You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
=Resumen=
2
3
El objeto de la presente tesina es el de presentar una metodología novedosa para el cálculo de estructuras de hormigón posteso, basada en las posibilidades que brinda el uso de la teoría Serie Paralelo para la modelización de materiales compuestos. Se exponen, así mismo, las ventajas de esta metodología frente a los mecanismos actuales de cálculo que aparecen en los estándares de diseño de estructuras y aquellos otros basados en la simulación numérica a través del método de elementos finitos (MEF).
4
5
La teoría Serie Paralelo permite la modelización individualizada de los materiales componentes, actuando como una gestora de modelos constitutivos con el objetivo de simular el comportamiento del material compuesto en cuestión. Se modela el hormigón pretensado como un material compuesto de fibras largas en que la orientación de la fibra la marca el tendón de acero.
6
7
Así pues, se puede usar el modelo constitutivo que más convenga para la matriz - hormigón (modelo de daño isótropo) y para la fibra - acero (modelo de viscoelasticidad) logrando gran nivel de detalle en la micro-escala. El ánalisis se fundamenta en el MEF, que combinado con la teoría Serie Paralelo permite abordar estructuras de gran envergadura y adaptándose a los requerimientos geométricos específicos en cada caso.
8
9
Se incluyen tres ejemplos de aplicación de la metodología presentada, los cuales pretenden servir de validación y demostrar el potencial de cálculo de la misma. En los dos primeros casos se analizan dos vigas isoestáticas que permiten la comparativa con los resultados que se obtienen del ánalisis mediante métodos analíticos y, en el tercer caso se presentan los resultados de un Benchmark en el cual se ha trabajado en los últimos meses en que se estudia el comportamiento de un modelo a escala de un edificio de contención de una central nuclear.
10
11
12
=Abstract=
13
14
The main objective of this monograph is to present a novel methodology for the analysis of post-tensioned concrete structures, based on the potential offered by the use of the Serial-Parallel Rule of Mixtures when modelling composite materials. The advantages of this methodology are studied in comparison to the available approaches, i.e. the formulation proposed by the standards used in the design of structures and the mechanism used in numerical simulation based on the finite element method (FEM).
15
16
The Serial-Parallel Rule of Mixtures allows the modelization of each component material in depth, working as a constitutive model manager in order to simulate the composite material being studied. The prestressed concrete is modelled as a composite material with long fibres where the fibre orientation is defined by the steel tendon direction.
17
18
Therefore, the most suitable constitutive model can be used in each case. In the present monograph this is: for the matrix - concrete an isotropic damage model and for the fibre - steel a viscoelasticity model, achieving an extraordinary accuracy in the micro-scale. The analysis is based on the FEM, which combined with the Serial-Parallel Rule of Mixtures theory allows the study of large-scale structures, taking into account the specific geometric requirements of the construction.
19
20
Three application examples are included which are used for validating the methodology and the potential of this approach. The first two cases are two isostatic beams that allow the comparison with the results obtained through the study using analytical methods. Finally, the third case shows the results obtained recently for the analysis of a Benchmark, in which the behaviour of a mock-up of a reactor containment building has been studied.
21
22
23
''Al equipo del proyecto ANAV. Éste es el fruto de más de un año de trabajo, que nos ha convertido en lo que somos, una familia''
24
25
26
=1 Introduction: motivation and objectives=
27
28
In the last decades engineering researchers have bet on the use of numerical modelling as a recurring tool for their work. Computational calculation improvements have set the suitable scenario for a prompt development, achieving a wide range of useful techniques which can be applied in many fields, from structures to agriculture engineering or soil mechanics.
29
30
The Finite Element Method (FEM) <span id='citeF-1'></span>[[#cite-1|[1]]] is one of the most well known computational techniques and it will be of interest for the purpose of the monograph. However, there are other methodologies such as the Finite Difference Method (FDM), the Discrete Element Method (DEM) <span id='citeF-2'></span><span id='citeF-3'></span>[[#cite-2|[2,3]]], the Particle Finite Element Method (PFEM) <span id='citeF-4'></span>[[#cite-4|[4]]] or the Multiscale Analysis <span id='citeF-5'></span>[[#cite-5|[5]]] that are also widely extended.
31
32
Thanks to the application of FEM in the structural analysis scope, a deeper assessment of the structure can be driven compared to those obtained using conventional techniques, which include notorious geometric and constitutive simplifications. Despite this, the results obtained from numerical modelling strongly depend on the model quality and on the veracity of the implemented attributes, i.e. boundary conditions, applied loads and material properties..
33
34
According to this, complex structures with singular areas, material heterogeneities, non-linear behaviours, etc. require more sophisticated models that could bring suitable results.
35
36
Post-tensioned reinforced concrete elements are an example of this. Their behaviour is controlled by the three materials that conform the structure, i.e. concrete, reinforcing steel and prestressing steel. Codes and standards <span id='citeF-6'></span>[[#cite-6|[6]]] provide sufficient guidance to carry out the design and validation of a multiple number of cases, but the applicability of the proposed formulation becomes questionable when the studied element has not a simple geometry. Numerical modelling is then used.
37
38
The present monograph aims to introduce a new approach that increases the range of structures that can be analysed and solves many of the problems that other techniques have (see Section [[#2 State of the art|2]]). This is the study of post-tensioned structures by means of a serial-parallel rule of mixtures (SP RoM) <span id='citeF-7'></span><span id='citeF-8'></span><span id='citeF-9'></span>[[#cite-7|[7,8,9]]].
39
40
The document is divided in two main sections. In the first one, the theoretical bases are introduced in order to fully comprehend the mechanisms that govern the proposed method. Thus, a brief presentation of the FEM is done, paying special attention to the 3-D formulation and then the SP RoM bases are introduced. 
41
42
The second part is centred on verifying the robustness and accuracy of the approach through several cases. The complexity of these examples progressively increases from a straight rectangular beam to a real structure. Thus, the initial cases will be useful to compare those results that could be calculated using analytical techniques and the ones obtained with the computational mechanisms introduced in the monograph. And the last examples will be useful to exemplify the full potential of the technique using a real structure.
43
44
=2 State of the art=
45
46
Prestressed concrete appeared at the beginning of the twentieth century when high resistance concrete and steel were available. The function of that new material was to solve the cracking problems that the reinforced concrete structures had <span id='citeF-10'></span>[[#cite-10|[10]]].
47
48
Eugene Fryssinet is considered the father of this material which quickly became popular in France and Germany. It was after Second World War when its uses expands all around the world and started competing with great magnitude steel structures. Nowadays prestressed concrete is used in a wide range of structures like braces, railway sleepers, bridges, slabs, runways, reactor containment buildings, etc. This generalised use accentuates the priority of having the correct tools to evaluate these structures.
49
50
==2.1 Codes approach==
51
52
National and international standards such as EHE-08 <span id='citeF-6'></span>[[#cite-6|[6]]], EC2 <span id='citeF-11'></span>[[#cite-11|[11]]] or BPEL <span id='citeF-12'></span>[[#cite-12|[12]]] propose their own procedure that helps the engineer at the design and/or at the analysis stage of the prestressed concrete structure. The methodology presented is similar in all of them and works through the analysis of the structure critical sections at Ultimate Limit State (ULS) (Figure [[#img-1|1]]). The prestressing steel effect is included in the section equilibrium equations (Equation [[#eq-2.1|2.1]] and [[#eq-2.2|2.2]]) as a force applied at the tendon position and a bending moment, if needed, that accounts for hyperstatic effects <span id='citeF-13'></span>[[#cite-13|[13]]].
53
54
<div id='img-1'></div>
55
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
56
|-
57
|[[Image:Draft_Samper_351239591-SeccionEHEJPG.png|540px|Section analysis]]
58
|- style="text-align: center; font-size: 75%;"
59
| colspan="1" | '''Figure 1:''' Section analysis
60
|}
61
62
<span id="eq-2.1"></span>
63
{| class="formulaSCP" style="width: 100%; text-align: left;" 
64
|-
65
| 
66
{| style="text-align: left; margin:auto;width: 100%;" 
67
|-
68
| style="text-align: center;" | <math>P=C- \Delta T-A_sf_{yd} </math>
69
|-
70
| style="text-align: center;" | <math>   y=\dfrac{A_pf_{pyd}+A_sf_{yd}}{f_{cd}b}=\dfrac{U_p+U_s}{f_{cd}b}  </math>
71
|}
72
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.1)
73
|}
74
75
<span id="eq-2.2"></span>
76
{| class="formulaSCP" style="width: 100%; text-align: left;" 
77
|-
78
| 
79
{| style="text-align: left; margin:auto;width: 100%;" 
80
|-
81
| style="text-align: center;" | <math>M_d+P(d_s-d_p) =C(d_s-\frac{y}{2})- \Delta T(d_s-d_p) </math>
82
|-
83
| style="text-align: center;" | <math>    U_p+U_s=f_{cd}bd_s\left(1-\sqrt{1-\dfrac{2\left(M_d+U_p\left(d_s-d_p\right)\right)}{f_{cd}bd_{s}^2}}\right)  </math>
84
|}
85
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.2)
86
|}
87
88
The rectangular section represented in Figure [[#img-1|1]] and analysed in Equations [[#eq-2.1|2.1]] and [[#eq-2.2|2.2]] corresponds to the mid-span of a simple supported beam. Only prestressing steel and tensile reinforcing steel has been considered and the final equation has been written in the format that EHE-08 proposes for reinforced concrete rectangular sections subjected to flexure (EHE-08, ''Anejo 7. Cálculo simplicado de secciones en Estado Lite de Agotamiento frente a solicitaciones normales'' <span id='citeF-6'></span>[[#cite-6|[6]]]) where <math display="inline"> P </math> and <math display="inline"> M_d </math> are acting forces on the beam section, i.e. the prestressing force and the bending moment due to external forces, respectively, <math display="inline"> C </math>, <math display="inline"> A_s f_{yd} </math> and <math display="inline"> \Delta T </math> are the resulting efforts due to external action, i.e. the compression in concrete due to <math display="inline"> M_d </math> and the resulting tension in reinforcing and prestressing steel respectively, <math display="inline"> f_{cd} </math>, <math display="inline"> f_{yd} </math> and <math display="inline"> f_{pd} </math> are the strengths of concrete in compression, reinforcing steel and prestressing steel, respectively, <math display="inline"> U_p </math> and <math display="inline"> U_s </math> are notation parameters used in the same way that EHE-08 and the other variables are geometric parameters defined in Figure [[#img-1|1]]. The analysis would be complete when all the efforts have been studied, i.e. bending, shear and axial analysis.
89
90
Alternatively, codes provide stress limits at section level that must be respect for the design. These limits are grouped at Magnel equations (Equations [[#eq-2.3|2.3]], [[#eq-2.4|2.4]], [[#eq-2.5|2.5]] and [[#eq-2.6|2.6]]) <span id='citeF-14'></span>[[#cite-14|[14]]] which create the space of feasible solutions for a specified tendon geometry on elastic analysis. This theory has been already extended to non-linear behaviour needed when studying partially prestressed concrete sections <span id='citeF-15'></span>[[#cite-15|[15]]].
91
92
<u>Stress at transfer</u>
93
94
<span id="eq-2.3"></span>
95
{| class="formulaSCP" style="width: 100%; text-align: left;" 
96
|-
97
| 
98
{| style="text-align: left; margin:auto;width: 100%;" 
99
|-
100
| style="text-align: center;" | <math>\sigma _{c,\, top}^{tra}=d\frac{\gamma _p P }{A_{c,\, net}}+\dfrac{\gamma _p P e_{net} v_{net}}{I_{c,\, net}}+d\frac{M_{sw} v_{net}}{I_{c,\, net}} \geq \left\{ \begin{array}{c} -f_{ctmj} \\   0 \end{array}  \right. </math>
101
|}
102
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.3)
103
|}
104
105
<span id="eq-2.4"></span>
106
{| class="formulaSCP" style="width: 100%; text-align: left;" 
107
|-
108
| 
109
{| style="text-align: left; margin:auto;width: 100%;" 
110
|-
111
| style="text-align: center;" | <math>\sigma _{c,\, bot.}^{tra}=\dfrac{\gamma _p P }{A_{c,\, net}}+\dfrac{\gamma _p P e_{net}{ v'}_{net}}{I_{c,\, net}}+\dfrac{M_{sw}{ v'}_{net}}{I_{c,\, net}}\leq 0.6f_{ckj} </math>
112
|}
113
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.4)
114
|}
115
116
<u>Stress at service</u>
117
118
<span id="eq-2.5"></span>
119
{| class="formulaSCP" style="width: 100%; text-align: left;" 
120
|-
121
| 
122
{| style="text-align: left; margin:auto;width: 100%;" 
123
|-
124
| style="text-align: center;" | <math>\sigma _{c,\, top}^{ser}=\dfrac{\gamma _p P }{A_{c,\, hom}}+\dfrac{\gamma _p P e_{hom} v_{hom}}{I_{c,\, hom}}+\dfrac{M_{char}^{SLS} v_{hom}}{I_{c,\, hom}}\leq 0.6f_{ckj} </math>
125
|}
126
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.5)
127
|}
128
129
<span id="eq-2.6"></span>
130
{| class="formulaSCP" style="width: 100%; text-align: left;" 
131
|-
132
| 
133
{| style="text-align: left; margin:auto;width: 100%;" 
134
|-
135
| style="text-align: center;" | <math>\sigma _{c,\, bot}^{ser}=\dfrac{\gamma _p P }{A_{c,\, hom}}+\dfrac{\gamma _p P e_{hom}{ v'}_{hom}}{I_{c,\, hom}}+\dfrac{M_{char}^{SLS}{ v'}_{hom}}{I_{c,\, hom}}\geq \left\{ \begin{array}{c} -f_{ctmj} \\   0 \end{array}  \right. </math>
136
|}
137
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.6)
138
|}
139
140
In these equations, the stress is computed at the top and the bottom of the studied concrete section (<math display="inline"> i </math>) and at transfer or service (<math display="inline"> j </math>), i.e. <math display="inline"> \sigma _{c, \, i}^{j} </math> generated by the prestressing force <math display="inline"> P </math> factorized using <math display="inline"> \gamma _p </math> and the corresponding bending moment <math display="inline"> M </math> and it is compared with the specific concrete strength <math display="inline"> f_c,\, i </math> in each case. The other parameters are geometric variables: the section inertia (<math display="inline"> I </math>), the section area (<math display="inline"> A </math>) and the distance between the studied extreme of the section (top or bottom) and the neutral axis, i.e. <math display="inline"> v </math> and <math display="inline"> v' </math>. And all them considering the net area or the full concrete.
141
142
In addition to the section equilibrium done at ULS, Service Limit State (SLS) is also checked at the codes approach. In fact, post-tensioned concrete structures are usually designed according to a limit in the maximum crack width (<math display="inline"> w_{max} </math>) as shown in Table [[#2.1 Codes approach|2.1]] obtained from EHE-08 and EC2.
143
144
In all the cases, the parameter that governs the design of a structure is the prestressing force value at the studied section. Codes provide the needed formulation that transforms the initial force applied at the anchorage area into the one transmitted along the studied element, i.e. prestressing losses calculation of post-tensioned elements <span id='citeF-11'></span><span id='citeF-6'></span><span id='citeF-12'></span>[[#cite-11|[11,6,12]]].
145
146
147
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
148
|+ style="font-size: 75%;" |<span id='table-1'></span>Table. 1 Maximum crack width from EHE-08 and EC2
149
|-
150
| colspan='3' | '''EHE 08'''
151
|-
152
| colspan='1' style="text-align: right;" | 
153
| colspan='2' | <math> w_{max} \, [mm] </math>
154
|-
155
| rowspan='2' colspan='1' | 
156
| colspan='1' | Reinforced members (quasi-permanent load combination)
157
| colspan='1' | Prestressed members (frequent load combination)
158
|-
159
|  0.4   
160
|  0.2 
161
|-
162
| colspan='1' style="text-align: left;" | IIa, IIb, H
163
|  0.3   
164
|  0.2 
165
|-
166
| colspan='1' style="text-align: left;" | IIIa, IIIb, IV, F, Qa
167
|  0.2   
168
| rowspan='2' | Decompression
169
|-
170
| colspan='1' style="text-align: left;" | IIIc, Qb, Qc
171
|  0.1   
172
|-
173
| colspan='3' | '''EC2'''
174
|-
175
| colspan='1' | 
176
| colspan='2' | <math> w_{max} \, [mm] </math>
177
|-
178
| rowspan='2' colspan='1' | 
179
| colspan='1' | Reinforced members and prestressed members with unbounded tendons (quasi-permanent load combination)
180
| colspan='1' | Prestressed members with bounded tendons (frequent load combination)
181
|-
182
|  0.4   
183
|  0.2 
184
|-
185
| colspan='1' style="text-align: left;" | XC2, XC3, XC4
186
| rowspan='2' | 0.3
187
|  0.2 
188
|-
189
| style="text-align: left;" |    XD1, XD2, XD3, XS1, XS2, XS3 
190
| Decompression
191
192
|}
193
194
===Immediate losses===
195
196
Immediate losses are those generated during the application of the prestressing force and at the wedge blocking operation. These losses have different origin and are studied independently, differentiating between:
197
198
199
* <u>Friction losses, <math> \Delta P_{\mu } </math></u>. The contact between tendons and ducts prevent the force transmission from the active end, where tendons are being tensioned. The expression proposed at codes that calculates these losses from the applied force (<math display="inline"> P_0 </math>) is:
200
201
<span id="eq-2.7"></span>
202
{| class="formulaSCP" style="width: 100%; text-align: left;" 
203
|-
204
| 
205
{| style="text-align: left; margin:auto;width: 100%;" 
206
|-
207
| style="text-align: center;" | <math>
208
209
\Delta P_{\mu }=P_{0}\left(1-e^{-\left(\mu \alpha{+}kx \right)}\right)   </math>
210
|}
211
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.7)
212
|}
213
214
The variables that control force losses in Equation [[#eq-2.7|2.7]] are <math display="inline"> \mu </math> and <math display="inline"> k </math>.  This evidences the existence of two kind of friction that have different nature. <math display="inline"> \mu </math> is related to the contact produced at curve zones of the tendon path and therefore it appears next to <math display="inline"> \alpha </math>, that is the total angular displacement. On the other hand, <math display="inline"> k </math> is related to a friction produced by an unintentional angular displacement at straight areas of the tendon path and so it is proportional to the length <math display="inline"> x </math> (Figure [[#img-2|2]]).
215
216
Values for these two parameters are obtained experimentally. Standards provide their own proposal depending on the type of steel that is used, the kind of bounding that is used, the duct diameter, etc. (Figure [[#img-3|3]]).
217
218
<div id='img-2'></div>
219
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
220
|-
221
|[[Image:Draft_Samper_351239591-MuKCoefficientsDraw.png|240px|Graphical description for  k  coefficient <span id='citeF-10'></span>[[#cite-10|[10]]]]]
222
|- style="text-align: center; font-size: 75%;"
223
| colspan="1" | '''Figure 2:''' Graphical description for <math> k </math> coefficient <span id='citeF-10'></span>[[#cite-10|[10]]]
224
|}
225
226
<div id='img-3'></div>
227
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
228
|-
229
|[[Image:Draft_Samper_351239591-MuKCoefficients.png|540px| μ and  k  values from the American Concrete Institue (ACI 318-05) <span id='citeF-16'></span>[[#cite-16|[16]]]]]
230
|- style="text-align: center; font-size: 75%;"
231
| colspan="1" | '''Figure 3:''' <math> \mu </math> and <math> k </math> values from the American Concrete Institue (ACI 318-05) <span id='citeF-16'></span>[[#cite-16|[16]]]
232
|}
233
234
Equation [[#eq-2.7|2.7]] is usually applied discreetly at sections with curvature changes and then these values are linearly interpolated for the whole structure. A visual example that helps to fully comprehend the result that could be obtained using the previous expression is shown at Figure [[#img-4|4]], where the prestressing force distribution after friction losses is drawn for a three-span continuous beam.
235
236
<div id='img-4'></div>
237
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
238
|-
239
|[[Image:Draft_Samper_351239591-PerdidasRozamiento.png|480px|Prestressing force distribution after friction losses <span id='citeF-10'></span>[[#cite-10|[10]]]]]
240
|- style="text-align: center; font-size: 75%;"
241
| colspan="1" | '''Figure 4:''' Prestressing force distribution after friction losses <span id='citeF-10'></span>[[#cite-10|[10]]]
242
|}
243
244
* <u>Losses due to wedge draw-in of the anchorage devices, <math> \Delta P_{a} </math></u>. When post-tensioned tendons are anchored, some of the force applied during the post-tensioning operation is lost. It is important to minimize the amount of stress lost and the affected length by this phenomenon. Expression [[#eq-2.8|2.8]] <span id='citeF-17'></span>[[#cite-17|[17]]] point out the variables involved in the problem:
245
246
<span id="eq-2.8"></span>
247
{| class="formulaSCP" style="width: 100%; text-align: left;" 
248
|-
249
| 
250
{| style="text-align: left; margin:auto;width: 100%;" 
251
|-
252
| style="text-align: center;" | <math>
253
254
a=\int _{0}^{L}\dfrac{\Delta P_{a}(x)}{E_pA_p}dx   </math>
255
|}
256
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.8)
257
|}
258
259
Where <math display="inline"> A_p </math> and <math display="inline"> E_p </math> are the prestressing steel total area and longitudinal elastic modulus, <math display="inline"> a </math> is the pull-in at wedge blocking and <math display="inline"> L </math> is the tendon length. Considering that the function that describes the force loss due to wedge blocking behaves in the same way than the one used for friction losses (Figure [[#img-5|5]]), then Equation [[#eq-2.8|2.8]] can be rewritten as:
260
261
<span id="eq-2.9"></span>
262
{| class="formulaSCP" style="width: 100%; text-align: left;" 
263
|-
264
| 
265
{| style="text-align: left; margin:auto;width: 100%;" 
266
|-
267
| style="text-align: center;" | <math>
268
269
a=\dfrac{S}{A_p E_p}=\dfrac{\Delta P_{a} l_p}{2E_p A_p}=\dfrac{P_A \left[1-e^{-\left(\mu \alpha{+}kl_p\right)}\right]l_p}{A_p E_p}    </math>
270
|}
271
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.9)
272
|}
273
274
Where <math display="inline"> P_A </math> is the applied force at the active end of the tendon and <math display="inline"> l_p </math> is the affected length due to anchorage operation.  <div id='img-5'></div>
275
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
276
|-
277
|[[Image:Draft_Samper_351239591-PenetracionCuna.png|480px|Prestressing force redistribution after wedge blocking <span id='citeF-17'></span>[[#cite-17|[17]]]]]
278
|- style="text-align: center; font-size: 75%;"
279
| colspan="1" | '''Figure 5:''' Prestressing force redistribution after wedge blocking <span id='citeF-17'></span>[[#cite-17|[17]]]
280
|}
281
282
* <u>Losses due to concrete instantaneous deformation, <math> \Delta P_{el} </math></u>. The stress transmission from tendons to concrete during anchorage operations generates a deformation in concrete that reduces the prestressing force at tendon. This is only a problem when several tendons are tensioned and the operation cannot be done simultaneously. The consecutive concrete deformations generate force losses at tendons that have been previously anchored.
283
284
Standards provide formulas with similar format to Equation [[#eq-2.10|2.10]], which consider that concrete deformations remain in the elastic domain.
285
286
<span id="eq-2.10"></span>
287
{| class="formulaSCP" style="width: 100%; text-align: left;" 
288
|-
289
| 
290
{| style="text-align: left; margin:auto;width: 100%;" 
291
|-
292
| style="text-align: center;" | <math>
293
294
\Delta P_{el}=A_p E_p \sum{\left[\dfrac{j \, \Delta \sigma _c (t)}{E_{cm}(t)}\right]}  </math>
295
|}
296
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.10)
297
|}
298
299
Where <math display="inline"> A_p </math> and <math display="inline"> E_p </math> are again the prestressing steel total area and the longitudinal elastic modulus, <math display="inline"> E_{cm}(t) </math> is the concrete elastic modulus at the age that tension operations take place, <math display="inline">  \Delta \sigma _c (t) </math> is the variation of concrete stress at the centre of gravity of the tendons applied at time <math display="inline"> t </math> and <math display="inline"> j </math> is a coefficient equal to <math display="inline"> \dfrac{n-1}{2n} </math> as shown by Aguado, Mirambell, Murcia and Marí (1983) <span id='citeF-18'></span>[[#cite-18|[18]]] that can be approximated to <math display="inline"> j=0.5 </math> when the number of tendons, <math display="inline"> n </math>, is high.
300
301
According to Murcia, Aguado and Marí (1993) <span id='citeF-10'></span>[[#cite-10|[10]]] and the EHE-08 <span id='citeF-6'></span>[[#cite-6|[6]]], <math display="inline"> \Delta \sigma _c (t) </math> value can be computed as <math display="inline"> P_0-\Delta P_{\mu }-\Delta P_{a} </math> and should be checked the transfer state where only prestressing force and self weight are applied because this situation could be more restrictive <span id='citeF-10'></span>[[#cite-10|[10]]].
302
303
The formulas introduced in this section are valid only for post-tensioned concrete structures, which are the object of study of this monograph. Pre-tensioned concrete structures are treated in a different way.
304
305
===Time dependent losses===
306
307
Once the prestressing operations have taken place, rheological mechanisms start to develop which lead to a generalised stress loss in the prestressing system. These procedures are known as time dependent losses, which are originated by creep and shrinkage at concrete and relaxation at the prestressing system.
308
309
The incorporation of these mechanisms into the structure analysis is complex due to the existing interdependence between them, e.g. shrinkage generates stress losses that affect creep and steel relaxation procedures. In practice standards try to simplify these calculations by uncoupling the mechanisms and study them independently <span id='citeF-12'></span>[[#cite-12|[12]]] or by using specific formulation depending on the structure conditions <span id='citeF-19'></span>[[#cite-19|[19]]]. EC2 and EHE-08, for example, propose a simplified method based on the ageing coefficient (<math display="inline"> \chi </math>):
310
311
<span id="eq-2.11"></span>
312
{| class="formulaSCP" style="width: 100%; text-align: left;" 
313
|-
314
| 
315
{| style="text-align: left; margin:auto;width: 100%;" 
316
|-
317
| style="text-align: center;" | <math>\Delta P_{c+s+r}=A_p \dfrac{\varepsilon _{cs}+E_p +0.8\Delta \sigma _{pr}+\dfrac{E_p}{E_{cm}}\varphi (t,t_0)\sigma _{c,QP}}{1+\dfrac{E_p}{E_{cm}}\dfrac{A_p}{A_c}\left(1+\dfrac{A_c}{I_c}z_{cp}^2\right)\left[1+\chi \varphi (t,t_0)\right]}  </math>
318
|}
319
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.11)
320
|}
321
322
Where:
323
324
* is the force loss due to    <u>c</u>reep, <u>s</u>hrinkage and steel <u>r</u>elaxation at location <math display="inline"> x </math>, at time <math display="inline"> t </math>
325
* shrinkage strain
326
* Young modulus for the prestressing steel
327
* Young modulus for the concrete
328
* stress loss due to steel relaxation
329
* is the creep coefficient at a time <math display="inline"> t </math> and load application at time <math display="inline"> t_0 </math>
330
* concrete stress due to the prestressing effect, the self-weight and the dead loads. This stress is measured at the centre of gravity of the prestressing steel area (<math display="inline"> A_p </math>).
331
* is tendons total area at the location <math display="inline"> x </math>
332
* is concrete total area at the location <math display="inline"> x </math>
333
* is the moment of inertia of the concrete section
334
* is the distance between the centre of gravity of the tendons and the concrete section
335
* is the ageing coefficient that can be approximated as <math display="inline"> \chi=0.8 </math> when time tends to infinity
336
337
==2.2 FEM approach==
338
339
The use of numerical techniques in the structural analysis field has provided researchers a powerful tool that permits a global study of the structure. The accuracy level that these methodologies can achieve and the potential for solving complex cases make them attractive for many research lines.
340
341
Despite this, these computational techniques have also drawbacks. Therefore, it is important to know when to use them and which is the best type of analysis to be performed. For example, regions with discontinuities in geometry or actions, also known as D-regions <span id='citeF-11'></span><span id='citeF-6'></span>[[#cite-11|[11,6]]], not necessarily have to be designed using a finite element (FE) model, strud-and-tie method <span id='citeF-20'></span>[[#cite-20|[20]]] can be used instead. Another example is the case of bridges. For these structures it is not always needed a 3-D FEM design, many bridge decks have been designed using simplified methodologies such as the Grillage method <span id='citeF-21'></span>[[#cite-21|[21]]].
342
343
Prestressed concrete structures can be studied using the FEM and the interest on its use increases as the structure becomes more complex. There is no standardised procedure for the analysis of these structures, research papers can show the wide range of options that exist <span id='citeF-22'></span><span id='citeF-23'></span><span id='citeF-24'></span><span id='citeF-25'></span>[[#cite-22|[22,23,24,25]]]. The difficulties that arise from their analysis are originated by the coexistence of three different materials: concrete, reinforcing steel and prestressing steel.
344
345
While the concrete modelization is similar in all cases, the way that strands and tendons are included in the FE analysis make the difference between the existing approaches. Some of these are:
346
347
===3-D solid elements===
348
349
The use of 3-D elements for the prestressing steel modelization (see Figure [[#img-6|6]]) is used mainly in pre-tensioned beams <span id='citeF-25'></span>[[#cite-25|[25]]] where one of the main stress transfer mechanisms between strands and concrete (Hoyer effect <span id='citeF-26'></span>[[#cite-26|[26]]]) is also of 3-D nature.
350
351
<div id='img-6'></div>
352
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
353
|-
354
|[[Image:Draft_Samper_351239591-3DTendon.png|420px|Tendon modelization using 3-D solid elements <span id='citeF-25'></span>[[#cite-25|[25]]]]]
355
|- style="text-align: center; font-size: 75%;"
356
| colspan="1" | '''Figure 6:''' Tendon modelization using 3-D solid elements <span id='citeF-25'></span>[[#cite-25|[25]]]
357
|}
358
359
Modelling through 3-D elements introduces the need for using rectangular equivalent cross section for the prestressing steel but this allows an easy optimization of the contact between concrete and steel elements.
360
361
The use of this modelization scheme restricts the range of structures that can be studied. In fact, only construction with straight tendons are valid for this approach, i.e. only pre-tensioned structures or simple post-tensioned ones.
362
363
===Truss discrete elements===
364
365
This is probably the most extended option when using FEMs. In this case, tendons are simulated using trusses, which are linked somehow to the 3D FE mesh of the structure and the prestressing effect is considered as an imposed strain to the bar elements.
366
367
At the beginning, this methodology was only used in small structures because it had a big restriction: the FE mesh depended on the trusses path. This was because the methodology took into account the tendons effect by coupling the strengths of the prestressing steel and the concrete at the FE mesh nodes <span id='citeF-22'></span><span id='citeF-23'></span><span id='citeF-24'></span>[[#cite-22|[22,23,24]]].
368
369
Building a mesh adjusted to the tendons path is only possible in those cases where there are few tendons or when their geometry is simple, therefore this technique could not be used in most of the real life scenarios.
370
371
Despite this, it exists an approach introduced by the commercial code Abaqus <span id='citeF-27'></span>[[#cite-27|[27]]] that solves this big restriction. It is currently used in most of the prestressed concrete simulations and it is based on the so called ''embedded elements'' <span id='citeF-28'></span>[[#cite-28|[28]]].
372
373
<div id='img-7'></div>
374
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
375
|-
376
|[[Image:Draft_Samper_351239591-EmbeddedAbacus.png|540px|Abaqus example of an embedded element <span id='citeF-28'></span>[[#cite-28|[28]]]]]
377
|- style="text-align: center; font-size: 75%;"
378
| colspan="1" | '''Figure 7:''' Abaqus example of an embedded element <span id='citeF-28'></span>[[#cite-28|[28]]]
379
|}
380
381
Figure [[#img-7|7]] shows an example of two embedded elements. This approach constrains the degrees of freedom of the embedded element to the closest nodes of the hosting element using weight factors, which are determined based on their geometric location. This technique is not limited to truss elements. It can be used for membranes for example.
382
383
In spite of this improvement, the procedure has limitations. This is, in fact, an interpolation technique, where the results obtained in the analysis for the 3D FE mesh are used to compute results for the embedded elements. In the scenario of prestressed concrete structures, where the non-linear behaviour of concrete and the time dependent mechanisms of prestressing steel have to be considered, the use of this approach only solves partially the problem and there are still things to improve.
384
385
Figure [[#img-8a|8a]] shows an example of a structure solved using Abaqus embedded elements.
386
387
===Truss smeared elements===
388
389
This last approach is usually applied for big structures where using the other techniques is not feasible. In these cases, tendons are introduced in the analysis as ''embedded reinforcement'', i.e. the prestressing steel only appears in the analysis as an increment of the strength of the concrete FE. Therefore, this methodology introduces big simplifications in the analysis and has to be used carefully.
390
391
In fact, this approach is commonly used in current analysis to account for the reinforcing steel effect. In real prestressed concrete structures, this material is distributed more or less uniformly in specific directions (longitudinal rebars and shear reinforcement), which constitutes the perfect scenario to apply this approach.
392
393
This is the strategy followed by Tavakkoli, Kianoush et al. (2017) <span id='citeF-24'></span>[[#cite-24|[24]]] for the analysis of the reactor containment building shown in Figure [[#img-8b|8b]].
394
395
<div id='img-8a'></div>
396
<div id='img-8b'></div>
397
<div id='img-8'></div>
398
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
399
|-
400
|[[Image:Draft_Samper_351239591-TrussE2.png|321px|FE mesh of a containment building analysed using Abaqus <span id='citeF-23'></span>[[#cite-23|[23]]]]]
401
|[[Image:Draft_Samper_351239591-TrussE1.png|540px|Containment building model where truss smeared elements are used for rebars <span id='citeF-24'></span>[[#cite-24|[24]]]]]
402
|- style="text-align: center; font-size: 75%;"
403
| (a) FE mesh of a containment building analysed using Abaqus <span id='citeF-23'></span>[[#cite-23|[23]]]
404
| (b) Containment building model where truss smeared elements are used for rebars <span id='citeF-24'></span>[[#cite-24|[24]]]
405
|- style="text-align: center; font-size: 75%;"
406
| colspan="2" | '''Figure 8:''' Examples where tendons and reinforcement have been modelled using truss elements
407
|}
408
409
=3 Modelization through the FEM=
410
411
This section intends to introduce the FEM, which is used as a base for the application of the SP RoM. In particular, the text will be focused on the development of the three-dimensional formulation using an elastic constitutive model.
412
413
==3.1 Introduction to FEM==
414
415
The FEM is a numerical method used in the analysis of structures to give an approximate solution to the differential equations that govern the problem. The use of this technique allows obtaining a continuum solution and therefore, getting a global vision of the structural behaviour. This is very attractive for studying the response of complex areas, e.g. D-regions or full structures with non-intuitive behaviour.
416
417
This methodology is build around the concept of FEs. These should be understood as each division in which the structure is split and analysed. Depending on the analysis nature, FEs can be 1-D (truss elements), 2-D (triangular or quadrilateral elements) or 3-D (tetrahedral or hexahedral elements) (Figure [[#img-9|9]]). For the development of the approach introduced at this monograph, hexahedral elements are needed, therefore the formulation presented in this section is the one used for 3-D problems.
418
419
<div id='img-9a'></div>
420
<div id='img-9b'></div>
421
<div id='img-9c'></div>
422
<div id='img-9'></div>
423
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
424
|-
425
|colspan="2"|[[Image:Draft_Samper_351239591-puente1D.png|480px|Bridge modelled using truss elements]]
426
|-
427
|- style="text-align: center; font-size: 75%;"
428
| colspan="2" |(a) Bridge modelled using truss elements
429
|-
430
|[[Image:Draft_Samper_351239591-presa2D.png|600px|Dam mesh using triangle elements]]
431
| [[Image:Draft_Samper_351239591-presa3D.png|480px|Dam mesh using tetrahedral elements]]
432
|- style="text-align: center; font-size: 75%;"
433
| (b) Dam mesh using triangle elements
434
| (c) Dam mesh using tetrahedral elements
435
|- style="text-align: center; font-size: 75%;"
436
| colspan="2" | '''Figure 9:''' Examples of the type of mesh that can be build using the FEM
437
|}
438
439
In the end, the FEM solves the whole structure working through many simple element equations over many small domains, i.e. the FEs. The procedure followed while performing a simulation using the FEM can be summed up in the following steps <span id='citeF-29'></span><span id='citeF-30'></span>[[#cite-29|[29,30]]]:
440
441
* Generate an appropriate model. The first thing to be done is a correct modelization of the problem. This includes:
442
443
* Build a geometrical model that represents the studied structure, paying attention to the possibility of including simplifications that could lighten the simulation, e.g. symmetries, plane stress case, plane strain case <span id='citeF-1'></span>[[#cite-1|[1]]], etc.
444
* Consider how the real constraints and the applied forces should be included in the model and so define the boundary conditions.
445
* Apply the correct material properties to the model.
446
* Define the scope of the analysis, e.g. small or large displacements, static or dynamic analysis, etc.
447
* Generate the mesh of FEs. The model is discretized in sub-domains in which the problem is solved locally. This mesh can be structured, unstructured or semi-structured <span id='citeF-31'></span>[[#cite-31|[31]]] and coarse or fine as needed.
448
* Define the equilibrium condition through the Principle of Virtual Work (PVW). The PVW is a necessary and sufficient condition for the equilibrium of the whole analysed structure or any of its sub-domains <span id='citeF-1'></span>[[#cite-1|[1]]].
449
* Compute the stiffness matrix <math display="inline"> K^e </math>  and load vector <math display="inline"> f^e </math> for each element. These are obtained from the PVW expression in terms of the nodal displacement of the FE mesh, i.e. <math display="inline"> K^e \, a^e - f^e =\Delta f^e </math>. This expression will be analysed later on.
450
* Obtain the global stiffness matrix (<math display="inline"> K </math>) and the global load vector (<math display="inline"> f </math>). These are obtained assembling all the <math display="inline"> K^e </math>'s and <math display="inline"> f^e </math>'s that come from the FE's analysis.
451
* Solve the system of equations <math display="inline"> K \, a=f </math>. The unknown displacement <math display="inline"> a </math> is obtained.
452
* Result assessment. Once the system of equations has been solved and the displacement vector <math display="inline"> a </math> has been found out, strains and stresses can be evaluated at each element. Also reactions at the restraint nodes can be computed. These results can be load into the model and presented graphically to their assessment. This is known as ''post-processing step''.
453
* Possible modifications. The last step of the FEM consists in considering possible changes that could improve the analysis performed. For example, consider a finer FE mesh or changing the FE typology.
454
455
Once the general procedure has been introduced, it is important to go in depth with the 3-D formulation and introduce the main concepts that are relevant for the monograph.
456
457
==3.2 FEM three dimensional formulation==
458
459
The use of a 3-D analysis using the FEM is usually related to the impossibility of using less costly procedures. This is the case of structures with irregular shapes and situations where the load patterns are arbitrary or the material properties are heterogeneous (Figure [[#img-10|10]]). In general, this is the case of post-tensioned concrete structures. Thus, the understanding of the subsequent formulation is essential for the progress of this dissertation.
460
461
<div id='img-10'></div>
462
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
463
|-
464
|[[Image:Draft_Samper_351239591-3DExamples.png|420px|Structures which require a 3-D analysis <span id='citeF-1'></span>[[#cite-1|[1]]]]]
465
|- style="text-align: center; font-size: 75%;"
466
| colspan="1" | '''Figure 10:''' Structures which require a 3-D analysis <span id='citeF-1'></span>[[#cite-1|[1]]]
467
|}
468
469
Isotropic elasticity theory is used at this stage in order to facilitate introducing the 3-D formulation although any other constitutive model could have been used instead.
470
471
Before dealing with the equations derived from the FEM, the formulas that control the 3-D elasticity problem must be introduced.
472
473
===3.2.1 Displacement, strain and stress field===
474
475
In a 3-D solid, the movement description of any point that belongs to that solid is done through the three components of the displacement vector:
476
477
<span id="eq-3.1"></span>
478
{| class="formulaSCP" style="width: 100%; text-align: left;" 
479
|-
480
| 
481
{| style="text-align: left; margin:auto;width: 100%;" 
482
|-
483
| style="text-align: center;" | <math>\mathbf{u}=\left[u,v,w\right]^T  </math>
484
|}
485
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.1)
486
|}
487
488
Where <math display="inline"> u </math>, <math display="inline"> v </math> and <math display="inline"> w </math> are the displacement components of vector <math display="inline"> \mathbf{u} </math> in the directions of a cartesian reference system <math display="inline"> x </math>, <math display="inline"> y </math> and <math display="inline"> z </math>, respectively.
489
490
The strain field is then defined through the six strain components of the 3-D elasticity:
491
492
<span id="eq-3.2"></span>
493
{| class="formulaSCP" style="width: 100%; text-align: left;" 
494
|-
495
| 
496
{| style="text-align: left; margin:auto;width: 100%;" 
497
|-
498
| style="text-align: center;" | <math>\boldsymbol{\varepsilon }  = \left[\varepsilon _x,\varepsilon _y,\varepsilon _z,\gamma _{xy}, \gamma _{xz},\gamma _{yz}\right]^T </math>
499
|-
500
| style="text-align: center;" | <math>     = \left[\dfrac{\partial u}{\partial x},\dfrac{\partial v}{\partial y},\dfrac{\partial w}{\partial z},\dfrac{\partial u}{\partial y}+\dfrac{\partial v}{\partial x}, \dfrac{\partial u}{\partial z}+\dfrac{\partial w}{\partial x},\dfrac{\partial v}{\partial z}+\dfrac{\partial w}{\partial y}\right]^T   </math>
501
|}
502
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.2)
503
|}
504
505
Where <math display="inline"> \varepsilon _x </math>, <math display="inline"> \varepsilon _y </math> and <math display="inline"> \varepsilon _z </math> are the normal strains and <math display="inline"> \gamma _{xy} </math>, <math display="inline"> \gamma _{xz} </math> and <math display="inline"> \gamma _{yz} </math> are the tangential strains. These can be written in terms of the displacement vector components as shown in Equation [[#eq-3.2|3.2]].
506
507
Likewise, stress field can be defined through the six stress components as:
508
509
<span id="eq-3.3"></span>
510
{| class="formulaSCP" style="width: 100%; text-align: left;" 
511
|-
512
| 
513
{| style="text-align: left; margin:auto;width: 100%;" 
514
|-
515
| style="text-align: center;" | <math>\boldsymbol{\sigma }=\left[\sigma _x,\sigma _y,\sigma _z,\tau _{xy}, \tau _{xz},\tau _{yz}\right]^T  </math>
516
|}
517
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.3)
518
|}
519
520
Where <math display="inline"> \sigma _x </math>, <math display="inline"> \sigma _y </math> and <math display="inline"> \sigma _z </math> are the normal stresses and <math display="inline"> \tau _{xy} </math>, <math display="inline"> \tau _{xz} </math> and <math display="inline"> \tau _{yz} </math> are the tangential stresses defined according to the sign criterion shown in Figure [[#img-11|11]].
521
522
<div id='img-11'></div>
523
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
524
|-
525
|[[Image:Draft_Samper_351239591-StressSignCriterion.png|420px|Sign criterion for the stresses in a 3-D solid <span id='citeF-1'></span>[[#cite-1|[1]]]]]
526
|- style="text-align: center; font-size: 75%;"
527
| colspan="1" | '''Figure 11:''' Sign criterion for the stresses in a 3-D solid <span id='citeF-1'></span>[[#cite-1|[1]]]
528
|}
529
530
Finally, the relation between the strain and stress fields is expressed through a constitutive equation. In terms of isotropic elasticity this relationship can be written as:
531
532
<span id="eq-3.4"></span>
533
{| class="formulaSCP" style="width: 100%; text-align: left;" 
534
|-
535
| 
536
{| style="text-align: left; margin:auto;width: 100%;" 
537
|-
538
| style="text-align: center;" | <math>\boldsymbol{\sigma }=\mathbf{C} \left(\boldsymbol{\varepsilon }-\boldsymbol{\varepsilon ^0}\right)+ \boldsymbol{\sigma ^0}  </math>
539
|}
540
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.4)
541
|}
542
543
Where the isotropic constitutive matrix (<math display="inline"> \mathbf{C} </math>) depends only on two material parameters, i.e. the Young modulus (<math display="inline"> E </math>) and the Poisson's ratio (<math display="inline"> \nu </math>). Therefore, the symmetric tensor <math display="inline"> \mathbf{C} </math> is given by:
544
545
<span id="eq-3.5"></span>
546
{| class="formulaSCP" style="width: 100%; text-align: left;" 
547
|-
548
| 
549
{| style="text-align: left; margin:auto;width: 100%;" 
550
|-
551
| style="text-align: center;" | <math>\mathbf{C}= \dfrac{E \left(1-\nu \right)}{\left(1+\nu \right)\left(1-2\nu \right)}    \left[\begin{matrix}1 & \dfrac{\nu }{1-\nu } & \dfrac{\nu }{1-\nu } & 0 & 0 & 0 \\     & 1 & \dfrac{\nu }{1-\nu } & 0 & 0 & 0 \\     &  & 1 & 0 & 0 & 0 \\     &  &  & \dfrac{1-2\nu }{2\left(1-\nu \right)} & 0 & 0 \\     & \mathrm{Sym.} &  &  & \dfrac{1-2\nu }{2\left(1-\nu \right)} & 0 \\     &  &  &  &  & \dfrac{1-2\nu }{2\left(1-\nu \right)}           \end{matrix}\right]  </math>
552
|}
553
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.5)
554
|}
555
556
And the initial strain vector (<math display="inline"> \boldsymbol{\varepsilon ^0} </math>) due to thermal strains is:
557
558
<span id="eq-3.6"></span>
559
{| class="formulaSCP" style="width: 100%; text-align: left;" 
560
|-
561
| 
562
{| style="text-align: left; margin:auto;width: 100%;" 
563
|-
564
| style="text-align: center;" | <math>\boldsymbol{\varepsilon ^0}=\alpha \left(\Delta T\right)\left[1,1,1,0,0,0\right]^T  </math>
565
|}
566
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.6)
567
|}
568
569
===3.2.2 Equilibrium equation in 3-D (PVW)===
570
571
Equilibrium is guaranteed through the PVW <span id='citeF-1'></span>[[#cite-1|[1]]] expression that for 3-D solids is:
572
573
<span id="eq-3.7"></span>
574
{| class="formulaSCP" style="width: 100%; text-align: left;" 
575
|-
576
| 
577
{| style="text-align: left; margin:auto;width: 100%;" 
578
|-
579
| style="text-align: center;" | <math>\iiint _V \delta \boldsymbol{\varepsilon }^T\boldsymbol{\sigma } \, dV = \iiint _V \delta \mathbf{u}^T\mathbf{b} \, dV + \iint _A \delta \mathbf{u}^T\mathbf{t} \, dA + \sum _i \delta \mathbf{a}_i^T\mathbf{p}_i  </math>
580
|}
581
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.7)
582
|}
583
584
Where <math display="inline"> \delta \boldsymbol{\varepsilon } </math> and <math display="inline"> \delta \mathbf{u} </math> are respectively the virtual strains and virtual displacements, <math display="inline"> V </math> and <math display="inline"> A </math> are respectively the volume and the surface in which the body forces (<math display="inline"> \mathbf{b}=\left[b_x,b_y,b_z\right]^T </math>) and the surface tractions (<math display="inline"> \mathbf{t}=\left[t_x,t_y,t_z\right]^T </math>) are applied and <math display="inline"> \mathbf{p}_i=\left[P_{x_i},b_{y_i},b_{z_i}\right]^T </math> are the point loads acting at node <math display="inline"> i </math>. It is important to notice that <math display="inline"> C^0 </math> continuity is required for the finite element approximation because only first derivatives of the displacement are involved in Equation [[#eq-3.7|3.7]].
585
586
===3.2.3 Finite element formulation. The 8-noded hexahedra===
587
588
Once the equilibrium expression has been defined and all the involved variables have been introduced analytically, the FEM can be applied. For the purpose of this tmonograph, hexahedral elements are used and so it is interesting to present the finite element formulation using these elements.
589
590
There are several type of hexahedral elements but the current code used to run the methodology presented in this monograph is prepared to work using 8-noded linear hexahedras (Figure [[#img-12|12]]).
591
592
<div id='img-12'></div>
593
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
594
|-
595
|[[Image:Draft_Samper_351239591-8NodedHexa.png|420px|Example of a 8-noded hexahedra with linear shape function <span id='citeF-1'></span>[[#cite-1|[1]]]]]
596
|- style="text-align: center; font-size: 75%;"
597
| colspan="1" | '''Figure 12:''' Example of a 8-noded hexahedra with linear shape function <span id='citeF-1'></span>[[#cite-1|[1]]]
598
|}
599
600
===Shape functions===
601
602
Shape functions (<math display="inline"> N_i^{\left(e\right)} </math>) are polinomial interpolating functions defined over the domain of each element in the FE mesh that take the value one at node <math display="inline"> i </math> and zero at all other nodes. Therefore, Equation [[#eq-3.11|3.11]] satisfies <math display="inline"> u\left(x_i\right)=u_i^{\left(e\right)} </math>.
603
604
For 8-noded linear hexahedra, the nodal shape function can be written as:
605
606
<span id="eq-3.8"></span>
607
{| class="formulaSCP" style="width: 100%; text-align: left;" 
608
|-
609
| 
610
{| style="text-align: left; margin:auto;width: 100%;" 
611
|-
612
| style="text-align: center;" | <math>N_i\left(\xi , \eta , \zeta \right)= \dfrac{1}{8} \left(1+\xi _i\xi \right)\left(1+\eta _i\eta \right)\left(1+\zeta _i\zeta \right)  </math>
613
|}
614
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.8)
615
|}
616
617
Where <math display="inline"> \xi , \eta , \zeta </math> are the natural coordinates as shown in Figure [[#img-13|13]]. This expression satisfies the two necessary conditions of a shape function: condition of nodal compatibility (Equation [[#eq-3.9|3.9]]) and rigid body condition (Equation [[#eq-3.10|3.10]]).
618
619
<span id="eq-3.9"></span>
620
{| class="formulaSCP" style="width: 100%; text-align: left;" 
621
|-
622
| 
623
{| style="text-align: left; margin:auto;width: 100%;" 
624
|-
625
| style="text-align: center;" | <math>N_i\left(\xi _j, \eta _j, \zeta _j\right)=\left\{\begin{array}{lll} 1 & \mathrm{if} & i=j \\ 0 & \mathrm{if} &  i \neq j\end{array}    \right.  </math>
626
|}
627
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.9)
628
|}
629
630
<span id="eq-3.10"></span>
631
{| class="formulaSCP" style="width: 100%; text-align: left;" 
632
|-
633
| 
634
{| style="text-align: left; margin:auto;width: 100%;" 
635
|-
636
| style="text-align: center;" | <math>\sum _{i=1}^{n}N_i\left(\xi , \eta , \zeta \right)=1  </math>
637
|}
638
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.10)
639
|}
640
641
Further details about the procedure to be followed when obtaining shape functions can be found in specialised bibliography <span id='citeF-29'></span><span id='citeF-1'></span>[[#cite-29|[29,1]]].
642
643
<div id='img-13'></div>
644
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
645
|-
646
|[[Image:Draft_Samper_351239591-HexaNormGeom.png|600px|Example of a generic hexahedra FE and its normalized geometry <span id='citeF-1'></span>[[#cite-1|[1]]]]]
647
|- style="text-align: center; font-size: 75%;"
648
| colspan="1" | '''Figure 13:''' Example of a generic hexahedra FE and its normalized geometry <span id='citeF-1'></span>[[#cite-1|[1]]]
649
|}
650
651
===Discretization of the displacement field===
652
653
Considering a 3-D solid discretized into 8-noded hexahedras, the displacement field within each element can be expressed as:
654
655
<span id="eq-3.11"></span>
656
{| class="formulaSCP" style="width: 100%; text-align: left;" 
657
|-
658
| 
659
{| style="text-align: left; margin:auto;width: 100%;" 
660
|-
661
| style="text-align: center;" | <math>\mathbf{u}= \left\lbrace \begin{matrix}u\\   v\\   w   \end{matrix} \right\rbrace =\sum _{i=1}^{8} \mathbf{N}_i \mathbf{a}_i^{\left(e\right)}=\mathbf{N} \mathbf{a}^{\left(e\right)}   </math>
662
|}
663
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.11)
664
|}
665
666
Where
667
668
<span id="eq-3.12"></span>
669
{| class="formulaSCP" style="width: 100%; text-align: left;" 
670
|-
671
| 
672
{| style="text-align: left; margin:auto;width: 100%;" 
673
|-
674
| style="text-align: center;" | <math>\mathbf{N}=\left[\mathbf{N}_1,\mathbf{N}_2,\dots ,\mathbf{N}_8\right]\qquad \qquad \mathbf{N}_i=\left[\begin{matrix}N_i & 0 & 0\\   0 & N_i & 0\\   0 & 0 & N_i   \end{matrix}\right]  </math>
675
|}
676
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.12)
677
|}
678
679
and
680
681
<span id="eq-3.13"></span>
682
{| class="formulaSCP" style="width: 100%; text-align: left;" 
683
|-
684
| 
685
{| style="text-align: left; margin:auto;width: 100%;" 
686
|-
687
| style="text-align: center;" | <math>\mathbf{a}^{\left(e\right)} = \left\lbrace \begin{matrix}\mathbf{a}_1^{\left(e\right)}\\   \mathbf{a}_2^{\left(e\right)}\\   \vdots \\   \mathbf{a}_8^{\left(e\right)}   \end{matrix} \right\rbrace \qquad \qquad \mathbf{a}_i^{\left(e\right)} = \left\lbrace \begin{matrix}u_i\\   v_i\\   w_i   \end{matrix} \right\rbrace  </math>
688
|}
689
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.13)
690
|}
691
692
are the shape function matrix and the displacement vector for each element and a node <math display="inline"> i </math>.
693
694
===Discretization of the strain field===
695
696
The new expression for representing the strain field in terms of the FEM is obtained combining Equation [[#eq-3.2|3.2]] and Equation [[#eq-3.11|3.11]]. The result is:
697
698
<span id="eq-3.14"></span>
699
{| class="formulaSCP" style="width: 100%; text-align: left;" 
700
|-
701
| 
702
{| style="text-align: left; margin:auto;width: 100%;" 
703
|-
704
| style="text-align: center;" | <math>\boldsymbol{\varepsilon }=\sum _{i=1}^{8} \left\lbrace \begin{matrix}\dfrac{\partial N_i}{\partial x}u_i \\   \dfrac{\partial N_i}{\partial y}v_i \\   \dfrac{\partial N_i}{\partial z}w_i \\   \dfrac{\partial N_i}{\partial y}u_i+\dfrac{\partial N_i}{\partial x}v_i \\   \dfrac{\partial N_i}{\partial z}u_i+\dfrac{\partial N_i}{\partial x}w_i \\   \dfrac{\partial N_i}{\partial z}v_i+\dfrac{\partial N_i}{\partial y}w_i \\   \end{matrix} \right\rbrace = \sum _{i=1}^{8} \mathbf{B}_i \mathbf{a}_i^{\left(e\right)} = \sum _{i=1}^{8} \mathbf{B} \mathbf{a}^{\left(e\right)} </math>
705
|}
706
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.14)
707
|}
708
709
Where <math display="inline"> \mathbf{B} </math> is the element strain matrix that can be written as:
710
711
<span id="eq-3.15"></span>
712
{| class="formulaSCP" style="width: 100%; text-align: left;" 
713
|-
714
| 
715
{| style="text-align: left; margin:auto;width: 100%;" 
716
|-
717
| style="text-align: center;" | <math>\mathbf{B}=\left[\mathbf{B}_1,\mathbf{B}_2,\dots ,\mathbf{B}_8\right]  </math>
718
|}
719
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.15)
720
|}
721
722
and <math display="inline"> \mathbf{B}_i </math> is the strain matrix of the node <math display="inline"> i </math>:
723
724
<span id="eq-3.16"></span>
725
{| class="formulaSCP" style="width: 100%; text-align: left;" 
726
|-
727
| 
728
{| style="text-align: left; margin:auto;width: 100%;" 
729
|-
730
| style="text-align: center;" | <math>\mathbf{B}_i=\left[\begin{matrix}\dfrac{\partial N_i}{\partial x} & 0 & 0 \\   0 & \dfrac{\partial N_i}{\partial y} & 0 \\   0 & 0 & \dfrac{\partial N_i}{\partial z} \\   \dfrac{\partial N_i}{\partial y} & \dfrac{\partial N_i}{\partial x} & 0 \\   \dfrac{\partial N_i}{\partial z} & 0 & \dfrac{\partial N_i}{\partial x} \\   0 & \dfrac{\partial N_i}{\partial z} & \dfrac{\partial N_i}{\partial y}   \end{matrix} \right]  </math>
731
|}
732
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.16)
733
|}
734
735
Obtaining the shape function derivatives with respect to cartesian coordinates requires the use of the chain rule because they are expressed in normalized coordinates.
736
737
===Equilibrium equation in terms of the FEM===
738
739
Finally, the PVW expression (Equation [[#eq-3.7|3.7]]) can be written using the described formulas (Equations [[#eq-3.8|3.8]] to [[#eq-3.16|3.16]]). Therefore:
740
741
<span id="eq-3.17"></span>
742
{| class="formulaSCP" style="width: 100%; text-align: left;" 
743
|-
744
| 
745
{| style="text-align: left; margin:auto;width: 100%;" 
746
|-
747
| style="text-align: center;" | <math>\iiint _V \mathbf{B}^T\boldsymbol{\sigma } \, dV = \iiint _V \mathbf{N}^T\mathbf{b} \, dV + \iint _A \mathbf{N}^T\mathbf{t} \, dA + \Delta \mathbf{f}^{\left(e\right)}  </math>
748
|}
749
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.17)
750
|}
751
752
Where it has been taken into account that virtual strain and virtual displacement are:
753
754
<span id="eq-3.18"></span>
755
{| class="formulaSCP" style="width: 100%; text-align: left;" 
756
|-
757
| 
758
{| style="text-align: left; margin:auto;width: 100%;" 
759
|-
760
| style="text-align: center;" | <math>\delta \boldsymbol{\varepsilon }=\mathbf{B} \delta \mathbf{a} \qquad \qquad \delta \mathbf{u}=\mathbf{N} \delta \mathbf{a}   </math>
761
|}
762
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.18)
763
|}
764
765
Equation [[#eq-3.17|3.17]] sets the equilibrium of internal and external forces at each element. <math display="inline"> \iiint _V \mathbf{B}^T\boldsymbol{\sigma } \, dV </math> is the internal nodal force vector for the element <math display="inline"> f_{int}^{\left(e\right)} </math> and the term <math display="inline"> \iiint _V \mathbf{N}^T\mathbf{b} \, dV + \iint _A \mathbf{N}^T\mathbf{t} \, dA </math> is the external load vector, which gives the information of the forces applied in each element <math display="inline"> f_{ext}^{\left(e\right)} </math>. Thus, this expression is equivalent to <math display="inline"> f_{int}^{\left(e\right)} - f_{ext}^{\left(e\right)} = \Delta \mathbf{f}^{\left(e\right)} </math>. Finally, <math display="inline"> \Delta \mathbf{f}^{\left(e\right)} </math> is the vector of equilibrating nodal forces, i.e. it has the information that guarantees the equilibrium of each element. Therefore, when the assembling is done it only contains the information related with the reaction forces.
766
767
Equation [[#eq-3.17|3.17]] can be rewritten as a system of equations considering the relation between strain and stress given by Equation [[#eq-3.4|3.4]]:
768
769
<span id="eq-3.19"></span>
770
{| class="formulaSCP" style="width: 100%; text-align: left;" 
771
|-
772
| 
773
{| style="text-align: left; margin:auto;width: 100%;" 
774
|-
775
| style="text-align: center;" | <math>\iiint _V \mathbf{B}^T\mathbf{C}\mathbf{B} \, dV \mathbf{a}^{\left(e\right)}    -\iiint _V \mathbf{B}^T\mathbf{C} \boldsymbol{\varepsilon }^0 \, dV + </math>
776
|-
777
| style="text-align: center;" | <math>     + \iiint _V \mathbf{B}^T\mathbf{C} \boldsymbol{\sigma }^0 \, dV - \iiint _V \mathbf{N}^T\mathbf{b} \, dV - \iint _A \mathbf{N}^T\mathbf{t} \, dA=\Delta \mathbf{f}^{\left(e\right)}   </math>
778
|}
779
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.19)
780
|}
781
782
Using the stiffness matrix (<math display="inline"> \mathbf{K}^{\left(e\right)} </math>) and the equivalent force vector (<math display="inline"> \mathbf{f}^{\left(e\right)} </math>) concepts, this equation is equivalent to:
783
784
<span id="eq-3.20"></span>
785
{| class="formulaSCP" style="width: 100%; text-align: left;" 
786
|-
787
| 
788
{| style="text-align: left; margin:auto;width: 100%;" 
789
|-
790
| style="text-align: center;" | <math>\mathbf{K}^{\left(e\right)} \mathbf{a}^{\left(e\right)} - \mathbf{f}^{\left(e\right)} = \Delta \mathbf{f}^{\left(e\right)}   </math>
791
|}
792
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.20)
793
|}
794
795
Where:
796
797
<span id="eq-3.21"></span>
798
{| class="formulaSCP" style="width: 100%; text-align: left;" 
799
|-
800
| 
801
{| style="text-align: left; margin:auto;width: 100%;" 
802
|-
803
| style="text-align: center;" | <math>\mathrm{Stiffness \, matrix:} \qquad \mathbf{K}^{\left(e\right)} =\iiint _V \mathbf{B}^T\mathbf{C}\mathbf{B} \, dV </math>
804
|-
805
| style="text-align: center;" | <math>    \mathrm{Equivalent \, force \, vector:} \qquad  \mathbf{f}^{\left(e\right)} =\iiint _V \mathbf{B}^T\mathbf{C} \boldsymbol{\varepsilon }^0 \, dV - \iiint _V \mathbf{B}^T\mathbf{C} \boldsymbol{\sigma }^0 \, dV + </math>
806
|-
807
| style="text-align: center;" | <math>     \qquad +\iiint _V \mathbf{N}^T\mathbf{b} \, dV + \iint _A \mathbf{N}^T\mathbf{t} \, dA   </math>
808
|}
809
|}
810
811
Equation [[#eq-3.20|3.20]] sets the problem to be solved element by element and the global linear system of equation:
812
813
<span id="eq-3.21"></span>
814
{| class="formulaSCP" style="width: 100%; text-align: left;" 
815
|-
816
| 
817
{| style="text-align: left; margin:auto;width: 100%;" 
818
|-
819
| style="text-align: center;" | <math>\mathbf{K} \mathbf{a} = \mathbf{f}  </math>
820
|}
821
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.21)
822
|}
823
824
can be obtained assembling the <math display="inline"> \mathbf{K}^{\left(e\right)} </math> and <math display="inline"> \mathbf{f}^{\left(e\right)} </math> contributions.
825
826
==3.3 Solving the system of equations==
827
828
At this stage of the analysis, the system of equations must be solved in order to finally obtain the strain values, the stress values, etc. at the studied structure. The procedure to be followed now depends on the type of analysis performed: linear or non-linear.
829
830
Prestressed concrete structures are a clear example of non-linear behaviour. The main procedures that can drive the structure in this range are related with the material degradation (damage in concrete, plasticity in steel, etc.) and the unavoidable changes that take place with time (creep, stress relaxation in prestressing steel, etc.). Therefore, for the purpose of this monograph, a strategy to solve non-linear systems of equations must be followed.
831
832
In these problems, the existence and uniqueness of the solution is not guaranteed. This makes it necessary to use an approach that follows the equilibrium path by using incrementation or continuity, which gives more information on the mechanical behaviour of the system and it also helps tracing the equilibrium path near critical points and facilitates convergence.
833
834
There are several techniques that can be used in order to solve a non-linear system of equations, which can be classified in explicit or implicit methods. For the purpose of this monograph an implicit approach has been used due to the robustness and the stability of these mechanisms: the ''Newton-Raphson'' technique <span id='citeF-32'></span>[[#cite-32|[32]]].
835
836
This iterative method assumes that, in a static analysis, the equilibrium equation has the general form:
837
838
<span id="eq-3.22"></span>
839
{| class="formulaSCP" style="width: 100%; text-align: left;" 
840
|-
841
| 
842
{| style="text-align: left; margin:auto;width: 100%;" 
843
|-
844
| style="text-align: center;" | <math>\Delta \mathbf{f} = \left[\mathbf{f}^{int}\left(\mathbf{u}\right)\right]^{t+\Delta t} - \left[\mathbf{f}^{ext}\right]^{t+\Delta t} = \mathbf{0} </math>
845
|}
846
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.22)
847
|}
848
849
Where <math display="inline"> \mathbf{f}^{int} </math> and <math display="inline"> \mathbf{f}^{ext} </math> are the internal and external force vectors that have already been introduced.
850
851
Equation [[#eq-3.22|3.22]] is the objective function and thus, the algorithm will iterate until this condition is reached. This expression can be written using the Taylor approximation series truncated at the second term:
852
853
<span id="eq-3.23"></span>
854
{| class="formulaSCP" style="width: 100%; text-align: left;" 
855
|-
856
| 
857
{| style="text-align: left; margin:auto;width: 100%;" 
858
|-
859
| style="text-align: center;" | <math>0 = {^{i+1}}\left[\Delta \mathbf{f}\right]^{t+\Delta t} \simeq {^{i}}\left[\Delta \mathbf{f}\right]^{t+\Delta t} + {^{i}}\left[\dfrac{\partial \Delta \mathbf{f}}{\partial \mathbf{u}}\right]^{t+\Delta t} {^{i+1}}\left[\Delta \mathbf{u}\right]^{n+1} =</math>
860
|-
861
| style="text-align: center;" | <math>   = {^{i}}\left[\Delta \mathbf{f}\right]^{t+\Delta t} + {^i}\left[\mathbf{J}\right]^{t+\Delta t} {^{i+1}}\left[\Delta \mathbf{u}\right]^{t+\Delta t}  </math>
862
|}
863
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.23)
864
|}
865
866
Where <math display="inline"> i </math> represents the iteration counter and <math display="inline"> t </math> is the current time. This is solved inverting the Jacobian operator:
867
868
<span id="eq-3.24"></span>
869
{| class="formulaSCP" style="width: 100%; text-align: left;" 
870
|-
871
| 
872
{| style="text-align: left; margin:auto;width: 100%;" 
873
|-
874
| style="text-align: center;" | <math>{^{i+1}}\left[\Delta \mathbf{u}\right]^{t+\Delta t} = - \left({^i}\left[\mathbf{J}\right]^{t+\Delta t}\right)^{-1} {^{i}}\left[\Delta \mathbf{f}\right]^{t+\Delta t}  </math>
875
|}
876
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.24)
877
|}
878
879
The Jacobian matrix is the tangent stiffness matrix if the problem is static, which is linear, i.e. <math display="inline"> \mathbf{J} = \mathbf{K}_{tang} </math>.
880
881
Finally, the displacement at the end of each iteration is written as:
882
883
<span id="eq-3.25"></span>
884
{| class="formulaSCP" style="width: 100%; text-align: left;" 
885
|-
886
| 
887
{| style="text-align: left; margin:auto;width: 100%;" 
888
|-
889
| style="text-align: center;" | <math>{^{i+1}}\left[\mathbf{u}\right]^{t+\Delta t} = {^{i}}\left[\mathbf{u}\right]^{t+\Delta t} +  {^{i+1}}\left[\Delta \mathbf{u}\right]^{t+\Delta t} </math>
890
|}
891
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.25)
892
|}
893
894
Figure [[#img-14|14]] shows an overview of what the Newton-Raphson is doing at each step of the calculation.
895
896
<div id='img-14'></div>
897
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
898
|-
899
|[[Image:Draft_Samper_351239591-NewtonRaphson.png|540px|Newton-Raphson technique scheme <span id='citeF-32'></span>[[#cite-32|[32]]]]]
900
|- style="text-align: center; font-size: 75%;"
901
| colspan="1" | '''Figure 14:''' Newton-Raphson technique scheme <span id='citeF-32'></span>[[#cite-32|[32]]]
902
|}
903
904
This method has quadratic convergence which is really helpful for the calculation but it also has some drawbacks that must be considered:
905
906
* Jacobian operator cost. This approach computes the Jacobian matrix at each iteration which is usually costly. There are alternatives that can be used instead (''modified Newton-Raphson'') but then the speed of convergence is lost. Thus, it is important to know which situation is better.
907
* Antisymmetric Jacobian operators. There are scenarios where the Jacobian matrix is not symmetric and so its inversion is difficult.
908
* The proximity of the studied point. The speed of convergence depends on whether the point being studied is close or far away from the previous one. Thus, quadratic convergence is only achieved when the solution point is close to the previous one.
909
* The presence of local extrema. When local extrema are found, the algorithm can lose information and has problems in leaving them afterwards. This can be solved using auxiliary techniques, such as displacement-controlled methods (arc-length).
910
911
=4 Serial-Parallel Rule of Mixtures=
912
913
Now that the algorithm applied at the analysis of the prestressed concrete structure, the FEM, has been introduced, it is important to establish how the structure is considered within the study. This is done through the Serial-Parallel Rule of Mixtures (SP RoM). While the origin of this technique dates back to the end of the nineteenth century, its use in the assessment of prestressed concrete structures is novel.
914
915
In this section, the bases of the methodology will be introduced in order to fully comprehend the procedure followed during the structural modelization. Furthermore, this will show the potential of the algorithm in comparison with the procedures introduced in Chapter [[#2 State of the art|2]].
916
917
==4.1 Modelling composites - RoM evolution==
918
919
Nowadays, there are several techniques that allow the modelization of composite materials. These differ among them in terms of the scale used, giving rise to micro-mechanic, macro-mechanic or homogenization methods <span id='citeF-8'></span>[[#cite-8|[8]]].
920
921
The SP RoM can be included in the category of Micro-Mechanic Methods, specifically it can be catalogued as a Mean Field Method (MFM). It is the result of a century of evolution of the original idea but the bases have the essence of these methodologies. Micro-Mechanic Models study the strain and stress fields at a micro-scale level in order to build the constitutive laws and MFMs add to this conception the fact that:
922
923
*  Mean stresses and strains at each component of the composite material are representative of the constituent behaviour.
924
* Stresses and strains at the composite material are related with the stresses and strains at each constituent.
925
926
The origin of the RoM theory is attributed to Voigt <span id='citeF-33'></span>[[#cite-33|[33]]] and Reuss <span id='citeF-34'></span>[[#cite-34|[34]]] who developed a methodology for computing the elastic properties of a composite material. The procedure was quickly extended to the calculation in the non-linear domain <span id='citeF-35'></span><span id='citeF-36'></span>[[#cite-35|[35,36]]]. At that stage, the RoM depended only on one micro-mechanical property, the volumetric contribution of each component in relation to the whole composite material. This was the only variable when computing global properties from the ones calculated for the material constituents.
927
928
This approach evolved in 1960 towards a new version of the RoM known as Classical Mixing Theory (CMT). This new approach allowed the analysis of composite structures at the non-linear domain. Despite this, it had a big limitation: the isostrain hypothesis, i.e. all the coexisting materials in a point of the composite were subjected to the same strain field (pure parallel behaviour).
929
930
This limitation could be overcome by using a mixture of the isostrain condition (pure parallel behaviour) and the isostress condition (pure serial behaviour), which would had allowed the simulation of the real behaviour of the composite material. This change was not made effective until the end of 90's, leading to the SP RoM. The version of the methodology used in this monograph is the consequence of twenty years of evolution of the theory <span id='citeF-37'></span><span id='citeF-8'></span>[[#cite-37|[37,8]]].
931
932
==4.2 SP RoM formulation==
933
934
The formulation presented in this section will be of assistance in order to understand how composite properties can be obtained from the components properties. Despite this, these equations are only valid for the case of small strains.
935
936
Notice that the SP RoM is a MFM and therefore, the strain and stress values calculated here are always mean values of these fields:
937
938
<span id="eq-4.1"></span>
939
{| class="formulaSCP" style="width: 100%; text-align: left;" 
940
|-
941
| 
942
{| style="text-align: left; margin:auto;width: 100%;" 
943
|-
944
| style="text-align: center;" | <math>\bar{\boldsymbol{\varepsilon }} :=\dfrac{\int _{\Omega }\boldsymbol{\varepsilon } \; dV}{\int _{\Omega } \; dV} \qquad \qquad \bar{\boldsymbol{\sigma }} :=\dfrac{\int _{\Omega }\boldsymbol{\sigma } \; dV}{\int _{\Omega } \; dV}  </math>
945
|}
946
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.1)
947
|}
948
949
Where <math display="inline"> \Omega \subset \mathbb{R} </math> is the reference frame of the composite material. Despite this, the subsequent formulation takes for granted this fact and omits the use of <math display="inline"> \bar{\bullet } </math> to indicate the mean value condition of the variable.
950
951
===Compatibility conditions===
952
953
The compatibility conditions <span id='citeF-7'></span>[[#cite-7|[7]]] are the starting point for the development of the SP RoM theory. These are derived from the compatibility conditions demanded in the CMT and defined by Trusdell and Toupin <span id='citeF-38'></span>[[#cite-38|[38]]]. These are needed to build the formulation that allows coupling the constitutive behaviour of <math display="inline"> N </math> simple materials modelled with any constitutive law. The compatibility conditions are:
954
955
* Each infinitesimal volume of composite material contains a finite number of component materials.
956
* The contribution of each component to the composite global behaviour is proportional to their volumetric participation in the infinitesimal volume being studied.
957
* Each component volume is significantly lower than the composite volume.
958
* All the component materials are perfectly bonded. Therefore, there is no relative displacement between them.
959
* All the component materials are subjected to the same strain field in a specific direction (parallel direction).
960
* All the component materials are subjected to the same stress field in a specific direction (serial direction).
961
962
These conditions show something that has been introduced before, that the composite material behaviour depends on the direction.
963
964
===Serial and parallel problem description===
965
966
When defining the serial and parallel directions that control the composite behaviour, it is important to know which composite material is being modelled. Depending on their topology, composite materials can be classified as <span id='citeF-37'></span>[[#cite-37|[37]]]:
967
968
* Materials with composite matrix. This is the case of ''cermet'' (ceramic and metal) and concrete.
969
* Materials with composite matrix and short fibres. This is the case of fibre-reinforced concrete and some aeronautical materials.
970
* Materials with composite matrix and long fibres. This is the case of reinforced concrete and some aeronautical materials.
971
* Laminar materials. This is the case of some aeronautical materials and materials used in the automotive industry. 
972
973
Therefore, prestressed concrete can be studied as a composite material with long fibres, where the fibres are the prestressing steel and the matrix is the concrete. In these cases, the direction that determines the parallel behaviour corresponds to the one set by the fibres. In a real structure modelled using the FEM, this is imposed element by element. Mathematically, the parallel direction is defined using the <math display="inline"> \mathbf{e}_1 </math> vector that is oriented along the material fibre:
974
975
<span id="eq-4.2"></span>
976
{| class="formulaSCP" style="width: 100%; text-align: left;" 
977
|-
978
| 
979
{| style="text-align: left; margin:auto;width: 100%;" 
980
|-
981
| style="text-align: center;" | <math>\mathbf{N}_P=\mathbf{e}_1 \otimes \mathbf{e}_1  </math>
982
|}
983
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.2)
984
|}
985
986
Where <math display="inline"> \mathbf{e}_1 </math> is the base vector that defines locally the parallel behaviour at the studied element and <math display="inline"> \mathbf{N}_P </math> is the second order parallel projector tensor, which is used when obtaining the projection in the fibre direction of a vector <math display="inline"> \mathit{\mathbf{v}} </math>:
987
988
<span id="eq-4.3"></span>
989
{| class="formulaSCP" style="width: 100%; text-align: left;" 
990
|-
991
| 
992
{| style="text-align: left; margin:auto;width: 100%;" 
993
|-
994
| style="text-align: center;" | <math>\mathit{\mathbf{v}}_P=\mathbf{N}_P \mathit{\mathbf{v}}  </math>
995
|}
996
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.3)
997
|}
998
999
The reference frame is completed with the base vectors <math display="inline"> \mathbf{e}_2 </math> and <math display="inline"> \mathbf{e}_3 </math> that define the serial behaviour. It is important to notice that for this case the parallel behaviour is imposed just in one direction, i.e. <math display="inline"> \mathbf{e}_1 </math>. This only happens in composite materials with long fibres, but can be extended to two dimensions (laminar materials) or to the three dimensions (full parallel behaviour, i.e. CMT approach) or changed to a full serial behaviour.
1000
1001
Using the <math display="inline"> \mathbf{N}_P </math> tensor, the parallel and serial components of the strain and stress fields can be calculated. This is done defining the fourth order parallel projector <math display="inline">  \mathbb{P}_p </math>:
1002
1003
<span id="eq-4.4"></span>
1004
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1005
|-
1006
| 
1007
{| style="text-align: left; margin:auto;width: 100%;" 
1008
|-
1009
| style="text-align: center;" | <math>\mathbb{P}_P = \mathbf{N}_P \otimes \mathbf{N}_P  </math>
1010
|}
1011
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.4)
1012
|}
1013
1014
and the fourth order serial projector <math display="inline">  \mathbb{P}_S </math>:
1015
1016
<span id="eq-4.5"></span>
1017
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1018
|-
1019
| 
1020
{| style="text-align: left; margin:auto;width: 100%;" 
1021
|-
1022
| style="text-align: center;" | <math>\mathbb{P}_S = \mathbb{I}-\mathbb{P}_P  </math>
1023
|}
1024
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.5)
1025
|}
1026
1027
Now the parallel and serial components of the strain (Equation [[#eq-4.6|4.6]]) and stress (Equation [[#eq-4.7|4.7]]) fields are defined as:
1028
1029
<span id="eq-4.6"></span>
1030
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1031
|-
1032
| 
1033
{| style="text-align: left; margin:auto;width: 100%;" 
1034
|-
1035
| style="text-align: center;" | <math>\boldsymbol{\varepsilon }_P = \mathbb{P}_P : \boldsymbol{\varepsilon }  \qquad \qquad \boldsymbol{\varepsilon }_S = \mathbb{P}_S : \boldsymbol{\varepsilon }  </math>
1036
|}
1037
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.6)
1038
|}
1039
1040
<span id="eq-4.7"></span>
1041
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1042
|-
1043
| 
1044
{| style="text-align: left; margin:auto;width: 100%;" 
1045
|-
1046
| style="text-align: center;" | <math>\boldsymbol{\sigma }_P = \mathbb{P}_P : \boldsymbol{\sigma }  \qquad \qquad \boldsymbol{\sigma }_S = \mathbb{P}_S : \boldsymbol{\sigma }  </math>
1047
|}
1048
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.7)
1049
|}
1050
1051
These decompositions of the stress and the strain fields drive to a serial and parallel description of the constitutive fourth order tensor, <math display="inline"> \mathbb{C} </math>:
1052
1053
<span id="eq-4.8"></span>
1054
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1055
|-
1056
| 
1057
{| style="text-align: left; margin:auto;width: 100%;" 
1058
|-
1059
| style="text-align: center;" | <math>\left[\begin{matrix}\boldsymbol{\sigma }_P \\   \boldsymbol{\sigma }_S   \end{matrix}\right]= \left[\begin{matrix}\mathbb{C}_{PP} & \mathbb{C}_{PS} \\   \mathbb{C}_{SP} & \mathbb{C}_{SS}   \end{matrix}\right]: \left[\begin{matrix}\boldsymbol{\varepsilon }_P \\   \boldsymbol{\varepsilon }_S   \end{matrix}\right]  </math>
1060
|}
1061
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.8)
1062
|}
1063
1064
Where:
1065
1066
<span id="eq-4.9"></span>
1067
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1068
|-
1069
| 
1070
{| style="text-align: left; margin:auto;width: 100%;" 
1071
|-
1072
| style="text-align: center;" | <math>\begin{matrix}\mathbb{C}_{PP}=\mathbb{P}_P : \mathbb{C} : \mathbb{P}_P = \dfrac{\partial \boldsymbol{\sigma }_P}{\partial \boldsymbol{\varepsilon }_P} \qquad \qquad & \mathbb{C}_{PS}=\mathbb{P}_P : \mathbb{C} : \mathbb{P}_S = \dfrac{\partial \boldsymbol{\sigma }_P}{\partial \boldsymbol{\varepsilon }_S}  \\    \mathbb{C}_{SP}=\mathbb{P}_S : \mathbb{C} : \mathbb{P}_P = \dfrac{\partial \boldsymbol{\sigma }_S}{\partial \boldsymbol{\varepsilon }_P} \qquad \qquad & \mathbb{C}_{SS}=\mathbb{P}_S : \mathbb{C} : \mathbb{P}_S = \dfrac{\partial \boldsymbol{\sigma }_S}{\partial \boldsymbol{\varepsilon }_S}   \end{matrix}  </math>
1073
|}
1074
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.9)
1075
|}
1076
1077
Finally, Equation [[#eq-4.5|4.5]] shows that the parallel and serial decompositions are complementary. This can be extrapolated to strain and stress field as:
1078
1079
<span id="eq-4.10"></span>
1080
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1081
|-
1082
| 
1083
{| style="text-align: left; margin:auto;width: 100%;" 
1084
|-
1085
| style="text-align: center;" | <math>\boldsymbol{\varepsilon } = \boldsymbol{\varepsilon }_P + \boldsymbol{\varepsilon }_S  </math>
1086
|}
1087
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.10)
1088
|}
1089
1090
<span id="eq-4.11"></span>
1091
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1092
|-
1093
| 
1094
{| style="text-align: left; margin:auto;width: 100%;" 
1095
|-
1096
| style="text-align: center;" | <math>\boldsymbol{\sigma } = \boldsymbol{\sigma }_P + \boldsymbol{\sigma }_S  </math>
1097
|}
1098
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.11)
1099
|}
1100
1101
===Composite material, matrix and fibre relations===
1102
1103
The general expressions presented before are needed in the SP RoM to describe the behaviour at all scales, i.e. they are used to describe the behaviour of the whole composite material (<math display="inline"> c </math>), but also the matrix (<math display="inline"> m </math>) and the fibre (<math display="inline"> f </math>) components.
1104
1105
Using the compatibility conditions written above, the following expressions can be derived for a composite material with only two components: fibre and matrix.
1106
1107
<span id="eq-4.12"></span>
1108
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1109
|-
1110
| 
1111
{| style="text-align: left; margin:auto;width: 100%;" 
1112
|-
1113
| style="text-align: center;" | <math>\boldsymbol{\varepsilon } = {^f}k \, {^f}\boldsymbol{\varepsilon } + {^m}k \, {^m}\boldsymbol{\varepsilon } \qquad \qquad \boldsymbol{\sigma } = {^f}k \, {^f}\boldsymbol{\sigma } + {^m}k \, {^m}\boldsymbol{\sigma }  </math>
1114
|}
1115
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.12)
1116
|}
1117
1118
<span id="eq-4.13"></span>
1119
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1120
|-
1121
| 
1122
{| style="text-align: left; margin:auto;width: 100%;" 
1123
|-
1124
| style="text-align: center;" | <math>\mathrm{Parallel \; direction:} \left\{\begin{matrix}& {^c}\boldsymbol{\varepsilon }_P = {^f}\boldsymbol{\varepsilon }_P = {^m}\boldsymbol{\varepsilon }_P \\     &{^c}\boldsymbol{\sigma }_P = {^f}k \, {^f}\boldsymbol{\sigma }_P + {^m}k \, {^m}\boldsymbol{\sigma }_P    \end{matrix}   \right.  </math>
1125
|}
1126
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.13)
1127
|}
1128
1129
<span id="eq-4.14"></span>
1130
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1131
|-
1132
| 
1133
{| style="text-align: left; margin:auto;width: 100%;" 
1134
|-
1135
| style="text-align: center;" | <math>\mathrm{Serial \; direction:} \left\{\begin{matrix}&{^c}\boldsymbol{\varepsilon }_S = {^f}k \, {^f}\boldsymbol{\varepsilon }_S + {^m}k \, {^m}\boldsymbol{\varepsilon }_S \\   & {^c}\boldsymbol{\sigma }_S = {^f}\boldsymbol{\sigma }_S = {^m}\boldsymbol{\sigma }_S    \end{matrix}   \right.  </math>
1136
|}
1137
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.14)
1138
|}
1139
1140
Equation [[#eq-4.12|4.12]] expresses mathematically what is set in compatibility condition 2. <math display="inline"> {^f}k </math> and <math display="inline"> {^m}k </math> are coefficients that reflect the volumetric contribution of each component and therefore, verify the condition <math display="inline"> {^f}k + {^m}k = 1 </math>. On the other hand, equations [[#eq-4.13|4.13]] and [[#eq-4.14|4.14]] represent the compatibility conditions 5 and 6, respectively. Furthermore, it is important to keep in mind that the condition 2 is still prevailing. Thus:
1141
1142
<span id="eq-4.15"></span>
1143
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1144
|-
1145
| 
1146
{| style="text-align: left; margin:auto;width: 100%;" 
1147
|-
1148
| style="text-align: center;" | <math>{^c}\boldsymbol{\varepsilon }_P = {^f}k \, {^f}\boldsymbol{\varepsilon }_P + {^m}k \, {^m}\boldsymbol{\varepsilon }_P \underset{Eq.4.13}{=} {^c}\boldsymbol{\varepsilon }_P \left({^f}k + {^m}k\right)= {^c}\boldsymbol{\varepsilon }_P  </math>
1149
|}
1150
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.15)
1151
|}
1152
1153
<span id="eq-4.16"></span>
1154
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1155
|-
1156
| 
1157
{| style="text-align: left; margin:auto;width: 100%;" 
1158
|-
1159
| style="text-align: center;" | <math>{^c}\boldsymbol{\sigma }_S = {^f}k \, {^f}\boldsymbol{\sigma }_S + {^m}k \, {^m}\boldsymbol{\sigma }_S \underset{Eq.4.14}{=} {^c}\boldsymbol{\sigma }_S \left({^f}k + {^m}k\right)= {^c}\boldsymbol{\sigma }_S  </math>
1160
|}
1161
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.16)
1162
|}
1163
1164
===Composite constitutive model. Closure equations===
1165
1166
The SP RoM formulation is ''strain driven'' <span id='citeF-8'></span><span id='citeF-9'></span>[[#cite-8|[8,9]]], this means that the problem is controlled by the strain field, which is the independent driving variable. Therefore, the current state at a point <math display="inline"> x_i </math> in any of the component materials that constitute a two-phased composite (fibre and matrix) is completely defined just with:
1167
1168
*  The strain field at the studied point, i.e. <math display="inline"> {^f}\boldsymbol{\varepsilon }\left(x_1\right)</math> and <math display="inline"> {^m}\boldsymbol{\varepsilon }\left(x_2\right)</math>, where <math display="inline"> x_1 \subset \Omega _f  </math>, <math display="inline"> x_2 \subset \Omega _m  </math> and <math display="inline"> \Omega = \Omega _f \cup \Omega _m  </math>.
1169
* A finite set of internal variables denoted by the vector <math display="inline"> {^f}\boldsymbol{\beta } </math> for the fibre and <math display="inline"> {^m}\boldsymbol{\beta } </math> for the matrix. These internal variables are correlated with the constitutive model used when modelling the component materials.  
1170
1171
This can be expressed as:
1172
1173
<span id="eq-4.17"></span>
1174
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1175
|-
1176
| 
1177
{| style="text-align: left; margin:auto;width: 100%;" 
1178
|-
1179
| style="text-align: center;" | <math>{^f}S=\left\lbrace{^f}\boldsymbol{\varepsilon },{^f}\boldsymbol{\beta }\right\rbrace \qquad \qquad {^m}S=\left\lbrace{^m}\boldsymbol{\varepsilon },{^m}\boldsymbol{\beta }\right\rbrace  </math>
1180
|}
1181
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.17)
1182
|}
1183
1184
Thus, for the composite material the problem is governed by the cartesian product of the two sets <math display="inline"> {^f}S </math> and <math display="inline"> {^m}S </math>:
1185
1186
<span id="eq-4.18"></span>
1187
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1188
|-
1189
| 
1190
{| style="text-align: left; margin:auto;width: 100%;" 
1191
|-
1192
| style="text-align: center;" | <math>I = {^f}S \times {^m}S = \left\lbrace{^f}\boldsymbol{\varepsilon },{^m}\boldsymbol{\varepsilon },{^f}\boldsymbol{\beta },{^m}\boldsymbol{\beta }\right\rbrace  </math>
1193
|}
1194
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.18)
1195
|}
1196
1197
And the composite mean strain (<math display="inline"> {^c}\boldsymbol{\varepsilon } </math>).
1198
1199
At this stage, the SP RoM has allowed the description of the existing relations between the components and the composite material. Despite this, the set of equations described at this point are insufficient to build the system of equations that allows the study of the composite element, which is controlled by the set of variables described in Equation [[#eq-4.18|4.18]] and <math display="inline"> {^c}\boldsymbol{\varepsilon } </math>. The equations missing are those that capture the interaction between the component materials, i.e. the closure equations:
1200
1201
<span id="eq-4.19"></span>
1202
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1203
|-
1204
| 
1205
{| style="text-align: left; margin:auto;width: 100%;" 
1206
|-
1207
| style="text-align: center;" | <math>f_i = \left({^f}\boldsymbol{\varepsilon }, {^m}\boldsymbol{\varepsilon }, {^f}\boldsymbol{\beta }, {^m}\boldsymbol{\beta }, {^f}\boldsymbol{\sigma }, {^m}\boldsymbol{\sigma }\right)= 0, \qquad i=1, \dotsc , 6  </math>
1208
|}
1209
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.19)
1210
|}
1211
1212
The closure equations are specific for each problem and are used to simulate phenomenons like the debounding or the fibre pull-out <span id='citeF-8'></span><span id='citeF-9'></span>[[#cite-8|[8,9]]].
1213
1214
An example of appropriate closure equation for long fibre composites (LFC) is the one used in the Serial-Parallel Basic model (SPB model) <span id='citeF-8'></span>[[#cite-8|[8]]]. This equation is independent of the internal variables of each component <math display="inline"> {^f}\boldsymbol{\beta } </math> and <math display="inline"> {^m}\boldsymbol{\beta } </math> and can be written as:
1215
1216
<span id="eq-4.20"></span>
1217
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1218
|-
1219
| 
1220
{| style="text-align: left; margin:auto;width: 100%;" 
1221
|-
1222
| style="text-align: center;" | <math>{^f}\boldsymbol{\varepsilon }_P = {^m}\boldsymbol{\varepsilon }_P \qquad \qquad {^f}\boldsymbol{\sigma }_S = {^m}\boldsymbol{\sigma }_S  </math>
1223
|}
1224
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.20)
1225
|}
1226
1227
There are other closure equations that can be used instead but, the simplicity of this one has generalised its use for the composite materials analysis. Despite this, it is important to be aware of the limitations of this approach, produced by the iso-stress condition in the serial direction which leads to inaccurate predictions of the transversal stiffness.
1228
1229
Now the system of equations that controls the composite behaviour is completed <span id='citeF-8'></span><span id='citeF-9'></span>[[#cite-8|[8,9]]]:
1230
1231
<span id="eq-4.21"></span>
1232
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1233
|-
1234
| 
1235
{| style="text-align: left; margin:auto;width: 100%;" 
1236
|-
1237
| style="text-align: center;" | <math>\left\{\begin{matrix}{^f}\dot{\boldsymbol{\sigma }} & = {^f}\mathit{\mathbf{g}} \left({^f}\boldsymbol{\varepsilon }, {^f}\boldsymbol{\beta }, {^f}\dot{\boldsymbol{\varepsilon }}\right)\\   {^f}\dot{\boldsymbol{\beta }} & = {^f}\mathit{\mathbf{h}} \left({^f}\boldsymbol{\varepsilon }, {^f}\boldsymbol{\beta }, {^f}\dot{\boldsymbol{\varepsilon }}\right)\\   {^m}\dot{\boldsymbol{\sigma }} & = {^m}\mathit{\mathbf{g}} \left({^m}\boldsymbol{\varepsilon }, {^m}\boldsymbol{\beta }, {^m}\dot{\boldsymbol{\varepsilon }}\right)\\   {^m}\dot{\boldsymbol{\beta }} & = {^m}\mathit{\mathbf{h}} \left({^m}\boldsymbol{\varepsilon }, {^m}\boldsymbol{\beta }, {^m}\dot{\boldsymbol{\varepsilon }}\right)\\   \boldsymbol{\varepsilon } & = {^f}k \, {^f}\boldsymbol{\varepsilon } + {^m}k \, {^m}\boldsymbol{\varepsilon } \\   \boldsymbol{\sigma } & = {^f}k \, {^f}\boldsymbol{\sigma } + {^m}k \, {^m}\boldsymbol{\sigma }\\   {^f}\boldsymbol{\varepsilon }_P & = {^m}\boldsymbol{\varepsilon }_P \\   {^f}\boldsymbol{\sigma }_S & = {^m}\boldsymbol{\sigma }_S   \end{matrix}   \right.  </math>
1238
|}
1239
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.21)
1240
|}
1241
1242
Where the first four expressions correspond to the constitutive models of the component materials. These reflect the stress and the internal variables evolution in terms of the independent variables (Equation [[#eq-4.17|4.17]]).
1243
1244
===Algorithm for the solution of the SP RoM problem===
1245
1246
Now that the driving variables that define the problem (Equation [[#eq-4.18|4.18]]) and the set of equations that govern it (Equation [[#eq-4.21|4.21]]) are known, the problem statement can be formulated <span id='citeF-8'></span>[[#cite-8|[8]]] as follows: 'Knowing the driving variables at time <math display="inline"> t </math>:
1247
1248
<span id="eq-4.22"></span>
1249
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1250
|-
1251
| 
1252
{| style="text-align: left; margin:auto;width: 100%;" 
1253
|-
1254
| style="text-align: center;" | <math>{^t}\left[{^f}\boldsymbol{\varepsilon }\right],  {^t}\left[{^m}\boldsymbol{\varepsilon }\right],  {^t}\left[{^f}\boldsymbol{\beta }\right],   {^t}\left[{^m}\boldsymbol{\beta }\right],   {^t}\left[\boldsymbol{\varepsilon }\right]  </math>
1255
|}
1256
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.22)
1257
|}
1258
1259
and the composite material strain at time <math display="inline"> t + \Delta t </math>:
1260
1261
<span id="eq-4.23"></span>
1262
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1263
|-
1264
| 
1265
{| style="text-align: left; margin:auto;width: 100%;" 
1266
|-
1267
| style="text-align: center;" | <math>{^{t + \Delta t}}\left[\boldsymbol{\varepsilon }\right],  </math>
1268
|}
1269
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.23)
1270
|}
1271
1272
find out the updated state for composite at time <math display="inline"> t + \Delta t </math>, defined by the variables:
1273
1274
<span id="eq-4.24"></span>
1275
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1276
|-
1277
| 
1278
{| style="text-align: left; margin:auto;width: 100%;" 
1279
|-
1280
| style="text-align: center;" | <math>{^{t + \Delta t}}\left[{^f}\boldsymbol{\varepsilon }\right],  {^{t + \Delta t}}\left[{^m}\boldsymbol{\varepsilon }\right],  {^{t + \Delta t}}\left[{^f}\boldsymbol{\beta }\right], {^{t + \Delta t}}\left[{^m}\boldsymbol{\beta }\right], {^{t + \Delta t}}\left[{^f}\boldsymbol{\sigma }\right], {^{t + \Delta t}}\left[{^m}\boldsymbol{\sigma }\right], {^{t + \Delta t}}\left[\boldsymbol{\sigma }\right]  </math>
1281
|}
1282
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.24)
1283
|}
1284
1285
that satisfy the equations that control the composite behaviour (Equation [[#eq-4.21|4.21]]) at the time slot <math display="inline"> \left[t, t + \Delta t\right]</math>'.
1286
1287
The strategy followed to solve the system of equations depends on the constitutive model used at each component. For the case of prestressed concrete structures, a non-linear approach must be considered and therefore, the system will be solved by an iterative procedure, as shown in Section [[#3.3 Solving the system of equations|3.3]].
1288
1289
The independent variable chosen for the Newton-Raphson algorithm is the serial component of the strain matrix (<math display="inline"> {^m}\boldsymbol{\varepsilon }_S </math>) and the residual to be minimized is the serial stress imbalance (<math display="inline"> \Delta \boldsymbol{\sigma }_S </math>), defined as:
1290
1291
<span id="eq-4.25"></span>
1292
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1293
|-
1294
| 
1295
{| style="text-align: left; margin:auto;width: 100%;" 
1296
|-
1297
| style="text-align: center;" | <math>\Delta \boldsymbol{\sigma }_S = {^m}\boldsymbol{\sigma }_S - {^f}\boldsymbol{\sigma }_S  </math>
1298
|}
1299
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.25)
1300
|}
1301
1302
Only one independent variable is needed for the approach, the other variables of the problem, for both component materials, can be calculated from an initial approximation of the <math display="inline"> {^m}\boldsymbol{\varepsilon }_S </math>.
1303
1304
The following organigram (Figure [[#img-15|15]]) summarizes the steps to be followed in order to give an answer to the problem stated previously. If these steps are included in a FE code as the composite constitutive model <span id='citeF-7'></span><span id='citeF-8'></span>[[#cite-7|[7,8]]], the code will be suitable for the modelization of LFC problems.
1305
1306
<div id='img-15'></div>
1307
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1308
|-
1309
|[[Image:Draft_Samper_351239591-SPRoMOrganigrama.png|420px|Flow chart with the strategy followed to solve the system of equations]]
1310
|- style="text-align: center; font-size: 75%;"
1311
| colspan="1" | '''Figure 15:''' Flow chart with the strategy followed to solve the system of equations
1312
|}
1313
1314
* ''Initial approximation''. An initial value for the variable <math display="inline"> {^m}\boldsymbol{\varepsilon }_S </math> is needed. The accuracy of this initial approximation will influence the number of iterations required for the problem convergence. Thus, it is important to provide a good attempt for the first iteration, <math display="inline"> \left[{^m}\boldsymbol{\varepsilon }_S\right]_{k=0} </math>. This is usually achieved considering a linear behaviour for all the component materials. If the hypothesis is true, the obtained value will be correct and no iterations will be needed. This is expressed as:
1315
1316
<span id="eq-4.26"></span>
1317
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1318
|-
1319
| 
1320
{| style="text-align: left; margin:auto;width: 100%;" 
1321
|-
1322
| style="text-align: center;" | <math>
1323
1324
\left[{^m}\Delta \boldsymbol{\sigma } \right]_0 = {^t}\left[{^m}\mathbb{C} \right]: \left[{^m}\Delta \boldsymbol{\varepsilon } \right]_0     </math>
1325
|}
1326
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.26)
1327
|}
1328
1329
<span id="eq-4.27"></span>
1330
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1331
|-
1332
| 
1333
{| style="text-align: left; margin:auto;width: 100%;" 
1334
|-
1335
| style="text-align: center;" | <math>
1336
1337
\left[{^f}\Delta \boldsymbol{\sigma } \right]_0 = {^t}\left[{^f}\mathbb{C} \right]: \left[{^f}\Delta \boldsymbol{\varepsilon } \right]_0     </math>
1338
|}
1339
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.27)
1340
|}
1341
1342
Where <math display="inline"> \left[{^i}\Delta \bullet \right]_0 = {^{t+ \Delta t}}\left[{^i} \bullet \right]_0 - {^t}\left[{^i} \bullet \right]</math> with <math display="inline"> i=f </math> or <math display="inline"> m </math>, is the increment of the variable <math display="inline"> \left[{^i} \bullet \right]</math> from one step to the next (do not confuse with the residual to be minimized introduced in Equation [[#eq-4.25|4.25]]), the subscript <math display="inline"> 0 </math> indicates the first iteration of the new step <math display="inline"> t + \Delta t </math> and <math display="inline"> {^t}\left[{^i}\mathbb{C} \right]</math> is the tangent constitutive tensor of each component material <math display="inline"> i=f </math> or <math display="inline"> m </math>, computed using the set of known variables shown in Equation [[#eq-4.22|4.22]].
1343
1344
Considering now only the serial terms of the previous expressions, as set in Equation [[#eq-4.8|4.8]]:
1345
1346
<span id="eq-4.28"></span>
1347
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1348
|-
1349
| 
1350
{| style="text-align: left; margin:auto;width: 100%;" 
1351
|-
1352
| style="text-align: center;" | <math>
1353
1354
\left[{^m}\Delta \boldsymbol{\sigma }_S \right]_0 = {^t}\left[{^m}\mathbb{C}_{SS} \right]: \left[{^m}\Delta \boldsymbol{\varepsilon }_S \right]_0  +  {^t}\left[{^m}\mathbb{C}_{SP} \right]: \left[{^m}\Delta \boldsymbol{\varepsilon }_P \right]_0     </math>
1355
|}
1356
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.28)
1357
|}
1358
1359
<span id="eq-4.29"></span>
1360
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1361
|-
1362
| 
1363
{| style="text-align: left; margin:auto;width: 100%;" 
1364
|-
1365
| style="text-align: center;" | <math>
1366
1367
\left[{^f}\Delta \boldsymbol{\sigma }_S \right]_0 = {^t}\left[{^f}\mathbb{C}_{SS} \right]: \left[{^f}\Delta \boldsymbol{\varepsilon }_S \right]_0  +  {^t}\left[{^f}\mathbb{C}_{SP} \right]: \left[{^f}\Delta \boldsymbol{\varepsilon }_P \right]_0     </math>
1368
|}
1369
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.29)
1370
|}
1371
1372
Using these two expressions and the relations set by the Closure Equation [[#eq-4.20|4.20]]:
1373
1374
<span id="eq-4.30"></span>
1375
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1376
|-
1377
| 
1378
{| style="text-align: left; margin:auto;width: 100%;" 
1379
|-
1380
| style="text-align: center;" | <math>
1381
1382
\overbrace{\left[{^m}\Delta \boldsymbol{\sigma }_S \right]_0-\left[{^f}\Delta \boldsymbol{\sigma }_S \right]_0}^{= 0}  = {^t}\left[{^m}\mathbb{C}_{SS} \right]: \left[{^m}\Delta \boldsymbol{\varepsilon }_S \right]_0  +  {^t}\left[{^m}\mathbb{C}_{SP} \right]: \overbrace{\left[{^m}\Delta \boldsymbol{\varepsilon }_P \right]_0}^{=\left[\Delta \boldsymbol{\varepsilon }_P \right]_0} - </math>
1383
|-
1384
| style="text-align: center;" | <math>       - {^t}\left[{^f}\mathbb{C}_{SS} \right]: \left[{^f}\Delta \boldsymbol{\varepsilon }_S \right]_0  +  {^t}\left[{^f}\mathbb{C}_{SP} \right]: \overbrace{\left[{^f}\Delta \boldsymbol{\varepsilon }_P \right]_0}^{=\left[\Delta \boldsymbol{\varepsilon }_P \right]_0} \Longrightarrow      </math>
1385
|}
1386
|}
1387
1388
<span id="eq-4.30"></span>
1389
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1390
|-
1391
| 
1392
{| style="text-align: left; margin:auto;width: 100%;" 
1393
|-
1394
| style="text-align: center;" | <math>
1395
1396
\Longrightarrow 0   = {^t}\left[{^m}\mathbb{C}_{SS} \right]: \left[{^m}\Delta \boldsymbol{\varepsilon }_S \right]_0 - {^t}\left[{^f}\mathbb{C}_{SS} \right]: \left[{^f}\Delta \boldsymbol{\varepsilon }_S \right]_0 + </math>
1397
|-
1398
| style="text-align: center;" | <math>        + \left({^t}\left[{^m}\mathbb{C}_{SP} \right]- {^t}\left[{^f}\mathbb{C}_{SP} \right]\right): \left[\Delta \boldsymbol{\varepsilon }_P \right]_0      </math>
1399
|}
1400
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.30)
1401
|}
1402
1403
This equation can be simplified using the Compatibility Conditions (Equation [[#eq-4.14|4.14]]):
1404
1405
<span id="eq-4.31"></span>
1406
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1407
|-
1408
| 
1409
{| style="text-align: left; margin:auto;width: 100%;" 
1410
|-
1411
| style="text-align: center;" | <math>
1412
1413
0  = {^t}\left[{^m}\mathbb{C}_{SS} \right]: \left[{^m}\Delta \boldsymbol{\varepsilon }_S \right]_0 - {^t}\left[{^f}\mathbb{C}_{SS} \right]: \left(\dfrac{1}{{^f}k} \left[\Delta \boldsymbol{\varepsilon }_S \right]_0  - \dfrac{{^m}k}{{^f}k} \left[{^m}\Delta \boldsymbol{\varepsilon }_S \right]_0 \right)+ </math>
1414
|-
1415
| style="text-align: center;" | <math>        + \left({^t}\left[{^m}\mathbb{C}_{SP} \right]- {^t}\left[{^f}\mathbb{C}_{SP} \right]\right): \left[\Delta \boldsymbol{\varepsilon }_P \right]_0 \Longrightarrow       </math>
1416
|}
1417
|}
1418
1419
<span id="eq-4.31"></span>
1420
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1421
|-
1422
| 
1423
{| style="text-align: left; margin:auto;width: 100%;" 
1424
|-
1425
| style="text-align: center;" | <math>
1426
1427
\Longrightarrow  \left({^t}\left[{^m}\mathbb{C}_{SS} \right]+ \dfrac{{^m}k}{{^f}k} {^t}\left[{^f}\mathbb{C}_{SS} \right]\right): \left[{^m}\Delta \boldsymbol{\varepsilon }_S \right]_0 = </math>
1428
|-
1429
| style="text-align: center;" | <math>        = \dfrac{1}{{^f}k} {^t}\left[{^f}\mathbb{C}_{SS} \right]: \left[\Delta \boldsymbol{\varepsilon }_S \right]_0 + \left({^t}\left[{^m}\mathbb{C}_{SP} \right]- {^t}\left[{^f}\mathbb{C}_{SP} \right]\right): \left[\Delta \boldsymbol{\varepsilon }_P \right]_0      </math>
1430
|}
1431
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.31)
1432
|}
1433
1434
And finally, setting: <math display="inline"> \mathbb{A} = \left({^f}k {^t}\left[{^m}\mathbb{C}_{SS} \right]+ {^m}k {^t}\left[{^f}\mathbb{C}_{SS} \right]\right)^{-1} </math>, Equation [[#eq-4.31|4.31]] is rewritten as:
1435
1436
<span id="eq-4.32"></span>
1437
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1438
|-
1439
| 
1440
{| style="text-align: left; margin:auto;width: 100%;" 
1441
|-
1442
| style="text-align: center;" | <math>
1443
1444
\left[{^m}\Delta \boldsymbol{\varepsilon }_S \right]_0 = \mathbb{A} : \left[{^t}\left[{^f}\mathbb{C}_{SS} \right]: \left[\Delta \boldsymbol{\varepsilon }_S \right]_0 + {^f}k \left({^t}\left[{^m}\mathbb{C}_{SP} \right]- {^t}\left[{^f}\mathbb{C}_{SP} \right]\right): \left[\Delta \boldsymbol{\varepsilon }_P \right]_0 \right]     </math>
1445
|}
1446
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.32)
1447
|}
1448
1449
From this equation, <math display="inline"> {^{t + \Delta t}}\left[{^m}\boldsymbol{\varepsilon }_S\right]_{k=0} </math> is computed (<math display="inline"> {^{t + \Delta t}}\left[{^m}\boldsymbol{\varepsilon }_S\right]_{k=0} = {^t}\left[{^m}\boldsymbol{\varepsilon }_S\right]+ \left[{^m}\Delta \boldsymbol{\varepsilon }_S\right]_0 </math>) and the algorithm moves to step 2.
1450
1451
* ''Evaluation of the residual''. Once the independent variable <math display="inline"> {^{t + \Delta t}}\left[{^m}\boldsymbol{\varepsilon }_S\right]_{k} </math> has been obtained, it is necessary to determine its reliability by means of the residual. It is computed as shown in Equation [[#eq-4.25|4.25]], using the serial stress values at <math display="inline"> t + \Delta t </math>  of each component material. Thus, obtaining <math display="inline"> {^{t + \Delta t}}\left[{^m}\boldsymbol{\sigma }\right]</math> and <math display="inline"> {^{t + \Delta t}}\left[{^f}\boldsymbol{\sigma }\right]</math> is the main objective of this step because Equation [[#eq-4.7|4.7]] allows the computation of the serial component of these variables.
1452
1453
The first thing to do before the serial stress imbalance could be estimated, is to determine the total strains for each component:
1454
1455
<span id="eq-4.33"></span>
1456
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1457
|-
1458
| 
1459
{| style="text-align: left; margin:auto;width: 100%;" 
1460
|-
1461
| style="text-align: center;" | <math>
1462
1463
\left[{^m}\boldsymbol{\varepsilon } \right]_k = \left[{^m}\boldsymbol{\varepsilon }_P \right]+ \left[{^m}\boldsymbol{\varepsilon }_S \right]_k, \textrm{where:} \left[{^m}\boldsymbol{\varepsilon }_P \right]=  \left[{^f}\boldsymbol{\varepsilon }_P \right]= \left[\boldsymbol{\varepsilon }_P \right]</math>
1464
|-
1465
| style="text-align: center;" | <math>       \left[{^f}\boldsymbol{\varepsilon } \right]_k = \left[{^f}\boldsymbol{\varepsilon }_P \right]+ \left[{^f}\boldsymbol{\varepsilon }_S \right]_k, \textrm{where:} \left[{^f}\boldsymbol{\varepsilon }_S \right]_k = \dfrac{1}{{^f}k} \left[\boldsymbol{\varepsilon }_S \right]- \dfrac{{^m}k}{{^f}k} \left[{^m}\boldsymbol{\varepsilon }_S \right]_k </math>
1466
|-
1467
| style="text-align: center;" | 
1468
|}
1469
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.33)
1470
|}
1471
1472
These equations are based on the complementarity property of the serial and parallel parts of the strain and stress fields (equations [[#eq-4.10|4.10]] and [[#eq-4.11|4.11]]) and are valid for all the iterations of the problem, therefore, <math display="inline"> k </math> is not necessary equal to <math display="inline"> 0 </math>.
1473
1474
Finally, the stresses and the internal variables are computed based on the real constitutive model of each component material (the elastic hypothesis used at step 1 is no longer valid) and the residual <math display="inline"> \Delta \boldsymbol{\sigma }_S = {^m}\boldsymbol{\sigma }_S - {^f}\boldsymbol{\sigma }_S </math> is evaluated.
1475
1476
* ''Equilibrium reached?''. At this stage, the algorithm decides whether the obtained solution for the set of variables at step <math display="inline"> t + \Delta t </math> is valid or not. This decision is made according to a given tolerance. Its value is imposed as a function of the serial stresses for each component at the previous step <math display="inline"> t </math>, i.e. <math display="inline"> tol \sim f \left({^t}\left[{^i}\boldsymbol{\sigma }_S\right]\right)\textrm{, where }i=f,m </math> <span id='citeF-8'></span>[[#cite-8|[8]]]. This function is defined as:
1477
1478
<span id="eq-4.34"></span>
1479
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1480
|-
1481
| 
1482
{| style="text-align: left; margin:auto;width: 100%;" 
1483
|-
1484
| style="text-align: center;" | <math>
1485
1486
f_1\left({^t}\left[{^m}\boldsymbol{\sigma }_S\right],{^t}\left[{^f}\boldsymbol{\sigma }_S\right]\right)= \min \left\lbrace ||{^t}\left[{^m}\boldsymbol{\sigma }_S\right]||,||{^t}\left[{^f}\boldsymbol{\sigma }_S\right]|| \right\rbrace </math>
1487
|-
1488
| style="text-align: center;" | <math>     f_2\left({^t}\left[{^m}\boldsymbol{\sigma }_S\right],{^t}\left[{^f}\boldsymbol{\sigma }_S\right]\right)= \min \left\lbrace ||{^t}\left[{^m}\mathbb{C}_{SS}\right]:\left[\boldsymbol{\varepsilon }_S\right]||,||{^t}\left[{^f}\mathbb{C}_{SS}\right]:\left[\boldsymbol{\varepsilon }_S\right]|| \right\rbrace </math>
1489
|-
1490
| style="text-align: center;" | <math>     tol= 10^{-4} \cdot   \left\{\begin{matrix}
1491
1492
&f_1\left({^t}\left[{^m}\boldsymbol{\sigma }_S\right],{^t}\left[{^f}\boldsymbol{\sigma }_S\right]\right), \quad \textrm{if} \quad f_1\left({^t}\left[{^m}\boldsymbol{\sigma }_S\right],{^t}\left[{^f}\boldsymbol{\sigma }_S\right]\right)> 0\\     &f_2\left({^t}\left[{^m}\boldsymbol{\sigma }_S\right],{^t}\left[{^f}\boldsymbol{\sigma }_S\right]\right), \quad \textrm{if} \quad f_1\left({^t}\left[{^m}\boldsymbol{\sigma }_S\right],{^t}\left[{^f}\boldsymbol{\sigma }_S\right]\right)= 0      \end{matrix}     \right.     </math>
1493
|}
1494
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.34)
1495
|}
1496
1497
Therefore:
1498
1499
<span id="eq-4.35"></span>
1500
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1501
|-
1502
| 
1503
{| style="text-align: left; margin:auto;width: 100%;" 
1504
|-
1505
| style="text-align: center;" | <math>
1506
1507
\textrm{If} \quad ||\left[\Delta \boldsymbol{\sigma }_S\right]_k || \leq tol \quad \textrm{then go to ''Step 5''.} </math>
1508
|-
1509
| style="text-align: center;" | <math>       \textrm{If} \quad ||\left[\Delta \boldsymbol{\sigma }_S\right]_k ||  > tol \quad \textrm{then go to ''Step 4''.}     </math>
1510
|}
1511
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.35)
1512
|}
1513
1514
* ''Independent variable update''. This step is used when the <math display="inline"> {^{t + \Delta t}}\left[{^m}\boldsymbol{\varepsilon }_S\right]_{k} </math> value is not good enough according to the tolerance computed at step 3. In this case, <math display="inline"> {^{t + \Delta t}}\left[{^m}\boldsymbol{\varepsilon }_S\right]_{k} </math> should be recalculated as follows:
1515
1516
* Compute the tangent constitutive tensor for each component material <math display="inline"> {^{t+ \Delta t}}\left[{^i}\mathbb{C} \right]_k </math> using the results of the current iteration step ''k'', i.e. <math display="inline">  {^{t+ \Delta t}}\left[{^i}\boldsymbol{\varepsilon }\right]_k </math> and <math display="inline"> {^{t+ \Delta t}}\left[{^i}\boldsymbol{\beta }\right]_k </math>.
1517
1518
* Jacobian matrix computation <span id='citeF-8'></span><span id='citeF-7'></span>[[#cite-8|[8,7]]].
1519
1520
<span id="eq-4.36"></span>
1521
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1522
|-
1523
| 
1524
{| style="text-align: left; margin:auto;width: 100%;" 
1525
|-
1526
| style="text-align: center;" | <math>
1527
1528
{^{t+ \Delta t}}\left[\mathbb{J}\right]_k = {^{t+ \Delta t}}\left[{^m}\mathbb{C}_{SS} \right]_k + \dfrac{{^m}k}{{^f}k} {^{t+ \Delta t}}\left[{^f}\mathbb{C}_{SS} \right]_k      </math>
1529
|}
1530
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.36)
1531
|}
1532
1533
Where <math display="inline"> \left[{^m}\mathbb{C}_{SS} \right]</math> and <math display="inline"> \left[{^f}\mathbb{C}_{SS} \right]</math> are computed as shown in Equation [[#eq-4.9|4.9]] from the tangent constitutive tensors <math display="inline"> \left[{^m}\mathbb{C} \right]</math> and <math display="inline"> \left[{^f}\mathbb{C} \right]</math>. This expression is obtained from the general Jacobian definition introduced in Section [[#3.3 Solving the system of equations|3.3]] and using its notation: <math display="inline"> \Delta f = \Delta \boldsymbol{\sigma }_S </math> and <math display="inline"> u = {^m}\boldsymbol{\varepsilon }_S </math>. Therefore:
1534
1535
<span id="eq-4.37"></span>
1536
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1537
|-
1538
| 
1539
{| style="text-align: left; margin:auto;width: 100%;" 
1540
|-
1541
| style="text-align: center;" | <math>
1542
1543
\left[\mathbb{J}\right]_k = \left.\dfrac{\partial \left[\Delta \boldsymbol{\sigma }_S\right]}{\partial \; {^m}\boldsymbol{\varepsilon }_S}\right|_{{^m}\boldsymbol{\varepsilon }_S = \left[{^m}\boldsymbol{\varepsilon }_S\right]_k}  = \dfrac{\partial \left[{^m}\boldsymbol{\sigma }_S\right]_k}{\partial \; {^m}\boldsymbol{\varepsilon }_S} - \dfrac{\partial \left[{^f}\boldsymbol{\sigma }_S\right]_k}{\partial \; {^f}\boldsymbol{\varepsilon }_S} : \dfrac{\partial \; {^f}\boldsymbol{\varepsilon }_S}{\partial \; {^m}\boldsymbol{\varepsilon }_S} = </math>
1544
|-
1545
| style="text-align: center;" | <math>        = \left[{^m}\mathbb{C}_{SS} \right]_k - \left[{^f}\mathbb{C}_{SS} \right]_k : \left(-\dfrac{{^m}k}{{^f}k} \; \mathbb{I}\right)= </math>
1546
|-
1547
| style="text-align: center;" | <math>        =\underbrace{\left[{^m}\mathbb{C}_{SS} \right]_k + \dfrac{{^m}k}{{^f}k} \left[{^f}\mathbb{C}_{SS} \right]_k}_{Eq. 4.36}      </math>
1548
|}
1549
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.37)
1550
|}
1551
1552
* Unknown <math display="inline"> {^{t + \Delta t}}\left[{^m}\boldsymbol{\varepsilon }_S\right]_{k} </math> update. Once more, this is done as previously introduced in Section [[#3.3 Solving the system of equations|3.3]]:
1553
1554
<span id="eq-4.38"></span>
1555
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1556
|-
1557
| 
1558
{| style="text-align: left; margin:auto;width: 100%;" 
1559
|-
1560
| style="text-align: center;" | <math>
1561
1562
{^{t+ \Delta t}}\left[{^m}\boldsymbol{\varepsilon }_S\right]_{k+1} = {^{t+ \Delta t}}\left[{^m}\boldsymbol{\varepsilon }_S\right]_k - {^{t+ \Delta t}}\left[\mathbb{J}\right]_{k}^{-1} : \left[\Delta \boldsymbol{\sigma }_S\right]_k       </math>
1563
|}
1564
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.38)
1565
|}
1566
1567
Once this has been done, the algorithm moves back to step 2 and starts a new iteration <math display="inline"> k+1 </math>.
1568
1569
* ''Unknown variables update''. Once the problem has converged, it is time to prepare the data for the next time step. The results of the variables stated at Equation [[#eq-4.24|4.24]] are now the known variables of the new time step.
1570
1571
* ''Composite stress evaluation''. At this last step the composite total stress (<math display="inline"> {^{t + \Delta t}}\left[\boldsymbol{\sigma }\right]</math>) is computed. This is done using the Equation [[#eq-4.12|4.12]]:
1572
1573
<span id="eq-4.39"></span>
1574
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1575
|-
1576
| 
1577
{| style="text-align: left; margin:auto;width: 100%;" 
1578
|-
1579
| style="text-align: center;" | <math>
1580
1581
{^{t + \Delta t}}\left[\boldsymbol{\sigma }\right]= {^f}k \, {^{t + \Delta t}}\left[{^f}\boldsymbol{\sigma }\right]+ {^m}k \, {^{t + \Delta t}}\left[{^m}\boldsymbol{\sigma }\right]    </math>
1582
|}
1583
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.39)
1584
|}
1585
1586
This algorithm is used to obtain the unknowns at all the composite elements of the FE mesh used in the simulation. This provides the local solution of the problem, but the global behaviour is still unknown. The global solution for the structure is obtained through the Equation [[#eq-3.21|3.21]], where the global stiffness matrix is made up of all the composite tangent constitutive tensors <math display="inline"> \mathbb{C} </math> from each element of the FE mesh. Two approaches can be followed in order to obtain these tensors:
1587
1588
* Calculation using numerical perturbations <span id='citeF-37'></span>[[#cite-37|[37]]]. At this stage, the stress and strain fields of the composite material are known, therefore the composite <math display="inline"> \mathbb{C} </math> tensor can be obtained ''activating small strains'' and analysing the results obtained, i.e. <math display="inline"> \mathbb{C} = \boldsymbol{\sigma } : \boldsymbol{\varepsilon }^{-1} </math>.
1589
1590
* Calculation through the component tangent constitutive tensors <span id='citeF-8'></span><span id='citeF-9'></span>[[#cite-8|[8,9]]]. The composite tangent constitutive tensor has been defined in Equations [[#eq-4.8|4.8]] and [[#eq-4.9|4.9]]. These expressions can be written in terms of the components tangent constitutive tensors as:
1591
1592
<span id="eq-4.40"></span>
1593
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1594
|-
1595
| 
1596
{| style="text-align: left; margin:auto;width: 100%;" 
1597
|-
1598
| style="text-align: center;" | <math>
1599
1600
\mathbb{C}_{PP}= {^m}k {^f}k \left({^f}\mathbb{C}_{PS} - {^m}\mathbb{C}_{PS}\right): \mathbb{A} : \left({^f}\mathbb{C}_{SP} - {^m}\mathbb{C}_{SP}\right)+</math>
1601
|-
1602
| style="text-align: center;" | <math>   + \left({^f}k {^f}\mathbb{C}_{PP} + {^m}k {^m}\mathbb{C}_{PP}\right)</math>
1603
|-
1604
| style="text-align: center;" | <math>   \mathbb{C}_{PS} = \left({^f}k {^f}\mathbb{C}_{PS} : \mathbb{A} : {^m}\mathbb{C}_{SS} + {^m}k {^m}\mathbb{C}_{PS} : \mathbb{A} : {^f}\mathbb{C}_{SS}\right)</math>
1605
|-
1606
| style="text-align: center;" | <math>   \mathbb{C}_{SP} =\left({^m}k {^f}\mathbb{C}_{SS} : \mathbb{A} : {^m}\mathbb{C}_{SP} + {^f}k {^m}\mathbb{C}_{SS} : \mathbb{A} : {^f}\mathbb{C}_{SP}\right)</math>
1607
|-
1608
| style="text-align: center;" | <math>   \mathbb{C}_{SS} = \dfrac{1}{2} \left[\left({^m}\mathbb{C}_{SS} : \mathbb{A} : {^f}\mathbb{C}_{SS}\right)+ \left({^f}\mathbb{C}_{SS} : \mathbb{A} : {^m}\mathbb{C}_{SS}\right)\right]   </math>
1609
|}
1610
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.40)
1611
|}
1612
1613
By doing this, it is possible now to solve the global system of equations and move to the next time step.
1614
1615
==4.3 Prestressed concrete structures singularities==
1616
1617
At this stage, the general algorithm used for the SP RoM and all the properties of the LFCs are known. Despite this, as the present monograph is focused on the analysis of prestressed concrete structures, some of the introduced generalities can be particularized.
1618
1619
===Constitutive models===
1620
1621
The main advantage of the SP RoM is the chance to use whatever constitutive model is desired for the component materials. This allows to capture perfectly the behaviour of simple materials and then the algorithm will automatically compute the complex response of the composite material. Thus, it is interesting to know which are the constitutive models selected for the prestressed concrete analysis driven in this project.
1622
1623
====''Concrete modelization - Isotropic continuous damage model''====
1624
1625
The Continuum Damage Mechanics is a branch of the Continuum Mechanics that provides the needed framework for characterizing, representing and modelling the effects of distributed defects on the material behaviour. The propagation and coalescence of these defects generates a progressive and irreversible degradation of the elastic properties of the material, characterized by a stiffness loss <span id='citeF-30'></span><span id='citeF-39'></span><span id='citeF-32'></span>[[#cite-30|[30,39,32]]].
1626
1627
The Continuous Damage theory was first introduced by Kachanov <span id='citeF-40'></span>[[#cite-40|[40]]] in 1958 but it has evolved from then and now there are several approaches that can be used in the damage field. For the purpose of this monograph, the isotropic continuous damage model has been chosen for the concrete modelization. During the last years the use of this constitutive model has been widely accepted for the simulation of many materials used in engineering <span id='citeF-41'></span><span id='citeF-42'></span>[[#cite-41|[41,42]]] due to its simplicity in the implementation, versatility and coherence.
1628
1629
The isotropic damage model is completely characterized by one variable (<math display="inline"> d </math>) that takes into account the presence and growth of small fractures and micro voids in the material structure. Thus, this damage variable measures the level of deterioration in the material and works affecting the stress field by transforming the stress real tensor into an effective stress tensor. In general terms, this is expressed as:
1630
1631
<span id="eq-4.41"></span>
1632
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1633
|-
1634
| 
1635
{| style="text-align: left; margin:auto;width: 100%;" 
1636
|-
1637
| style="text-align: center;" | <math>\boldsymbol{\sigma }_0 = \mathbb{M}^{-1} : \boldsymbol{\sigma } </math>
1638
|}
1639
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.41)
1640
|}
1641
1642
Where <math display="inline"> \mathbb{M} </math> is the fourth-order tensor of the anisotropic damage model. Nevertheless, for the isotropic damage model that has been used for concrete, the tensor only depends on one scalar variable <math display="inline"> d </math> and Equation [[#eq-4.41|4.41]] can be rewritten as:
1643
1644
<span id="eq-4.42"></span>
1645
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1646
|-
1647
| 
1648
{| style="text-align: left; margin:auto;width: 100%;" 
1649
|-
1650
| style="text-align: center;" | <math>\boldsymbol{\sigma }_0 = \left[\left(1-d\right)\mathbb{I}\right]^{-1} : \boldsymbol{\sigma } =\dfrac{\boldsymbol{\sigma }}{1-d} \textrm{, } d \in \left[0,1\right] </math>
1651
|}
1652
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.42)
1653
|}
1654
1655
Where <math display="inline"> \boldsymbol{\sigma } </math> is the Cauchy stress tensor, <math display="inline"> \boldsymbol{\sigma }_0 </math> is the effective stress tensor and <math display="inline"> d </math> is the internal variable of damage such that <math display="inline"> d=0 </math> indicates that the material is not damaged and <math display="inline">  d=1  </math> indicates that the material is completely damaged, i.e. there is a local fracture.
1656
1657
The effective stress <math display="inline"> \boldsymbol{\sigma }_0 </math> concept was first introduced by Kachanov (1958) to carry out fracture simulations. This tensor must be understood as the stress state in a non-damaged element, which generates the same strain that <math display="inline"> \boldsymbol{\sigma } </math> produces in a damaged element. Figure [[#img-16|16]] represents this idea.
1658
1659
<div id='img-16a'></div>
1660
<div id='img-16b'></div>
1661
<div id='img-16'></div>
1662
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1663
|-
1664
|[[Image:Draft_Samper_351239591-DamageSigmaReal.png|600px|Damaged real element]]
1665
|[[Image:Draft_Samper_351239591-DamageSigmaEffective.png|480px|Non-damaged equivalent element]]
1666
|- style="text-align: center; font-size: 75%;"
1667
| (a) Damaged real element
1668
| (b) Non-damaged equivalent element
1669
|- style="text-align: center; font-size: 75%;"
1670
| colspan="2" | '''Figure 16:''' Graphic representation of the effective stress definition <span id='citeF-32'></span>[[#cite-32|[32]]]
1671
|}
1672
1673
Consequently, the relation between <math display="inline"> \boldsymbol{\sigma }_0 </math> and the induced strain (<math display="inline"> \boldsymbol{\varepsilon } </math>) can be formulated in elastic terms as:
1674
1675
<span id="eq-4.43"></span>
1676
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1677
|-
1678
| 
1679
{| style="text-align: left; margin:auto;width: 100%;" 
1680
|-
1681
| style="text-align: center;" | <math>\boldsymbol{\sigma }_0 = \mathbf{C} \, \boldsymbol{\varepsilon } </math>
1682
|}
1683
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.43)
1684
|}
1685
1686
Where <math display="inline"> \mathbf{C} </math> is the elastic constitutive matrix. Considering now the formulation in terms of the real stress tensor <math display="inline"> \boldsymbol{\sigma } </math> by using Equation [[#eq-4.42|4.42]], the constitutive law for the isotropic damage model can be written as:
1687
1688
<span id="eq-4.44"></span>
1689
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1690
|-
1691
| 
1692
{| style="text-align: left; margin:auto;width: 100%;" 
1693
|-
1694
| style="text-align: center;" | <math>\boldsymbol{\sigma } = \left(1-d\right)\mathbf{C} \, \boldsymbol{\varepsilon } </math>
1695
|}
1696
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.44)
1697
|}
1698
1699
Now, only one question remains: How is the internal variable of damage <math display="inline"> d </math> controlled? Of course <math display="inline"> d </math> is not constant. It is defined by two properties:
1700
1701
* Damage threshold criterion. This makes the distinction between an elastic behaviour of the material and another in which the degradation process of the material's properties takes place. This criterion is specific to the material that is being modelled but can be defined in general terms as:
1702
1703
<span id="eq-4.45"></span>
1704
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1705
|-
1706
| 
1707
{| style="text-align: left; margin:auto;width: 100%;" 
1708
|-
1709
| style="text-align: center;" | <math>
1710
1711
\mathbb{F}\left(\boldsymbol{\sigma }_0 ; \mathbf{q}\right)= f\left(\boldsymbol{\sigma }_0\right)- c\left(d\right)\leq 0 , \quad \mathrm{with} \; q \equiv \left\lbrace d \right\rbrace  </math>
1712
|}
1713
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.45)
1714
|}
1715
1716
Where <math display="inline"> f\left(\boldsymbol{\sigma }_0\right)</math> is a function of the stress tensor <math display="inline"> \boldsymbol{\sigma }_0 = \mathbb{C}_0 : \boldsymbol{\varepsilon } </math> and <math display="inline"> c\left(d\right)</math> is the scalar function defining the damage threshold position. The initial value of this damage threshold <math display="inline"> c\left(d^0\right)= c^{max} = \boldsymbol{\sigma }^{max} </math> is a property of the material and is related to its compressive strength.
1717
1718
Concrete is the material that is being simulated using the damage model, therefore a yield criteria appropriate for frictional materials is needed. The FE code used during the analysis performed for this monograph uses the Mohr-Coulomb modified function <span id='citeF-32'></span>[[#cite-32|[32]]]. This yield criteria is specific for concrete, which has an internal friction angle of <math display="inline"> \phi = 32^{\circ} </math> and a compression - tension strength ratio <math display="inline"> \mathbb{R}_{Mohr}^0 = \| \boldsymbol{\sigma }_C^0 / \boldsymbol{\sigma }_T^0 \| \simeq 10.0 </math>. These characteristics cannot be achieved with the original Mohr-Coulomb function and so this alternative is used. In this scenario, Equation [[#eq-4.45|4.45]] is rewritten as:
1719
1720
<span id="eq-4.46"></span>
1721
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1722
|-
1723
| 
1724
{| style="text-align: left; margin:auto;width: 100%;" 
1725
|-
1726
| style="text-align: center;" | <math>
1727
1728
\begin{matrix}
1729
1730
\mathbb{F}\left(\boldsymbol{\sigma } , c , \phi \right)= f\left(\boldsymbol{\sigma } , \phi \right)- c\left(d\right)= 0 \\   \mathrm{or} \\   \bar{\mathbb{F}}\left(\boldsymbol{\sigma } , c , \phi \right)= G \left[f\left(\boldsymbol{\sigma } , \phi \right)\right] - G \left[c\left(d\right)\right]= 0   \end{matrix}  </math>
1731
|}
1732
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.46)
1733
|}
1734
1735
Both expressions are equivalent. <math display="inline"> G \left[\chi \right]</math> is a scalar monotonically increasing function, positive invertible, with positive derivative, <math display="inline"> f\left(\boldsymbol{\sigma } , \phi \right)</math> is the stress function that control the Mohr-Coulomb function, which can be expressed as:
1736
1737
<span id="eq-4.47"></span>
1738
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1739
|-
1740
| 
1741
{| style="text-align: left; margin:auto;width: 100%;" 
1742
|-
1743
| style="text-align: center;" | <math>
1744
1745
f\left(\boldsymbol{\sigma } , \phi \right)= \dfrac{1}{\cos \left(\phi \right)} \left\lbrace \dfrac{I_1}{3} \mathbb{K}_3 + \sqrt{J_2} \left[\mathbb{K}_1 \cos \left(\theta \right)- \mathbb{K}_2 \dfrac{\sin \left(\theta \right)\sin \left(\phi \right)}{\sqrt{3}} \right]\right\rbrace   </math>
1746
|}
1747
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.47)
1748
|}
1749
1750
<math display="inline"> I_1 </math> is the first invariant of the stress tensor, <math display="inline"> J_2 </math> is the second invariant of the deviatoric stress tensor and <math display="inline"> \theta </math> is the Lode's similarity angle <math display="inline"> \theta = \arcsin \left[\left(3\sqrt{3}J_3\right)/\left(2J_2^{3/2}\right)\right]</math>. <math display="inline"> \mathbb{K}_i </math> are the factors that allow the generalisation of the Mohr-Coulomb yield function and thus, depend on the friction angle <math display="inline"> \phi </math> and on the compression - tension ratio.
1751
1752
<div id='img-17'></div>
1753
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1754
|-
1755
|[[Image:Draft_Samper_351239591-MohrCoulombGraph2.png|600px|Graphical representation of the Mohr-Coulomb modified function <span id='citeF-32'></span>[[#cite-32|[32]]]]]
1756
|- style="text-align: center; font-size: 75%;"
1757
| colspan="1" | '''Figure 17:''' Graphical representation of the Mohr-Coulomb modified function <span id='citeF-32'></span>[[#cite-32|[32]]]
1758
|}
1759
1760
* Evolution law of the damage variable, <math display="inline"> d </math>. The general equation that determines the evolution of this variable is:
1761
1762
<span id="eq-4.48"></span>
1763
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1764
|-
1765
| 
1766
{| style="text-align: left; margin:auto;width: 100%;" 
1767
|-
1768
| style="text-align: center;" | <math>
1769
1770
\dot{d} = \dot{\mu } \dfrac{\partial \bar{\mathbb{F}}\left(\boldsymbol{\sigma }_0 ; \mathbf{q}\right)}{\partial \left[f\left(\boldsymbol{\sigma }_0\right)\right]} \equiv \dot{\mu } \dfrac{\partial G\left[f\left(\boldsymbol{\sigma }_0\right)\right]}{\partial \left[f\left(\boldsymbol{\sigma }_0\right)\right]}  </math>
1771
|}
1772
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.48)
1773
|}
1774
1775
Where <math display="inline"> \mu </math> is a non-negative scalar called damage consistency parameter, which is used to define loading, unloading and reloading conditions <span id='citeF-32'></span>[[#cite-32|[32]]].
1776
1777
Therefore, the damage criterion can change depending on the definition of the <math display="inline"> G \left[\chi \right]</math> functions, which control the threshold and the evolution of the damage law.
1778
1779
The damage model used for the concrete modelization in this monograph is based on an exponential approach, which leads to the following expression for the damage internal variable:
1780
1781
<span id="eq-4.49"></span>
1782
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1783
|-
1784
| 
1785
{| style="text-align: left; margin:auto;width: 100%;" 
1786
|-
1787
| style="text-align: center;" | <math>d = 1 - \left[\dfrac{f^0\left(\boldsymbol{\sigma }_0\right)}{\tau } e^{A\left(1 - \dfrac{\tau }{f^0\left(\boldsymbol{\sigma }_0\right)}\right)}\right]  </math>
1788
|}
1789
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.49)
1790
|}
1791
1792
Where <math display="inline"> f^0\left(\boldsymbol{\sigma }_0\right)= c^{max} </math> is the initial value of the damage threshold, <math display="inline"> A </math> is a parameter that depends on the fracture energy and <math display="inline"> \tau </math> is the damage threshold condition, which sets the beginning of the damage procedure for <math display="inline"> \tau =  G \left[f\left(\boldsymbol{\sigma }_0\right)\right]> \tau _{max} = G \left[c\left(d\right)\right]</math>.
1793
1794
Finally, the effect of the damage in the material is, of course, a progressive degradation of the material properties. This means that the constitutive matrix <math display="inline"> \mathbb{C} </math> is not constant and so it is necessary to define it in terms of the damage parameters and compute it at each iteration and time step. This is the tangent constitutive tensor of damage:
1795
1796
<span id="eq-4.50"></span>
1797
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1798
|-
1799
| 
1800
{| style="text-align: left; margin:auto;width: 100%;" 
1801
|-
1802
| style="text-align: center;" | <math>\mathbb{C}^T = \left(1-d\right)\mathbb{C}_0 - \dfrac{\partial G\left[f\left(\boldsymbol{\sigma }_0\right)\right]}{\partial \left[f\left(\boldsymbol{\sigma }_0\right)\right]} \left[\mathbb{C}_0 : \boldsymbol{\varepsilon }\right]\otimes \dfrac{\partial f\left(\mathbb{C}_0 : \boldsymbol{\varepsilon }\right)}{\partial \boldsymbol{\varepsilon }}  </math>
1803
|}
1804
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.50)
1805
|}
1806
1807
Using all this information, the constitutive model used for the concrete is completely defined.
1808
1809
====''Prestressing steel modelization - Viscoelasticity model''====
1810
1811
Prestressing steel is characterized by a high compressive/tensile strength compared to the other component materials of the prestressed concrete. This allows considering an elastic constitutive model for its numerical modelization. Despite this, the use of a constitutive model constant in time does not reproduce the real behaviour of this material. A time-dependent model is needed instead.
1812
1813
There are two types of time-dependent elasticity models <span id='citeF-32'></span>[[#cite-32|[32]]]:
1814
1815
* Delayed elasticity or creep model. In these models, the stress is the free variable of the problem and so the strains change in time depending on the free variable value. The Kelvin viscoelastic model is a good example. This idea is shown in Figure [[#img-18a|18a]].
1816
* Relaxation model. In these models the strain is the free variable of the problem and so the stresses change in time depending on the free variable value. The Maxwell viscoelastic model is a good example. This idea is shown in Figure [[#img-18b|18b]].
1817
1818
<div id='img-18a'></div>
1819
<div id='img-18b'></div>
1820
<div id='img-18'></div>
1821
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1822
|-
1823
|[[Image:Draft_Samper_351239591-Kelvin.png|540px|Response of the generalized Kelvin model under a constant stress]]
1824
|[[Image:Draft_Samper_351239591-Maxwell.png|540px|Response of the generalized Maxwell model under a constant deformation]]
1825
|- style="text-align: center; font-size: 75%;"
1826
| (a) Response of the generalized Kelvin model under a constant stress
1827
| (b) Response of the generalized Maxwell model under a constant deformation
1828
|- style="text-align: center; font-size: 75%;"
1829
| colspan="2" | '''Figure 18:''' Time-dependent elasticity models <span id='citeF-32'></span>[[#cite-32|[32]]]
1830
|}
1831
1832
The prestressing steel behaviour in time consists of a progressive stress loss and thus, the Maxwell model is the one chosen for the material modelization. In fact, a generalization of this model is used: the generalized Maxwell model.
1833
1834
Before moving to the multiaxial generalization of this model, it is better to introduce it using an uniaxial representation based on a spring-damping analogy (Figure [[#img-19|19]]).
1835
1836
<div id='img-19'></div>
1837
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1838
|-
1839
|[[Image:Draft_Samper_351239591-MaxwellSpringDamping.png|360px|The Generalized Maxwell model <span id='citeF-32'></span>[[#cite-32|[32]]]]]
1840
|- style="text-align: center; font-size: 75%;"
1841
| colspan="1" | '''Figure 19:''' The Generalized Maxwell model <span id='citeF-32'></span>[[#cite-32|[32]]]
1842
|}
1843
1844
In this model, the stress state at any time is expressed in terms of the free variable <math display="inline"> \boldsymbol{\varepsilon } </math> as:
1845
1846
<span id="eq-4.51"></span>
1847
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1848
|-
1849
| 
1850
{| style="text-align: left; margin:auto;width: 100%;" 
1851
|-
1852
| style="text-align: center;" | <math>\boldsymbol{\sigma }\left(t\right)= \boldsymbol{\sigma }^{i}\left(t\right)+ \boldsymbol{\sigma }^{\infty }\left(t\right), \quad \mathrm{where: } \left\{\begin{matrix}&\boldsymbol{\sigma }^{i}\left(t\right)= \mathbb{C}_{1} \left(\boldsymbol{\varepsilon } \left(t\right)- \boldsymbol{\varepsilon }^{i} \left(t\right)\right)= \xi _1 \dot{\boldsymbol{\varepsilon }}^{i} \left(t\right)\\  &\boldsymbol{\sigma }^{\infty }\left(t\right)= \mathbb{C}_{\infty } \boldsymbol{\varepsilon } \left(t\right)   \end{matrix}  \right. </math>
1853
|}
1854
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.51)
1855
|}
1856
1857
This equation expresses mathematically what is shown in Figure [[#img-19|19]]: the model is governed by an elastic component and an inelastic component. The inelastic component progressively disappears with time until the elastic component fully controls the material behaviour.
1858
1859
Adding both terms in Equation [[#eq-4.51|4.51]] the equilibrium condition is written:
1860
1861
<span id="eq-4.52"></span>
1862
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1863
|-
1864
| 
1865
{| style="text-align: left; margin:auto;width: 100%;" 
1866
|-
1867
| style="text-align: center;" | <math>\boldsymbol{\sigma }\left(t\right)= \boldsymbol{\sigma }^{i} \left(t\right)+ \boldsymbol{\sigma }^{\infty }\left(t\right)= \mathbb{C}_{1} \left(\boldsymbol{\varepsilon } \left(t\right)- \boldsymbol{\varepsilon }^{i} \left(t\right)\right)+  \mathbb{C}_{\infty } \boldsymbol{\varepsilon } \left(t\right)= \xi _1 \dot{\boldsymbol{\varepsilon }}^{i} \left(t\right)+  \mathbb{C}_{\infty } \boldsymbol{\varepsilon } \left(t\right) </math>
1868
|}
1869
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.52)
1870
|}
1871
1872
This can also be expressed as:
1873
1874
<span id="eq-4.53"></span>
1875
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1876
|-
1877
| 
1878
{| style="text-align: left; margin:auto;width: 100%;" 
1879
|-
1880
| style="text-align: center;" | <math>\boldsymbol{\sigma }\left(t\right)= \mathbb{C}_{0}\boldsymbol{\varepsilon } \left(t\right)- \mathbb{C}_{1} \boldsymbol{\varepsilon }^{i}   </math>
1881
|}
1882
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.53)
1883
|}
1884
1885
Where <math display="inline"> \mathbb{C}_{0} = \mathbb{C}_{\infty } + \mathbb{C}_{1} </math>.
1886
1887
These equations fully define the Maxwell model, they are the constitutive equation. Despite this, it is interesting to eliminate the inelastic strain variable from the equation. This can be achieved by solving the differential equation:
1888
1889
<span id="eq-4.54"></span>
1890
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1891
|-
1892
| 
1893
{| style="text-align: left; margin:auto;width: 100%;" 
1894
|-
1895
| style="text-align: center;" | <math>\dfrac{\boldsymbol{\varepsilon }\left(t\right)}{r_1} = \dfrac{\boldsymbol{\varepsilon }^{i}  \left(t\right)}{r_1} + \dot{\boldsymbol{\varepsilon }}^{i} \left(t\right) </math>
1896
|}
1897
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.54)
1898
|}
1899
1900
Where <math display="inline"> r_1 = \dfrac{\xi _1}{\mathbb{C}_{1}} </math>. This equation is obtained from the definition of the inelastic stress component written in Equation [[#eq-4.51|4.51]].
1901
1902
The solution of this differential equation is:
1903
1904
<span id="eq-4.55"></span>
1905
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1906
|-
1907
| 
1908
{| style="text-align: left; margin:auto;width: 100%;" 
1909
|-
1910
| style="text-align: center;" | <math>\left\{\begin{matrix}&\boldsymbol{\varepsilon }^{i}  \left(t\right)= 0 \qquad &\forall \, \tau < \tau _0 \\  &\boldsymbol{\varepsilon }^{i}  \left(t\right)= \int _{-\infty }^{t} \dfrac{1}{r_1} e^{-\left(t-s\right)/r_1} \boldsymbol{\varepsilon } \left(s\right)ds \qquad &\forall \, \tau \geq \tau _0  \end{matrix}  \right. </math>
1911
|}
1912
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.55)
1913
|}
1914
1915
Where <math display="inline"> \tau _0 </math> is the time at which a strain <math display="inline"> \boldsymbol{\varepsilon }  \left(t\right)</math> is applied. Substituting this equation into Equation [[#eq-4.53|4.53]]:
1916
1917
<span id="eq-4.56"></span>
1918
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1919
|-
1920
| 
1921
{| style="text-align: left; margin:auto;width: 100%;" 
1922
|-
1923
| style="text-align: center;" | <math>\left\{\begin{matrix}&\boldsymbol{\sigma }\left(t\right)= 0 \qquad &\forall \, \tau < \tau _0\\  &\boldsymbol{\sigma }\left(t\right)= \mathbb{C}_{0} \boldsymbol{\varepsilon } \left(t\right)- \dfrac{\mathbb{C}_{0}}{r_1} \int _{-\infty }^{t} e^{-\left(t-s\right)/r_1} \boldsymbol{\varepsilon } \left(s\right)ds \qquad &\forall \, \tau \geq \tau _0   \end{matrix}  \right. </math>
1924
|}
1925
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.56)
1926
|}
1927
1928
Figure [[#img-18b|18b]] shows the particular case where the imposed strain at time <math display="inline"> t=\tau _0 </math> is:
1929
1930
<span id="eq-4.57"></span>
1931
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1932
|-
1933
| 
1934
{| style="text-align: left; margin:auto;width: 100%;" 
1935
|-
1936
| style="text-align: center;" | <math>\left\{\begin{matrix}&\boldsymbol{\varepsilon } \left(t\right)= 0 \qquad &\forall \, t < \tau _0 = 0\\  &\boldsymbol{\varepsilon } \left(t\right)= \boldsymbol{\varepsilon }_0 \qquad &\forall \, t \geq \tau _0 = 0   \end{matrix}  \right. </math>
1937
|}
1938
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.57)
1939
|}
1940
1941
And thus, the stress expression obtained from Equation [[#eq-4.56|4.56]]:
1942
1943
<span id="eq-4.58"></span>
1944
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1945
|-
1946
| 
1947
{| style="text-align: left; margin:auto;width: 100%;" 
1948
|-
1949
| style="text-align: center;" | <math>\left\{\begin{matrix}&\boldsymbol{\sigma }\left(t\right)= 0 \qquad &\forall \, \tau < \tau _0\\  &\boldsymbol{\sigma }\left(t\right)= \left(\mathbb{C}_{\infty } + \mathbb{C}_{1} e^{-t/r_1}\right)\boldsymbol{\varepsilon }_0 \qquad &\forall \, \tau \geq \tau _0   \end{matrix}  \right. </math>
1950
|}
1951
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.58)
1952
|}
1953
1954
Now that the uniaxial approach has been introduced, it is easier to describe the multiaxial approach of the generalized Maxwell model. Equation [[#eq-4.56|4.56]] is now written at a time <math display="inline"> t + \Delta t </math>, as follows:
1955
1956
<span id="eq-4.59"></span>
1957
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1958
|-
1959
| 
1960
{| style="text-align: left; margin:auto;width: 100%;" 
1961
|-
1962
| style="text-align: center;" | <math>\boldsymbol{\sigma }_{ij}\left(t + \Delta t\right)= \mathbb{C}_{ijkl} \left[\boldsymbol{\varepsilon }_{ij} \left(t + \Delta t\right)- \dfrac{\mathbb{C}_{1}}{\mathbb{C}_{0} \xi } \int _{-\infty }^{t + \Delta t} e^{-\left(t + \Delta t -s\right)/r_1} \boldsymbol{\varepsilon }_{kl} \left(s\right)ds\right]= </math>
1963
|-
1964
| style="text-align: center;" | <math>   = \mathbb{C}_{ijkl} \boldsymbol{\varepsilon }_{ij}\left(t + \Delta t\right)- \left[\mathbb{C}_{ijkl} \dfrac{\mathbb{C}_{1}}{\mathbb{C}_{0} \xi } \int _{-\infty }^{t} e^{-\left(t-s\right)/r_1} \boldsymbol{\varepsilon }_{kl}\left(s\right)\right]- </math>
1965
|-
1966
| style="text-align: center;" | <math>   - \mathbb{C}_{ijkl} \dfrac{\mathbb{C}_{1}}{\mathbb{C}_{0} \xi } \int _{t}^{t + \Delta t} e^{-\left(t + \Delta t-s\right)/r_1} \boldsymbol{\varepsilon }_{kl}\left(s\right)=</math>
1967
|-
1968
| style="text-align: center;" | <math>   = \boldsymbol{\sigma }_{ij}\left(t + \Delta t\right)=  \boldsymbol{\sigma }_{ij}\left(t\right)e^{-\left(\Delta t\right)/r_1} - \mathbb{C}_{ijkl} \boldsymbol{\varepsilon }_{kl}\left(t\right)e^{-\left(\Delta t\right)/r_1} \left[1 + \dfrac{\mathbb{C}_{1}}{\mathbb{C}_{0} \xi } \dfrac{\Delta t}{2}\right] +</math>
1969
|-
1970
| style="text-align: center;" | <math>   + \mathbb{C}_{ijkl} \boldsymbol{\varepsilon }_{kl}\left(t + \Delta t\right)\left[1 - \dfrac{\mathbb{C}_{1}}{\mathbb{C}_{0} \xi } \dfrac{\Delta t}{2}\right]  </math>
1971
|}
1972
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.59)
1973
|}
1974
1975
Where the integral has been solved using the trapezoidal rule as proposed by Oller (2014) <span id='citeF-32'></span>[[#cite-32|[32]]].
1976
1977
===Effect of the prestressing over the SP RoM formulation===
1978
1979
Having a look at the compatibility conditions written in Section [[#4.2 SP RoM formulation|4.2]], it can be observed that the current definition of the SP RoM is not valid for the modelization of prestressing steel. Condition 4 imposes that there is no possible relative displacement between component materials, but the prestressing effect imposes an initial relative displacement between the matrix and the fibre. Therefore, it is necessary to modify the original formulation.
1980
1981
A new compatibility condition is included:
1982
1983
* Relative movement between the component materials is allowed if and only if an imposed strain condition exists over one of them. 
1984
1985
Therefore, loss of adherence is allowed only in the presence of the prestressing effect, included as an imposed strain.
1986
1987
Equation [[#eq-4.13|4.13]] must be modified to take into account the imposition of an initial strain for the fibre in order to represent the prestressing effect. The new equation is piecewise function:
1988
1989
* In the first iteration of the S-P RoM algorithm, the parallel component of the strain tensor of the prestressing steel is fixed to the imposed prestressing value <math display="inline"> \boldsymbol{\varepsilon }_{imp} </math> and the parallel component of the matrix component remains equal to the parallel component of the composite strain.
1990
1991
<span id="eq-4.60"></span>
1992
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1993
|-
1994
| 
1995
{| style="text-align: left; margin:auto;width: 100%;" 
1996
|-
1997
| style="text-align: center;" | <math>
1998
1999
\textrm{incr.} =1 \textrm{ and iter.} =1 \quad \Rightarrow \quad {^m}\boldsymbol{\varepsilon }_P = {^c}\boldsymbol{\varepsilon }_P \quad \wedge \quad {^f}\boldsymbol{\varepsilon }_P = \boldsymbol{\varepsilon }_{imp}  </math>
2000
|}
2001
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.60)
2002
|}
2003
* For the rest of the steps of the analysis, the parallel component of the strain tensor of the active steel is computed through the current prestressing value <math display="inline"> \boldsymbol{\varepsilon }_{imp,t} </math> and the parallel component of the composite strain. On the other hand, the parallel component of the matrix component is still equal to the parallel component of the composite strain.
2004
2005
<span id="eq-4.61"></span>
2006
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2007
|-
2008
| 
2009
{| style="text-align: left; margin:auto;width: 100%;" 
2010
|-
2011
| style="text-align: center;" | <math>
2012
2013
\textrm{incr.} \geq 1 \textrm{ and iter.} > 1 \quad \Rightarrow \quad {^m}\boldsymbol{\varepsilon }_P = {^c}\boldsymbol{\varepsilon }_P \quad \wedge \quad {^f}\boldsymbol{\varepsilon }_P = {^c}\boldsymbol{\varepsilon }_P + \boldsymbol{\varepsilon }_{imp,t}  </math>
2014
|}
2015
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.61)
2016
|}
2017
2018
===Pre/Post tensioned structures and bonding effect===
2019
2020
The present monograph is focused on the analysis of post-tensioned concrete structures. Despite this, there are another type of prestressed concrete structures that can be analysed through the SP RoM, i.e. the pre-tensioned concrete structures.
2021
2022
The analysis of these structures do not add any difference to the approach, although the construction procedures and the uses of this typology are different to the ones of post-tensioned structure.
2023
2024
Despite this, there is a specific case in which some modifications must be considered: unbonded post-tensioned concrete structures. In this case, the post-tensioning of steel is modelled by considering the three transversal modulus of the steel close to 0 and therefore allowing the steel to glide without friction inside the concrete. In order to fully allow deformation of the steel in a decoupled way from the concrete, its Poisson coefficients are set to 0, which allows the complete description of the post-tensioning process. Pre-tensioning and bonded post-tensioning, on the other hand, are reproduced by considering both, the transversal modulus and the Poisson coefficients for steel at their common value.
2025
2026
===Reinforcing steel===
2027
2028
The SP RoM is a useful technique but it has to be used appropriately. The formulation introduced in Section [[#4.2 SP RoM formulation|4.2]] is valid for composite materials with only two phases. Therefore, in those cases where a FE contains concrete, prestressing steel and reinforcement steel, the formulation is no longer valid.
2029
2030
The possibility of generalising the SP RoM theory for <math display="inline"> n </math> materials exists but it has a big computational cost. A different approach is considered instead.
2031
2032
In general, reinforcing steel has either a clear directional contribution when only longitudinal or transversal reinforcement is used or a uniform effect when it is organized as a dense grid. This allows accounting for it by using an approach introduced in Section [[#2.2 FEM approach|2.2]]: smeared elements.
2033
2034
Therefore, what is done is that the rebars effect is included in the computation as an increment in the concrete strength. This approach allows the inclusion of different reinforcing contributions in each direction and in each FE.
2035
2036
Finally, by using this methodology the SP RoM formulation is valid again. The two component materials are now: the prestressing steel (<math display="inline"> = </math> fibre) and the concrete including the rebars contribution (<math display="inline"> = </math> matrix).
2037
2038
=5 Application examples=
2039
2040
Once the fundamentals that support the SP RoM theory and the FEM have been introduced, it is time to show how these bases are applied to the analysis of post-tensioned structures.
2041
2042
In this section three cases are presented which are intended to validate the methodology and demonstrate its potential. Two isostatic beams have been selected in order to compare the results obtained with the SP RoM approach and those obtained from an analytical approach.
2043
2044
The last example is the result of the recent work developed at the International Centre for Numerical Method in Engineering (CIMNE). It is the study of a mock-up of a reactor containment building as part of the VeRCoRs Project <span id='citeF-43'></span>[[#cite-43|[43]]]. This analysis allows to demonstrate the potential of the proposed methodology.
2045
2046
==5.1 Required software==
2047
2048
The analysis performed has been possible thanks to GiD<math display="inline"> ^{\mbox{®}} </math> <span id='citeF-44'></span><span id='citeF-31'></span>[[#cite-44|[44,31]]] and PLastic Crack dynamic (PLCd) <span id='citeF-45'></span>[[#cite-45|[45]]].
2049
2050
GiD is a pre and post processor for numerical simulations in science and engineering developed by CIMNE. Gid version 13.1.7 has been used for building the models and for the results display. Therefore, the images presented in this section have been obtained with this software.
2051
2052
On the other hand, PLCd is an implicit finite element code for the numerical simulation of nonlinear dynamic behaviour of structures of complex constitution. It was created in 1989 and it has been continuously evolving since then. The SP RoM is implemented in this code, thus it has been used for the calculation of the structures tested here.
2053
2054
Next section will show how these software are used in the calculation procedure.
2055
2056
<div id='img-20a'></div>
2057
<div id='img-20b'></div>
2058
<div id='img-20'></div>
2059
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2060
|-
2061
|[[Image:Draft_Samper_351239591-GiDLogo.png|540px|GiD logo]]
2062
|[[Image:Draft_Samper_351239591-PLCdLogo.png|420px|PLCd logo]]
2063
|- style="text-align: center; font-size: 75%;"
2064
| (a) GiD logo
2065
| (b) PLCd logo
2066
|- style="text-align: center; font-size: 75%;"
2067
| colspan="2" | '''Figure 20:''' Software used during the analysis
2068
|}
2069
2070
==5.2 Procedure description==
2071
2072
The steps followed during the analysis performed are quite standardized, regardless of what structure is being studied. Thus, it is possible to describe the general procedure and it will remain valid for any case:
2073
2074
* ''Model generation''. The procedure starts creating a 3-D model that represents adequately the structure that is being analysed. It can be generated using GiD preprocessing tools but other software can be used instead and then load it into GiD, which accepts many formats, e.g. IGES, STEP, DXF, ACIS, VDA, Rhinoceros, etc.
2075
2076
The model is complete when all the elements are defined, i.e. lines, surfaces and volumes. Prestressing steel is not included as a 3-D element, curvilinear lines are used with this purpose and, when the SP RoM is performed, the tendon area is taken into account.
2077
2078
* ''Attributes allocation''. Once the model has been created, it is time to define the boundary conditions, the material properties and the load cases and apply them properly to the model entities.
2079
2080
The prestressing force is not assigned at this step. In fact it is defined as an imposed strain and not as a force.
2081
2082
* ''FE mesh generation''. Two FE meshes are generated for the calculations. The first one is built using 8-noded linear hexahedral elements with GiD. It can be structured, unstructured or semistructured depending on the geometry requirements. The second mesh is generated using the tendons. Thus, the other elements are disabled and only the lines that constitute the tendons are used.
2083
2084
* ''Intersections''. This step is used to define the relation between the two meshes, i.e. identify the path that the tendons describe through the hexaedra.
2085
2086
By doing this, besides finding out the hexaedras that are crossed by a tendon, the points where the intersection is produced are found and stored. This operation is essential for the composite material description because these coordinates describe the fibre orientation for each composite material.
2087
2088
* ''Composite generation''. Each composite material is characterized by the matrix and fibre material properties defined and assigned at step 2 and the fibre orientation defined at step 4. With this information, the program compiles all the information and generates a file with all the casuistic and the FEs associated to each one. Thus, this file contains the information that characterize a composite material, i.e. <math display="inline"> \mathbf{e}_1 </math> vector and <math display="inline"> {^f}k </math> and <math display="inline"> {^m}k </math> coefficients (see Section [[#4 Serial-Parallel Rule of Mixtures|4]]).
2089
2090
* ''Description of the loading sequence''. The output obtained at the last step is the file required for the PLCd calculation. Despite this, the file is incomplete at this stage. The information missing is the one that describes the load sequences that take place at the structure, the so called ''stages''. At least two stages are usually included: the self-weight and the prestressing operation. These sections include not only the load values and the elements affected by them, but also the increments in which loads are applied or the tolerance admitted at each iteration.
2091
2092
At this moment, the code allows imposing only a constant strain value for each tendon that accounts for the prestressing effect. This means that immediate prestressing losses are not being considered by the software. Therefore, a previous calculation that takes into consideration these losses is necessary and then a mean strain can be used as the initial prestressing value. The procedure followed is explained in detail in Section [[#5.4 Mock-up of a reactor containment building|5.4]].
2093
2094
* ''Structure computation''. PLCd is used now for the computation. The SP RoM approach is applied and the analysis is performed.
2095
2096
* ''Display of results''. The results obtained with PLCd can now be displayed using GiD. The calculation software computes stresses, strains, displacements and reactions, which can be loaded on the structure model and visualized in the post-process.
2097
2098
==5.3 Validation examples==
2099
2100
Two beams are analysed in this section and two approaches are used in each case: the SP RoM and the analytic formulation used in the Strength of Materials theory <span id='citeF-46'></span>[[#cite-46|[46]]]. This allows the comparison of the results and the validation of the proposed methodology before moving to a real scenario.
2101
2102
These examples have been faced assuming several simplifications, which allow delimiting the scope of the problem and orient it towards the desired direction:
2103
2104
* Prestressed cantilever with a linear centred tendon. This case has been generated to measure the deformation that a tendon induces in a structural element due to the prestressing effect when it is introduced by one end. The pure longitudinal response can only be achieved when the self weight is not considered and the tendon is linear and is centred in the beam section. Furthermore, as PLCd only admits constant stress distribution at the tendon, the analytic approach must be formulated under the same conditions.
2105
2106
* Prestressed simply supported beam with a parabolic tendon. This example is used to compute the vertical deformation induced by the prestressing force. Again, the self-weight is not considered because it would interfere in the calculations. In addition, a constant stress distribution at the tendon is considered once more.
2107
2108
In both cases elastic materials have been used because the analytic formulation used for comparison works in the elastic domain. Therefore, these are not realistic structures and the results obtained here are not translatable to a real situation, but this is not the purpose of them. They are only used for validating the methodology.
2109
2110
===Prestressed cantilever with a linear centred tendon===
2111
2112
A cantilever beam has been modelled using GiD (Figure [[#img-21|21]]). It has a square section with sides <math display="inline"> b=h=1.1m </math> and length <math display="inline"> L=7m </math>. The boundary condition has been imposed on one face by blocking displacements in the three directions (Figure [[#img-22|22]]).
2113
2114
<div id='img-21'></div>
2115
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2116
|-
2117
|[[Image:Draft_Samper_351239591-E1Model.png|480px|GiD model with the main geometry dimensions]]
2118
|- style="text-align: center; font-size: 75%;"
2119
| colspan="1" | '''Figure 21:''' GiD model with the main geometry dimensions
2120
|}
2121
2122
<div id='img-22'></div>
2123
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2124
|-
2125
|[[Image:Draft_Samper_351239591-E1BoundaryCond.png|480px|Fixed end of the cantilever beam at GiD model]]
2126
|- style="text-align: center; font-size: 75%;"
2127
| colspan="1" | '''Figure 22:''' Fixed end of the cantilever beam at GiD model
2128
|}
2129
2130
The properties of the materials used for the beam simulation are summarized in Table [[#table-2|2]]. These values are frequent for materials used in prestressed structures.
2131
2132
2133
{|  class="floating_tableSCP wikitable" style="text-align: left; margin: 1em auto;min-width:50%;"
2134
|+ style="font-size: 75%;" |<span id='table-2'></span>Table. 2 Concrete and prestressing steel properties
2135
|-
2136
| colspan='3' style="text-align: center;" | '''Material Properties'''
2137
|-
2138
| colspan='2' | '''Concrete'''
2139
| style="text-align: center;" |   
2140
|-
2141
| style="text-align: right;" |    
2142
|  Young modulus, <math> E_c </math> [GPa] 
2143
| style="text-align: center;" |  35.00 
2144
|-
2145
| style="text-align: right;" |    
2146
|  Area, <math> A_c </math> [<math> m^2 </math>] 
2147
| style="text-align: center;" |  1.205 
2148
|-
2149
| colspan='2' | '''Prestressing steel'''
2150
| style="text-align: center;" |   
2151
|-
2152
| style="text-align: right;" |    
2153
|  Young modulus, <math> E_p </math> [GPa] 
2154
| style="text-align: center;" |  190.00 
2155
|-
2156
| style="text-align: right;" |    
2157
|  Area, <math> A_p </math> [<math> m^2 </math>] 
2158
| style="text-align: center;" |  0.005 
2159
|-
2160
| style="text-align: right;" |    
2161
|  Prestressing tension [MPa] 
2162
| style="text-align: center;" |  1500.00 
2163
2164
|}
2165
2166
The material strengths have not been included in the table, this is because, as stated before, the materials are assumed to have an elastic behaviour and so, these parameters are not needed for the current analysis.
2167
2168
Figure [[#img-23|23]] shows the FE mesh generated with GiD and needed for the numerical analysis with PLCd. It is composed of 8470 8-nodded hexahedra.
2169
2170
<div id='img-23'></div>
2171
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2172
|-
2173
|[[Image:Draft_Samper_351239591-E1Mesh.png|360px|FE mesh created with GiD]]
2174
|- style="text-align: center; font-size: 75%;"
2175
| colspan="1" | '''Figure 23:''' FE mesh created with GiD
2176
|}
2177
2178
The results of the PLCd calculation by means of the SP RoM are shown in Figure [[#img-24|24]]. The maximum displacement is produced near the free end and is <math display="inline"> -1.59 \times 10^{-3} m </math>. It is located near the end of tendon, but not at the beam surface where the maximum displacement value is <math display="inline"> -1.36 \times 10^{-3} m </math>.
2179
2180
<div id='img-24'></div>
2181
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2182
|-
2183
|[[Image:Draft_Samper_351239591-E1Results.png|480px|Displacements in z direction [ m ]]]
2184
|- style="text-align: center; font-size: 75%;"
2185
| colspan="1" | '''Figure 24:''' Displacements in z direction [<math> m </math>]
2186
|}
2187
2188
For the beam analysis using the Strength of Materials theory, the prestressing effect is transformed into an axial distributed compression load along the whole beam, <math display="inline"> N(z) </math> (Figure [[#img-25|25]]):
2189
2190
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2191
|-
2192
| 
2193
{| style="text-align: left; margin:auto;width: 100%;" 
2194
|-
2195
| style="text-align: center;" | <math>N(z)=\sigma \cdot A_p = 1500\textrm{''MPa''} \cdot 0.005 m^2 = -7500\textrm{''kN''} </math>
2196
|}
2197
| style="width: 5px;text-align: right;white-space: nowrap;" | (5.1)
2198
|}
2199
2200
<div id='img-25'></div>
2201
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2202
|-
2203
|[[Image:Draft_Samper_351239591-E1ResisMat.png|300px|Scheme for the analysis through the Strength of Materials theory]]
2204
|- style="text-align: center; font-size: 75%;"
2205
| colspan="1" | '''Figure 25:''' Scheme for the analysis through the Strength of Materials theory
2206
|}
2207
2208
Therefore, the beam total deformation can be written as <span id='citeF-46'></span>[[#cite-46|[46]]]:
2209
2210
<span id="eq-5.2"></span>
2211
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2212
|-
2213
| 
2214
{| style="text-align: left; margin:auto;width: 100%;" 
2215
|-
2216
| style="text-align: center;" | <math>\delta _{long}  = \int _{0}^{L} \dfrac{N(z)}{E_{comp} A_{comp}} dz = \dfrac{N L}{E_c A_c + E_p A_p} = </math>
2217
|-
2218
| style="text-align: center;" | <math>   = -\dfrac{7500\textrm{''kN''} \cdot 7m}{35 \textrm{''GPa''} \cdot 1.205 m^2 + 190 \textrm{''GPa''} \cdot 0.005 m^2 } = -1.22 \times 10^{-3} m   </math>
2219
|}
2220
| style="width: 5px;text-align: right;white-space: nowrap;" | (5.2)
2221
|}
2222
2223
Where <math display="inline"> E_{comp} </math> and <math display="inline"> A_{comp} </math> are the equivalent Young modulus for the composite material and the section area of the beam. The decomposition into the component variables <math display="inline"> E_c </math>, <math display="inline"> E_p </math>, <math display="inline"> A_c </math> and <math display="inline"> A_p </math> only is valid for a full parallel behaviour.
2224
2225
The results obtained with both approaches are similar but the numerical simulation predicts a higher deformation. This happens because, in the analytical calculation, the whole section is supposed to deform equally. This is equivalent to the use of one FE in the whole section and solving the problem through the SP RoM. Nevertheless, this behaviour is not real and what happens in fact is that the area surrounding the tendon deforms more than the external regions, which is the behaviour obtained with the numerical simulation. Thus, the only way to obtain the same results with both approaches would be increasing the prestressing steel area by incrementing the tendon diameter or by adding more tendons.
2226
2227
Figure [[#img-26|26]] shows the results of a beam with the same properties as the studied one but with the prestressing effect distributed in more tendons. This test has been performed to demonstrate that the difference between the numerical and the analytical approaches are those stated previously. It can be observed that the obtained deformation for this case with four tendons is almost the same as the one obtained in Equation [[#eq-5.2|5.2]].
2228
2229
<div id='img-26a'></div>
2230
<div id='img-26'></div>
2231
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2232
|-
2233
|[[Image:Draft_Samper_351239591-E1Modelo3.png|540px|]]
2234
|[[Image:Draft_Samper_351239591-E1Resultados3.png|540px|Beam with four prestressed tendons. Model (top) and displacement field in  z  direction [ m ] (bottom). Prestressing tension:  375 MPa]]
2235
|- style="text-align: center; font-size: 75%;"
2236
| colspan="2" | '''Figure 26:''' Beam with four prestressed tendons. Model (top) and displacement field in <math> z </math> direction [<math> m </math>] (bottom). Prestressing tension: <math> 375 </math>MPa
2237
|}
2238
2239
===Prestressed simply supported beam with a parabolic tendon===
2240
2241
In this case, a simply supported beam with an embedded parabolic steel tendon has been analysed (Figure [[#img-27|27]]). It has a square section with sides <math display="inline"> b=h=1m </math> and the span between the supports is <math display="inline"> L=10m </math>. One end of the beam is fully constrained in the three directions, but the other one allows deformations in the horizontal direction. The tendon describes a perfect parabola with eccentricities <math display="inline"> e_1=e_2=0.3m </math> with respect to the beam neutral axis (Figure [[#img-31|31]]).
2242
2243
<div id='img-27'></div>
2244
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2245
|-
2246
|[[Image:Draft_Samper_351239591-E2Model.png|600px|GiD model with the main geometry dimensions]]
2247
|- style="text-align: center; font-size: 75%;"
2248
| colspan="1" | '''Figure 27:''' GiD model with the main geometry dimensions
2249
|}
2250
2251
The properties of the materials used for the beam simulation are summarized in Table [[#table-3|3]]. Both tendon ends are active and the prestressing tension is equivalent to a force <math display="inline"> P=5000 </math>kN, that is assumed to be distributed uniformly in the whole length of the tendon.
2252
2253
2254
{|  class="floating_tableSCP wikitable" style="text-align: left; margin: 1em auto;min-width:50%;"
2255
|+ style="font-size: 75%;" |<span id='table-3'></span>Table. 3 Concrete and prestressing steel properties
2256
|-
2257
| colspan='3' style="text-align: center;" | '''Material Properties'''
2258
|-
2259
| colspan='2' | '''Concrete'''
2260
| style="text-align: center;" |   
2261
|-
2262
| style="text-align: right;" |    
2263
|  Young modulus, <math> E_c </math> [GPa] 
2264
| style="text-align: center;" |  35.00 
2265
|-
2266
| style="text-align: right;" |    
2267
|  Area, <math> A_c </math> [<math> m^2 </math>] 
2268
| style="text-align: center;" |  0.995 
2269
|-
2270
| colspan='2' | '''Prestressing steel'''
2271
| style="text-align: center;" |   
2272
|-
2273
| style="text-align: right;" |    
2274
|  Young modulus, <math> E_p </math> [GPa] 
2275
| style="text-align: center;" |  210.00 
2276
|-
2277
| style="text-align: right;" |    
2278
|  Area, <math> A_p </math> [<math> m^2 </math>] 
2279
| style="text-align: center;" |  0.005 
2280
|-
2281
| style="text-align: right;" |    
2282
|  Prestressing tension [MPa] 
2283
| style="text-align: center;" |  1000.00 
2284
2285
|}
2286
2287
Figure [[#img-28|28]] shows the FE mesh created using GiD, which has 1250 8-nodded hexahedra. In addition, the elements intersected by the tendon are coloured. These elements are composite materials (concrete <math display="inline"> + </math> steel) and are modelled through the SP RoM in PLCd.
2288
2289
<div id='img-28'></div>
2290
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2291
|-
2292
|[[Image:Draft_Samper_351239591-E2Mesh.png|480px|FE mesh and composite material generated]]
2293
|- style="text-align: center; font-size: 75%;"
2294
| colspan="1" | '''Figure 28:''' FE mesh and composite material generated
2295
|}
2296
2297
The results of the PLCd analysis are shown in Figures [[#img-29|29]] and [[#img-30|30]]. The first image shows the beam displacements generated by the prestressing force in the vertical direction <math display="inline"> y </math>. It can be observed that the symmetry of the problem is preserved and that the maximum displacement takes place at the mid-span area, with a value of <math display="inline"> 4.41 \times 10^{-3} m </math>. The second image shows the horizontal shortening that the prestressing steel generates in the beam. The maximum displacement is located at the end where the longitudinal movement is allowed and its value is <math display="inline"> -2.34 \times 10^{-3} m </math>.
2298
2299
<div id='img-29'></div>
2300
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2301
|-
2302
|[[Image:Draft_Samper_351239591-E2ResultsY.png|600px|Displacement in  y  direction [m] due to the prestressing effect]]
2303
|- style="text-align: center; font-size: 75%;"
2304
| colspan="1" | '''Figure 29:''' Displacement in <math> y </math> direction [m] due to the prestressing effect
2305
|}
2306
2307
<div id='img-30'></div>
2308
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2309
|-
2310
|[[Image:Draft_Samper_351239591-E2ResultsX.png|600px|Displacement in  x  direction [m] due to the prestressing effect]]
2311
|- style="text-align: center; font-size: 75%;"
2312
| colspan="1" | '''Figure 30:''' Displacement in <math> x </math> direction [m] due to the prestressing effect
2313
|}
2314
2315
For the analytical approach, the prestressing steel effect has been introduced as a set of forces. Figure [[#img-31|31]] shows the problem to be solved.
2316
2317
<div id='img-31'></div>
2318
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2319
|-
2320
|[[Image:Draft_Samper_351239591-E2Scheme.png|420px|Scheme of the problem to be solved analytically]]
2321
|- style="text-align: center; font-size: 75%;"
2322
| colspan="1" | '''Figure 31:''' Scheme of the problem to be solved analytically
2323
|}
2324
2325
In this scenario, the vertical displacement is generated by the vertical uniform distributed load (<math display="inline"> \eta </math>) and the bending moments at the edges (<math display="inline"> M = P e_1 \cos (\alpha ) </math>), i.e. <math display="inline"> \delta (x) = f(\eta ) + f(M) </math>. The maximum deflection will be located at the beam mid span due to the symmetry conditions and can be calculated as <span id='citeF-46'></span>[[#cite-46|[46]]]:
2326
2327
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2328
|-
2329
| 
2330
{| style="text-align: left; margin:auto;width: 100%;" 
2331
|-
2332
| style="text-align: center;" | <math>\delta _{max}=\delta (x=L/2)= \dfrac{5 \eta L^4}{384 EI}-\dfrac{P e_1 \cos (\alpha ) L^2}{8 EI}  </math>
2333
|}
2334
| style="width: 5px;text-align: right;white-space: nowrap;" | (5.3)
2335
|}
2336
2337
Where <math display="inline"> P </math> is the prestressing force of <math display="inline"> 5000 </math>kN, <math display="inline"> e_1 </math> is the tendon eccentricity at the supports (<math display="inline"> e_1=0.3m </math>), <math display="inline"> L </math> is the beam span (<math display="inline"> L=10m </math>), <math display="inline"> \alpha </math> is the tendon angle at the supports sections, which can be computed through the derivative at the support section of the parabolic function that describes the tendon path (<math display="inline"> y(x) </math>):
2338
2339
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2340
|-
2341
| 
2342
{| style="text-align: left; margin:auto;width: 100%;" 
2343
|-
2344
| style="text-align: center;" | <math>y(x) = \dfrac{8 e_1}{L^2} \left(x^2 - L x\right)+ e_1 \Rightarrow y'(0) = \tan (\alpha )= - \dfrac{8 e_1}{L} \Rightarrow \alpha = 13.50^{\circ}  </math>
2345
|}
2346
| style="width: 5px;text-align: right;white-space: nowrap;" | (5.4)
2347
|}
2348
2349
<math display="inline"> \eta </math> is the vertical distributed load equivalent to the prestressing effect that can be computed as <math display="inline"> \eta = P y''(x) = \dfrac{16 P e_1}{L^2} = 240</math>''kN/m'' <span id='citeF-10'></span>[[#cite-10|[10]]]. Finally, <math display="inline"> I </math> is the section inertia in <math display="inline"> z </math> direction according to the model reference system, that can be computed as <math display="inline"> I = \dfrac{1}{12} b h^3 = 8.33 \cdot 10^{-2} m^4 </math> and <math display="inline"> E </math> is the Young Modulus of the composite section, which can be computed following the procedure used in Equation [[#eq-5.2|5.2]], i.e. <math display="inline"> E = \dfrac{A_c}{A} E_c + \dfrac{A_p}{A} E_p = 35.88 </math>GPa.
2350
2351
Therefore, the maximum deflection is equal to <math display="inline"> \delta _{max}= 4.36 \times 10^{-3} m</math>, which is really close to the one computed through the numerical simulation (<math display="inline"> e_r\simeq 1.2 % </math>).
2352
2353
Finally, in addition to the displacement evaluation, it is interesting to compare the maximum tension and compression values derived from these two approaches. These points are located at the beam midspan.
2354
2355
==5.4 Mock-up of a reactor containment building==
2356
2357
The VeRCoRs Project is an initiative promoted by the company Électricité de France (eDF) in which a mock-up of a reactor containment building at <math display="inline"> 1/3 </math> scale is built and tested.
2358
2359
The construction finished in 2015 and from then several experiments have been conducted. The main objectives of this project are to study <span id='citeF-43'></span>[[#cite-43|[43]]]:
2360
2361
-
2362
* The behaviour at early age and the ageing of the structure.
2363
* The evolution of the leak tightness under the effect of aging.
2364
* The behaviour under severe accident conditions for which the thermo-mechanical loading is maintained for several days.
2365
2366
<div id='img-32a'></div>
2367
<div id='img-32b'></div>
2368
<div id='img-32c'></div>
2369
<div id='img-32d'></div>
2370
<div id='img-32'></div>
2371
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2372
|-
2373
|[[Image:Draft_Samper_351239591-Benchmark1.png|540px|View during construction (March 2015)]]
2374
|[[Image:Draft_Samper_351239591-Benchmark2.png|600px|External dome lifting (November 2015)]]
2375
|- style="text-align: center; font-size: 75%;"
2376
| (a) View during construction (March 2015)
2377
| (b) External dome lifting (November 2015)
2378
|-
2379
|[[Image:Draft_Samper_351239591-Benchmark3.png|540px|Image taken during the first Benchmark (March 2016)]]
2380
|[[Image:Draft_Samper_351239591-Benchmark4.png|540px|Image taken before the  5<sup>th</sup>  pressure test (March 2018)]]
2381
|- style="text-align: center; font-size: 75%;"
2382
| (c) Image taken during the first Benchmark (March 2016)
2383
| (d) Image taken before the <math> 5^{th} </math> pressure test (March 2018)
2384
|- style="text-align: center; font-size: 75%;"
2385
| colspan="2" | '''Figure 32:''' Reactor containment building during and after its construction <span id='citeF-43'></span>[[#cite-43|[43]]]
2386
|}
2387
2388
The project is divided in three phases that have the format of a benchmark. The first one took place in 2015 and it was dedicated to early age, mechanical and leaktightness behaviours. In 2017 the second benchmark started and it has finished in April of 2018. The results presented in this monograph have been obtained from the analysis performed by CIMNE team (A. Barbat, S. Oller, L. Barbu, A. Cornejo and S. Jiménez) at this benchmark, which was oriented towards the study of the mechanical behaviour of the containment during pressurization tests. The last benchmark is planned to take place in 2021 and it will be focused on the behaviour prediction under severe accident conditions.
2389
2390
===Problem statement===
2391
2392
The mock-up of the reactor containment was built between 2014 and 2015. After finishing the construction and after the prestressing stage, the containment has been subjected to several pressure tests. Table [[#table-4|4]] summarizes all the operations done from its construction.
2393
2394
2395
{|  class="floating_tableSCP wikitable" style="text-align: left; margin: 1em auto;min-width:50%;"
2396
|+ style="font-size: 75%;" |<span id='table-4'></span>Table. 4 Operation sequence at the mock-up reactor containment building
2397
|-
2398
| colspan='2' style="text-align: center;" | '''Operation Sequence'''
2399
|-
2400
|       Raft concreting 
2401
| style="text-align: center;" |  24 July, 2014 
2402
|-
2403
|    End of construction 
2404
| style="text-align: center;" |  06 May, 2015 
2405
|-
2406
|    End of prestressing 
2407
| style="text-align: center;" |  17 August, 2015 
2408
|-
2409
|    1st Pressure test ('Pre-op') 
2410
| style="text-align: center;" |  04 November, 2015 
2411
|-
2412
|    2nd Pressure test ('VC1') 
2413
| style="text-align: center;" |  25 January, 2016 
2414
|-
2415
|    3rd Pressure test ('VD1') 
2416
| style="text-align: center;" |  14 March, 2017 
2417
|-
2418
|    4th Pressure test ('VD1 bis') 
2419
| style="text-align: center;" |  21 March, 2017 
2420
|-
2421
|    5th Pressure test ('VD2') 
2422
| style="text-align: center;" |  02 April, 2018 
2423
2424
|}
2425
2426
All the pressure tests follow a similar pattern (Figure [[#img-33|33]]). First the pressure is increased inside the containment up to <math display="inline"> 4.2 \, bar </math>, it remains constant for a few hours and then it is reduced again to <math display="inline"> 0 \, bar </math>.
2427
2428
<div id='img-33'></div>
2429
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2430
|-
2431
|[[Image:Draft_Samper_351239591-PressureTest.png|600px|General description of a pressure test]]
2432
|- style="text-align: center; font-size: 75%;"
2433
| colspan="1" | '''Figure 33:''' General description of a pressure test
2434
|}
2435
2436
The goal of this benchmark is to predict stresses and strains distribution during the pressure tests.
2437
2438
For the purpose of this monograph, the benchmark format has not been followed exactly. Therefore, not all the results shown here have been included on the benchmark final template and not all the results presented for the benchmark have been included here. Despite this, the main objective is still the same: reproduce the whole procedure and analyse what happens during this time.
2439
2440
===Geometry and GiD model===
2441
2442
The real structure is composed of two containments, one internal and the other one external (Figure [[#img-34|34]]). The external one does not have any structural purpose, it is used to provide thermal and humidity protection, and to recreate an annular space for leakage rates measurements (Figure [[#img-35|35]]). Therefore, for the purpose of this monograph, only the internal structure has been modelled.
2443
2444
<div id='img-34a'></div>
2445
<div id='img-34b'></div>
2446
<div id='img-34'></div>
2447
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2448
|-
2449
|[[Image:Draft_Samper_351239591-Benchmark5.png|500px|The two containments during construction]]
2450
|style="padding-left:5px;"|[[Image:Draft_Samper_351239591-Benchmark6.png|500px|Internal corridor with the view of the internal and external walls]]
2451
|- style="text-align: center; font-size: 75%;"
2452
| (a) The two containments during construction
2453
| (b) Internal corridor with the view of the internal and external walls
2454
|- style="text-align: center; font-size: 75%;"
2455
| colspan="2" | '''Figure 34:''' Reactor containment building during and after its construction <span id='citeF-43'></span>[[#cite-43|[43]]]
2456
|}
2457
2458
<div id='img-35'></div>
2459
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2460
|-
2461
|[[Image:Draft_Samper_351239591-Benchmark7.png|500px|]]
2462
|style="padding-left:5px;"| [[Image:Draft_Samper_351239591-Benchmark8.png|460px|Images taken during the leakage tests <span id='citeF-43'></span>[[#cite-43|[43]]]]]
2463
|- style="text-align: center; font-size: 75%;"
2464
| colspan="2" | '''Figure 35:''' Images taken during the leakage tests <span id='citeF-43'></span>[[#cite-43|[43]]]
2465
|}
2466
2467
The internal structure has the shape of a typical reactor containment but scaled <math display="inline"> 1/3 </math> (Figure [[#img-36|36]]). The main dimensions of this structure are summarized in Table [[#table-5|5]] and can be compared with the dimensions of a regular containment structure.
2468
2469
2470
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2471
|+ style="font-size: 75%;" |<span id='table-5'></span>Table. 5 Geometric characteristics of the inner containment model
2472
|-
2473
| style="text-align: left;" |       
2474
| colspan='1' style="text-align: left;" | '''VeRCoRs model'''
2475
| colspan='1' style="text-align: left;" | '''Regular containment'''
2476
|-
2477
| style="text-align: left;" |    2-3    Height from gusset to the top [m] 
2478
|  20.79 
2479
|  62.38 
2480
|-
2481
| style="text-align: left;" |    Internal radius of cylinder [m] 
2482
|  7.30  
2483
|  21.90 
2484
|-
2485
| style="text-align: left;" |    Thickness of cylinder [m] 
2486
|  0.40  
2487
|  1.20 
2488
|-
2489
| style="text-align: left;" |    Internal radius of the dome (tore) [m] 
2490
|  2.67  
2491
|  8.00 
2492
|-
2493
| style="text-align: left;" |    Internal radius of the dome (centre) [m] 
2494
|  10.67 
2495
|  32.00 
2496
|-
2497
| style="text-align: left;" |    Thickness of the dome [m] 
2498
|  0.30  
2499
|  0.90 
2500
|-
2501
| style="text-align: left;" |    Free volume inside containment [m3] 
2502
|  3160.00 
2503
|  85350.00 
2504
2505
|}
2506
2507
<div id='img-36'></div>
2508
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2509
|-
2510
|[[Image:Draft_Samper_351239591-BenchGeneralView.png|540px|General view of the VeRCoRs mock-up <span id='citeF-47'></span>[[#cite-47|[47]]]]]
2511
|- style="text-align: center; font-size: 75%;"
2512
| colspan="1" | '''Figure 36:''' General view of the VeRCoRs mock-up <span id='citeF-47'></span>[[#cite-47|[47]]]
2513
|}
2514
2515
In addition to this, the containment is placed on a two meters thick foundation and it has two vertical prestressing buttresses that are also scaled. There are only two significant openings: one equipment hatch (<math display="inline"> \Phi=2.71m </math>) and one personal airlock (<math display="inline"> \Phi=1.21m </math>)
2516
2517
The prestressing steel system is organised in four families.
2518
2519
* Horizontal tendons (spacing <math display="inline"> 133mm </math> in typical area). These tendons go from one buttress to the other one, overcoming the equipment and personal hatches. There are <math display="inline"> 122 </math> tendons in total and both ends are active.
2520
* Vertical tendons (spacing <math display="inline"> 290mm </math> in typical area). These tendons go from the top (ring beam) to the mock-up foundation. There are <math display="inline"> 57 </math> tendons in total and only one end is active, the lower extreme.
2521
* Dome tendons (spacing <math display="inline"> 205mm </math> in the dome). These tendons cross the dome from one side to the other creating a sort of grid. There are <math display="inline"> 18 </math> tendons in total and both ends are active.
2522
* Gamma tendons (spacing <math display="inline"> 205mm </math> in the dome). These tendons are the result of the combination of vertical and dome tendons. Thus, the path that these tendons follow is similar to a <math display="inline"> \Gamma </math>. There are <math display="inline"> 98 </math> tendons in total and both ends are active. 
2523
2524
The layout is exactly scaled, including any deviations around penetrations and all of them have been cement grouted as in regular structures in France.
2525
2526
Finally, the reinforcing steel is distributed in the whole structure. Rebars spacing and diameters are scaled to keep the same ratios <math display="inline"> \rho \, (%) </math> as in full-size structures. In typical areas of the cylinder, reinforcement principles are alternatively HB 6/8 at 6.7cm in horizontal direction at both inner and outer face, and HB 8/10 at <math display="inline"> 0.7^o </math> in vertical direction. In the dome, reinforcement principles are also alternatively HB 8/10 at 9.8cm at both faces. The stirrups in the whole containment are made with HB 5.
2527
2528
Using this information and the mock-up plans provided by the company in charge, the GiD model has been built. Figures [[#img-37|37]] to [[#img-40a|40a]] show the containment model and the tendons layout for each family.
2529
2530
<div id='img-37a'></div>
2531
<div id='img-37b'></div>
2532
<div id='img-37'></div>
2533
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2534
|-
2535
|[[Image:Draft_Samper_351239591-BenchFullNormal.png|361px|Containment view with normal render from GiD]]
2536
|[[Image:Draft_Samper_351239591-BenchFullFlat.png|351px|Containment view with flat render from GiD]]
2537
|- style="text-align: center; font-size: 75%;"
2538
| (a) Containment view with normal render from GiD
2539
| (b) Containment view with flat render from GiD
2540
|- style="text-align: center; font-size: 75%;"
2541
| colspan="2" | '''Figure 37:''' GiD geometry of the reactor containment building
2542
|}
2543
2544
<div id='img-38a'></div>
2545
<div id='img-38b'></div>
2546
<div id='img-38'></div>
2547
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2548
|-
2549
|[[Image:Draft_Samper_351239591-BenchDomeXY.png|490px|Plan view of the dome tendons]]
2550
|[[Image:Draft_Samper_351239591-BenchDomeXZ.png|600px|Elevation view of the dome tendons]]
2551
|- style="text-align: center; font-size: 75%;"
2552
| (a) Plan view of the dome tendons
2553
| (b) Elevation view of the dome tendons
2554
|- style="text-align: center; font-size: 75%;"
2555
| colspan="2" | '''Figure 38:''' GiD model with the dome tendons
2556
|}
2557
2558
<div id='img-39a'></div>
2559
<div id='img-39b'></div>
2560
<div id='img-39'></div>
2561
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2562
|-
2563
|[[Image:Draft_Samper_351239591-BenchVertical.png|343px|GiD model with the vertical tendons]]
2564
|[[Image:Draft_Samper_351239591-BenchGamma.png|343px|GiD model with the gamma tendons]]
2565
|- style="text-align: center; font-size: 75%;"
2566
| (a) GiD model with the vertical tendons
2567
| (b) GiD model with the gamma tendons
2568
|- style="text-align: center; font-size: 75%;"
2569
| colspan="2" | '''Figure 39:''' GiD model with the vertical tendons and gamma tendons
2570
|}
2571
<div id='img-40a'></div>
2572
<div id='img-40b'></div>
2573
<div id='img-40'></div>
2574
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2575
|-
2576
|[[Image:Draft_Samper_351239591-BenchHorizontal.png|352px|GiD model with the horizontal tendons]]
2577
|[[Image:Draft_Samper_351239591-BenchTendonsAll.png|348px|GiD model with the prestressing system]]
2578
|- style="text-align: center; font-size: 75%;"
2579
| (a) GiD model with the horizontal tendons
2580
| (b) GiD model with the prestressing system
2581
|- style="text-align: center; font-size: 75%;"
2582
| colspan="2" | '''Figure 40:''' GiD model of the horizontal tendons and whole the prestressing system
2583
|}
2584
2585
The reinforcement has not been drawn in the model. The big density of this material within the structure allows including it as an increment in the concrete strength and stiffness.
2586
2587
===Material properties, loads and boundary conditions===
2588
2589
The company in charge of the mock-up has provided to participants all the material properties referred to concrete, reinforcing steel and prestressing steel. Tables [[#table-6|6]], [[#table-7|7]] and [[#table-8|8]] summarize these values, which have been used in the performed analysis. Figure [[#img-41|41]] shows a general view of the containment model and has been selected to facilitate the understanding of Table [[#table-6|6]]
2590
2591
2592
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2593
|+ style="font-size: 75%;" |<span id='table-6'></span>Table. 6 Concrete properties
2594
|-
2595
| colspan='5' | '''CONCRETE'''
2596
|-
2597
| style="text-align: left;" |       
2598
| colspan='1' | Young modulus [GPa]
2599
| colspan='1' | Compressive strength (28 days) [MPa]
2600
| colspan='1' | Tensile strength (28 days) [MPa]
2601
|  Density [<math> kg/m^3 </math>] 
2602
|-
2603
| style="text-align: left;" |    2-5    Cylinder  
2604
|  34.26 
2605
|  48.68 
2606
|  4.36  
2607
|  2395 
2608
|-
2609
| style="text-align: left;" |    Equipment hatch  
2610
|  34.26 
2611
|  48.68 
2612
|  4.36  
2613
|  2395 
2614
|-
2615
| style="text-align: left;" |    Personal hatch 
2616
|  34.26 
2617
|  48.68 
2618
|  4.36  
2619
|  2395 
2620
|-
2621
| style="text-align: left;" |    Buttresses  
2622
|  39.20 
2623
|  48.68 
2624
|  4.36  
2625
|  2395 
2626
|-
2627
| style="text-align: left;" |    Dome  
2628
|  32.51 
2629
|  40.90 
2630
|  4.20  
2631
|  2350 
2632
|-
2633
| style="text-align: left;" |    Ring beam  
2634
|  34.26 
2635
|  56.90 
2636
|  4.50  
2637
|  2430 
2638
|-
2639
| style="text-align: left;" |    Foundation 
2640
|  33.26 
2641
|  38.50 
2642
|  3.60  
2643
|  2360 
2644
2645
|}
2646
2647
<div id='img-41'></div>
2648
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2649
|-
2650
|[[Image:Draft_Samper_351239591-ConcreteMaterials.png|510px|Concrete materials identified at the numerical model]]
2651
|- style="text-align: center; font-size: 75%;"
2652
| colspan="1" | '''Figure 41:''' Concrete materials identified at the numerical model
2653
|}
2654
2655
2656
{|  class="floating_tableSCP wikitable" style="text-align: left; margin: 1em auto;min-width:50%;"
2657
|+ style="font-size: 75%;" |<span id='table-7'></span>Table. 7 Reinforcing steel properties
2658
|-
2659
| colspan='2' style="text-align: center;" | '''REINFORCING STEEL'''
2660
|-
2661
|       Yield strength [MPa] 
2662
| style="text-align: center;" |  500 
2663
|-
2664
|    Young modulus [MPa] 
2665
| style="text-align: center;" |  200000 
2666
2667
|}
2668
2669
2670
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
2671
|+ style="font-size: 75%;" |<span id='table-8'></span>Table. 8 Prestressing steel properties
2672
|-
2673
| colspan='4' style="text-align: center;" | '''PRESTRESSING STEEL'''
2674
|-
2675
| colspan='3' style="text-align: left;" | '''Prestressing system'''
2676
| style="text-align: center;" |   
2677
|-
2678
|    
2679
| colspan='2' style="text-align: left;" | System C (4C15) (Fryssinet) ETA-06/0226
2680
| style="text-align: center;" |   
2681
|-
2682
|    
2683
| colspan='2' style="text-align: left;" | Bonded prestressing
2684
| style="text-align: center;" |   
2685
|-
2686
|    
2687
| colspan='2' style="text-align: left;" | Pull-in at wedge blocking [mm]
2688
| style="text-align: center;" |  8 
2689
|-
2690
| colspan='3' style="text-align: left;" | '''Strands'''
2691
| style="text-align: center;" |   
2692
|-
2693
|    
2694
| colspan='2' style="text-align: left;" | Strand section (T15) [<math> mm^2 </math>]
2695
| style="text-align: center;" |  139 
2696
|-
2697
|    
2698
| colspan='2' style="text-align: left;" | Tensile stregth [MPa]
2699
| style="text-align: center;" |  1860 
2700
|-
2701
| colspan='3' style="text-align: left;" | '''Tendons'''
2702
| style="text-align: center;" |   
2703
|-
2704
|    
2705
| colspan='2' style="text-align: left;" | Tendon
2706
| style="text-align: center;" |  4T15 
2707
|-
2708
|    
2709
| colspan='2' style="text-align: left;" | Tendon maximal prestressing stress (at anchor, before wedge blocking) [MPa]
2710
| style="text-align: center;" |  1488 
2711
|-
2712
|    
2713
| colspan='2' style="text-align: left;" | Tendon Young modulus [MPa]
2714
| style="text-align: center;" |  190000 
2715
|-
2716
| colspan='3' style="text-align: left;" | '''Friction'''
2717
| style="text-align: center;" |   
2718
|-
2719
|    
2720
| colspan='1' style="text-align: left;" | Vertical tendons 
2721
|  Friction coefficient 
2722
| style="text-align: center;" |  0.16 
2723
|-
2724
|    
2725
|        
2726
|  Wobble coefficient 
2727
| style="text-align: center;" |  0.0008 
2728
2729
|-
2730
|    
2731
| colspan='1' style="text-align: left;" | Horizontal tendons 
2732
|  Friction coefficient 
2733
| style="text-align: center;" |  0.17 
2734
|-
2735
|    
2736
|        
2737
|  Wobble coefficient 
2738
| style="text-align: center;" |  0.0015 
2739
2740
|-
2741
|    
2742
| colspan='1' style="text-align: left;" | Gamma tendons 
2743
|  (Vertical part) Friction coefficient 
2744
| style="text-align: center;" |  0.16 
2745
|-
2746
|    
2747
|        
2748
|  (Vertical part) Wobble coefficient 
2749
| style="text-align: center;" |  0.0008 
2750
|-
2751
|    
2752
|        
2753
|  (Dome part) Friction coefficient 
2754
| style="text-align: center;" |  0.16 
2755
|-
2756
|    
2757
|        
2758
|  (Dome part) Wobble coefficient 
2759
| style="text-align: center;" |  0.0015 
2760
2761
|-
2762
|    
2763
| colspan='1' style="text-align: left;" | Dome tendons 
2764
|  Friction coefficient 
2765
| style="text-align: center;" |  0.16 
2766
|-
2767
|    
2768
|        
2769
|  Wobble coefficient 
2770
| style="text-align: center;" |  0.0015 
2771
2772
|}
2773
2774
As shown in Table [[#table-6|6]], it has been necessary to define seven different concrete materials for the containment. There is no inconvenient in PLCd to define as many materials as the user desires, but the assignation of these properties to the FEs must be done carefully.
2775
2776
Table [[#table-7|7]] shows the reinforcing steel properties. As mentioned before, this material has been included in the analysis as indicated in Section [[#4.3 Prestressed concrete structures singularities|4.3]] and thus, its effect is considered as an increment in the concrete strength and stiffness. The magnitude of this effect has been defined per areas depending on the volumetric participation of the reinforcement in each of them. Six regions have been selected: the cylinder, the buttresses, the ring beam, the dome, the hatches and the foundation.
2777
2778
Table [[#table-8|8]] contains the information relative to the tensile stress of each tendon and also the parameters required when computing the immediate losses using a standard code (Section [[#2.1 Codes approach|2.1]]). As mention previously, PLCd cannot compute the immediate loses. In fact it computes the losses due to concrete instantaneous deformation but friction losses and losses due to tendon anchorage are not taken into account.
2779
2780
Therefore, it has been necessary to compute these losses beforehand and use for PLCd the prestressing values after deducting immediate losses. For this uncoupled calculation, a code written in Visual Basic for Applications (VBA) has been developed. It calculates the stress distribution in all the tendons of the mock-up. This is done subtracting the friction losses and the losses due to tendon anchorage from the initial prestressing stress value (<math display="inline"> 1860 </math>MPa).
2781
2782
The full code is attached in Appendix [[#7 Immediate losses|7]]. It has been created using the formulas proposed at the EHE-08, which have been already presented in Section [[#2.1 Codes approach|2.1]]. The code main inputs can be obtained from Table [[#table-8|8]] and from the model geometry. An example of the final output of this code is displayed at Figures [[#img-42|42]] and [[#img-43|43]].
2783
2784
<div id='img-42'></div>
2785
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2786
|-
2787
|[[Image:Draft_Samper_351239591-BenchH46.png|570px|Real and mean stress distribution in a horizontal tendon (H46)]]
2788
|- style="text-align: center; font-size: 75%;"
2789
| colspan="1" | '''Figure 42:''' Real and mean stress distribution in a horizontal tendon (H46)
2790
|}
2791
2792
<div id='img-43'></div>
2793
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2794
|-
2795
|[[Image:Draft_Samper_351239591-BenchG155.png|570px|Real and mean stress distribution in a gamma tendon (G155)]]
2796
|- style="text-align: center; font-size: 75%;"
2797
| colspan="1" | '''Figure 43:''' Real and mean stress distribution in a gamma tendon (G155)
2798
|}
2799
2800
It is interesting to see how the ''RealStressDistribution'' lines change from one family to the other. Figure [[#img-42|42]] has been taken from a horizontal tendon, where the friction losses are significant and the stress distribution is quite symmetric due to the path that these tendons trace. On the other hand, Figure [[#img-43|43]] shows the behaviour of a gamma tendon. In this family the stress distribution is asymmetric due to the two different zones that the tendons cross. In fact, the shape of the curve is similar to the addition of the vertical tendons curve (left branch of the graph) and the dome tendons curve (right branch of the graph).
2801
2802
''MeanStressDistribution'' lines are obtained from the ''RealStressDistribution'' lines by equalling the areas under the curve. These constant values are the ones that PLCd reads. Although PLCd is prepared to read different prestressing values for each tendon i.e. the MeanStressDistribution values, only one stress value per family has been used for the evaluation of the containment structure. This stress value is obtained as the average of all the ''MeanStressDistribution'' values for each family. Table [[#table-9|9]] summarizes the result of these operations.
2803
2804
2805
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2806
|+ style="font-size: 75%;" |<span id='table-9'></span>Table. 9 Average stress and strain value per family due to prestressing effect
2807
|-
2808
| style="text-align: left;" |       
2809
|  Stress [MPa] 
2810
|  Strain 
2811
|-
2812
| style="text-align: left;" |    2-3    Horizontal tendons 
2813
|  1087.533 
2814
|  5.72<math>\times 10^{-3} </math> 
2815
|-
2816
| style="text-align: left;" |    Vertical tendons 
2817
|  1352.632 
2818
|  7.12<math>\times 10^{-3} </math> 
2819
|-
2820
| style="text-align: left;" |    Dome tendons 
2821
|  1115.099 
2822
|  5.87<math>\times 10^{-3} </math> 
2823
|-
2824
| style="text-align: left;" |    Gamma tendons 
2825
|  1269.843 
2826
|  6.68<math>\times 10^{-3} </math> 
2827
2828
|}
2829
2830
In addition to the prestressing effect, the other loads considered for the containment analysis are the self weight and the internal pressure that appears during the five pressure tests. This pressure is applied normal to the model internal surface in GiD considering the containment wall and the hatches (Figure [[#img-44a|44a]]).
2831
2832
Only one boundary condition has been considered for the analysis: the structure is fixed at the base (Figure [[#img-44b|44b]]). This hypothesis is presumably valid as the base slab is anchored in a very thick concrete block that connects the internal and the external structures.
2833
2834
<div id='img-44a'></div>
2835
<div id='img-44b'></div>
2836
<div id='img-44'></div>
2837
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2838
|-
2839
|[[Image:Draft_Samper_351239591-BenchInnerPressure.png|336px|Surface where the pressure is applied]]
2840
|[[Image:Draft_Samper_351239591-BenchBoundaryCond.png|337px|Fixed base of the structure]]
2841
|- style="text-align: center; font-size: 75%;"
2842
| (a) Surface where the pressure is applied
2843
| (b) Fixed base of the structure
2844
|- style="text-align: center; font-size: 75%;"
2845
| colspan="2" | '''Figure 44:''' Loads and boundary conditions at the containment
2846
|}
2847
2848
===Finite element mesh===
2849
2850
Once the model is complete, the next step is to generate the FE mesh used in the analysis. Figure [[#img-45a|45a]] shows the final layout which consists of <math display="inline"> 199600 </math> 8-noded hexahedras with linear shape functions. All the FEs have more or less the same dimensions, Figure [[#img-45b|45b]] shows how the elements are distributed in the thickness. This rule is respected everywhere except on the base slab (Figure [[#img-45e|45e]]), where the FEs are bigger. This is because the interest on the slab behaviour during the simulation is reduced and having bigger elements helps to reduce the computational time.
2851
2852
Figures [[#img-45c|45c]] and [[#img-45d|45d]] show a detail of the FE mesh at the dome. It can be seen that there are three volumes there and that the mesh changes from one to another. What is happening is that, while the external ring is meshed following the pattern established in the cylinder, there are two internal crowns that have been meshed using a semi-structured mesh. The use of this strategy allows the generation of an efficient mesh without using too small elements.
2853
2854
<div id='img-45a'></div>
2855
<div id='img-45b'></div>
2856
<div id='img-45c'></div>
2857
<div id='img-45d'></div>
2858
<div id='img-45e'></div>
2859
<div id='img-45'></div>
2860
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2861
|-
2862
|[[Image:Draft_Samper_351239591-BenchMeshFull.png|340px|Full structure view]]
2863
|[[Image:Draft_Samper_351239591-BenchMeshCylinder.png|334px|View inside the cylinder and view of the wall thickness]]
2864
|- style="text-align: center; font-size: 75%;"
2865
| (a) Full structure view
2866
| (b) View inside the cylinder and view of the wall thickness
2867
|-
2868
|[[Image:Draft_Samper_351239591-BenchMeshDome2.png|600px|Dome detail]]
2869
|[[Image:Draft_Samper_351239591-BenchMeshDome1.png|540px|Dome internal region]]
2870
|- style="text-align: center; font-size: 75%;"
2871
| (c) Dome detail
2872
| (d) Dome internal region
2873
|-
2874
| colspan="2"|[[Image:Draft_Samper_351239591-BenchMeshFoundation.png|240px|Foundation detail]]
2875
|- style="text-align: center; font-size: 75%;"
2876
|  colspan="2" | (e) Foundation detail
2877
|- style="text-align: center; font-size: 75%;"
2878
| colspan="2" | '''Figure 45:''' FE mesh of the containment model
2879
|}
2880
2881
===Results of the analysis===
2882
2883
Once the analysis has been performed, there are two kind of results that can be of interest: the global behaviour of the structure and the prestressing steel behaviour. The validation of the results is complex due to the type of structure that is being analysed but there are some aspects that can be predicted:
2884
2885
- The overall behaviour should be:
2886
2887
2888
<math> \bullet </math> Nearly symmetric. The structure is almost symmetrical, therefore, the stress and strain distribution should be also symmetric. The only areas that introduce clear asymmetries to the containment are the hatches in the cylinder wall.
2889
2890
<math> \bullet </math> Invariant in time. The only material with an associated time dependency is the prestressing steel, through the Generalized Maxwell model (see Section [[#4.3 Prestressed concrete structures singularities|4.3]]). Therefore, when the global behaviour is analysed, no significant changes will be observed from one pressure test to the next one. Although this is the expected behaviour from the simulation performed, other time dependent effects take place in reality: creep and shrinkage in concrete. The damage model used for concrete modelization does not consider these effects, thus the only way to account for them is using an uncoupled calculation, e.g. using a Generalized Kelvin model <span id='citeF-32'></span>[[#cite-32|[32]]].
2891
2892
2893
-The prestressing system behaviour is characterized by:
2894
2895
2896
<math> \bullet </math> A progressive decrease in the prestressing tension. The prestressing steel behaviour is reproduced using a Generalised Maxwell model for each tendon family. The company in charge of the benchmark did not give any information that helps to calibrate these models, thus previous experience has been used to build them. CIMNE has analysed the Ascó and Vandellós containments recently<span id="fnc-1"></span>[[#fn-1|<sup>1</sup>]] and the model parameters used there have been considered here. Table [[#table-10|10]] summarizes the Maxwell model parameters for each tendon family and Figure [[#img-46|46]] shows the aspect of these curves starting at the anchorage operation moment (<math display="inline"> t=0 </math> years).
2897
2898
2899
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2900
|+ style="font-size: 75%;" |<span id='table-10'></span>Table. 10 Generalized Maxwell model parameters for each tendon family
2901
|-
2902
| style="text-align: left;" |       
2903
| colspan='1' | '''Horizontal tendons'''
2904
| colspan='1' | '''Vertical tendons'''
2905
| colspan='1' | '''Dome tendons'''
2906
| colspan='1' | '''Gamma tendons'''
2907
|-
2908
| style="text-align: left;" |    2-5    Young modulus [MPa] 
2909
|  190000 
2910
|  190000 
2911
|  190000 
2912
|  190000 
2913
|-
2914
| style="text-align: left;" |    Initial stress [MPa] 
2915
|  1087.53 
2916
|  1352.63 
2917
|  1115.10 
2918
|  1269.84 
2919
|-
2920
| style="text-align: left;" | <math> K_{visco} </math> 
2921
|  0.15  
2922
|  0.15  
2923
|  0.15  
2924
|  0.15 
2925
2926
|}
2927
2928
<div id='img-46'></div>
2929
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2930
|-
2931
|[[Image:Draft_Samper_351239591-BenchMaxwell.png|570px|Maxwell model for each family of tendons]]
2932
|- style="text-align: center; font-size: 75%;"
2933
| colspan="1" | '''Figure 46:''' Maxwell model for each family of tendons
2934
|}
2935
2936
<math> \bullet </math>  A similar response from one pressure test to another. The prestressing steel has been modelled as a viscoelastic material and therefore, the effect that the pressure will induce in the steel should remain more or less constant in time.
2937
2938
2939
And now, paying attention to this background, results can be explored. Figures [[#img-47|47]] to [[#img-58|58]] show the stress distribution and the displacement field in the mock-up reactor containment at several points of the analysis: just after introducing the prestressing effect, at the maximum of the first pressure test, at the beginning of the fifth pressure test and at the maximum of the fifth pressure test.
2940
2941
<div id='img-47'></div>
2942
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2943
|-
2944
|[[Image:Draft_Samper_351239591-S1Def.png|510px|Beginning of the Pre-op test. Displacements [ m ]]]
2945
|- style="text-align: center; font-size: 75%;"
2946
| colspan="1" | '''Figure 47:''' Beginning of the Pre-op test. Displacements [<math> m </math>]
2947
|}
2948
2949
<div id='img-48'></div>
2950
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2951
|-
2952
|[[Image:Draft_Samper_351239591-S1Trac.png|570px|Beginning of the Pre-op test. Maximum principal stress - tension stress distribution [ Pa ] at the dome (Cupula) and at the cylinder (Anillo)]]
2953
|- style="text-align: center; font-size: 75%;"
2954
| colspan="1" | '''Figure 48:''' Beginning of the Pre-op test. Maximum principal stress - tension stress distribution [<math> Pa </math>] at the dome (Cupula) and at the cylinder (Anillo)
2955
|}
2956
2957
<div id='img-49'></div>
2958
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2959
|-
2960
|[[Image:Draft_Samper_351239591-S1Comp.png|570px|Beginning of the Pre-op test. Minimum principal stress - compression stress distribution [ Pa ] at the dome (Cupula) and at the cylinder (Anillo)]]
2961
|- style="text-align: center; font-size: 75%;"
2962
| colspan="1" | '''Figure 49:''' Beginning of the Pre-op test. Minimum principal stress - compression stress distribution [<math> Pa </math>] at the dome (Cupula) and at the cylinder (Anillo)
2963
|}
2964
2965
<div id='img-50'></div>
2966
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2967
|-
2968
|[[Image:Draft_Samper_351239591-S11Def.png|510px|Maximum pressure at the Pre-op test. Displacements [ m ]]]
2969
|- style="text-align: center; font-size: 75%;"
2970
| colspan="1" | '''Figure 50:''' Maximum pressure at the Pre-op test. Displacements [<math> m </math>]
2971
|}
2972
2973
<div id='img-51'></div>
2974
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2975
|-
2976
|[[Image:Draft_Samper_351239591-S11Trac.png|564px|Maximum pressure at the Pre-op test. Maximum principal stress - tension stress distribution [ Pa ] at the dome (Cupula) and at the cylinder (Anillo)]]
2977
|- style="text-align: center; font-size: 75%;"
2978
| colspan="1" | '''Figure 51:''' Maximum pressure at the Pre-op test. Maximum principal stress - tension stress distribution [<math> Pa </math>] at the dome (Cupula) and at the cylinder (Anillo)
2979
|}
2980
2981
<div id='img-52'></div>
2982
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2983
|-
2984
|[[Image:Draft_Samper_351239591-S11Comp.png|564px|Maximum pressure at the Pre-op test. Minimum principal stress - compression stress distribution [ Pa ] at the dome (Cupula) and at the cylinder (Anillo)]]
2985
|- style="text-align: center; font-size: 75%;"
2986
| colspan="1" | '''Figure 52:''' Maximum pressure at the Pre-op test. Minimum principal stress - compression stress distribution [<math> Pa </math>] at the dome (Cupula) and at the cylinder (Anillo)
2987
|}
2988
2989
<div id='img-53'></div>
2990
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2991
|-
2992
|[[Image:Draft_Samper_351239591-S86Def.png|330px|Beginning of the VD2 test. Displacements [ m ]]]
2993
|- style="text-align: center; font-size: 75%;"
2994
| colspan="1" | '''Figure 53:''' Beginning of the VD2 test. Displacements [<math> m </math>]
2995
|}
2996
2997
<div id='img-54'></div>
2998
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2999
|-
3000
|[[Image:Draft_Samper_351239591-S86Trac.png|570px|Beginning of the VD2 test.Maximum principal stress - tension stress distribution [ Pa ] at the dome (Cupula) and at the cylinder (Anillo)]]
3001
|- style="text-align: center; font-size: 75%;"
3002
| colspan="1" | '''Figure 54:''' Beginning of the VD2 test.Maximum principal stress - tension stress distribution [<math> Pa </math>] at the dome (Cupula) and at the cylinder (Anillo)
3003
|}
3004
3005
<div id='img-55'></div>
3006
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
3007
|-
3008
|[[Image:Draft_Samper_351239591-S86Comp.png|570px|Beginning of the VD2 test. Minimum principal stress - compression stress distribution [ Pa ] at the dome (Cupula) and at the cylinder (Anillo)]]
3009
|- style="text-align: center; font-size: 75%;"
3010
| colspan="1" | '''Figure 55:''' Beginning of the VD2 test. Minimum principal stress - compression stress distribution [<math> Pa </math>] at the dome (Cupula) and at the cylinder (Anillo)
3011
|}
3012
3013
<div id='img-56'></div>
3014
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
3015
|-
3016
|[[Image:Draft_Samper_351239591-S96Def.png|330px|Maximum pressure at the VD2 test. Displacements [ m ]]]
3017
|- style="text-align: center; font-size: 75%;"
3018
| colspan="1" | '''Figure 56:''' Maximum pressure at the VD2 test. Displacements [<math> m </math>]
3019
|}
3020
3021
<div id='img-57'></div>
3022
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
3023
|-
3024
|[[Image:Draft_Samper_351239591-S96Trac.png|558px|Maximum pressure at the VD2 test. Maximum principal stress - tension stress distribution [ Pa ] at the dome (Cupula) and at the cylinder (Anillo)]]
3025
|- style="text-align: center; font-size: 75%;"
3026
| colspan="1" | '''Figure 57:''' Maximum pressure at the VD2 test. Maximum principal stress - tension stress distribution [<math> Pa </math>] at the dome (Cupula) and at the cylinder (Anillo)
3027
|}
3028
3029
<div id='img-58'></div>
3030
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
3031
|-
3032
|[[Image:Draft_Samper_351239591-S96Comp.png|558px|Maximum pressure at the VD2 test. Minimum principal stress - compression stress distribution [ Pa ] at the dome (Cupula) and at the cylinder (Anillo)]]
3033
|- style="text-align: center; font-size: 75%;"
3034
| colspan="1" | '''Figure 58:''' Maximum pressure at the VD2 test. Minimum principal stress - compression stress distribution [<math> Pa </math>] at the dome (Cupula) and at the cylinder (Anillo)
3035
|}
3036
3037
It can be observed that the predictions made for the overall structure behaviour are satisfied. The images show a clear symmetric behaviour in both scenarios: with and without internal pressure (Figures [[#img-47|47]] and [[#img-50|50]]).
3038
3039
Furthermore, comparing the images taken from the first pressure test and those from the fifth pressure test, it can be seen that the structure behaves more or less constant in time. Minimum changes can be produced by the damage of the concrete or the prestressing loss, but the overall behaviour remains immutable. The critical areas of the containment are the equipment hatch and the dome where the maximum tensions and compressions are located. The level of stress recorded suggests that damage probably has been activated as will be shown afterwards.
3040
3041
From the previous images it can be conclude that the prestressing system seems to be correctly designed because the overall behaviour remains in compression even when the internal pressure is applied, which is essential in this type of structures.
3042
3043
Finally, Figures [[#img-59|59]], [[#img-60|60]], [[#img-61|61]] and [[#img-62|62]] ratify the expected behaviour in the prestressing force evolution. The first chart for all the families shows the progressive decrease of the initial prestressing tension. The other two graphics in each family show a detail of the second, third and fourth pressure tests. Between the second and the third tests there is a time gap of one year in which the Generalized Maxwell model is working, but it can be observed that the effects of each pressure test are nearly the same, only displaced in the ''Stress''-axis.
3044
3045
An interesting effect can be seen that was not considered at the beginning: there are differential behaviours between tendons that belong to the same family. This happens in horizontal tendons (Figure [[#img-59|59]]) and in dome tendons (Figure [[#img-61|61]]). Red lines in those graphs are used to point out this phenomena, which can be explained as follows:
3046
3047
* In horizontal tendons, red lines, that are those that show the highest prestressing level, correspond to those tendons located near the containment rigid areas, i.e. the foundation and the ring beam. Therefore, during the pressure tests, these tendons remain more stable.
3048
* In dome tendons, red lines, that are those that show the highest prestressing level, correspond to those tendons that do not go through or near the dome peak. Therefore, during the pressure tests, these tendons remain more stable.
3049
3050
<div id='img-59a'></div>
3051
<div id='img-59b'></div>
3052
<div id='img-59c'></div>
3053
<div id='img-59'></div>
3054
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
3055
|-
3056
|[[Image:Draft_Samper_351239591-BenchH.png|600px|Stress evolution for the whole analysis period]]
3057
|- style="text-align: center; font-size: 75%;"
3058
| (a) Stress evolution for the whole analysis period
3059
|-
3060
|[[Image:Draft_Samper_351239591-BenchHVC1.png|600px|Stress evolution during the second pressurization test]]
3061
|- style="text-align: center; font-size: 75%;"
3062
| (b) Stress evolution during the second pressurization test
3063
|-
3064
| [[Image:Draft_Samper_351239591-BenchHVD1.png|600px|Stress evolution during the third and the fourth pressurization test]]
3065
|- style="text-align: center; font-size: 75%;"
3066
| (c) Stress evolution during the third and the fourth pressurization test
3067
|- style="text-align: center; font-size: 75%;"
3068
|  '''Figure 59:''' Stress evolution at the horizontal tendons
3069
|}
3070
3071
<div id='img-60a'></div>
3072
<div id='img-60b'></div>
3073
<div id='img-60c'></div>
3074
<div id='img-60'></div>
3075
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
3076
|-
3077
|[[Image:Draft_Samper_351239591-BenchV.png|600px|Stress evolution for the whole analysis period]]
3078
|- style="text-align: center; font-size: 75%;"
3079
| (a) Stress evolution for the whole analysis period
3080
|-
3081
|[[Image:Draft_Samper_351239591-BenchVVC1.png|600px|Stress evolution during the second pressurization test]]
3082
|- style="text-align: center; font-size: 75%;"
3083
| (b) Stress evolution during the second pressurization test
3084
|-
3085
| [[Image:Draft_Samper_351239591-BenchVVD1.png|600px|Stress evolution during the third and the fourth pressurization test]]
3086
|- style="text-align: center; font-size: 75%;"
3087
|  (c) Stress evolution during the third and the fourth pressurization test
3088
|- style="text-align: center; font-size: 75%;"
3089
|  '''Figure 60:''' Stress evolution at the vertical tendons
3090
|}
3091
3092
<div id='img-61a'></div>
3093
<div id='img-61b'></div>
3094
<div id='img-61c'></div>
3095
<div id='img-61'></div>
3096
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
3097
|-
3098
|[[Image:Draft_Samper_351239591-BenchD.png|600px|Stress evolution for the whole analysis period]]
3099
|- style="text-align: center; font-size: 75%;"
3100
| (a) Stress evolution for the whole analysis period
3101
|-
3102
|[[Image:Draft_Samper_351239591-BenchDVC1.png|600px|Stress evolution during the second pressurization test]]
3103
|- style="text-align: center; font-size: 75%;"
3104
| (b) Stress evolution during the second pressurization test
3105
|-
3106
|[[Image:Draft_Samper_351239591-BenchDVD1.png|600px|Stress evolution during the third and the fourth pressurization test]]
3107
|- style="text-align: center; font-size: 75%;"
3108
|  (c) Stress evolution during the third and the fourth pressurization test
3109
|- style="text-align: center; font-size: 75%;"
3110
|'''Figure 61:''' Stress evolution at the dome tendons
3111
|}
3112
3113
<div id='img-62a'></div>
3114
<div id='img-62b'></div>
3115
<div id='img-62c'></div>
3116
<div id='img-62'></div>
3117
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
3118
|-
3119
|[[Image:Draft_Samper_351239591-BenchG.png|600px|Stress evolution for the whole analysis period]]
3120
|- style="text-align: center; font-size: 75%;"
3121
| (a) Stress evolution for the whole analysis period
3122
|-
3123
|[[Image:Draft_Samper_351239591-BenchGVC1.png|600px|Stress evolution during the second pressurization test]]
3124
|- style="text-align: center; font-size: 75%;"
3125
| (b) Stress evolution during the second pressurization test
3126
|-
3127
| [[Image:Draft_Samper_351239591-BenchGVD1.png|600px|Stress evolution during the third and the fourth pressurization test]]
3128
|- style="text-align: center; font-size: 75%;"
3129
|   (c) Stress evolution during the third and the fourth pressurization test
3130
|- style="text-align: center; font-size: 75%;"
3131
| '''Figure 62:''' Stress evolution at the gamma tendons
3132
|}
3133
3134
In addition to these stress and displacement results of the containment building, PLCd prints the evolution of the damage internal variable <math display="inline"> d </math> for each FE. This variable quantifies the damaged volumetric percentage of the finite element but this type of result is not so intuitive.
3135
3136
Therefore, it has been decided to transform this parameter into another one: the crack opening displacement <math display="inline"> u_{crack} </math>. This new variable is computed inside the FE code at each integration point as:
3137
3138
<span id="eq-5.5"></span>
3139
{| class="formulaSCP" style="width: 100%; text-align: left;" 
3140
|-
3141
| 
3142
{| style="text-align: left; margin:auto;width: 100%;" 
3143
|-
3144
| style="text-align: center;" | <math>u_{crack} = \left(d \cdot \varepsilon _{eq}\right)\cdot l_f </math>
3145
|}
3146
| style="width: 5px;text-align: right;white-space: nowrap;" | (5.5)
3147
|}
3148
3149
Where <math display="inline"> l_f </math> is the characteristic length of the element and <math display="inline"> \varepsilon _{eq} </math> is the equivalent strain of the integration point, which is computed as:
3150
3151
<span id="eq-5.6"></span>
3152
{| class="formulaSCP" style="width: 100%; text-align: left;" 
3153
|-
3154
| 
3155
{| style="text-align: left; margin:auto;width: 100%;" 
3156
|-
3157
| style="text-align: center;" | <math>\varepsilon _{eq} = \dfrac{\boldsymbol{\sigma } : \boldsymbol{\varepsilon }}{f\left(\boldsymbol{\sigma }\right)} </math>
3158
|}
3159
| style="width: 5px;text-align: right;white-space: nowrap;" | (5.6)
3160
|}
3161
3162
Where <math display="inline"> f\left(\boldsymbol{\sigma }\right)</math> is the uniaxial equivalent stress.
3163
3164
This new parameter is an estimation of the maximum crack width that could appear in each FE. Therefore, this is not a function that gives the real crack distribution, but an overview of the problem.
3165
3166
The definition used for this <math display="inline"> u_{crack} </math> allows obtaining the crack evolution in the containment building. The presence of cracks depends on the stress state as stated in Equations [[#eq-5.5|5.5]] and [[#eq-5.6|5.6]] and so it can be observed that <math display="inline"> u_{crack} </math> values increase while the pressure tests are being performed but, when there is no internal pressure, these values decrease, i.e. the cracks close. Although this is a realistic behaviour, it is important to keep in mind that the involved materials do not reduce their damage level (<math display="inline"> d </math> does not decrease) and thus, they do not recover their initial properties.
3167
3168
Figures [[#img-63|63]] to [[#img-66|66]] show the evolution through the first pressure test of the damage internal variable <math display="inline"> d </math> and the crack opening displacement <math display="inline"> u_{crack} </math>. It is interesting to see that the prestressing operation induces damage to the concrete (Figure [[#img-63|63]]) and furthermore, it can be seen that the damaged areas match with those with the highest stress state, i.e. the equipment hatch and the dome.
3169
3170
Finally, the evolution in time of these parameters show that the damage effect is accentuated by the rise of the internal pressure, which also leads to an increment in the crack opening displacement.
3171
3172
<div id='img-63'></div>
3173
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
3174
|-
3175
|[[Image:Draft_Samper_351239591-S1Dam.png|552px|Beginning of the Pre-op test. Damage internal variable  d ퟄ\left[0,1\right] at the dome (Cupula) and at the cylinder (Anillo)]]
3176
|- style="text-align: center; font-size: 75%;"
3177
| colspan="1" | '''Figure 63:''' Beginning of the Pre-op test. Damage internal variable <math> d \in \left[0,1\right]</math> at the dome (Cupula) and at the cylinder (Anillo)
3178
|}
3179
3180
<div id='img-64'></div>
3181
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
3182
|-
3183
|[[Image:Draft_Samper_351239591-S1Fisura.png|558px|Beginning of the Pre-op test. Crack opening displacement  u<sub>crack</sub>  [ m ] at the dome (Cupula) and at the cylinder (Anillo)]]
3184
|- style="text-align: center; font-size: 75%;"
3185
| colspan="1" | '''Figure 64:''' Beginning of the Pre-op test. Crack opening displacement <math> u_{crack} </math> [<math> m </math>] at the dome (Cupula) and at the cylinder (Anillo)
3186
|}
3187
3188
<div id='img-65'></div>
3189
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
3190
|-
3191
|[[Image:Draft_Samper_351239591-S11Dam.png|552px|Maximum pressure at the Pre-op test. Damage internal variable  d ퟄ\left[0,1\right] at the dome (Cupula) and at the cylinder (Anillo)]]
3192
|- style="text-align: center; font-size: 75%;"
3193
| colspan="1" | '''Figure 65:''' Maximum pressure at the Pre-op test. Damage internal variable <math> d \in \left[0,1\right]</math> at the dome (Cupula) and at the cylinder (Anillo)
3194
|}
3195
3196
<div id='img-66'></div>
3197
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
3198
|-
3199
|[[Image:Draft_Samper_351239591-S11Fisura.png|558px|Maximum pressure at the Pre-op test. Crack opening displacement  u<sub>crack</sub>  [ m ] at the dome (Cupula) and at the cylinder (Anillo)]]
3200
|- style="text-align: center; font-size: 75%;"
3201
| colspan="1" | '''Figure 66:''' Maximum pressure at the Pre-op test. Crack opening displacement <math> u_{crack} </math> [<math> m </math>] at the dome (Cupula) and at the cylinder (Anillo)
3202
|}
3203
3204
<span id="fn-1"></span>
3205
<span style="text-align: center; font-size: 75%;">([[#fnc-1|<sup>1</sup>]]) Cálculo de la vida remanente del sistema de postensado de las centrales nucleares de Ascó y Vandellós y acciones derivadas - CIMNE - Ref.: 16BCX1000154</span>
3206
3207
===Conclusions===
3208
3209
The analysis of the mock-up reactor containment building helps to visualize the potential of the proposed technique. In this scenario, with a FE mesh of nearly 200000 hexahedras and performing a non-linear analysis with damage in concrete and viscoelasticity in prestressing steel, the computational analysis ran in 10h and 15min, using the CIMNE computational resources (32-threads and 250GB of RAM).
3210
3211
The main advantage of the SP RoM lies in the fact that it works as a manager of constitutive models. Therefore, the user only has to be focused on the accurate definition of the constitutive model of each composite material. The use of the isotropic damage model for the concrete modelization and the viscoelasticity model for prestressing simulation accounts for many of the phenomena that take place in prestressed concrete structures and so are considered appropriate.
3212
3213
The results obtained from the performed analysis match with the ones that were expected. Now its time to see which is the real behaviour of the structure and compare the results obtained through the numerical simulation with those measured in situ during the pressure tests. These results will be provided soon by the company in charge of the benchmark.
3214
3215
It is important to keep in mind the simplifications, the hypothesis considered in this analysis and the possible points to be improved:
3216
3217
* The prestressing sequence has not been considered in the simulation. Thus, all the tendons have been tensioned at the same time. Despite this, the code allows the introduction of the prestressing stage in as many phases as the user desires and take into account this effect in the analysis. Despite this, considering that the simulation lasts for three years while the maximum gap between prestressing operations is of few hours, the inclusion of the prestressing sequence in the analysis has been discarded.
3218
3219
This accuracy level has been used in other cases where the time gaps during the prestressing stage were bigger.
3220
3221
* The FE mesh used in the analysis could be improved. Performing a sensibility analysis changing the model mesh for this structure is quite complex. The algorithm used for the calculation has some restrictions that affect notoriously in the final mesh layout.
3222
3223
The formulation that controls the SP RoM has been written for composite materials with only two component materials: a matrix and a fibre material. The tendon orientation controls the parallel and series behaviour of each element. Therefore, if a FE contains more than one tendon PLCd gives an error message. In general, this can be avoided using a fine FE mesh. Therefore, the maximum FE size is limited.
3224
3225
On the other hand, prestressing steel is included in the model as a truss element with no area information and it is used to compute the intersections needed for the composite elements definition. When the ''composite generation'' step (Section [[#5.2 Procedure description|5.2]]) takes place, the area information is then loaded in order to compute the volumetric participations (<math display="inline"> {^f}k </math> and <math display="inline"> {^m}k </math>). If the FE is smaller than the fibre, then incoherent volumetric participation values are obtained. This happens because the element that is being analysed cannot be simulated as a composite material, it is in fact composed by only prestressing steel. This situation must be avoided and thus, the minimum FE size is controlled by this situation <span id='citeF-48'></span>[[#cite-48|[48]]].
3226
3227
* Not all the phenomena are predicted. The constitutive models have been chosen in order to reproduce the real behaviour of the structure. Despite this, there are some phenomena that cannot be predicted. This is the case of the time dependent procedures that take place in concrete (creep and shrinkage).
3228
3229
* The prestressing steel effect has been included using a uniform strain value per family. PLCd allows the use of different strain values per tendon but this does not introduce a significant difference in the results that would be obtained because there are no significant differences between the mean stress values of the tendons that belong to the same family.
3230
3231
In addition to this simplification, the numerical simulation cannot compute the instantaneous losses due to friction and wedge blocking. Therefore, this calculation is done uncoupled to the simulation.
3232
3233
* The rheological behaviour of the prestressing steel should be revised. The Maxwell models used for the prediction of the prestressing tension evolution have been defined without any possible calibration. These are based on previous experience in this type of structures, but should be calibrated with the real response of the structure.  
3234
3235
Despite this, these drawbacks can be solved and thus, the SP RoM is an interesting technique for the analysis of prestressed concrete structures.
3236
3237
=6 Conclusions and future research lines=
3238
3239
At this stage, once the bases that support the SP RoM are clear and the applicability of this technique in the analysis of prestressed concrete elements has been shown, some conclusions can be drawn.
3240
3241
The use of this methodology applied to the assessment of this type of structure is quite new. This means that there are still many things that can be improved in order to finally obtain an approach that fully predicts the real behaviour of the prestressed concrete structures. Despite this, the application examples give an accurate idea of the current potential of the methodology and show that it is already a competitive tool.
3242
3243
In fact, compared with the existing alternatives reviewed in Section [[#2 State of the art|2]], the SP RoM approach introduces several improvements. The main one is that this technique takes into account the fact that prestressed concrete is a composite material. Therefore, the methodology allows considering concrete and prestressing steel properly in the simulation, i.e. the SP RoM includes physically the tendons into the analysis as the fibre of a LFC. In addition, different constitutive models can be used to predict the behaviour of each component material, which not only allows obtaining the global response, but also the results at each component material. This is really interesting compared to the alternative of using homogenized material properties and interpolation techniques for the analysis of the structure.
3244
3245
On the other hand, in addition to those issues that should be improved in the methodology, there is an important issue related to the accessibility of this FE code that could be considered as a drawback. PLCd is the FE code used for the analysis by means of the SP RoM. It is an extraordinary code which allows performing many type of studies. Despite this, it is not a commercial code and therefore it is difficult to widely distribute the methodology. Thus, the only way to use this approach without using PLCd is by reproducing the code in another FE code.
3246
3247
Some of the issues that should be improved for the proposed methodology are common to other approaches. Therefore, there is a real need to work in those directions and develop feasible solutions. This is the case of the automatic computation of instantaneous prestressing losses or the possibility of considering the prestressing effect with the real stress distribution and not an equivalent constant stress distribution.
3248
3249
Other aspects are specific of the SP RoM. For example, it is convenient to keep working on the correct modelization of the component materials. In this regard, it can be interesting to change from a viscoelsticity model to a viscoplasticity one for the prestressing steel simulation or modify the isotropic damage model to include time-dependent phenomena like creep or shrinkage.
3250
3251
Finally, it would be interesting to improve the methodology and then take part in the last VeRCoRs benchmark. Analysing a structure of this magnitude is an unique opportunity.
3252
3253
===References===
3254
3255
<div id="cite-1"></div>
3256
'''[[#citeF-1|[1]]]''' Oñate, E. (2009) "Structural analysis with the finite element method. Linear statics. Volume 1. Basis and solids"
3257
3258
<div id="cite-2"></div>
3259
'''[[#citeF-2|[2]]]''' Cundall, P. and Strack, O. (1979) "A discrete numerical model for granular assemblies", Volume 29. Geotechnique 1 45-65
3260
3261
<div id="cite-3"></div>
3262
'''[[#citeF-3|[3]]]''' Oñate, E and Zárate, F. and Miquel, J. and others. (2015) "A local constitutive model for the discrete element method. application to geomaterials and concrete", Volume 2. Computational Particle Mechanics 2 139-160
3263
3264
<div id="cite-4"></div>
3265
'''[[#citeF-4|[4]]]''' Franci, A. and Zhang, X. (2018) "3D numerical simulation of free-surface Bingham fluids interacting with structures using the PFEM", Volume 259. Journal of Non-Newtonian Fluid Mechanics 1-15
3266
3267
<div id="cite-5"></div>
3268
'''[[#citeF-5|[5]]]''' Otero, F. and Martinez, X. and Oller, S. and Salomon, O. (2015) "An efficient multi-scale method for non-linear analysis of composite structures", Volume 131. Composite Structures
3269
3270
<div id="cite-6"></div>
3271
'''[[#citeF-6|[6]]]''' Ministerio de Fomento. (2011) "EHE-08. Instrucción de Hormigón Estructural"
3272
3273
<div id="cite-7"></div>
3274
'''[[#citeF-7|[7]]]''' Martínez, X. and Oller, S. and Rastellini, F.G. (2014) "Aplicaciones avanzadas de los materiales compuestos en la obra civil y la edificación". OmniaScience
3275
3276
<div id="cite-8"></div>
3277
'''[[#citeF-8|[8]]]''' Rastellini, F. G. (May 2006) "Modelación numérica de la no-linealidad constitutiva de laminados compuestos". UPC-ETSECCPB
3278
3279
<div id="cite-9"></div>
3280
'''[[#citeF-9|[9]]]''' Serpieri, R. (November 2005) "A novel constitutive model of composite materials with unidirectional long fibers: theoretical aspects and computational issues". Università degli Studi di Napoli "Federico II"
3281
3282
<div id="cite-10"></div>
3283
'''[[#citeF-10|[10]]]''' Murcia, J. and Aguado, A. and others. (1993) "Hormigón armado y pretensado - I"
3284
3285
<div id="cite-11"></div>
3286
'''[[#citeF-11|[11]]]''' . (Decembre 2004) "Eurocode 2: design of concrete structures (EN 1992-1-1)"
3287
3288
<div id="cite-12"></div>
3289
'''[[#citeF-12|[12]]]''' Ministere de l'Équipment du Logement et des Transports. (September 1992) "Regles techniques de conception et de calculus des ouvrages et constructions en beton precontraint suivant la methode des etats limites - BPEL 91"
3290
3291
<div id="cite-13"></div>
3292
'''[[#citeF-13|[13]]]''' Post-Tensioning Institute. (2006) "Post-tensioning manual", <math> 6^{th} </math> Edition
3293
3294
<div id="cite-14"></div>
3295
'''[[#citeF-14|[14]]]''' Claramunt, D. (2010) "Criterios simplificados para dimensionamiento de elementos pretensados con fisuración controlada". ETSECCPB - UPC
3296
3297
<div id="cite-15"></div>
3298
'''[[#citeF-15|[15]]]''' Bairán, J. and Marí, A. and Duarte, N. (2012) "Direct optimal design of partially prestressed concrete for controlled cracking or fatigue". Conference: fib Symposium: Concrete Structures for a Sustainable Community
3299
3300
<div id="cite-16"></div>
3301
'''[[#citeF-16|[16]]]''' ACI Committee 318. (2005) "Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05)"
3302
3303
<div id="cite-17"></div>
3304
'''[[#citeF-17|[17]]]''' Marí, A. and Aguado, A. and others. (April 1999) "Hormigón armado y pretensado. Ejercicios"
3305
3306
<div id="cite-18"></div>
3307
'''[[#citeF-18|[18]]]''' Aguado, A. and Mirambell, E. and Murcia, E. and Marí, A. (1983) "Problemas de hormigón armado y pretensado". E.T.S. de Ingenieros de Caminos de Barcelona (UPC)
3308
3309
<div id="cite-19"></div>
3310
'''[[#citeF-19|[19]]]''' American Association of State Highway and Transportation Officials (AASHTO). (2014) "LRFD bridge design specifications"
3311
3312
<div id="cite-20"></div>
3313
'''[[#citeF-20|[20]]]''' Murcia, J. and Aguado, A. and others. (1993) "Hormigón armado y pretensado - II"
3314
3315
<div id="cite-21"></div>
3316
'''[[#citeF-21|[21]]]''' Shreedhar, R. and Kharde, R. (February 2013) "Comparative study of Grillage method and Finite Element Method of RCC bridge deck". International Journal of Scientific and Engineering Research
3317
3318
<div id="cite-22"></div>
3319
'''[[#citeF-22|[22]]]''' Rodríguez, F.B. (2016) "Comportamiento no lineal de vigas isostáticas de hormigón parcialmente pretensado". ETSECCPB - UPC
3320
3321
<div id="cite-23"></div>
3322
'''[[#citeF-23|[23]]]''' Shokoohfar, A. and Rahai, A. (2016) "Nonlinear analysis of pre-stressed concrete containment vessel (PCCV) using the damage plasticity model". Nuclear Engineering and Design
3323
3324
<div id="cite-24"></div>
3325
'''[[#citeF-24|[24]]]''' Tavakkoli, I. and Kianoush, M.R. and others. (2017) "Finite element moelling of a nuclear containment structure subjected to high internal pressure". International Journal of Pressure Vessels and Piping
3326
3327
<div id="cite-25"></div>
3328
'''[[#citeF-25|[25]]]''' Yapar, O. and Basu, P.K. and Nordendale, N. (2015) "Accurate finite element modeling of pretensioned prestressed concrete beams". Engineering Structures
3329
3330
<div id="cite-26"></div>
3331
'''[[#citeF-26|[26]]]''' Briere, V. and Harries, K. A and others. (2013) "Dilation behavior of seven-wire prestressing strand - the Hoyer effect". Construction and Building Materials
3332
3333
<div id="cite-27"></div>
3334
'''[[#citeF-27|[27]]]''' "3DS Simulia". https://www.3ds.com/es/productos-y-servicios/simulia/productos/abaqus/
3335
3336
<div id="cite-28"></div>
3337
'''[[#citeF-28|[28]]]''' 3DS Simulia. (35.4.1-1 to 35.4.1-6) "ABAQUS 6.14. Analysis user's guide. Volume V: prescribed conditions, constraints and interactions"
3338
3339
<div id="cite-29"></div>
3340
'''[[#citeF-29|[29]]]''' Hinton, E. and Owen, D.R.J. (1980) "Introduction to finite element computations"
3341
3342
<div id="cite-30"></div>
3343
'''[[#citeF-30|[30]]]''' Cornejo, A. (June 2017) "Numerical simulation of multi-fracture in materials using a coupled FEM-DEM formulation". ETSECCPB-UPC
3344
3345
<div id="cite-31"></div>
3346
'''[[#citeF-31|[31]]]''' . (2016) "GID the universal, adaptative and user friendly pre and postprocessing system for computer analysis"
3347
3348
<div id="cite-32"></div>
3349
'''[[#citeF-32|[32]]]''' Oller, S. (2014) "Nonlinear dynamics of structures"
3350
3351
<div id="cite-33"></div>
3352
'''[[#citeF-33|[33]]]''' Voigt, W. (1889) "Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper". Annalen der Physik
3353
3354
<div id="cite-34"></div>
3355
'''[[#citeF-34|[34]]]''' Reuss, A. (1929) "Berechnung der Fliebgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle". ZAMM - Journal of Applied Mathematics and Mechanics
3356
3357
<div id="cite-35"></div>
3358
'''[[#citeF-35|[35]]]''' Bishop, J.F.W. and Hill, R. "A theoretical derivation of the plastic properties of a polycrystalline face-centred metal". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
3359
3360
<div id="cite-36"></div>
3361
'''[[#citeF-36|[36]]]''' Taylor, G. I. (1938) "Plastic strain in metals". Journal of the Institute of Metals
3362
3363
<div id="cite-37"></div>
3364
'''[[#citeF-37|[37]]]''' Oller, Sergio. (April 2003) "Simulación numérica del comportamiento mecánico de los materiales compuestos"
3365
3366
<div id="cite-38"></div>
3367
'''[[#citeF-38|[38]]]''' Truesdell, C. and Toupin, R. (1960) "The classical field theories"
3368
3369
<div id="cite-39"></div>
3370
'''[[#citeF-39|[39]]]''' Kondo, D. and Welemane, H and Cormery, F. (2007) "Basic concepts and models in continuum damage mechanics". Revue européenne de génie  civil
3371
3372
<div id="cite-40"></div>
3373
'''[[#citeF-40|[40]]]''' Kachanov, L. (1958) "On the time of fracture under conditions of creep". Izvestia Akademii nauk
3374
3375
<div id="cite-41"></div>
3376
'''[[#citeF-41|[41]]]''' Ohno, N. and Wang, J. (1993) "Kinematic hardening rules with critical state of dynamic recovery, Part I:  Formulation and basic features for ratcheting behavior". International Journal of Plasticity
3377
3378
<div id="cite-42"></div>
3379
'''[[#citeF-42|[42]]]''' Washizu, K. (1974) "Variational methods in elasticity and plasticity". Pergamon Press.
3380
3381
<div id="cite-43"></div>
3382
'''[[#citeF-43|[43]]]''' Électricité de France (EDF) "VeRCoRs Project eDF". https://fr.xing-events.com/EDF-vercors-project.html?page=1426249
3383
3384
<div id="cite-44"></div>
3385
'''[[#citeF-44|[44]]]''' "GiD the personal pre and post processor". https://www.gidhome.com/
3386
3387
<div id="cite-45"></div>
3388
'''[[#citeF-45|[45]]]''' "PLastic Crack dynamic". http://www.cimne.com/PLCd
3389
3390
<div id="cite-46"></div>
3391
'''[[#citeF-46|[46]]]''' Canet, J.M. (2012) "Resistencia de materiales y estructuras"
3392
3393
<div id="cite-47"></div>
3394
'''[[#citeF-47|[47]]]''' Cobin, M. and Garcia, M. (February 2016) "International Benchmark. VeRCoRs 2015 - Overview, synthesis and lessons learnt". Électricité de France
3395
3396
<div id="cite-48"></div>
3397
'''[[#citeF-48|[48]]]''' Cornejo, A and Barbu, L.G. and Escudero, C. and others. (2018) "Methodology for the analysis of post-tensioned structures using a constitutive serial-parallel rule of mixtures", Volume 200. Composite Structures 480-497
3398
3399
=Appendix A. Immediate losses=
3400
3401
3402
<pdf>Media:Draft_Samper_351239591_4431_anexo.pdf</pdf>
3403

Return to Jimenez et al 2018a.

Back to Top

Document information

Published on 28/09/18
Submitted on 28/09/18

Licence: CC BY-NC-SA license

Document Score

0

Views 232
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?