {p}</math>. From Eq.([[#eq-84|84]]),
1399
1400
<span id="eq-87"></span>
1401
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1402
|-
1403
| 
1404
{| style="text-align: left; margin:auto;width: 100%;" 
1405
|-
1406
| style="text-align: center;" | <math>
1407
1408
\left(\frac{1}{\Delta t} {M}_p +\boldsymbol{\cal S}^i\right)d \bar {p} = ^{n+1}\hat {r}_v^i ({}^{n+1} \bar {v}^{i+1},{}^{n+1} \bar {p}^{i})    </li>
1409
1410
</math>
1411
|}
1412
| style="width: 5px;text-align: right;white-space: nowrap;" | (87)
1413
|}
1414
<li>'''Update the nodal pressures''' :
1415
1416
<span id="eq-88"></span>
1417
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1418
|-
1419
| 
1420
{| style="text-align: left; margin:auto;width: 100%;" 
1421
|-
1422
| style="text-align: center;" | <math>
1423
1424
^{n+1} \bar {p}^{i+1}= ^{n+1} \bar {p}^{i} + d\bar {p}     </li>
1425
1426
</math>
1427
|}
1428
| style="width: 5px;text-align: right;white-space: nowrap;" | (88)
1429
|}
1430
<li>Update the nodal displacement increments <math display="inline">\Delta {u}</math> using Eq.([[#eq-60.a|60.a]]) and the approximate value for the nodal velocities <math display="inline">{}^{n+1} \bar {v}^{i+1}</math>.   </li>
1431
1432
<li>Update the nodal coordinates in the updated configuration as
1433
1434
<span id="eq-89"></span>
1435
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1436
|-
1437
| 
1438
{| style="text-align: left; margin:auto;width: 100%;" 
1439
|-
1440
| style="text-align: center;" | <math>
1441
1442
{}^{n+1} {x}^{i+1} = {}^{n+1} {x}^i + \Delta {u}      </li>
1443
1444
</math>
1445
|}
1446
| style="width: 5px;text-align: right;white-space: nowrap;" | (89)
1447
|}
1448
1449
<li>'''Compute the material derivative of the Green strains <math>\dot E_{ij}</math> and the deviatoric second Piola-Kirchhoff stresses <math>{S'}_{ij}</math>'''  (from Eqs.([[#eq-55|55]]) and ([[#eq-45|45]])).    </li>
1450
<li>'''Compute the momentum and mass balance residuals''' : <math display="inline">^{n+1}\bar {r}_m^{i+1}</math> and <math display="inline">^{n+1}\hat {r}_v^{i+1}</math>    </li>
1451
<li>'''Check convergence'''
1452
1453
<span id="eq-90"></span>
1454
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1455
|-
1456
| 
1457
{| style="text-align: left; margin:auto;width: 100%;" 
1458
|-
1459
| style="text-align: center;" | <math>
1460
1461
\begin{array}{l}
1462
1463
\Vert ^{n+1}\bar {r}_m^{i+1} \Vert  \le  e_m \Vert {}^n{f}_v\Vert \\[.5cm]   \Vert ^{n+1}\hat {r}_v^{i+1} \Vert  \le  e_v {~}^{n}V    </li>
1464
1465
\end{array}      
1466
1467
</math>
1468
|}
1469
| style="width: 5px;text-align: right;white-space: nowrap;" | (90)
1470
|}
1471
1472
where <math display="inline">\Vert \cdot \Vert </math> denotes the quadratic norm and <math display="inline">e_m</math> and <math display="inline">e_v</math> are prescribed error tolerances for the discretized residuals of the momentum and mass balance equations, respectively.
1473
1474
If both conditions ([[#eq-90|90]]) are satisfied then make <math display="inline">n\leftarrow n+1</math> and proceed to the next time increment. Otherwise, make the iteration counter <math display="inline">i\leftarrow i+1</math> and repeat Steps 1&#8211;9.  
1475
1476
</ol>
1477
1478
'''Remark 8.''' An alternative convergence criteria based on the  nodal velocities and pressures can be defined as
1479
1480
<span id="eq-91.a"></span>
1481
<span id="eq-91.b"></span>
1482
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1483
|-
1484
| 
1485
{| style="text-align: left; margin:auto;width: 100%;" 
1486
|-
1487
| style="text-align: center;" | <math>\Vert ^{n+1}\bar {v}^{i+1} - {}^{n+1}\bar {v}^i\Vert  \le  e_{\bar v} \Vert ^{n+1}\bar {v}^i\Vert </math>
1488
| style="width: 5px;text-align: right;white-space: nowrap;" | (91.a)
1489
|-
1490
| style="text-align: center;" | <math>      \Vert ^{n+1}\bar {p}^{i+1} - ^{n+1}\bar {p}^i\Vert  \le  e_{\bar p} \Vert ^{n+1}\bar {p}^i\Vert  </math>
1491
| style="width: 5px;text-align: right;white-space: nowrap;" | (91.b)
1492
|}
1493
|}
1494
1495
where <math display="inline">e_{\bar v}</math> and <math display="inline">e_{\bar p}</math> are error tolerances.   
1496
1497
'''Remark 9.''' The  nodal velocity and pressure increment vectors <math display="inline">\Delta \bar {v}</math> and <math display="inline">\Delta \bar {p}</math> can be computed at the end of each time step as
1498
1499
<span id="eq-92"></span>
1500
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1501
|-
1502
| 
1503
{| style="text-align: left; margin:auto;width: 100%;" 
1504
|-
1505
| style="text-align: center;" | <math>\Delta \bar {v} =   {}^{n+1}\bar {v}- {}^{n}\bar {v}\quad \hbox{and}\quad \Delta \bar {p} =   {}^{n+1}\bar {p} - {}^{n}\bar {p}                </math>
1506
|}
1507
| style="width: 5px;text-align: right;white-space: nowrap;" | (92)
1508
|}
1509
1510
where <math display="inline">{}^{n+1}\bar {v}</math> and <math display="inline">{}^{n+1}\bar {p}</math> denote the converged values at the end of the iteration loop. Clearly, <math display="inline">\Delta \bar {v}</math> and <math display="inline">\Delta \bar {p}</math> can also be obtained by adding up the pseudo-increment vectors <math display="inline">d\bar {v}</math> and <math display="inline">d\bar {p}</math> within the iterative solution.
1511
1512
'''Remark 10.''' The nodal pressures <math display="inline">^{n+1}\bar {p}^{i+1}</math> can be directly obtained from Eq.([[#eq-68|68]]), after substitution of Eqs.([[#eq-66|66]]) and ([[#eq-69|69]]), as
1513
1514
<span id="eq-93"></span>
1515
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1516
|-
1517
| 
1518
{| style="text-align: left; margin:auto;width: 100%;" 
1519
|-
1520
| style="text-align: center;" | <math>\left(\frac{1}{\Delta t} {M}_p +   \boldsymbol{\cal S}^i  \right){}^{n+1} \bar {p}^{i+1}= {Q}^T {~}^{n+1} \bar {v}^{i+1} + \frac{1}{\Delta t} {M}_p {~}^{n} \bar{p} + {}^{n+1} {f}_s  </math>
1521
|}
1522
| style="width: 5px;text-align: right;white-space: nowrap;" | (93)
1523
|}
1524
1525
The rest of the iterative solution scheme is similar to that described above. Eq.([[#eq-93|93]]) substitutes  Eqs.([[#eq-87|87]]) and ([[#eq-88|88]]) and the convergence of the nodal pressures is verified by Eq.([[#eq-91.b|91.b]]).
1526
1527
'''Remark 11.''' For a fully incompressible fluid <math display="inline">c = \infty </math> and matrix <math display="inline">{M}_p=0</math> in Eqs.([[#eq-67|67]]), ([[#eq-87|87]]) and ([[#eq-93|93]]).
1528
1529
The problem can still be accurately solved in this case using an adequate expression for the stabilization matrix <math display="inline">\boldsymbol{\cal S}</math>. The form of <math display="inline">\boldsymbol{\cal S}</math> presented in <span id='citeF-31'></span>[[#cite-31|[31]]]  includes a Laplacian term over the whole domain <math display="inline">\Omega </math> and an integral along the Neumann boundary <math display="inline">\Gamma _t</math>. The boundary term in <math display="inline">\boldsymbol{\cal S}</math> avoids the need for prescribing the pressure on the domain boundary. If a standard Laplacian form is chosen for <math display="inline">\boldsymbol{\cal S}</math>, then the value of the pressure has to be prescribed in strong form at some boundary points in order to obtain good results <span id='citeF-41'></span>[[#cite-41|[41]]].
1530
1531
==11 DIRECT ITERATIVE SOLUTION OF THE NODAL VELOCITIES AND PRESSURES==
1532
1533
Substituting the FEM approximation for the velocities and the pressure ([[#eq-53|53]]) into Eq.([[#eq-64|64]]) and assuming a Newtonian fluid with a constitutive equation given by Eq.([[#eq-47|47]]), the following matrix expression of the discretized momentum equations can be obtained
1534
1535
<span id="eq-94"></span>
1536
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1537
|-
1538
| 
1539
{| style="text-align: left; margin:auto;width: 100%;" 
1540
|-
1541
| style="text-align: center;" | <math>\displaystyle {}^{n+1} \bar {r}_m := {M}_v {\dot{\bar{v}}} +  {K}_v {~}^{n+1} \bar{v} + {Q}{~}^{n+1} \bar {p}-{}^{n+1} {f}_m=0  </math>
1542
|}
1543
| style="width: 5px;text-align: right;white-space: nowrap;" | (94)
1544
|}
1545
1546
where <math display="inline">{M}_v</math>, <math display="inline">{}^{n}{Q}</math> and <math display="inline">{}^{n+1} {f}_m</math> have been defined previously and
1547
1548
<span id="eq-95"></span>
1549
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1550
|-
1551
| 
1552
{| style="text-align: left; margin:auto;width: 100%;" 
1553
|-
1554
| style="text-align: center;" | <math>{K}_v = \int _{{}^{n}V} {B}^T \left[ \boldsymbol{\cal C}\right]{B} d {~}^{n} V    </math>
1555
|}
1556
| style="width: 5px;text-align: right;white-space: nowrap;" | (95)
1557
|}
1558
1559
Combining Eq.([[#eq-94|94]]) with the stabilized mass balance equation ([[#eq-68|68]]) and using Eq.([[#eq-66|66]]) gives the following matrix system for the nodal velocities and pressures
1560
1561
<span id="eq-96"></span>
1562
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1563
|-
1564
| 
1565
{| style="text-align: left; margin:auto;width: 100%;" 
1566
|-
1567
| style="text-align: center;" | <math>\left[\begin{matrix}{M}_v & {0} \\  {0}& -  {M}_p      \end{matrix}   \right]\left\{\begin{matrix}{\dot{\bar{v}}}\\ {\dot{\bar{p}}}  \end{matrix} \right\}+ \left[\begin{matrix}{K}_v & {Q}\\ {Q}^T & -  \boldsymbol{\cal S} \end{matrix} \right]\left\{\begin{matrix}{}^{n+1} \bar{v}\\ {}^{n+1} \bar{p}  \end{matrix} \right\}- \left\{\begin{matrix}{}^{n+1} {f}_m\\ {}^{n+1} {f}_s   \end{matrix} \right\}={0}    </math>
1568
|}
1569
| style="width: 5px;text-align: right;white-space: nowrap;" | (96)
1570
|}
1571
1572
Eq.([[#eq-96|96]]) can be written in a compact (monolithic) form as
1573
1574
<span id="eq-97"></span>
1575
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1576
|-
1577
| 
1578
{| style="text-align: left; margin:auto;width: 100%;" 
1579
|-
1580
| style="text-align: center;" | <math>{M} {\dot{\bar{a}}} +  {K} {~}^{n+1} \bar{a} -{}^{n+1} {f}=0    </math>
1581
|}
1582
| style="width: 5px;text-align: right;white-space: nowrap;" | (97)
1583
|}
1584
1585
where
1586
1587
<span id="eq-98"></span>
1588
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1589
|-
1590
| 
1591
{| style="text-align: left; margin:auto;width: 100%;" 
1592
|-
1593
| style="text-align: center;" | <math>{M}=\left[\begin{matrix}{M}_v & {0}\\ {0} & -{M}_p \end{matrix} \right]~~ ,~~  {K} = \left[\begin{matrix}{K}_v & {Q}\\ {Q}^T & -  \boldsymbol{\cal S}\end{matrix} \right]~~ ,~~ {~}^{n+1} \bar{a} = \left\{\begin{matrix}{}^{n+1} \bar{v}\\ {}^{n+1} \bar{p}  \end{matrix} \right\}~~ ,~~ {}^{n+1} {f} = \left\{\begin{matrix}{}^{n+1} {f}_m\\ {}^{n+1} {f}_s   \end{matrix} \right\}  </math>
1594
|}
1595
| style="width: 5px;text-align: right;white-space: nowrap;" | (98)
1596
|}
1597
1598
===11.1 Monolithic solution scheme===
1599
1600
Eq.([[#eq-98|98]]) is the basis for deriving monolithic iterative time integration schemes for directly computing the nodal velocities and pressure at the updated configuration. For instance, the standard backward Euler scheme gives
1601
1602
<span id="eq-99"></span>
1603
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1604
|-
1605
| 
1606
{| style="text-align: left; margin:auto;width: 100%;" 
1607
|-
1608
| style="text-align: center;" | <math>{H}^i {~}^{n+1} \bar{a}^{i+1}  = {}^{n+1} {f}^i + \frac{1}{\Delta t}{M} {}^{n} \bar{a}    </math>
1609
|}
1610
| style="width: 5px;text-align: right;white-space: nowrap;" | (99)
1611
|}
1612
1613
with <math display="inline"> {H}^i = \frac{1}{\Delta t} {M} + {K}_v^i</math>.
1614
1615
The values of <math display="inline">{}^{n+1} \bar{a}</math> can be directly found by solving Eq.([[#eq-99|99]]) iterative.
1616
1617
The  non linearity of matrix <math display="inline">{}^{n}{K}_v</math> emanates from the non linear  terms in the material strain rate matrix <math display="inline">{B}^L</math> involving the displacement increments (Eqs.([[#9 FINITE ELEMENT DISCRETIZATION|9]])).
1618
1619
===11.2 Segregated solution scheme===
1620
1621
The nodal velocities and pressures at the updated configuration can be also computed starting from Eq.([[#eq-97|97]]) using a segregated iterative scheme as follows
1622
1623
<span id="eq-100"></span>
1624
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1625
|-
1626
| 
1627
{| style="text-align: left; margin:auto;width: 100%;" 
1628
|-
1629
| style="text-align: center;" | <math>\left[\frac{1}{\Delta t} {M}_v +  {K}_v^i \right]{~}^{n+1} \bar{v}^{i+1} = {}^{n+1} {f}_m - {Q} {~}^{n+1} {p}^i    </math>
1630
|}
1631
| style="width: 5px;text-align: right;white-space: nowrap;" | (100)
1632
|}
1633
1634
<span id="eq-101"></span>
1635
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1636
|-
1637
| 
1638
{| style="text-align: left; margin:auto;width: 100%;" 
1639
|-
1640
| style="text-align: center;" | <math>\left[\frac{1}{\Delta t} {M}_p +  \boldsymbol{\cal S}^i \right]{~}^{n+1} \bar{p}^{i+1} = {~}^{n+1}  {f}_s + {Q}^T  {~}^{n+1} \bar{v}^{i+1} + \frac{1}{\Delta t} {M}_p  {~}^{n} \bar{p}    </math>
1641
|}
1642
| style="width: 5px;text-align: right;white-space: nowrap;" | (101)
1643
|}
1644
1645
Eqs.([[#eq-100|100]]) and ([[#eq-101|101]]) are solved sequentially and iteratively until convergence for the nodal velocities and pressures is found.
1646
1647
The above iterative scheme can be considered as a simplification of the more accurate incremental iterative segregated scheme described in Section 10.4.
1648
1649
'''Remark 12.''' A variant of the iteration matrix in the left hand side of Eq.([[#eq-100|100]]) can be used by adding the bulk stiffness matrix <math display="inline">{K}_p</math> to matrix <math display="inline">{H}^i</math> <span id='citeF-11'></span><span id='citeF-31'></span>[[#cite-11|[11,31]]].
1650
1651
==12 PARTICULARIZATION FOR THE UPDATED CONFIGURATION==
1652
1653
The finite element formulation presented in the previous sections can be particularized for the case when the updated configuration <math display="inline">{~}^{n+1} {V}</math> is chosen as the reference configuration.
1654
1655
The particularization is simple if we note that now <math display="inline">\Delta u_i=0</math>. Hence, <math display="inline">{L}=0</math> and <math display="inline">{B}^L ={0}</math> (see Eq.([[#eq-58.a|58.a]])). Also all the space derivatives are taken with respect to the updated coordinates <math display="inline">{~}^{n+1}x_i</math> and the integrals are carried out in the updated configuration <math display="inline">{~}^{n+1}V</math>. In addition, the tangent constitutive tensor <math display="inline">\boldsymbol{\cal C}_T ={c}</math>. The expressions of the relevant matrices and vectors for this case are given in Box 1.
1656
1657
==13 PROS AND CONS OF USING THE CURRENT OR THE UPDATED CONFIGURATION AS THE REFERENCE CONFIGURATION==
1658
1659
We have shown in the previous sections that either the current or the updated configuration can be indistinctly  used as the reference configuration for the finite element analysis of quasi and fully incompressible fluids  using a Lagrangian formulation. Both choices imply solving a non linear system of equations. However, the nature of the non-linearity is different for each case.
1660
1661
If the current configuration is chosen as the reference configuration, all integrals in the tangent matrix are performed on the known configuration <math display="inline">{}^nV</math> which remains fixed during the iterative solution process. The non-linearity affects, however, the non linear terms of the material strain rate matrix (i.e. <math display="inline">{B}^L</math>) and also the constitutive tensor <math display="inline">\boldsymbol{\cal C}</math> that involves the deformation gradient. A simplification of the tangent stiffness matrix  for this case can be introduced by neglecting <math display="inline">{B}^L</math> in the material strain rate matrix and assuming that <math display="inline">{F}={C}={I}_3</math> and, hence, <math display="inline">\boldsymbol{\cal C}_T ={c}</math>.
1662
1663
If, on the other hand, the updated configuration is chosen as the reference configuration, then all the integrals in the tangent matrix are computed in the unknown configuration <math display="inline">{}^{n+1}V</math>, which should be updated at each iteration. On the other hand, the expression for the material strain rate matrix is linear and also <math display="inline">\boldsymbol{\cal C}_T ={c}</math>. A simplification of the iterative process can be introduced by keeping the tangent matrix constant for a fixed number of iterations.
1664
1665
Indeed the above mentioned simplifications can affect the convergence rate of the iterative solution and should be implemented with care.
1666
1667
Which reference configuration should be chosen can be problem dependent and, certainly, the choice will affect the organization of the computer program and its efficiency. What should be kept in mind is that the final solution, i.e. the geometry of the updated configuration and the velocities and stresses on <math display="inline">{}^{n+1}V</math>, should be identical in both cases.
1668
1669
In previous works of the authors with the Particle Finite Element Method (PFEM) the ''current'' configuration <math display="inline">{}^nV</math> was typically chosen as the reference configuration with the simplified form for the tangent matrix as explained above and also neglecting the initial stress matrix terms in <math display="inline">{K}_T</math> <span id='citeF-16'></span><span id='citeF-17'></span><span id='citeF-25'></span><span id='citeF-26'></span><span id='citeF-29'></span><span id='citeF-31'></span>[[#cite-16|[16,17,25,26,29,31]]]. Recent experiences indicate that using the updated configuration <math display="inline">{}^{n+1}V</math> as the reference configuration can be advantageous in many Lagrangian flow problems. The topic is still open for research  and hopefully  this paper will be useful for choosing  the adequate FEM expressions for each case.
1670
1671
==14 CONCLUDING REMARKS==
1672
1673
We have presented a mixed velocity-pressure finite element formulation for solving the updated Lagrangian equations for quasi and fully incompressible fluids. The finite element interpolation  uses an equal order approximation for the velocity and pressure unknowns. We have detailed a number of iterative algorithms for  solving the non-linear stabilized FEM equations for the velocities and the  pressure at the nodes using incremental and direct solution schemes. The algorithms presented are  useful for the study of Lagrangian  flows, as well as for solving fluid-structure-interaction problems using a unified Lagrangian finite element formulation for modelling both the fluid and the structure <span id='citeF-11'></span><span id='citeF-17'></span>[[#cite-11|[11,17]]].
1674
1675
The choice of the current or the updated configurations as the reference Lagrangian configuration is still an open topic. Researchers interested in Lagrangian CFD procedures will find in this paper the equations to be used for each case, from which simplifications or further computational refinements can be made.
1676
1677
==ACKNOWLEDGEMENTS==
1678
1679
This work was partially supported by the Advanced Grant project SAFECON of the European Research Council (ERC).
1680
1681
==References==
1682
1683
<div id="cite-1"></div>
1684
'''[1]'''  S. Badia, R. Codina, Unified stabilized finite element formulation for the Stokes and the Darcy problems. ''SIAM J. on Numerical Analysis'', 47, 1971&#8211;2000, 2009.
1685
1686
<div id="cite-2"></div>
1687
'''[[#citeF-2|[2]]]'''  K.J. Bathe, ''Finite element procedures''. Prentice-Hall, 1996.
1688
1689
<div id="cite-3"></div>
1690
'''[[#citeF-3|[3]]]'''  Y. Bazilevs, K Takizawa, T.E Tezduyar, ''Computational Fluid-Structure Interaction: Methods and Applications'', Wiley, 2013.
1691
1692
<div id="cite-4"></div>
1693
'''[[#citeF-4|[4]]]'''  T. Belytschko, W.K. Liu and B. Moran, ''Non linear finite element for continua and structures''. 2d Edition, Wiley, 2013.
1694
1695
<div id="cite-5"></div>
1696
'''[[#citeF-5|[5]]]'''  J. Bonet and R.D. Wood, ''Non linear continuum mechanics for finite element analysis''. Wiley, 2nd Edition, 2008.
1697
1698
<div id="cite-6"></div>
1699
'''[[#citeF-6|[6]]]'''  J.U. Brackbill, D.B. Kothe, H.M. Ruppel, FLIP: A low-dissipation, particle-in-cell method for fluid flow. ''Computer Physics Communications'', 48, 25&#8211;38, 1988.
1700
1701
<div id="cite-7"></div>
1702
'''[[#citeF-7|[7]]]'''  D. Burgess, D. Sulsky, J.U. Brackbill, Mass matrix formulation of the FLIP particle-in-cell method. ''Journal of Computational Physics'', 103 (1), 1&#8211;15, 1992.
1703
1704
<div id="cite-8"></div>
1705
'''[[#citeF-8|[8]]]'''  R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. ''Comput. Meth. Appl. Mech. Engrg.'', 191, 4295&#8211;4321, 2002.
1706
1707
<div id="cite-9"></div>
1708
'''[[#citeF-9|[9]]]'''  R. Codina, H. Coppola-Owen, P. Nithiarasu and C. Liu, Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier-Stokes equations. ''Int. J. Numer. Meth. Engng.'', 66, 1672&#8211;1689, 2006.
1709
1710
<div id="cite-10"></div>
1711
'''[[#citeF-10|[10]]]'''  J. Donea and A. Huerta, ''Finite Element Methods for Flow Problems''. Wiley, 2003.
1712
1713
<div id="cite-11"></div>
1714
'''[[#citeF-11|[11]]]'''  A. Franci, E. Oñate, J.M. Carbonell, Unified Lagrangian formulation for analysis of fluid-structure interaction problems. Research Report PI-400, CIMNE, Barcelona 2013.
1715
1716
<div id="cite-12"></div>
1717
'''[[#citeF-12|[12]]]''' F.H. Harlow, The particle-in-cell computing method for fluid dynamics. ''Methods Comput. Phys.'', 3, 219, 1963.
1718
1719
<div id="cite-13"></div>
1720
'''[[#citeF-13|[13]]]'''  G.A. Holzaphel, ''Non linear solid mechanics''. Wiley, 2000.
1721
1722
<div id="cite-14"></div>
1723
'''[14]'''  A. Huerta, Y. Vidal,  J. Bonet, Updated Lagrangian formulation for corrected Smooth Particle Hydrodynamics. ''Int. J. of Computational Methods'',  3 (4), 383&#8211;399, 2006.
1724
1725
<div id="cite-15"></div>
1726
'''[[#citeF-15|[15]]]'''  T.J.R. Hughes, G. Scovazzi, L.P. Franca, Multiscale and stabilized methods. Encyclopedia of Comput. Mechanics. E. Stein, R. de Borst and T.J.R. Hughes (Eds.), Vol. 3 Fluids, 5&#8211;60, Wiley, 2004.
1727
1728
<div id="cite-16"></div>
1729
'''[[#citeF-16|[16]]]'''  S.R. Idelsohn, E. Oñate, F. Del Pin,  The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. ''Int. J. Num. Meth. Eng.'', 61(7), 964&#8211;989, 2004.
1730
1731
<div id="cite-17"></div>
1732
'''[[#citeF-17|[17]]]'''  S.R. Idelsohn, J. Marti, A. Limache, E. Oñate Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid-structure interaction problems via the PFEM. ''Comput. Meth. Appl. Mech. Engrg.'', 197 (19-20), 1762&#8211;1776, 2008.
1733
1734
<div id="cite-18"></div>
1735
'''[18]'''  S. Li, W.K. Liu, Meshfree and particle methods and their applications. ''Appl. Mech. Rev.'', 55, 1, 2002.
1736
1737
<div id="cite-19"></div>
1738
'''[19]'''  W.K. Liu, Y. Chen, S. Jun, J.S. Chen, T. Belytschko, C. Pan, R.A. Uras, C.T. Chang, Overview and applications of the Reproducing Kernel Particle Methods.  ''Arch Comput Methods Eng.'', 3 (1), 3&#8211;80, 1996.
1739
1740
<div id="cite-20"></div>
1741
'''[[#citeF-20|[20]]]'''  M.B. Liu and G.R. Liu, Smoothed particle hydrodynamics (SPH): an overview and  recent developments. ''Arch Comput Methods Eng.'', Vol. 17, 25–-76, 2010.
1742
1743
<div id="cite-21"></div>
1744
'''[[#citeF-21|[21]]]'''  E. Oñate,  Derivation of stabilized  equations for advective-diffusive transport and fluid flow  problems. ''Comput. Meth. Appl. Mech. Engrg.'' 151, 233&#8211;267, 1998.
1745
1746
<div id="cite-22"></div>
1747
'''[22]'''  E. Oñate, A stabilized finite element method  for incompressible viscous flows using a finite increment calculus formulation.  ''Comput Methods Appl Mech Engrg.'',  182(1&#8211;2), 355&#8211;370, 2000.
1748
1749
<div id="cite-23"></div>
1750
'''[23]'''  E. Oñate,  Multiscale computational analysis in mechanics using    finite calculus: an introduction. ''Comput. Meth. Appl. Mech. Engrg.'',    192(28-30), 3043&#8211;3059, 2003.
1751
1752
<div id="cite-24"></div>
1753
'''[[#citeF-24|[24]]]'''   E. Oñate, Possibilities of finite calculus in computational  mechanics. ''Int. J. Numer. Meth. Engng.'', 60(1), 255&#8211;281, 2004.
1754
1755
<div id="cite-25"></div>
1756
'''[[#citeF-25|[25]]]'''  E. Oñate, S.R. Idelsohn, F. Del Pin, R. Aubry, The particle    finite element method. An overview. ''Int. J. Comput. Methods'',     1(2), 267&#8211;307, 2004.
1757
1758
<div id="cite-26"></div>
1759
'''[[#citeF-26|[26]]]'''  E. Oñate, J. García,  S.R. Idelsohn, F. Del Pin,  FIC    formulations for finite element analysis of incompressible flows. Eulerian,    ALE and Lagrangian approaches.  ''Comput. Meth. Appl. Mech. Engrg.''    195(23-24), 3001&#8211;3037, 2006.
1760
1761
<div id="cite-27"></div>
1762
'''[[#citeF-27|[27]]]'''  E. Oñate, A. Valls, J. García, Computation of turbulent flows using a finite calculus-finite element formulation. ''Int. J. Numer. Meth. Engng.'', 54, 609&#8211;637, 2007.
1763
1764
<div id="cite-28"></div>
1765
'''[[#citeF-28|[28]]]'''   E. Oñate,  ''Structural analysis with the finite element method. Linear statics. Volume 1. Basis and Solids''.  CIMNE-Springer, 2009.
1766
1767
<div id="cite-29"></div>
1768
'''[[#citeF-29|[29]]]'''  E. Oñate, M.A. Celigueta, S.R. Idelsohn, F. Salazar, B. Suárez, Possibilities of the particle finite element method for fluid-soil-structure interaction problems. ''Computational Mechanics'', 48(3), 307&#8211;318, 2011.
1769
1770
<div id="cite-30"></div>
1771
'''[[#citeF-30|[30]]]'''  E. Oñate, S.R. Idelsohn, C. Felippa,  Consistent pressure Laplacian stabilization for incompressible continua via higher-order finite calculus. ''Int. J. Numer. Meth. Engng'', 87 (1-5), 2011, 171&#8211;195.
1772
1773
<div id="cite-31"></div>
1774
'''[[#citeF-31|[31]]]'''  E. Oñate, A. Franci, J.M. Carbonell, Lagrangian formulation for finite element analysis of incompressible fluids with reduced mass losses. ''Int. J. Numer. Meth. Fluids'', 2013. DOI:0.1002/fld.3870.
1775
1776
<div id="cite-32"></div>
1777
'''[32]'''  E. Oñate, P. Nadukandi, S.R. Idelsohn, P1/P0+ elements for incompressible  flows  with discontinuous material properties. ''Comput. Meth. Appl. Mech. Engrg.'', 271, 185&#8211;209, 2014, .
1778
1779
<div id="cite-33"></div>
1780
'''[33]'''  N.A. Patankar, D.D. Joseph, Lagrangian numerical simulation of particulate flows. ''Int. J. of Multiphase Flow'', 27 (10), 1685–-1706, 2001.
1781
1782
<div id="cite-34"></div>
1783
'''[[#citeF-34|[34]]]'''  R. Radovitzky and M. Ortiz, Lagrangian finite element analysis of newtonian fluid flows. ''Int. J. Numer. Meth. Engng.'', 43, 607&#8211;619, 1998.
1784
1785
<div id="cite-35"></div>
1786
'''[[#citeF-35|[35]]]'''  B. Ramaswamy and M. Kawahara, Lagrangian finite element analysis applied to viscous free surface fluid flow. ''Int. J. Num. Meth. Fluids'', 7, 953&#8211;984, 1986.
1787
1788
<div id="cite-36"></div>
1789
'''[[#citeF-36|[36]]]'''   P. Wriggers, ''Non linear finite element methods''. Springer, 2008.
1790
1791
<div id="cite-37"></div>
1792
'''[[#citeF-37|[37]]]'''  T.E. Tezduyar, Finite elements for flow problems with moving boundaries and interfaces. ''Arch. for Comput. Methods Eng.'', 8, 83&#8211;130, 2001.
1793
1794
<div id="cite-38"></div>
1795
'''[[#citeF-38|[38]]]'''  D.Z. Zhang, Q. Zou, W.B. VanderHeyden, X. Ma, Material point method applied to multiphase flows. ''Journal of Computational Physics'', 227 (6), 3159-3173, 2008.
1796
1797
<div id="cite-39"></div>
1798
'''[[#citeF-39|[39]]]'''  O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, ''The Finite Element Method. Vol. 1 The Basis''. Elsevier, 6th Edition, 2005.
1799
1800
<div id="cite-40"></div>
1801
'''[[#citeF-40|[40]]]'''  O.C. Zienkiewicz, R.L. Taylor, ''The Finite Element Method. Vol. 2 Solid and Structural Mechanics''. Elsevier, 6th Edition, 2005.
1802
1803
<div id="cite-41"></div>
1804
'''[[#citeF-41|[41]]]'''  O.C. Zienkiewicz, R.L. Taylor and P. Nithiarasu, ''The Finite Element Method. Vol. 3 Fluid Dynamics''. Elsevier, 6th Edition, 2005.
1805
1806
==APPENDIX A. LINEARIZATION OF THE MOMENTUM EQUATIONS WITH RESPECT TO THE NODAL VELOCITIES==
1807
1808
Using the expression of <math display="inline">{}^{n+1}\bar{r}_m</math> of Eq.([[#eq-62|62]]) and neglecting the changes of the external vector <math display="inline">{}^{n+1}\bar{f}_m</math>  with the velocity (accounting for these changes is possible and will lead to additional terms in the tangent matrix), we can write
1809
1810
<span id="eq-A1"></span>
1811
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1812
|-
1813
| 
1814
{| style="text-align: left; margin:auto;width: 100%;" 
1815
|-
1816
| style="text-align: center;" | <math>\delta _{\bar v} {}^{n+1} \bar {r}_m = \frac{1}{\Delta t}{M}_v d \bar {v}+      \int _{{}^{n}V} \Big\{{B}^T \Big[\delta _{\bar v}\left\{\mathbf{S}' \right\}+ \left(\delta _{\bar v} J\left\{{C}^{-1}\right\}+ {J} \delta _{\bar v} \left\{{C}^{-1}\right\}\right)p + </math>
1817
|-
1818
| style="text-align: center;" | <math>  + J \left\{{C}^{-1}\right\}\delta _{\bar v}p\Big]+ \delta _{\bar v} {B}^T  \left\{\mathbf{S}' \right\}\Big\}d{~}^{n} V  </math>
1819
|}
1820
| style="width: 5px;text-align: right;white-space: nowrap;" | (A.1)
1821
|}
1822
1823
Introducing Eqs.([[#eq-55|55]]) and ([[#eq-59|59]]) into ([[#eq-A1|A.1]]) gives after some algebra <span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-36'></span>[[#cite-4|[4,5,36]]]
1824
1825
<span id="eq-A2"></span>
1826
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1827
|-
1828
| 
1829
{| style="text-align: left; margin:auto;width: 100%;" 
1830
|-
1831
| style="text-align: center;" | <math>\delta _{\bar v} \left\{\mathbf{S}' \right\}= [\boldsymbol{\cal C}]\delta _{\bar v} \left\{\dot {E}\right\} = [\boldsymbol{\cal C}] {B} d \bar {v}  </math>
1832
|}
1833
| style="width: 5px;text-align: right;white-space: nowrap;" | (A.2)
1834
|}
1835
1836
<span id="eq-A3"></span>
1837
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1838
|-
1839
| 
1840
{| style="text-align: left; margin:auto;width: 100%;" 
1841
|-
1842
| style="text-align: center;" | <math>\delta _{\bar v} J \left\{{C}^{-1}\right\}= J {C}^{-1} \otimes {C}^{-1} \delta _{\bar v} \left\{{E}\right\} = J \Delta t{C}^{-1} \otimes {C}^{-1} {B} d \bar {v}  </math>
1843
|}
1844
| style="width: 5px;text-align: right;white-space: nowrap;" | (A.3)
1845
|}
1846
1847
<span id="eq-A4"></span>
1848
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1849
|-
1850
| 
1851
{| style="text-align: left; margin:auto;width: 100%;" 
1852
|-
1853
| style="text-align: center;" | <math>J \delta _{\bar v} \left\{{C}^{-1}\right\}= - 2 J \boldsymbol{\cal I} \delta _{\bar v} \left\{{E}\right\}= -2 J \Delta t \boldsymbol{\cal I} {B} d \bar {v}  </math>
1854
|}
1855
| style="width: 5px;text-align: right;white-space: nowrap;" | (A.4)
1856
|}
1857
1858
where
1859
1860
<span id="eq-A5"></span>
1861
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1862
|-
1863
| 
1864
{| style="text-align: left; margin:auto;width: 100%;" 
1865
|-
1866
| style="text-align: center;" | <math>\boldsymbol{\cal I}_{ijkl}= \frac{1}{2} \left[({C}^{-1})_{ik} ({C}^{-1})_{jl}- ({C}^{-1})_{il}({C}^{-1})_{jk}\right]   </math>
1867
|}
1868
| style="width: 5px;text-align: right;white-space: nowrap;" | (A.5)
1869
|}
1870
1871
It can be shown that tensor <math display="inline">\boldsymbol{\cal I}</math> is symmetric <span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-4|[4,5]]].
1872
1873
On the other hand,
1874
1875
<span id="eq-A6.a"></span>
1876
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1877
|-
1878
| 
1879
{| style="text-align: left; margin:auto;width: 100%;" 
1880
|-
1881
| style="text-align: center;" | <math>\delta _{\bar v} {B}^T  \left\{{S}' \right\}= \Delta t {G}^T \hat{S}'{G}   d \bar {v}  </math>
1882
|}
1883
| style="width: 5px;text-align: right;white-space: nowrap;" | (A.6a)
1884
|}
1885
1886
with
1887
1888
<span id="eq-A6.b"></span>
1889
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1890
|-
1891
| 
1892
{| style="text-align: left; margin:auto;width: 100%;" 
1893
|-
1894
| style="text-align: center;" | <math>\begin{array}{l}{G}=\left[ \begin{matrix}\bar {G} &  \bar {0} &  \bar {0}\\ \bar {0} &\bar {G}&\bar {0}\\ \bar {0} & \bar {0}& \bar {G} \end{matrix}\right] ~~,~~ \bar {G} =  \left[ \begin{matrix}{}_nN^v_{1,1} &0&0& {}_nN^v_{2,1}&0&0& \cdots &  {}_nN^v_{n,1}\\ {}_nN^v_{1,2} &0&0& {}_nN^v_{2,2}&0&0& \cdots &  {}_nN^v_{n,2}\\ {}_nN^v_{1,3} &0&0& {}_nN^v_{2,3}&0&0& \cdots &  {}_nN^v_{n,3}  \end{matrix}\right]\\[1cm] \hat {S}' = \left[ \begin{matrix}{S}' &  {0} &   {0}\\ {0} & {S}'& {0}\\  {0} & {0}&  {S}' \end{matrix}\right]~~,~~ {0} = \left[ \begin{matrix}0&0&0\\ 0&0&0\\ 0&0&0  \end{matrix}\right]~~,~~ \bar {0} = \left\{ \begin{matrix}0\\0\\0  \end{matrix}\right\} \end{array}    </math>
1895
|}
1896
| style="width: 5px;text-align: right;white-space: nowrap;" | (A.6b)
1897
|}
1898
1899
with <math display="inline">{}_nN^v_{i,j}</math> defined in Eq.([[#eq-58.b|58.b]]).
1900
1901
In the derivation of Eqs.([[#eq-3|A.3]]), ([[#eq-4|A.4]]) and ([[#eq-A6.a|A.6a]]) we have assumed that <math display="inline"> d(\Delta u_i)= du_i =\Delta t ~d ({}^{n+\alpha }v_i) = \Delta t ~dv_i</math>. This relationship follows from Eq.([[#eq-60.a|60.a]]).
1902
1903
Substituting Eqs.([[#eq-2|A.2]])&#8211;([[#eq-4|A.4]]) and ([[#eq-6.a|A.6a]]) and the interpolation for the pressure (Eq.([[#eq-53|53]])) into ([[#eq-A1|A.1]]) yields the linearized form of the residual vector of the discretized momentum equations  as
1904
1905
<span id="eq-A7"></span>
1906
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1907
|-
1908
| 
1909
{| style="text-align: left; margin:auto;width: 100%;" 
1910
|-
1911
| style="text-align: center;" | <math>\delta _v  {}^{n+1}\bar{r}_m =\frac{1}{\Delta t}{M}_v  d \bar {v} +  \left\{\int _{{}^{n}V}\left[{B}^T [\boldsymbol{\cal C}_T] {B}+ {G}^T \hat{S}{G}\right]d {~}^{n}V            \right\}d \bar {v}  + </math>
1912
|-
1913
| style="text-align: center;" | <math> +\left\{\int _{{}^{n}V} {B}^T \left\{{C}^{-1}\right\}{N}_p J d {~}^{n}V     \right\}{\delta }_{\bar v}^{n+1}\bar {p}= \left(\frac{1}{\Delta t}{M}_v +  {K}_c + {K}_\sigma \right)  d \bar {v}+  {Q}  {\delta }_{\bar v}^{n+1}\bar {p}    </math>
1914
|}
1915
| style="width: 5px;text-align: right;white-space: nowrap;" | (A.7)
1916
|}
1917
1918
where matrices <math display="inline">{M}_v</math> and <math display="inline">{Q}</math> were given in Eq.([[#eq-67|67]]) and <math display="inline">{K}_c</math> and <math display="inline">{K}_\sigma </math> are the constitutive and initial stress matrices, respectively. The expression of these matrices is
1919
1920
<span id="eq-A8"></span>
1921
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1922
|-
1923
| 
1924
{| style="text-align: left; margin:auto;width: 100%;" 
1925
|-
1926
| style="text-align: center;" | <math>{K}_c = \!\!\int _{{}^{n}V}{B}^T [\boldsymbol{\cal C}_T] {B} d {~}^{n}V ~~ ,~~  {K}_\sigma =\!\!\int _{{}^{n}V}{G}^T \hat{S}' {G}d {~}^{n}V  </math>
1927
|}
1928
| style="width: 5px;text-align: right;white-space: nowrap;" | (A.8)
1929
|}
1930
1931
The tangent constitutive tensor <math display="inline">\boldsymbol{\cal C}_T</math> is deduced from Eqs.([[#eq-1|A.1]])-([[#eq-4|A.4]]) as
1932
1933
<span id="eq-9"></span>
1934
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1935
|-
1936
| 
1937
{| style="text-align: left; margin:auto;width: 100%;" 
1938
|-
1939
| style="text-align: center;" | <math>\boldsymbol{\cal C}_T = \boldsymbol{\cal C} + J \Delta t p ({C}^{-1}\otimes {C}^{-1} - 2 \boldsymbol{\cal I})    </math>
1940
|}
1941
| style="width: 5px;text-align: right;white-space: nowrap;" | (A.9)
1942
|}
1943
1944
It is straightforward to show that tensor <math display="inline">\boldsymbol{\cal C}_T</math> is symmetric.
1945

Return to Onate Carbonell 2014a.

Back to Top

Document information

Published on 01/01/2014

DOI: 10.1007/s00466-014-1078-1
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 7
Views 22
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?