You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
==POSSIBILITIES OF THE PARTICLE FINITE ELEMENT METHOD FOR FLUID-SOIL-STRUCTURE INTERACTION PROBLEMS==
3
4
'''Eugenio Oñate<math>^{1,2}</math>, Miguel Angel Celigueta<math>^{1,2}</math>, Sergio R. Idelsohn<math>^{*}</math>,
5
6
Fernando Salazar<math>^{1}</math> and Benjamín Suárez<math>^{2}</math>
7
8
'''
9
10
{|
11
|-
12
|<math>^{1}</math> International Center for Numerical Methods in Engineering (CIMNE) 
13
|-
14
| Campus Norte UPC, 08034 Barcelona, Spain 
15
|-
16
| [mailto:onate@cimne.upc.edu onate@cimne.upc.edu], [http://www.cimne.com www.cimne.com]
17
|-
18
| <math>^*</math> ICREA Research Professor at CIMNE
19
|-
20
| <math>^{2}</math> Technical University of Catalonia (UPC), Barcelona, Spain
21
|}
22
-->
23
24
==Abstract==
25
26
We present some developments in the Particle Finite   Element Method (PFEM) for analysis of complex coupled problems in   mechanics involving  fluid-soil-structure interaction (FSSI). The   PFEM uses  an updated Lagrangian description to   model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures).  A mesh connects the particles (nodes) defining the discretized   domain where the governing equations for each of the constituent materials are   solved as in the standard FEM. The stabilization for dealing with   an incompressibility continuum is introduced via the finite calculus   (FIC) method. An incremental iterative scheme for the solution of the non   linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and   solid-solid interfaces is   described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of  landslides.
27
28
==1 Introduction==
29
30
The analysis of problems involving the interaction of fluids, soil/rocks and structures  is of  relevance in many areas of engineering. Examples are common in the study of landslides and their effect on reservoirs and adjacent structures, off-shore and harbour structures under large waves, constructions hit by floods and tsunamis, soil erosion and stability of  rock-fill dams in overspill situations, etc.
31
32
These studies can be considered as an extension of the so-called fluid-structure interaction (FSI) problems <span id='citeF-46'></span>[[#cite-46|[46]]]. Typical difficulties of FSI  analysis in free surface flows using the FEM  both the Eulerian or ALE formulation include the treatment of the convective terms and the incompressibility constraint in the fluid equations, the modelling and tracking of the free surface in the fluid, the transfer of information between the fluid and the moving solid domains via the contact interfaces, the modeling of wave splashing, the possibility to deal with large  motions of multi-bodies within the fluid domain, the efficient updating of the finite element meshes for both the structure and the fluid, etc. Examples of 3D analysis of FSI problems using ALE and space-time FEM are reported in <span id='citeF-4'></span><span id='citeF-6'></span><span id='citeF-26'></span><span id='citeF-27'></span><span id='citeF-31'></span><span id='citeF-34'></span><span id='citeF-40'></span>[[#cite-4|[4,6,26,27,31,34,40]]].
33
34
Most of the above problems disappear if a ''Lagrangian description'' is used to formulate the governing equations of both the solid and the fluid domains. In the Lagrangian formulation the motion of the individual particles are followed and, consequently, nodes in a finite element mesh can be viewed as moving material points (hereforth called “particles”). Hence, the motion of the mesh discretizing the total domain (including both the fluid and solid parts) is followed during the transient solution.
35
36
A powerful Lagrangian method for FSI analysis is the so-called Soboran Grid CIP technique, which has been successfully applied to different class of 3D problems <span id='citeF-44'></span>[[#cite-44|[44]]].
37
38
The authors have successfully developed in previous works a particular class of Lagrangian formulation for solving problems involving complex interactions between (free surface fluids) and solids. The method, called the ''particle finite element method'' (PFEM,www.cimne.com/pfem), treats the mesh nodes in the fluid and solid domains as particles which can freely move and even separate from the main fluid domain representing, for instance, the effect of water drops. A mesh connects the nodes discretizing the domain where the governing equations are solved using a stabilized FEM.
39
40
An advantage of the Lagrangian formulation is that the convective terms disappear from the fluid equations <span id='citeF-11'></span><span id='citeF-48'></span>[[#cite-11|[11,48]]]. The difficulty is however transferred to the problem of adequately (and efficiently) moving the mesh nodes.  We use a  mesh regeneration procedure blending elements of different shapes using an extended Delaunay tesselation with special shape functions <span id='citeF-17'></span><span id='citeF-19'></span>[[#cite-17|[17,19]]]. The theory and applications of the PFEM are reported in <span id='citeF-2'></span><span id='citeF-7'></span><span id='citeF-10'></span><span id='citeF-18'></span><span id='citeF-20'></span><span id='citeF-21'></span><span id='citeF-23'></span><span id='citeF-26'></span><span id='citeF-32'></span><span id='citeF-34'></span><span id='citeF-35'></span><span id='citeF-36'></span><span id='citeF-37'></span><span id='citeF-38'></span><span id='citeF-39'></span>[[#cite-2|[2,7,10,18,20,21,23,26,32,34,35,36,37,38,39]]].
41
42
The FEM solution of  (incompressible) fluid flow problem implies solving the momentum and incompressibility equations. This is not a simple problem as the incompressibility condition limits the choice of the FE approximations for the velocity and pressure to overcome the well known <math display="inline">div</math>-stability condition <span id='citeF-11'></span><span id='citeF-48'></span>[[#cite-11|[11,48]]]. In our work we use a stabilized mixed FEM based on the Finite Calculus (FIC) approach which allows for a linear approximation for the velocity and pressure variables <span id='citeF-15'></span><span id='citeF-29'></span><span id='citeF-30'></span><span id='citeF-31'></span><span id='citeF-33'></span><span id='citeF-34'></span>[[#cite-15|[15,29,30,31,33,34]]]. Among the other stabilized FEM with similar features we mention the PSPG method <span id='citeF-41'></span>[[#cite-41|[41]]], multiscale methods <span id='citeF-3'></span><span id='citeF-6'></span><span id='citeF-8'></span><span id='citeF-9'></span>[[#cite-3|[3,6,8,9]]] and the CBS method <span id='citeF-9'></span><span id='citeF-48'></span>[[#cite-9|[9,48]]].
43
44
The aim of this paper is to describe recent advances of the PFEM for fluid-soil-structure interaction (FSSI) problems. These problems are of relevance in many areas of civil, hydraulic, marine and environmental engineering, among others. It is shown that the PFEM provides a general analysis methodology for treat such complex problems in a simple and efficient manner.
45
46
The layout of the paper is the following. In the next section the key ideas of the PFEM are outlined. Next the basic equations for a compressible/incompressible continuum using a Lagrangian description and the FIC formulation are schematically presented. Then an algorithm for the transient solution is briefly described. The treatment of the coupled FSSI problem and the methods for mesh generation and for identification of the free surface nodes are outlined. The procedure for treating the frictional contact interaction between fluid, soil and structure interfaces is explained.  We present several examples of application of the PFEM  to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions under sea waves and the study of landslides falling into reservoirs.
47
48
==2 The basis of the particle finite element method==
49
50
Let us consider a domain containing both fluid and solid subdomains (the solid subdomain may include soil/rock materials and/or structural elements). The moving fluid particles interact with the solid boundaries thereby inducing the deformation of the solid which in turn affects the flow motion and, therefore, the problem is  fully coupled.
51
52
In the PFEM  both the fluid and the solid domains are modelled using an ''updated'' ''Lagrangian formulation'' <span id='citeF-47'></span>[[#cite-47|[47]]]. That is, all variables are assumed to be known in the ''   current configuration'' at time <math display="inline">t</math>. The new set of variables in both domains are sought for in the ''next or updated configuration'' at time <math display="inline">t+\Delta t</math>. The finite element method (FEM) is used to solve the  equations of continuum mechanics for each of the subdomains. Hence a mesh discretizing these domains must be generated in order to solve the governing equations for each subdomain in the standard FEM fashion.
53
54
The quality of the numerical solution  depends on the discretization chosen as in the standard FEM. Adaptive mesh refinement techniques can be used to improve the solution in zones where large motions of the fluid or the structure occur.
55
56
<div id='img-1'></div>
57
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
58
|-
59
|[[Image:Draft_Samper_395841693-Figure2_con276.png|600px|Sequence of steps to update a “cloud” of nodes representing a domain containing a fluid and a solid part from time n   (t=tₙ)  to   time n+2 (t=tₙ+2∆t)  ]]
60
|- style="text-align: center; font-size: 75%;"
61
| colspan="1" | '''Figure 1:''' Sequence of steps to update a “cloud” of nodes representing a domain containing a fluid and a solid part from time <math>n</math>   (<math>t=t_n</math>)  to   time <math>n+2</math> (<math>t=t_n +2\Delta t</math>)  
62
|}
63
64
===2.1 Basic steps of the PFEM===
65
66
For clarity purposes we will define the ''collection or cloud of nodes (C)'' pertaining to the fluid and solid domains, the ''volume (V)'' defining the analysis domain for the fluid and the solid and the ''mesh (M)'' discretizing both domains.
67
68
A typical solution with the PFEM involves the following steps.
69
70
<ol>
71
72
<li>The starting point at each time step is the cloud of points in the fluid and solid   domains. For instance <math display="inline">{}^nC</math> denotes the cloud at time <math display="inline">t=t_n</math> (Figure [[#img-1|1]]).  </li>
73
74
<li>Identify the  boundaries for both the fluid and solid domains defining   the analysis domain <math display="inline">{}^nV</math> in the fluid and the solid. This is  an   essential step as some boundaries (such as the free surface in fluids)   may be severely distorted during the solution, including separation   and re-entering of nodes. The Alpha Shape method   <span id='citeF-12'></span>[[#cite-12|[12]]] is used for the boundary definition.  </li>
75
76
<li>Discretize the fluid and solid domains with a finite element mesh <math display="inline">{}^nM</math>. In our work we use an innovative mesh generation scheme based on the extended Delaunay tesselation <span id='citeF-17'></span><span id='citeF-19'></span><span id='citeF-20'></span>[[#cite-17|[17,19,20]]].  </li>
77
78
<li>Solve the coupled Lagrangian equations of motion for  the fluid and the   solid domains. Compute the state variables in both domains at the   next (updated) configuration for <math display="inline">t+\Delta t</math>: velocities, pressure and   viscous stresses in the fluid and   displacements, stresses and strains in the solid.  </li>
79
80
<li>Move the mesh nodes to a new position <math display="inline">{}^{n+1} C</math> where <math display="inline">n+1</math> denotes   the time <math display="inline">t_n+\Delta t</math>, in terms of the time increment size. This step is   typically a consequence of the solution process of step 4.  </li>
81
82
<li>Go back to step 1 and repeat the solution process for the next time step   to obtain <math display="inline">{}^{n+2} C</math> (Figure [[#img-1|1]]). </li>
83
84
</ol>
85
86
==3 FIC/FEM formulation for a Lagrangian continuum==
87
88
===3.1 Governing equations===
89
90
The equations to be solved are the standard ones in continuum mechanics, written in the Lagrangian frame of reference:
91
92
===='''Momentum'''====
93
94
<span id="eq-1"></span>
95
{| class="formulaSCP" style="width: 100%; text-align: left;" 
96
|-
97
| 
98
{| style="text-align: left; margin:auto;width: 100%;" 
99
|-
100
| style="text-align: center;" | <math>\rho {\partial v_i \over \partial t}={\partial \sigma _{ij} \over \partial x_j}+b_i\qquad \hbox{in } V  </math>
101
|}
102
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
103
|}
104
105
===='''Pressure-velocity relationship'''====
106
107
<span id="eq-2"></span>
108
{| class="formulaSCP" style="width: 100%; text-align: left;" 
109
|-
110
| 
111
{| style="text-align: left; margin:auto;width: 100%;" 
112
|-
113
| style="text-align: center;" | <math>\frac{1}{K} {\partial p \over \partial t}-{\partial v_i \over \partial x_i}=0 \qquad \hbox{in }V  </math>
114
|}
115
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
116
|}
117
118
In above equations <math display="inline">v_{i}</math> is the velocity along the ''i''th global (cartesian) axis, <math display="inline">p</math> is the pressure (assumed to be positive in compression) <math display="inline">\rho </math> and <math display="inline">K</math> are the density and bulk modulus of the material, respectively, <math display="inline">b_i</math> and <math display="inline">\sigma _{ij}</math> are the body forces and the (Cauchy) stresses. Eqs.([[#eq-1|1]]) and ([[#eq-2|2]]) are completed with the constitutive relationships:
119
120
====''Incompressible continuum''====
121
122
<span id="eq-3"></span>
123
{| class="formulaSCP" style="width: 100%; text-align: left;" 
124
|-
125
| 
126
{| style="text-align: left; margin:auto;width: 100%;" 
127
|-
128
| style="text-align: center;" | <math>{}^{t+1}\sigma _{ij} = 2 \mu \dot \varepsilon _{ij} - {}^{t+1} p \delta _{ij}   </math>
129
|}
130
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
131
|}
132
133
====''Compressible/quasi-incompressible continuum''====
134
135
{| class="formulaSCP" style="width: 100%; text-align: left;" 
136
|-
137
| 
138
{| style="text-align: left; margin:auto;width: 100%;" 
139
|-
140
| style="text-align: center;" | <math>{}^{t+1}s _{ij}= {}^{t}\hat \sigma _{ij} + 2 \mu \dot \varepsilon _{ij} +\lambda \dot \varepsilon _{ii} \delta _{ij} </math>
141
|}
142
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.a)
143
|}
144
145
where <math display="inline">\hat \sigma _{ij}</math> are the component of the stress tensor <math display="inline">[\hat \sigma ]</math>
146
147
<span id="eq-4.b"></span>
148
{| class="formulaSCP" style="width: 100%; text-align: left;" 
149
|-
150
| 
151
{| style="text-align: left; margin:auto;width: 100%;" 
152
|-
153
| style="text-align: center;" | <math>[\hat \sigma ]= \frac{1}{J} {F}^T {S} {F}  </math>
154
|}
155
| style="width: 5px;text-align: right;white-space: nowrap;" | (4.b)
156
|}
157
158
where <math display="inline">{S}</math> is the second Piola-Kirchhoff stress tensor, <math display="inline">{F}</math> is the deformation gradient tensor and <math display="inline">J = \det {F}</math> <span id='citeF-22'></span><span id='citeF-47'></span>[[#cite-22|[22,47]]]. Parameters <math display="inline">\mu </math> and <math display="inline">\lambda </math>  take the following values for a fluid or solid material:
159
160
'''Fluid:''' <math display="inline">\mu </math>: viscosity; <math display="inline">\lambda = \Delta t K - \frac{2\mu }{3}</math>      '''Solid:''' <math display="inline">\displaystyle \mu = \frac{\Delta t G}{J}</math>; <math display="inline"> \displaystyle \lambda =\frac{2G \nu \Delta t}{J(1-2\nu )}</math>, where <math display="inline">\nu </math> is the Poisson ration, <math display="inline">G</math> is the shear modulus and <math display="inline">\Delta t</math> the time increment.
161
162
In Eqs.(3) and (4), <math display="inline">s _{ij}</math> are the deviatoric stresses, <math display="inline">\dot \varepsilon _{ij}</math>  is the rate of deformation, <math display="inline">\mu </math> is the viscosity and <math display="inline">\delta _{ij}</math> is the Kronecker delta. <math display="inline">{}^{t} (\cdot )</math> denotes values at time <math display="inline">t</math>.
163
164
Indexes in Eqs.([[#eq-1|1]])&#8211;(4) range from <math display="inline">i,j=1,n_{d}</math>, where <math display="inline">n_d</math>  is the number of space dimensions of the problem (i.e. <math display="inline">n_{d} = 2</math> for 2D problems). These equations  are completed with the standard boundary conditions of prescribed velocities and surface tractions in the mechanical problem  <span id='citeF-11'></span><span id='citeF-36'></span><span id='citeF-47'></span><span id='citeF-48'></span>[[#cite-11|[11,36,47,48]]].
165
166
===3.2 Discretization of the equations===
167
168
A key problem in the numerical solution of Eqs.([[#eq-1|1]])&#8211;([[#''Compressible/quasi-incompressible continuum''|3.1]]) is the satisfaction of the mass balance condition for the incompressible case (i.e. <math display="inline">K=\infty </math> in Eq.([[#eq-2|2]])). A number of procedures to solve his problem exist in the finite element literature <span id='citeF-11'></span><span id='citeF-48'></span>[[#cite-11|[11,48]]]. In our approach we use a stabilized formulation based in the so-called finite calculus procedure <span id='citeF-15'></span><span id='citeF-29'></span><span id='citeF-30'></span><span id='citeF-31'></span><span id='citeF-33'></span><span id='citeF-34'></span>[[#cite-15|[15,29,30,31,33,34]]]. The essence of this method is the solution of a ''modified mass balance'' equation which is written as
169
170
<span id="eq-5"></span>
171
{| class="formulaSCP" style="width: 100%; text-align: left;" 
172
|-
173
| 
174
{| style="text-align: left; margin:auto;width: 100%;" 
175
|-
176
| style="text-align: center;" | <math>\frac{1}{K} {\partial p \over \partial t} - {\partial v_i \over \partial x_i} -\sum \limits _{i=1}^{3}\tau {\partial q \over \partial x_i}\left[{\partial p \over \partial x_i} +\pi _i\right]=0  </math>
177
|}
178
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
179
|}
180
181
where <math display="inline">q</math> are weighting functions, <math display="inline">\tau </math> is a stabilization parameter given by <span id='citeF-34'></span>[[#cite-34|[34]]]
182
183
<span id="eq-6"></span>
184
{| class="formulaSCP" style="width: 100%; text-align: left;" 
185
|-
186
| 
187
{| style="text-align: left; margin:auto;width: 100%;" 
188
|-
189
| style="text-align: center;" | <math>\tau = \left(\frac{2\rho \vert \mathbf{v}\vert }{h}+\frac{8\mu }{3h^2} \right)^{-1}  </math>
190
|}
191
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
192
|}
193
194
In the above, <math display="inline">h</math> is a characteristic length of each finite element  and <math display="inline">\vert \mathbf{v}\vert </math> is the modulus of the velocity vector. In Eq.([[#eq-5|5]]) <math display="inline">\pi _i</math>   are auxiliary pressure projection variables chosen so as to ensure that the second term in Eq.([[#eq-5|5]]) can be interpreted as weighted sum of the residuals of the momentum equations and therefore it vanishes for the exact solution. The set of governing equations  is completed by adding the following constraint equation <span id='citeF-32'></span><span id='citeF-36'></span>[[#cite-32|[32,36]]]
195
196
<span id="eq-7"></span>
197
{| class="formulaSCP" style="width: 100%; text-align: left;" 
198
|-
199
| 
200
{| style="text-align: left; margin:auto;width: 100%;" 
201
|-
202
| style="text-align: center;" | <math>\int _V \tau w_i\left({\partial p \over \partial x_i} +\pi _i\right)dV=0 \quad i=1,n_d \quad \hbox{(no sum in )} i  </math>
203
|}
204
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
205
|}
206
207
where <math display="inline">w_i</math> are arbitrary weighting functions.
208
209
The rest of the integral equations are obtained by applying the standard weighted residual technique to the governing equations (1), (2), (3) and (5) and the corresponding boundary conditions <span id='citeF-11'></span><span id='citeF-22'></span><span id='citeF-48'></span>[[#cite-11|[11,22,48]]].
210
211
We interpolate next in the standard finite element fashion the set of problem variables. For 3D problems these are the three velocities <math display="inline">v_i</math>, the pressure <math display="inline">p</math>, the temperature <math display="inline">T</math> and the three pressure gradient projections <math display="inline">\pi _i</math>.  In our work we use equal order ''linear interpolation'' for all variables over meshes of 3-noded triangles (in 2D) and 4-noded tetrahedra (in 3D). The resulting set of discretized equations using the standard Galerkin technique has the following form
212
213
===='''Momentum'''====
214
215
<span id="eq-8"></span>
216
{| class="formulaSCP" style="width: 100%; text-align: left;" 
217
|-
218
| 
219
{| style="text-align: left; margin:auto;width: 100%;" 
220
|-
221
| style="text-align: center;" | <math>\mathbf{M} \dot{\bar{v}} + \mathbf{K} \bar {v} - \mathbf{G} \bar  {p}= {f}  </math>
222
|}
223
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
224
|}
225
226
227
<div class="center" style="font-size: 75%;">'''Box I'''. Basic PFEM algorithm for a Lagrangian continuum
228
</div>
229
230
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
231
232
|- style="border-top: 2px solid;"
233
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | 1. LOOP OVER TIME STEPS, <math display="inline">t=1</math>, NTIME
234
235
Known values
236
237
<math display="inline">^{t} \bar{x},{}^{t} \bar{v},{}^{t} \bar{p},{}^{t} \bar{\boldsymbol \pi },{}^{t} \bar{T},{}^{t} \mu ,{}^{t}{f},{}^{t}\mathbf{ q},{}^{t} C,{}^{t} V,{}^{t} M</math> 
238
|-
239
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | 2. LOOP OVER NUMBER OF ITERATIONS, <math display="inline">i=1</math>, NITER 
240
|-
241
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | [.15cm] <math display="inline">\bullet </math>  Compute  nodal velocities by solving Eq.(8)
242
|-
243
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\displaystyle \left[\frac{1}{\Delta t} \mathbf{M}+\mathbf{K}\right]{}^{t+1} \bar{v}^{i+1} ={}^{t+1} \mathbf{f}+G{}^{t+1} \bar{p}^{i} +\frac{1}{\Delta t} \mathbf{M} {}^{t} \bar{v}</math> 
244
|-
245
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\bullet </math>   Compute nodal pressures from Eq.(9)
246
|-
247
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\displaystyle \left[\frac{1}{\Delta t}-{L}\bar {M}\right]{}^{t+1} \bar{p}^{i+1} =\mathbf{G}{}^{T} {}^{t+1} \bar{v}^{i+1} + \mathbf{Q}{}^{t+1} \bar{\boldsymbol \pi }^{i} +\frac{1}{\Delta t}\bar {M} {}^t\bar{p} </math> 
248
|-
249
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\bullet </math> Compute nodal pressure gradient projections from Eq.(10)
250
|-
251
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | <math display="inline">{}^{n+1} \bar{\boldsymbol \pi }^{i+1} =-\hat{M}^{-1}_{D} \left[\mathbf{Q}^{T} \right]{}^{t+1} \bar{p}^{i+1} \begin{array}{ccc} {} & {,} & {\hat{M}_{D} =diag\left[\hat{M}_{D} \right]} \end{array}</math> 
252
|-
253
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\bullet </math>   Update position of analysis domain nodes:
254
|-
255
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | <math display="inline">{}^{t+\Delta t} \bar{x}^{i+1} ={}^{t} \mathbf{x}^{i} +{}^{t+\Delta t} \mathbf{v}^{i+1} \Delta t</math>
256
|-
257
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | Define new “cloud” of nodes <math display="inline">{}^{t+1} C^{i+1} </math> 
258
|-
259
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\bullet </math>   Update strain rate and strain values
260
|-
261
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\bullet </math>   Update stress values 
262
|-
263
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | Check convergence <math display="inline">\rightarrow </math> NO <math display="inline">\rightarrow </math> Next iteration <math display="inline">i\to i+1</math>
264
|-
265
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\downarrow </math> YES
266
|-
267
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | Next time step <math display="inline">t\to t+1</math> 
268
|-
269
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | [.15cm] <math display="inline">\bullet </math> Identify new analysis domain boundary: <math display="inline">{}^{t+1} V</math> 
270
|-
271
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | [.15cm] <math display="inline">\bullet </math> Generate mesh:<math display="inline">{}^{t+1} M</math> 
272
|- style="border-bottom: 2px solid;"
273
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | [.15cm] Go to 1 
274
275
|}
276
277
===='''Pressure-velocity relationship'''====
278
279
<span id="eq-9"></span>
280
{| class="formulaSCP" style="width: 100%; text-align: left;" 
281
|-
282
| 
283
{| style="text-align: left; margin:auto;width: 100%;" 
284
|-
285
| style="text-align: center;" | <math>\bar {M} \dot{\bar{p}} - \mathbf{G}\bar{v} - \mathbf{L}\bar {p} - \mathbf{Q} \bar {\boldsymbol \pi }=\mathbf{0}   </math>
286
|}
287
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
288
|}
289
290
===='''Pressure gradient projection'''====
291
292
<span id="eq-10"></span>
293
{| class="formulaSCP" style="width: 100%; text-align: left;" 
294
|-
295
| 
296
{| style="text-align: left; margin:auto;width: 100%;" 
297
|-
298
| style="text-align: center;" | <math>\hat {M} \bar {\boldsymbol \pi }+\mathbf{Q}^T\bar {p}=\mathbf{0}  </math>
299
|}
300
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
301
|}
302
303
In Eqs.([[#eq-8|8]])&#8211;([[#eq-10|10]]) <math display="inline">\bar{(\cdot )}</math> denotes nodal variables, <math display="inline">\dot{\bar{(\cdot )}}=  {\partial  \over \partial t}\bar{(\cdot )}</math>. The different matrices and vectors  are given in  <span id='citeF-22'></span><span id='citeF-34'></span><span id='citeF-36'></span>[[#cite-22|[22,34,36]]].
304
305
The solution in time of Eqs.([[#eq-8|8]])&#8211;([[#eq-10|10]]) can be performed using any time integration scheme typical of the updated Lagrangian FEM <span id='citeF-36'></span><span id='citeF-47'></span>[[#cite-36|[36,47]]]. A basic algorithm following the conceptual process described in Section 2 is presented in Box I.
306
307
==4 Generation of a new mesh==
308
309
One of the key points for the success of the PFEM  is the fast regeneration of a mesh at every time step on the basis of the position of the nodes in the space domain. Indeed, any fast meshing algorithm can be used for this purpose. In our work the mesh is generated at each time step using the so called extended Delaunay tesselation (EDT) presented in <span id='citeF-17'></span><span id='citeF-19'></span>[[#cite-17|[17,19]]].
310
311
The CPU time required for meshing grows linearly with the number of nodes. The CPU time for solving the equations exceeds that required for meshing as the number of nodes increases. This situation has been found in all the problems solved with the PFEM. As a general rule for large 3D problems meshing consumes around 15% of the total CPU time for each time step, while the solution of the equations (with typically 3 iterations to reach convergence within a time step) and the assembling of the system consume approximately 70% and 15% of the  CPU time for each time step, respectively. These figures refer to solutions obtained in a standard single processor Pentium IV PC for all the computations and prove that the generation of the mesh has an acceptable cost in the PFEM. The cost of remeshing is similar to that reported in <span id='citeF-24'></span>[[#cite-24|[24]]]. Indeed considerable speed can be gained using parallel computation techniques.
312
313
==5 Identification of boundary surfaces==
314
315
One of the main tasks  in the PFEM is the correct definition of the boundary domain. Boundary nodes are sometimes explicitly identified. In other cases, the total set of nodes is the only information available and the algorithm must recognize the boundary nodes.
316
317
In our work we use an extended Delaunay partition for recognizing boundary nodes <span id='citeF-19'></span>[[#cite-19|[19]]]. Considering that the nodes follow a variable <math display="inline">h(x)</math> distribution, where <math display="inline">h(x)</math> is typically the minimum distance between two nodes. ''All nodes on an empty sphere with a radius greater than <math>\alpha h</math>, are considered as boundary nodes''. In practice <math display="inline">\alpha </math>  is a parameter close to, but greater than one. Values of <math display="inline">\alpha </math> ranging between 1.3 and 1.5 have been found to be optimal in all examples analyzed. This criterion is coincident with the Alpha Shape concept <span id='citeF-12'></span>[[#cite-12|[12]]].
318
319
Once a decision has been made concerning which  nodes are on the boundaries, the boundary surface is defined by  all the polyhedral surfaces (or polygons in 2D) having all their nodes on the boundary and belonging to just one polyhedron.
320
321
The method described also allows one to identify isolated fluid particles outside the main fluid domain. These particles are treated as part of the external boundary where the pressure is fixed to the atmospheric value. We recall that each particle is a material point characterized by the density of the solid or fluid domain to which it belongs. The mass which is lost when a boundary element is eliminated due to departure of a node from the main analysis domain is again regained when the “flying” node falls down and a new boundary element is created by the Alpha Shape algorithm.
322
323
The boundary recognition method  is also useful for detecting contact conditions between the fluid domain and a fixed boundary, as well as between different solids interacting with each other as detailed in the next section.
324
325
We emphasize that the main difference between the PFEM and the classical FEM is just the remeshing technique and the identification of the domain boundary at each time step.
326
327
==6 Treatment of contact  conditions in the PFEM==
328
329
===6.1 Contact  between  the fluid and a fixed boundary===
330
331
The  condition of prescribed velocities  at the fixed boundaries in the PFEM is  applied in strong form to the boundary nodes. These nodes might belong to fixed external boundaries or to moving boundaries linked to the interacting solids. Contact between the fluid particles and the fixed  boundaries is accounted for by the incompressibility condition which ''naturally prevents    the fluid nodes to penetrate into the solid boundaries'' <span id='citeF-32'></span><span id='citeF-36'></span>[[#cite-32|[32,36]]].
332
333
<div id='img-2'></div>
334
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
335
|-
336
|[[Image:Draft_Samper_395841693-Contact_conditions.png|570px|Modelling of contact conditions at a solid-solid interface with the PFEM]]
337
|- style="text-align: center; font-size: 75%;"
338
| colspan="1" | '''Figure 2:''' Modelling of contact conditions at a solid-solid interface with the PFEM
339
|}
340
341
===6.2 Contact between solid-solid interfaces===
342
343
The contact between two solid interfaces is simply treated by introducing a layer of ''contact elements'' between the two interacting solid interfaces. This layer is ''automatically created during the mesh   generation step'' by prescribing a minimum distance (<math display="inline">h_c</math>) between two solid boundaries. If the distance exceeds the minimum value (<math display="inline">h_c</math>) then the generated elements are treated as fluid elements. Otherwise the elements are treated as contact elements where a relationship between the tangential and normal forces and the corresponding displacement is introduced (Figure [[#img-2|2]]).
344
345
This algorithm has proven to be very effective and it allows to identifying and modeling complex frictional contact conditions between two or more interacting bodies moving in water in an extremely simple manner.
346
347
This  algorithm can also be used effectively to model frictional contact conditions between rigid or elastic solids in  structural mechanics applications <span id='citeF-7'></span><span id='citeF-36'></span>[[#cite-7|[7,36]]].
348
349
==7 Modeling of bed erosion==
350
351
Prediction of bed erosion and sediment transport in open channel flows are  important tasks in many areas of river and environmental engineering. Bed erosion can lead to instabilities of the river basin slopes. It can also undermine the foundation of bridge piles thereby favouring structural failure. Modeling of bed erosion is also relevant for predicting the evolution of surface material dragged in earth dams in overspill situations. Bed erosion is one of the main causes of environmental damage in floods.
352
353
Bed erosion models are traditionally based on a relationship between the rate of erosion and the shear stress level <span id='citeF-25'></span>[[#cite-25|[25]]]. In a recent work we have proposed an extension of the PFEM to model bed erosion <span id='citeF-35'></span><span id='citeF-36'></span>[[#cite-35|[35,36]]]. The erosion model is based on the frictional work  at the bed surface originated by the shear stresses in the fluid. The resulting erosion model resembles Archard law typically used for modeling abrasive wear in surfaces under frictional contact conditions <span id='citeF-1'></span>[[#cite-1|[1]]].
354
355
The algorithm for modeling the  erosion of soil/rock particles at the fluid bed is the following:
356
357
<div id='img-3'></div>
358
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
359
|-
360
|[[Image:Draft_Samper_395841693-Bed_erosion.png|600px|Modeling of bed erosion with the PFEM by dragging of bed material]]
361
|- style="text-align: center; font-size: 75%;"
362
| colspan="1" | '''Figure 3:''' Modeling of bed erosion with the PFEM by dragging of bed material
363
|}
364
365
<ol>
366
367
<li>Compute at every point of the bed surface the resultant tangential   stress <math display="inline">\tau </math> induced by the fluid motion. In 3D problems <math display="inline">\tau =   (\tau _{s}^2 + \tau _{t})^2</math> where <math display="inline">\tau _s</math> and <math display="inline">\tau _t</math> are the tangential stresses   in the plane defined by the normal direction <math display="inline">{n}</math> at the bed   node. The value of <math display="inline">\tau </math> for 2D problems can be estimated as follows:
368
369
{| class="formulaSCP" style="width: 100%; text-align: left;" 
370
|-
371
| 
372
{| style="text-align: left; margin:auto;width: 100%;" 
373
|-
374
| style="text-align: center;" | <math>
375
376
\tau _t =\mu \gamma _t \quad \hbox{with} \quad  \gamma _t ={1\over  2}{\partial v_t\over \partial n} ={v_t^k\over 2h_k} </math>
377
|}
378
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
379
|}</li>
380
381
where <math display="inline">v_t^k</math> is the modulus of the tangential velocity at the node <math display="inline">k</math>  and <math display="inline">h_k</math> is a prescribed distance along the normal of the bed node <math display="inline">k</math>. Typically <math display="inline">h_k</math> is of the order of magnitude of the smallest fluid element adjacent to node <math display="inline">k</math> (Figure [[#img-3|3]]).
382
383
<li>Compute the frictional work originated by the tangential stresses at the   bed surface as
384
385
{| class="formulaSCP" style="width: 100%; text-align: left;" 
386
|-
387
| 
388
{| style="text-align: left; margin:auto;width: 100%;" 
389
|-
390
| style="text-align: center;" | <math>
391
392
W_f =\int _\circ ^t \tau _t \gamma _t\, dt = \int _\circ ^t {\mu \over 4} \left({v_t^k\over h_k}\right)^2 dt </math>
393
|}
394
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
395
|}</li>
396
397
Eq.(12) is integrated in time as
398
399
{| class="formulaSCP" style="width: 100%; text-align: left;" 
400
|-
401
| 
402
{| style="text-align: left; margin:auto;width: 100%;" 
403
|-
404
| style="text-align: center;" | <math>
405
406
{}^n W_f ={}^{n-1} W_f + \tau _t \gamma _t\, \Delta t </math>
407
|}
408
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
409
|}
410
411
<li>The onset of erosion at a bed point occurs when <math display="inline">{}^nW_f</math> exceeds a critical   threshold value <math display="inline">W_c</math>.  </li>
412
413
</ol>
414
415
<ol>
416
417
<li>If <math display="inline">{}^nW_f > W_c</math> at a bed node, then the node is detached from the bed   region and it is allowed to move with the fluid flow. As a consequence, the   mass of the patch of bed elements surrounding the bed node vanishes in the   bed domain and it is transferred to the new   fluid node. This mass is subsequently transported with the fluid.  </li>
418
419
<li>Sediment deposition can be modeled by an inverse process to that described   in the previous step. Hence, a suspended node adjacent to the bed surface with a   velocity below a threshold value is attached to the bed surface.  </li>
420
421
</ol>
422
423
Figure [[#img-3|3]] shows an schematic view of the bed erosion algorithm described.
424
425
==8 Examples==
426
427
===8.1 Dragging of rocks by a water stream===
428
429
Predicting the critical speed at which a rock will be dragged by a water stream is of great importance in many problems in hydraulic, harbour, civil and environmental engineering.
430
431
The PFEM has been successfully applied to the study of the motion of a 1Tn quasi-spherical rock due to a water stream. The rock lays on a collection of rocks that are kept rigid. Frictional conditions between the analyzed rock and the rest of the rocks have been assumed. Figure [[#img-4|4]]a shows that a water stream of 1m/s is not able to displace the individual rock. An increase of the water speed to 2m/s induces the motion of the rock as shown in Figure [[#img-4|4]]b.
432
433
===8.2 Impact of sea waves on piers and breakwaters===
434
435
Figures [[#img-5|5]] and [[#img-6|6]] show the analysis of the effect of breaking waves on two different sites of a breakwater containing reinforced concrete blocks (each one of <math display="inline">4\times 4</math> mts). The figures correspond to the study of Langosteira harbour in A Coruña, Spain using PFEM.
436
437
<div id='img-4a'></div>
438
<div id='img-4b'></div>
439
<div id='img-4'></div>
440
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
441
|-
442
|[[Image:Draft_Samper_395841693-Roca-1ms_1.png|420px|Water speed of 1m/s. The individual rock can not be dragged by the stream]]
443
|[[Image:Draft_Samper_395841693-Roca-2ms_2.png|420px|Water speed of 2m/s. The individual rock is dragged by the stream]]
444
|- style="text-align: center; font-size: 75%;"
445
| (a) Water speed of 1m/s. The individual rock can not be dragged by the stream
446
| (b) Water speed of 2m/s. The individual rock is dragged by the stream
447
|- style="text-align: center; font-size: 75%;"
448
| colspan="2" | '''Figure 4:''' Study of the drag of an individual rock of 1Tn under a water stream at  speeds of (a) 1m/s and (b) 2m/s
449
|}
450
451
<div id='img-5'></div>
452
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
453
|-
454
|[[Image:Draft_Samper_395841693-Bloques.png|600px|Breaking waves on breakwater slope containing reinforced concrete blocks. Mesh of 4-noded tetrahedra near the slope]]
455
|- style="text-align: center; font-size: 75%;"
456
| colspan="1" | '''Figure 5:''' Breaking waves on breakwater slope containing reinforced concrete blocks. Mesh of 4-noded tetrahedra near the slope
457
|}
458
459
<div id='img-6'></div>
460
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
461
|-
462
|[[Image:Draft_Samper_395841693-dique-invernada.png|600px|Study of breaking waves on the edge of a breakwater structure formed by reinforced concrete blocks]]
463
|- style="text-align: center; font-size: 75%;"
464
| colspan="1" | '''Figure 6:''' Study of breaking waves on the edge of a breakwater structure formed by reinforced concrete blocks
465
|}
466
467
<div id='img-7'></div>
468
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
469
|-
470
|[[Image:Draft_Samper_395841693-Erosion-transport.png|600px|Erosion, transport and deposition of soil particles at a river bed due to an impacting jet stream]]
471
|- style="text-align: center; font-size: 75%;"
472
| colspan="1" | '''Figure 7:''' Erosion, transport and deposition of soil particles at a river bed due to an impacting jet stream
473
|}
474
475
===8.3 Soil erosion problems===
476
477
Figure [[#img-7|7]] shows the capacity of the PFEM for modelling soil erosion, sediment transport and material deposition in a river bed. The soil particles are first detached from the bed surface under the action of the jet stream. Then they are transported by the flow and eventually  fall down due to gravity forces into the bed surface at a downstream point.
478
479
Figure [[#img-8|8]] shows the progressive erosion of the unprotected part of a breakwater slope in the Langosteira harbour in A Coruña, Spain. The non protected upper shoulder zone is progressively eroded under the  sea waves.
480
481
Figure [[#img-9|9]] displays the progressive erosion and dragging of soil particles in a river  bed adjacent to the foot of bridge pile due to the water stream (water is not shown in the figure). Note the disclosure of the bridge foundation as the adjacent soil particles are removed due to erosion.
482
483
Other applications of the PFEM to bed erosion problems can be found in <span id='citeF-35'></span><span id='citeF-36'></span>[[#cite-35|[35,36]]].
484
485
<div id='img-8'></div>
486
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
487
|-
488
|[[Image:Draft_Samper_395841693-Erosion-breakwater.png|486px|Erosion of an unprotected shoulder of a breakwater  due to sea waves]]
489
|- style="text-align: center; font-size: 75%;"
490
| colspan="1" | '''Figure 8:''' Erosion of an unprotected shoulder of a breakwater  due to sea waves
491
|}
492
493
<div id='img-9'></div>
494
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
495
|-
496
|[[Image:Draft_Samper_395841693-Erosionpila.png|486px|Erosion and dragging of soil particles in a river bed adjacent to the foot of a bridge pile due to a water stream. Water is not shown]]
497
|- style="text-align: center; font-size: 75%;"
498
| colspan="1" | '''Figure 9:''' Erosion and dragging of soil particles in a river bed adjacent to the foot of a bridge pile due to a water stream. Water is not shown
499
|}
500
501
===8.4 Falling of a lorry into the sea by sea wave erosion of the road slope===
502
503
Figure [[#img-10|10]] shows a representative example of the progressive erosion of a soil mass adjacent to the shore due to sea waves and the subsequent falling into the sea of a 2D object representing the section of a lorry. The object has been modeled as a rigid solid.
504
505
This example, although still quite simple and schematic, shows the possibility of the PFEM  for modeling complex FSSI problems involving soil erosion, free surface waves and rigid/deformable structures.
506
507
<div id='img-10'></div>
508
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
509
|-
510
|[[Image:Draft_Samper_395841693-erosion-camion2.png|600px|Erosion of a soil mass due to sea waves and the subsequent falling into the sea of an adjacent lorry]]
511
|- style="text-align: center; font-size: 75%;"
512
| colspan="1" | '''Figure 10:''' Erosion of a soil mass due to sea waves and the subsequent falling into the sea of an adjacent lorry
513
|}
514
515
===8.5 Simulation of  landslides===
516
517
The PFEM is particularly suited for modelling and simulation of landslides and their effect in the surrounding structures. Figure [[#img-11|11]] shows an schematic 2D simulation of a landslide falling on two adjacent constructions. The landslide material has been modelled as a viscous incompressible fluid.
518
519
<div id='img-11'></div>
520
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
521
|-
522
|[[Image:Draft_Samper_395841693-Invasion-casas.png|600px|Landslide falling on two constructions 2D simulation using PFEM]]
523
|- style="text-align: center; font-size: 75%;"
524
| colspan="1" | '''Figure 11:''' Landslide falling on two constructions 2D simulation using PFEM
525
|}
526
527
===8.6 The landslide in Lituya Bay===
528
529
A case of much interest is when the landslide occurs in the vicinity of a reservoir <span id='citeF-43'></span>[[#cite-43|[43]]]. The fall of debris material into the reservoir typically induces large waves that can overtop the dam originating an unexpected flooding that can cause severe damage to the constructions and population in the downstream area.
530
531
In the example, we present some results of the 3D analysis of the landslide produced in Lituya Bay (Alaska) on July 9th 1958 (Figure [[#img-12|12]]). The landslide was originated by an earthquake and movilized 90 millions tons of rocks that fell on the bay originating a large wave that reached a hight on the opposed slope of 524 mts.
532
533
<div id='img-12'></div>
534
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
535
|-
536
|[[Image:Draft_Samper_395841693-fig_9_01.png|600px|Lituya Bay landslide. Left: Geometry  for the simulation. Right: Landslide direction and maximum wave level <span id='citeF-13'></span><span id='citeF-14'></span>[[#cite-13|[13,14]]]]]
537
|- style="text-align: center; font-size: 75%;"
538
| colspan="1" | '''Figure 12:''' Lituya Bay landslide. Left: Geometry  for the simulation. Right: Landslide direction and maximum wave level <span id='citeF-13'></span><span id='citeF-14'></span>[[#cite-13|[13,14]]]
539
|}
540
541
<div id='img-13'></div>
542
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
543
|-
544
|[[Image:Draft_Samper_395841693-fig_10_02.png|551px|Lituya Bay landslide. Evolution of the landslide into the reservoir obtained with the PFEM. Maximum level of  generated wave (551 mts) in the north slope]]
545
|- style="text-align: center; font-size: 75%;"
546
| colspan="1" | '''Figure 13:''' Lituya Bay landslide. Evolution of the landslide into the reservoir obtained with the PFEM. Maximum level of  generated wave (551 mts) in the north slope
547
|}
548
549
Figure [[#img-13|13]] shows  images of the simulation of the landslide with  PFEM. The sliding mass has been modelled as a quasi-incompressible  continuum with a prescribed shear modulus. No frictional effect between the sliding mass and the underneath soil has been considered. Also the analysis has not taken into account the erosion and  dragging of soil material induced by the landslide mass during  motion.
550
551
PFEM results have been compared with observed values of the maximum water level in the north hill adjacent to the reservoir. The maximum water level in this hill obtained with PFEM was 551 mts. This is 5% higher than the value of 524 mts. observed experimental by <span id='citeF-13'></span><span id='citeF-14'></span>[[#cite-13|[13,14]]]. The maximum height location differs in 300 mts from the observed value <span id='citeF-13'></span><span id='citeF-14'></span>[[#cite-13|[13,14]]]. In the south slope the maximum water height observed was 208 mts, while the PFEM result (not shown here) was 195 mts (6% error).
552
553
More information on the PFEM solutions of this example can be found in <span id='citeF-38'></span><span id='citeF-39'></span>[[#cite-38|[38,39]]].
554
555
==9 Conclusions==
556
557
The particle finite element method (PFEM) is a promising numerical technique for solving  fluid-soil-structure interaction (FSSI) problems involving large motion of  fluid and solid particles, surface waves, water splashing, frictional  contact situations between fluid-solid and solid-solid interfaces and bed erosion, among other complex phenomena. The success of the PFEM lies in the accurate and efficient solution of the equations of an incompressible continuum using an updated Lagrangian formulation and a stabilized finite element method allowing the use of low order elements with equal order interpolation for all the variables. Other essential solution ingredients are the efficient regeneration of the finite element mesh, the identification of the boundary nodes using the Alpha-Shape technique and the simple algorithm to treat frictional contact conditions and erosion/wear at fluid-solid and solid-solid interfaces via mesh generation. The examples presented have shown the  potential of the PFEM for solving a wide class of practical FSSI problems in engineering.
558
559
==Acknowledgements==
560
561
This research was partially supported by project SEDUREC of the Consolider Programme of the Ministerio de Educación y Ciencia (MEC) of Spain and the projects SAFECON and REALTIME of the European Research Council of the European Commission (EC). Thanks are also given to the Spanish construction company Dragados for financial support for the study of harbour engineering problems with the PFEM .
562
563
==Bibliography==
564
565
<div id="cite-1"></div>
566
[[#citeF-1|[1]]]   Archard JF (1953) Contact and rubbing of flat surfaces.      J. Appl. Phys.  24(8):981&#8211;988
567
568
<div id="cite-2"></div>
569
[[#citeF-2|[2]]]   Aubry R,  Idelsohn SR, Oñate E  (2005) Particle finite element   method in fluid mechanics including thermal convection-diffusion, Computer   & Structures 83(17-18):1459&#8211;1475
570
571
<div id="cite-3"></div>
572
[[#citeF-3|[3]]]  Badia S, Codina R (2009) On a multiscale approach to the transient Stokes problem. Transient subscales and anisotropic space-time discretizations. Applied Mathematics and Computation 207:415&#8211;423
573
574
<div id="cite-4"></div>
575
[[#citeF-4|[4]]]  Baiges J, Codina R (2010) The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems. Int. J. Num. Meth. Engrg. 81:1529&#8211;1557
576
577
<div id="cite-5"></div>
578
[5]  Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comp. Meth. Appl. Mech Engrg. 197:173&#8211;201
579
580
<div id="cite-6"></div>
581
[[#citeF-6|[6]]]  Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully coupled fluid-structure interaction simulation of cerebral aneurysms. Computational Mechanics 46:3&#8211;16
582
583
<div id="cite-7"></div>
584
[[#citeF-7|[7]]]  Carbonell JM, Oñate E, Suárez B (2010) Modeling of ground excavation with the Particle Finite Element Method. Journal of Engineering Mechanics (ASCE) 136(4):455&#8211;463
585
586
<div id="cite-8"></div>
587
[[#citeF-8|[8]]]  Codina R (2002) Stabilized finite element approximation of transient incompressible flows using subscales. Comput. Meth. Appl. Mech. Engrg. 191: 4295&#8211;4321
588
589
<div id="cite-9"></div>
590
[[#citeF-9|[9]]]  Codina R, Coppola-Owen H, Nithiarasu P, Liu CB (2006) Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier-Stokes equations. Int. J. Num. Meth. Engrg. 66:1672&#8211;1689
591
592
<div id="cite-10"></div>
593
[[#citeF-10|[10]]]  Del Pin F,  Idelsohn SR, Oñate E, Aubry R (2007) The ALE/Lagrangian particle finite element method: A new approach to computation of free-surface flows and fluid-object interactions. Computers & Fluids  36:27&#8211;38
594
595
<div id="cite-11"></div>
596
[[#citeF-11|[11]]]   Donea J,  Huerta A  (2003) Finite element method for flow problems. J. Wiley
597
598
<div id="cite-12"></div>
599
[[#citeF-12|[12]]]  Edelsbrunner H,  Mucke EP (1999) Three dimensional alpha shapes. ACM   Trans. Graphics  13:43&#8211;72
600
601
<div id="cite-13"></div>
602
[[#citeF-13|[13]]] Fritz, HM, Hager WH, Minor HE (2001) Lituya Bay Case: Rockslide impact and wave run-up. Science of Tsunami Hazards 19(1):3&#8211;22
603
604
<div id="cite-14"></div>
605
[[#citeF-14|[14]]] Fritz, HM, Hager WH, Minor HE  (2004) Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coastal and Ocean Engineering. ASCE 130(6):287&#8211;302
606
607
<div id="cite-15"></div>
608
[[#citeF-15|[15]]]  García J,  Oñate E  (2003) An unstructured finite element   solver for ship hydrodynamic problems. J. Appl. Mech.  70:18&#8211;26
609
610
<div id="cite-16"></div>
611
[16]  Idelsohn SR, Oñate E, Del Pin F, Calvo N (2002) Lagrangian formulation: the only way to solve some free-surface fluid mechanics problems. 5th World Congress on Comput. Mechanics, HA Mang, FG Rammerstorfer, J Eberhardsteiner (Eds), July 7&#8211;12, Viena, Austria
612
613
<div id="cite-17"></div>
614
[[#citeF-17|[17]]]  Idelsohn SR, Oñate E, Calvo N, Del Pin F (2003a) The meshless finite element method.  Int. J. Num. Meth. Engng. 58(6):893&#8211;912
615
616
<div id="cite-18"></div>
617
[[#citeF-18|[18]]]  Idelsohn SR, Oñate E, Del Pin F (2003b) A lagrangian meshless finite element method applied to fluid-structure interaction problems. Comput. and Struct. 81:655&#8211;671
618
619
<div id="cite-19"></div>
620
[[#citeF-19|[19]]]  Idelsohn SR, Calvo N, Oñate E (2003c) Polyhedrization of an arbitrary point set. Comput. Method Appl. Mech. Engng. 192(22-24):2649&#8211;2668
621
622
<div id="cite-20"></div>
623
[[#citeF-20|[20]]]  Idelsohn SR, Oñate E, Del Pin F  (2004) The particle finite   element method: a powerful tool to solve incompressible flows with   free-surfaces and breaking waves. Int. J. Num. Meth. Engng.  61:964&#8211;989
624
625
<div id="cite-21"></div>
626
[[#citeF-21|[21]]]  Idelsohn SR, Oñate E, Del Pin F, Calvo N (2006) Fluid-structure   interaction using the particle finite element   method. Comput. Meth. Appl. Mech. Engng. 195:2100&#8211;2113
627
628
<div id="cite-22"></div>
629
[[#citeF-22|[22]]]  Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Engrg.  197:1762&#8211;1776
630
631
<div id="cite-23"></div>
632
[[#citeF-23|[23]]]  Idelsohn SR, Mier-Torrecilla M, Oñate E  (2009) Multi-fluid flows with the Particle Finite Element Method. Comput Methods Appl Mech Engrg. 198:2750&#8211;2767
633
634
<div id="cite-24"></div>
635
[[#citeF-24|[24]]]  Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics 23:130&#8211;143
636
637
<div id="cite-25"></div>
638
[[#citeF-25|[25]]]  Kovacs A, Parker G  (1994) A new vectorial bedload formulation and   its application to the time evolution of straight river channels. J. Fluid   Mech. 267:153&#8211;183
639
640
<div id="cite-26"></div>
641
[[#citeF-26|[26]]]  Larese A,  Rossi R, Oñate E, Idelsohn SR (2008)  Validation of the Particle Finite Element Method (PFEM) for simulation of free surface flows. Engineering Computations 25(4):385&#8211;425
642
643
<div id="cite-27"></div>
644
[[#citeF-27|[27]]]  Löhner R (2008) Applied CFD Techniques. J. Wiley
645
646
<div id="cite-28"></div>
647
[28]  Löhner R, Yang Ch, Oñate E (2007) Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int. J. Num. Meth. Fluids 153:1315&#8211;1338
648
649
<div id="cite-29"></div>
650
[[#citeF-29|[29]]]  Oñate E (1998) Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput. Meth. Appl. Mech. Engng. 151:233&#8211;267
651
652
<div id="cite-30"></div>
653
[[#citeF-30|[30]]]   Oñate E (2004) Possibilities of finite calculus in computational mechanics. Int. J. Num. Meth. Engng. 60(1):255&#8211;281
654
655
<div id="cite-31"></div>
656
[[#citeF-31|[31]]]   Oñate E, García J (2001)  A finite element method for  fluid-structure interaction with surface waves using a finite calculus formulation. Comput. Meth. Appl. Mech. Engrg. 191:635&#8211;660
657
658
<div id="cite-32"></div>
659
[[#citeF-32|[32]]]  Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004b) The particle   finite element method. An overview. Int. J. Comput. Methods    1(2):267&#8211;307
660
661
<div id="cite-33"></div>
662
[[#citeF-33|[33]]]  Oñate E, Valls A, García J  (2006a) FIC/FEM formulation   with matrix stabilizing terms for incompressible flows at low and high   Reynold's numbers. Computational Mechanics 38 (4-5):440&#8211;455
663
664
<div id="cite-34"></div>
665
[[#citeF-34|[34]]]  Oñate E, García J,  SR Idelsohn, F. Del Pin (2006b)  FIC   formulations for finite element analysis of incompressible flows. Eulerian,   ALE and Lagrangian approaches.  Comput. Meth. Appl. Mech. Engng.   195(23-24):3001&#8211;3037
666
667
<div id="cite-35"></div>
668
[[#citeF-35|[35]]]  Oñate E, M.A. Celigueta, Idelsohn SR (2006c) Modeling bed erosion in   free surface flows by the Particle Finite Element Method, Acta   Geotechnia 1(4):237&#8211;252
669
670
<div id="cite-36"></div>
671
[[#citeF-36|[36]]]  Oñate E, Idelsohn SR,  Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput. Meth. Appl. Mech. Engng. 197(19-20):1777–-1800
672
673
<div id="cite-37"></div>
674
[[#citeF-37|[37]]]  Oñate E, Rossi R,  Idelsohn SR, Butler K (2010) Melting and spread of polymers in fire with the particle finite element method. Int. J. Numerical Methods in Engineering, 81(8):1046&#8211;1072
675
676
<div id="cite-38"></div>
677
[[#citeF-38|[38]]]  Oñate, E, Salazar F, Morán R (2011) Modeling of landslides into reservoir with the Particle Finite Element Method. Research Report CIMNE No. PI355. Submitted to Int. J. Numerical Methods in Geomechanics
678
679
<div id="cite-39"></div>
680
[[#citeF-39|[39]]]  Salazar F, Oñate E, Morán R (2011) Modelación numérica de deslizamientos de ladera en embalses mediante el método de partículas y elementos finitos (PFEM). Rev. Int. Mét. Num. Cálc. Dis. Ing. Acepted for publication
681
682
<div id="cite-40"></div>
683
[[#citeF-40|[40]]]  Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid-structure interaction techniques. Computational Mechanics, Published online, DOI:10.1007/s00466-011-0571-z
684
685
<div id="cite-41"></div>
686
[[#citeF-41|[41]]]  Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Meth. Appl. Mech. Engng. 95:221&#8211;242
687
688
<div id="cite-42"></div>
689
[42]  Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution techniques. Computers & Fluids 36:207&#8211;223
690
691
<div id="cite-43"></div>
692
[[#citeF-43|[43]]]  Wan CF, Fell R (2004) Investigation of erosion of soils in   embankment dams. J. Geotechnical and Geoenvironmental Engineering   130:373&#8211;380
693
694
<div id="cite-44"></div>
695
[[#citeF-44|[44]]]  Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid-solid and fluid-fluid interfaces with the CIP method based on adaptive Soroban Grids. An overview. Int. J. Num. Meth. in Fluids 54:841&#8211;853
696
697
<div id="cite-45"></div>
698
[45]  Zienkiewicz OC,  Jain PC, Oñate E (1978) Flow of solids during forming and extrusion: Some aspects of numerical solutions. Int. Journal of Solids and Structures 14:15&#8211;38
699
700
<div id="cite-46"></div>
701
[[#citeF-46|[46]]]  Zienkiewicz OC,  Taylor RL, Zhu JZ (2005) The finite element method. Its basis and fundamentals,  Elsevier
702
703
<div id="cite-47"></div>
704
[[#citeF-47|[47]]]  Zienkiewicz OC,  Taylor RL (2005) The finite element method for   solid and structural mechanics,  Elsevier
705
706
<div id="cite-48"></div>
707
[[#citeF-48|[48]]]  Zienkiewicz OC,  Taylor RL, Nithiarasu P (2006)  The finite element   method for fluid dynamics,   Elsevier
708

Return to Onate et al 2011a.

Back to Top

Document information

Published on 31/08/18
Submitted on 31/08/18

Licence: CC BY-NC-SA license

Document Score

0

Views 103
Recommendations 0

Share this document