You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
==Abstract==
2
3
The application of new methods to solution of non-Fourier heat transfer problems has always been one of the interesting topics among thermal science researchers. In this paper, the effect of laser, as a heat source, on a thin film was studied. The Dual Phase Lagging (DPL) non-Fourier heat conduction model was used for thermal analysis. The thermal conductivity was assumed temperature-dependent which resulted in a nonlinear equation. The obtained equations were solved using the approximate-analytical Adomian Decomposition Method (ADM). It was concluded that the nonlinear analysis is important in non-Fourier heat conduction problems. Significant differences were observed between the Fourier and non-Fourier solutions which stress the importance of non-Fourier solutions in the similar problems.
4
5
==Keywords==
6
7
Non-Fourier; Nonlinear analysis; DPL model; ADM; Laser heating
8
9
==Nomenclature==
10
11
''c''<sub>0</sub>- reference speed of thermal wave (m s<sup>−1</sup>)
12
13
''c<sub>p</sub>''- specific heat (J kg<sup>−1</sup> K<sup>−1</sup>)
14
15
''FO''- Fourier number
16
17
''g''- heat source (W m<sup>−3</sup>)
18
19
<math display="inline">\tilde{g}</math>- dimensionless heat source
20
21
''g<sub>l</sub>''- dimensionless energy magnitude factor at the left boundary
22
23
''g<sub>r</sub>''- dimensionless energy magnitude factor at the right boundary
24
25
''k''- thermal conductivity (W m<sup>−1</sup> K<sup>−1</sup>)
26
27
''k''<sub>0</sub>- reference thermal conductivity (W m<sup>−1</sup> K<sup>−1</sup>)
28
29
''L''- characteristic length (m)
30
31
''q''- heat flux (W m<sup>−2</sup>)
32
33
<math display="inline">\tilde{q}</math>- dimensionless heat flux
34
35
''T''- temperature (K)
36
37
''T''<sub>0</sub>- reference temperature (K)
38
39
<math display="inline">\tilde{T}</math>- dimensionless temperature
40
41
''t''- time (s)
42
43
''t<sub>p</sub>''- dimensionless energy pulse time
44
45
''Ve''- Vernotte number
46
47
''x''- space direction (m)
48
49
<math display="inline">\tilde{x}</math>- dimensionless space direction
50
51
===Greek symbols===
52
53
''α''<sub>0</sub>- reference thermal diffusivity (m<sup>2</sup> s)
54
55
''β''- the ratio of relaxation times
56
57
''γ''- dimensionless coefficient for taking into account of temperature-dependent conductivity
58
59
''μ''- dimensionless absorption coefficient
60
61
''ρ''- density (kg m<sup>−3</sup>)
62
63
''τ<sub>q</sub>''- heat flux relaxation time (s)
64
65
''τ<sub>T</sub>''- temperature relaxation time (s)
66
67
==1. Introduction==
68
69
Heat conduction is a mechanism of heat transfer during which thermal energy is transferred from an area with higher temperature to an area with lower temperature. A fundamental equation that can describe the mentioned mechanism well was first introduced in 1822 by a French physicist called Joseph Fourier in a thesis entitled “analytical theory of heat” [[#b0005|[1]]]. Parabolic classic equation of Fourier heat conduction was used until 1950 in all analyses at that time, while all scientists accepted that hypothesis of this equation based on infinite motion speed of thermal energy inside matter was a non-physical hypothesis. Of course, this hypothesis is valid in many conventional applications but Fourier law was not able to predict correctly thermal behavior of the matter in some cases such as heat transfer at very low temperatures [[#b0010|[2]]], heat transfer in very small sizes [[#b0015|[3]]] or heat transfer with very high rate in short times [[#b0020|[4]]].
70
71
Cattaneo [[#b0025|[5]]] and Vernotte [[#b0030|[6]]] presented a modified model for heat conduction in independent studies. The model was named after these two scientists as the Cattaneo–Vernotte (C–V) model. Their model accounts for the inertia caused by the acceleration of heat flux and, thus, resolves the paradox present in the Fourier model. Fourier model, due to its parabolic nature, states that thermal disturbances propagate in the body with an infinite velocity. This problem was resolved in the C–V non-Fourier model, where a specific velocity was considered for the propagation of thermal disturbances. The C–V model states that in the case of occurrence of a temperature gradient, a certain duration of time (heat flux relaxation time, ''τ<sub>q</sub>'') takes before the heat flux is established.
72
73
The development of non-Fourier models did not stop at the C–V model. In 1995, Tzou [[#b0035|[7]]] introduced another macroscopic model known as the Dual Phase Lagging (DPL) model. The reason for the name was that it was suggested that a temperature gradient relaxation time (''τ<sub>T</sub>'') also exists in addition to heat flux relaxation time (''τ<sub>q</sub>''). This means that when a heat flux is established, duration of time is needed before it can create a temperature gradient. Some empirical studies have confirmed the validity of the model  [[#b0040|[8]]] and [[#b0045|[9]]]. A number of well-established review studies have also addressed the development of non-Fourier models  [[#b0050|[10]]] and [[#b0055|[11]]].
74
75
In most studies that have employed non-Fourier models for analyzing the conduction heat transfer, the assumption of constant thermal properties has yielded linear equations, and solving nonlinear equations has been less studied in the field’s literature. Nonlinear studies have utilized numerical methods, while challenges such as convergence and computational cost make the use of numerical methods difficult. New techniques have been recently proposed to solve nonlinear problems. They are known as semi-analytical or approximate-analytical methods. Some of the most common analytical-approximate methods include the following: Adomian Decomposition Method (ADM) [[#b0060|[12]]], Homotopy Perturbation Method (HPM) [[#b0065|[13]]] and [[#b0070|[14]]], Homotopy Analysis Method (HAM) [[#b0075|[15]]], Differential Transform Method (DTM) [[#b0080|[16]]], and Variational Iteration Method (VIM) [[#b0085|[17]]].
76
77
Semi-analytical methods have been widely used in solving various heat transfer problems in the past years. Ganji and Rajabi [[#b0090|[18]]] used HPM to solve an unsteady nonlinear convective–radiative equation. Ganji [[#b0095|[19]]] applied HPM to nonlinear equations arising in heat transfer and compared it with the perturbation and numerical methods. Ganji and Sadighi [[#b0100|[20]]] investigated nonlinear heat transfer and porous media equations by HPM and VIM. Chakraverty and Behera [[#b0105|[21]]] investigated the numerical solution of a fractionally damped dynamic system by HPM. HPM was used to present a mathematical model for biofilm inhibition for steady-state conditions by Meena et al. [[#b0110|[22]]]. Gupta et al. [[#b0115|[23]]] studied about the solution of various linear and nonlinear convection–diffusion problems arising in physical phenomena by HPM. Nadeem et al. [[#b0120|[24]]] studied about the effects of nanoparticles on the peristaltic flow of tangent hyperbolic fluid in an annulus which were solved by ADM.
78
79
The application of semi-analytical methods to solve the nonlinear problems of non-Fourier heat conduction problems has been reported just in few studies. Torabi et al. [[#b0125|[25]]] applied the homotopy perturbation method (HPM) to solve a nonlinear convective–radiative non-Fourier conduction heat transfer equation with variable specific heat coefficient. Saedodin et al. [[#b0130|[26]]] used the variational iteration method (VIM) to solve the same problem. Differential transformation method (DTM) was applied for analysis of nonlinear convective–radiative hyperbolic lumped systems with simultaneous variation of temperature-dependent specific heat and surface emissivity by Torabi et al. [[#b0135|[27]]]. In all of three mentioned references, the governing equations have been only dependent of time and in fact, ordinary differential equations (ODE) have been solved by semi-analytical methods and to the best knowledge of the authors, nonlinear partial differential equation (PDE) of non-Fourier heat conduction equation has not been solved yet by semi-analytical methods.
80
81
In the present paper, the heat transfer phenomenon within a one-dimensional slab subjected to an internal heat source was investigated. The DPL non-Fourier heat conduction model was employed for thermal analysis. A nonlinear equation was obtained since the thermal conductivity was assumed temperature-dependent. The obtained equations were solved by ADM. The main advantage of the ADM is the fact that it provides its user with an analytical approximation, in many cases an exact solution, in a rapidly convergent sequence with elegantly computed terms. Moreover, ADM approximates the nonlinear terms without linearization, perturbation, closure approximations, or discretization methods which can result in massive numerical computations. The application of a semi-analytical method such as ADM to solve a system of nonlinear PDEs of non-Fourier heat conduction problem is the novelty and originality of this study.
82
83
==2. Physical modeling==
84
85
A simple schematic of the problem geometry is shown in [[#f0005|Fig. 1]]. A 1-D thin film with the thickness of 2''L  '' and the initial temperature <math display="inline">T(x\mbox{,}0)=0.01sin(\pi x/4L)</math> is insulated on its both sides and is subjected to a laser heat source. The energy conservation equation is as follows:
86
87
<span id='e0005'></span>
88
{| class="formulaSCP" style="width: 100%; text-align: center;" 
89
|-
90
| 
91
{| style="text-align: center; margin:auto;" 
92
|-
93
| <math>\rho c_p\frac{\partial T(x\mbox{,}t)}{\partial t}+</math><math>\frac{\partial q(x\mbox{,}t)}{\partial x}-g=0</math>
94
|}
95
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
96
|}
97
98
where ''ρ'' is the density of the body, ''c<sub>p</sub>'' is the specific heat of the body, ''T''(''x'', ''t'') is temperature function and ''q''(''x'', ''t'') is the function of heat flux, ''g'' is internal heat source, and ''x'' and ''t'' are spatial and temporal variables, respectively. The constitutive equation governing on the problem is based on the DPL model  [[#b0035|[7]]]:
99
100
<span id='e0010'></span>
101
{| class="formulaSCP" style="width: 100%; text-align: center;" 
102
|-
103
| 
104
{| style="text-align: center; margin:auto;" 
105
|-
106
| <math>{\tau }_q\frac{\partial q(x\mbox{,}t)}{\partial t}+</math><math>q(x\mbox{,}t)+k\left[\frac{\partial T(x\mbox{,}t)}{\partial x}+\right. </math><math>\left. {\tau }_T\frac{{\partial }^2T(x\mbox{,}t)}{\partial t\partial x}\right]=</math><math>0</math>
107
|}
108
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
109
|}
110
111
where ''τ<sub>q</sub>'' and ''τ<sub>T</sub>'' are the heat flux and the temperature relaxation times, respectively and ''k'' is thermal conductivity of the body. Thermal conductivity is assumed a linear function of temperature  [[#b0140|[28]]]:
112
113
{| class="formulaSCP" style="width: 100%; text-align: center;" 
114
|-
115
| 
116
{| style="text-align: center; margin:auto;" 
117
|-
118
| <math>k=k_0[1+\lambda T(x\mbox{,}t)]</math>
119
|}
120
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
121
|}
122
123
where ''k''<sub>0</sub> is a reference value of thermal conductivity and ''λ'' is the coefficient of linear-dependency of thermal conductivity to temperature. The initial and boundary conditions are also as follows:
124
125
{| class="formulaSCP" style="width: 100%; text-align: center;" 
126
|-
127
| 
128
{| style="text-align: center; margin:auto;" 
129
|-
130
| <math>T(x\mbox{,}0)=sin(\pi x/4L)\mbox{,}\quad q(x\mbox{,}0)=</math><math>0\mbox{,}\quad q(0\mbox{,}t)=0\mbox{,}\quad q(2L\mbox{,}t)=</math><math>0\mbox{.}</math>
131
|}
132
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
133
|}
134
135
<span id='f0005'></span>
136
137
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
138
|-
139
|
140
141
142
[[Image:draft_Content_301677003-1-s2.0-S1110016816300357-gr1.jpg|center|267px|The schematic geometry of the problem.]]
143
144
145
|-
146
| <span style="text-align: center; font-size: 75%;">
147
148
Figure 1.
149
150
The schematic geometry of the problem.
151
152
</span>
153
|}
154
155
Eqs. [[#e0005|(1)]] and [[#e0010|(2)]] are non-dimensionalized by introducing the following parameters:
156
157
{| class="formulaSCP" style="width: 100%; text-align: center;" 
158
|-
159
| 
160
{| style="text-align: center; margin:auto;" 
161
|-
162
| <math>\begin{array}{ccccc}
163
\tilde{x}=\frac{x}{2L}\mbox{,} & \overset{\sim}{T}(\tilde{x}\mbox{,}FO)=\frac{T(x\mbox{,}t)}{T_0}\mbox{,} & {\alpha }_0=\frac{k_0}{\rho C_p}\mbox{,} & c_0^2=\frac{{\alpha }_0}{{\tau }_q}\mbox{,} & {Ve}^2=\frac{{\alpha }_0{\tau }_q}{L^2}\mbox{,}\\
164
FO=\frac{{\alpha }_0t}{2L^2}\mbox{,} & \tilde{q}(\tilde{x}\mbox{,}FO)=\frac{{\alpha }_0q(x\mbox{,}t)}{T_0k_0c_0}\mbox{,} & \gamma =\lambda T_0\mbox{,} & \tilde{g}=\frac{4Lg}{\rho C_pT_0c_0}\mbox{,} & \beta =\frac{{\tau }_T}{{\tau }_q}\mbox{.}
165
\end{array}</math>
166
|}
167
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
168
|}
169
170
The dimensionless form of Eqs. [[#e0005|(1)]] and [[#e0010|(2)]] is as follows:
171
172
<span id='e0030'></span>
173
{| class="formulaSCP" style="width: 100%; text-align: center;" 
174
|-
175
| 
176
{| style="text-align: center; margin:auto;" 
177
|-
178
| <math>Ve\frac{\partial \overset{\sim}{T}(\tilde{x}\mbox{,}FO)}{\partial FO}+</math><math>\frac{\partial \tilde{q}(\tilde{x}\mbox{,}FO)}{\partial \tilde{x}}-</math><math>\frac{\tilde{g}}{2}=0</math>
179
|}
180
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
181
|}
182
183
<span id='e0035'></span>
184
{| class="formulaSCP" style="width: 100%; text-align: center;" 
185
|-
186
| 
187
{| style="text-align: center; margin:auto;" 
188
|-
189
| <math>Ve\frac{\partial \tilde{q}(\tilde{x}\mbox{,}FO)}{\partial FO}+</math><math>\frac{2}{Ve}\tilde{q}(\tilde{x}\mbox{,}FO)+\left[1+\right. </math><math>\left. \gamma \overset{\sim}{T}(\tilde{x}\mbox{,}FO)\right]\left[\frac{\partial \overset{\sim}{T}(\tilde{x}\mbox{,}FO)}{\partial \tilde{x}}+\right. </math><math>\left. \frac{\beta {Ve}^2}{2}\frac{{\partial }^2\overset{\sim}{T}(\tilde{x}\mbox{,}FO)}{\partial FO\partial \tilde{x}}\right]=</math><math>0</math>
190
|}
191
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
192
|}
193
194
The dimensionless boundary and initial conditions are also as follows:
195
196
<span id='e0040'></span>
197
{| class="formulaSCP" style="width: 100%; text-align: center;" 
198
|-
199
| 
200
{| style="text-align: center; margin:auto;" 
201
|-
202
| <math>\overset{\sim}{T}(\tilde{x}\mbox{,}0)=0.01sin\left(\frac{\pi \tilde{x}}{2}\right)\mbox{,}\quad \tilde{q}(\tilde{x}\mbox{,}0)=</math><math>0\mbox{,}\quad \tilde{q}(0\mbox{,}FO)=0\mbox{,}\quad \tilde{q}(1\mbox{,}FO)=</math><math>0\mbox{.}</math>
203
|}
204
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
205
|}
206
207
The laser heat flux is considered as a heat source and it can be modeled as follows [[#b0145|[29]]]:
208
209
{| class="formulaSCP" style="width: 100%; text-align: center;" 
210
|-
211
| 
212
{| style="text-align: center; margin:auto;" 
213
|-
214
| <math>\tilde{g}(\tilde{x}\mbox{,}FO)=\left[g_le^{-\mu \tilde{x}}+\right. </math><math>\left. g_re^{-\mu (1-\tilde{x})}\right]\left(\frac{FO}{t_p^2}\right)e^{-\frac{FO}{t_p}}</math>
215
|}
216
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
217
|}
218
219
where ''g<sub>l</sub>'' is dimensionless energy strength at the left boundary and ''g<sub>r</sub>'' is dimensionless energy strength at the right boundary, ''μ'' is absorption coefficient and ''t<sub>p</sub>'' is dimensionless energy pulse time.
220
221
==3. The basic idea of ADM==
222
223
Consider a general nonlinear differential equation in the following form:
224
225
<span id='e0050'></span>
226
{| class="formulaSCP" style="width: 100%; text-align: center;" 
227
|-
228
| 
229
{| style="text-align: center; margin:auto;" 
230
|-
231
| <math>Lu+Ru+Nu=g</math>
232
|}
233
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
234
|}
235
236
where ''L'' is the highest-order invertible derivative. ''R'' is a linear differential operator with an order less than ''L'', ''Nu'' includes the nonlinear terms, and ''g'' is the nonhomogeneous term. By applying the inverse operator ''L''<sup>−1</sup> to both sides of Eq. [[#e0050|(10)]] and using the given conditions, we have the following:
237
238
<span id='e0055'></span>
239
{| class="formulaSCP" style="width: 100%; text-align: center;" 
240
|-
241
| 
242
{| style="text-align: center; margin:auto;" 
243
|-
244
| <math>u=-L^{-1}(Ru)-L^{-1}(Nu)+L^{-1}(g)</math>
245
|}
246
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
247
|}
248
249
For nonlinear differential equations, the nonlinear operator ''Nu'' ''='' ''F''(''u'') is expressed by an infinite series called the Adomian polynomials:
250
251
<span id='e0060'></span>
252
{| class="formulaSCP" style="width: 100%; text-align: center;" 
253
|-
254
| 
255
{| style="text-align: center; margin:auto;" 
256
|-
257
| <math>F(u)=\sum_{m=0}^{\infty }A_m</math>
258
|}
259
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
260
|}
261
262
For ''A<sub>m</sub>'' polynomials, ''A''<sub>0</sub> depends only on ''u''<sub>0</sub>, ''A''<sub>1</sub> depends only on ''u''<sub>0</sub> and ''u''<sub>1</sub>, ''A''<sub>2</sub> depends only on ''u''<sub>0</sub>, ''u''<sub>1</sub>, and ''u''<sub>2</sub> and so on. ADM provides the solution as follows:
263
264
<span id='e0065'></span>
265
{| class="formulaSCP" style="width: 100%; text-align: center;" 
266
|-
267
| 
268
{| style="text-align: center; margin:auto;" 
269
|-
270
| <math>u=\sum_{m=0}^{\infty }u_m</math>
271
|}
272
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
273
|}
274
275
For ''F''(''u''), the infinite series is a Taylor series about ''u''<sub>0</sub> as follows:
276
277
<span id='e0070'></span>
278
{| class="formulaSCP" style="width: 100%; text-align: center;" 
279
|-
280
| 
281
{| style="text-align: center; margin:auto;" 
282
|-
283
| <math>F(u)=F(u_0)+F^{{'}}(u_0)(u-u_0)+F^{{''}}(u_0)\frac{\left(u-u_0\right)}{2!}+</math><math>F^{{'''}}(u_0)\frac{{\left(u-u_0\right)}^2}{3!}+\cdots </math>
284
|}
285
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
286
|}
287
288
By rewriting Eq. [[#e0065|(13)]] in the form of <math display="inline">u-u_0=u_1+u_2+u_3+\cdots </math>, and substituting in Eq. [[#e0070|(14)]] and equating the two terms for ''F''(''u'') in Eqs.  [[#e0060|(12)]] and [[#e0070|(14)]], the relations for the Adomian polynomials are obtained in the following form:
289
290
{| class="formulaSCP" style="width: 100%; text-align: center;" 
291
|-
292
| 
293
{| style="text-align: center; margin:auto;" 
294
|-
295
| <math>F(u)=A_1+A_2+\cdots =F(u_0)+F^{{'}}(u_0)(u_1+u_2+\cdots )+</math><math>F^{{''}}(u_0)\frac{{\left(u_1+u_2+\cdots \right)}^2}{2!}+</math><math>\cdots </math>
296
|}
297
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
298
|}
299
300
By equating the terms of the above equation, the initial polynomials of the Adomian polynomials are obtained as follows:
301
302
{| class="formulaSCP" style="width: 100%; text-align: center;" 
303
|-
304
| 
305
{| style="text-align: center; margin:auto;" 
306
|-
307
| <math>A_0=F(u_0)</math>
308
|}
309
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
310
|}
311
312
{| class="formulaSCP" style="width: 100%; text-align: center;" 
313
|-
314
| 
315
{| style="text-align: center; margin:auto;" 
316
|-
317
| <math>A_1=u_1F^{{'}}(u_0)</math>
318
|}
319
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
320
|}
321
322
{| class="formulaSCP" style="width: 100%; text-align: center;" 
323
|-
324
| 
325
{| style="text-align: center; margin:auto;" 
326
|-
327
| <math>A_2=u_2F^{{'}}(u_0)+\frac{1}{2!}u_1^2F^{{''}}(u_0)</math>
328
|}
329
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
330
|}
331
332
{| class="formulaSCP" style="width: 100%; text-align: center;" 
333
|-
334
| 
335
{| style="text-align: center; margin:auto;" 
336
|-
337
| <math>A_3=u_3F^{{'}}(u_0)+u_1u_2F^{{''}}(u_0)+\frac{1}{3!}u_1^3F^{{'''}}(u_0)</math>
338
|}
339
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
340
|}
341
342
{| class="formulaSCP" style="width: 100%; text-align: center;" 
343
|-
344
| 
345
{| style="text-align: center; margin:auto;" 
346
|-
347
| <math>A_4=u_4F^{{'}}(u_0)+\left(\frac{1}{2!}u_2^2+u_1u_3\right)F^{{''}}(u_0)+</math><math>\frac{1}{2!}u_1^2u_2F^{{'''}}(u_0)+\frac{1}{4!}u_1^4F^{\left(iv\right)}(u_0)</math>
348
|}
349
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
350
|}
351
352
Now that the (''A<sub>m</sub>'') are obtained, the terms of Eq.  [[#e0065|(13)]] (i.e., the solution to the problem) are determined by inserting Eq. [[#e0060|(12)]] into Eq. [[#e0055|(11)]].
353
354
==4. Application and modification of ADM==
355
356
One of the shortcomings of semi-analytical methods, including ADM, in solving PDE is that they are unable to considering the boundary conditions in the solution process [[#b0150|[30]]]. Therefore, ADM has to be improved so that it can include the boundary conditions, and consequently, obtain the correct solution. The method proposed by García-Olivares [[#b0155|[31]]] for ADM improvement was used here. According to Eq. [[#e0050|(10)]], Eqs. [[#e0030|(6)]] and [[#e0035|(7)]] can be rewritten as follows:
357
358
<span id='e0105'></span>
359
{| class="formulaSCP" style="width: 100%; text-align: center;" 
360
|-
361
| 
362
{| style="text-align: center; margin:auto;" 
363
|-
364
| <math>L_1=-R_1+g</math>
365
|}
366
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
367
|}
368
369
<span id='e0110'></span>
370
{| class="formulaSCP" style="width: 100%; text-align: center;" 
371
|-
372
| 
373
{| style="text-align: center; margin:auto;" 
374
|-
375
| <math>L_2=-R_2-N</math>
376
|}
377
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
378
|}
379
380
Then, the operators introduced in Eqs. [[#e0105|(21)]] and [[#e0110|(22)]] are as follows:
381
382
{| class="formulaSCP" style="width: 100%; text-align: center;" 
383
|-
384
| 
385
{| style="text-align: center; margin:auto;" 
386
|-
387
| <math>L_1=\frac{\partial \overset{\sim}{T}(\tilde{x}\mbox{,}FO)}{\partial FO}\mbox{,}R_1=</math><math>\frac{1}{Ve}\frac{\partial \tilde{q}(\tilde{x}\mbox{,}FO)}{\partial \tilde{x}}\mbox{,}g=</math><math>\frac{1}{2Ve}\left[g_le^{-\mu \tilde{x}}+g_re^{-\mu (1-\tilde{x})}\right]\left(\frac{FO}{t_p^2}\right)e^{-\frac{FO}{t_p}}\mbox{,}</math>
388
|-
389
|<math>L_2=\frac{\partial \tilde{q}(\tilde{x}\mbox{,}FO)}{\partial FO}\mbox{,}R_2=</math><math>\frac{2}{{Ve}^2}\tilde{q}(\tilde{x}\mbox{,}FO)+\frac{1}{Ve}\frac{\partial \overset{\sim}{T}(\tilde{x}\mbox{,}FO)}{\partial \tilde{x}}+</math><math>\frac{\beta Ve}{2}\frac{{\partial }^2\overset{\sim}{T}(\tilde{x}\mbox{,}FO)}{\partial FO\partial \tilde{x}}\mbox{,}</math>
390
|-
391
|<math>N=\frac{\gamma }{Ve}\overset{\sim}{T}(\tilde{x}\mbox{,}FO)\left[\frac{\partial \overset{\sim}{T}(\tilde{x}\mbox{,}FO)}{\partial \tilde{x}}+\right. </math><math>\left. \frac{\beta {Ve}^2}{2}\frac{{\partial }^2\overset{\sim}{T}(\tilde{x}\mbox{,}FO)}{\partial FO\partial \tilde{x}}\right]\mbox{.}</math>
392
|}
393
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
394
|}
395
396
Once the given operators are determined, the values of <math display="inline">\overset{\sim}{T}(\tilde{x}\mbox{,}FO)</math> and <math display="inline">\tilde{q}(\tilde{x}\mbox{,}FO)</math> can be obtained according to Eq. [[#e0055|(11)]]. However, since the integration is performed in the ''FO'' direction, the boundary conditions are taken into account at any stage of the solution process which causes the solution to have errors compared to the accurate solution  [[#b0150|[30]]]. Therefore, the method proposed by García-Olivares [[#b0155|[31]]] was then used to provide the solution.
397
398
Two perturbation functions were added to the initial conditions:
399
400
{| class="formulaSCP" style="width: 100%; text-align: center;" 
401
|-
402
| 
403
{| style="text-align: center; margin:auto;" 
404
|-
405
| <math>{\tilde{q}}^{{_\ast}}(\tilde{x}\mbox{,}0)=p_1(\tilde{x})</math>
406
|}
407
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
408
|}
409
410
{| class="formulaSCP" style="width: 100%; text-align: center;" 
411
|-
412
| 
413
{| style="text-align: center; margin:auto;" 
414
|-
415
| <math>{\overset{\sim}{T}}^{{_\ast}}(\tilde{x}\mbox{,}0)=</math><math>0.01sin\left(\frac{\pi \tilde{x}}{2}\right)+p_2(\tilde{x})</math>
416
|}
417
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
418
|}
419
420
Let the solution be in the form of <math display="inline">\overset{\sim}{T}={\overset{\sim}{T}}_0+{\overset{\sim}{T}}_1+</math><math>{\overset{\sim}{T}}_2+\cdots </math> and <math display="inline">\tilde{q}={\tilde{q}}_0+{\tilde{q}}_1+{\tilde{q}}_2+</math><math>\cdots </math>. Then, the functions <math display="inline">{\overset{\sim}{T}}_0</math> and <math display="inline">{\tilde{q}}_0</math> will be in the form of <math display="inline">{\tilde{q}}_0=p_1(\tilde{x})</math> and <math display="inline">{\overset{\sim}{T}}_0=0.01sin(\pi \tilde{x}/2)+p_2(\tilde{x})</math>. The values of other terms are obtained successively using these two functions. Finally, the solution to the problem is obtained by summing up all the terms.
421
422
After obtaining the solution, the values of the function at the boundary are determined, e.g., <math display="inline">{\tilde{q}}^{{_\ast}}(0\mbox{,}FO)</math> and <math display="inline">{\overset{\sim}{T}}^{{_\ast}}(1\mbox{,}FO)</math>. These values are certainly different from the boundary conditions of Eq. [[#e0040|(8)]]. The distance between the initial values and the new values has to be minimized at this stage. For this purpose, the distance between the new values and the values in Eq. [[#e0040|(8)]] is defined as follows:
423
424
{| class="formulaSCP" style="width: 100%; text-align: center;" 
425
|-
426
| 
427
{| style="text-align: center; margin:auto;" 
428
|-
429
| <math>d\left[{\tilde{q}}^{{_\ast}}(0\mbox{,}FO)\mbox{,}\tilde{q}(0\mbox{,}FO)\right]=</math><math>{\int }_0^1{\left({\tilde{q}}^{{_\ast}}(0\mbox{,}FO)-\tilde{q}(0\mbox{,}FO)\right)}^2dFO</math>
430
|-
431
|<math>d\left[{\tilde{q}}^{{_\ast}}(1\mbox{,}FO)\mbox{,}\tilde{q}(1\mbox{,}FO)\right]=</math><math>{\int }_0^1{\left({\tilde{q}}^{{_\ast}}(1\mbox{,}FO)-\tilde{q}(1\mbox{,}FO)\right)}^2dFO</math>
432
|-
433
|<math>d\left[{\tilde{q}}^{{_\ast}}(\tilde{x}\mbox{,}0)\mbox{,}\tilde{q}(\tilde{x}\mbox{,}0)\right]=</math><math>{\int }_0^1p_1{\left(\tilde{x}\right)}^2d\tilde{x}</math>
434
|-
435
|<math>d\left[{\overset{\sim}{T}}^{{_\ast}}(\tilde{x}\mbox{,}0)\mbox{,}\overset{\sim}{T}(\tilde{x}\mbox{,}0)\right]=</math><math>{\int }_0^1p_2{\left(\tilde{x}\right)}^2d\tilde{x}</math>
436
|}
437
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
438
|}
439
440
For the minimization problem, the bulk distance is now expressed as follows:
441
442
<span id='e0135'></span>
443
{| class="formulaSCP" style="width: 100%; text-align: center;" 
444
|-
445
| 
446
{| style="text-align: center; margin:auto;" 
447
|-
448
| <math>d=d\left[{\tilde{q}}^{{_\ast}}(0\mbox{,}FO)\mbox{,}\tilde{q}(0\mbox{,}FO)\right]+</math><math>d\left[{\tilde{q}}^{{_\ast}}(1\mbox{,}FO)\mbox{,}\tilde{q}(1\mbox{,}FO)\right]+</math><math>d\left[{\tilde{q}}^{{_\ast}}(\tilde{x}\mbox{,}0)\mbox{,}\tilde{q}(\tilde{x}\mbox{,}0)\right]+</math><math>d\left[{\overset{\sim}{T}}^{{_\ast}}(\tilde{x}\mbox{,}0)\mbox{,}\overset{\sim}{T}(\tilde{x}\mbox{,}0)\right]\mbox{.}</math>
449
|}
450
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
451
|}
452
453
To minimize the above expression, the forms of the perturbation functions <math display="inline">p_1(\tilde{x})</math> and <math display="inline">p_2(\tilde{x})</math> have to be known. The most common option is to select a polynomial form:
454
455
{| class="formulaSCP" style="width: 100%; text-align: center;" 
456
|-
457
| 
458
{| style="text-align: center; margin:auto;" 
459
|-
460
| <math>p_1(\tilde{x})=a_0+a_1\tilde{x}+a_2{\tilde{x}}^2+\cdots \mbox{,}\quad p_2(\tilde{x})=</math><math>b_0+b_1\tilde{x}+b_2{\tilde{x}}^2+\cdots </math>
461
|}
462
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
463
|}
464
465
Once the forms of the perturbation functions <math display="inline">p_1(\tilde{x})</math> and <math display="inline">p_2(\tilde{x})</math> are known, the coefficients <math display="inline">a_0\mbox{,}a_1\mbox{,}a_2\mbox{,}\ldots \mbox{,}b_0\mbox{,}b_1\mbox{,}b_2\mbox{,}\ldots </math> can be obtained through minimizing Eq. [[#e0135|(27)]]. Consequently, the values of perturbation functions <math display="inline">p_1(\tilde{x})</math> and <math display="inline">p_2(\tilde{x})</math> are obtained thereby yielding the problem solution, i.e. <math display="inline">\overset{\sim}{T}(\tilde{x}\mbox{,}FO)</math> and <math display="inline">\tilde{q}(\tilde{x}\mbox{,}FO)</math>. All computations of mentioned process were calculated by Maple 15 package.
466
467
==5. Results and discussion==
468
469
To evaluate the accuracy of the obtained solution, the results were compared with the results of Lam [[#b0145|[29]]], which is a linear analytical study ([[#f0010|Fig. 2]]). [[#f0010|Fig. 2]] shows the temperature profile for two cases. Based on the conditions and parameters values of case 1, the bulk distance and the perturbation function coefficients and the dimensionless temperature function are as follows:
470
471
{| class="formulaSCP" style="width: 100%; text-align: center;" 
472
|-
473
| 
474
{| style="text-align: center; margin:auto;" 
475
|-
476
| <math>d=0.00000244898149231\mbox{,}a_0=-0.001542779335579\mbox{,}a_1=</math><math>0.02020571041553\mbox{,}</math>
477
|-
478
|<math>a_2=0.0252921158649449\mbox{,}a_3=-0.275753535197911\mbox{,}a_4=</math><math>0.35863040092761\mbox{,}</math>
479
|-
480
|<math>a_5=-0.117845221675933\mbox{,}b_0=0.0008926043623460\mbox{,}b_1=</math><math>0.009334213988682\mbox{,}</math>
481
|-
482
|<math>b_2=-0.005051864326525\mbox{,}b_3=-0.012580633028671\mbox{,}b_4=</math><math>0.131409780625046\mbox{,}</math>
483
|-
484
|<math>b_5=-0.063327870215932.</math>
485
|}
486
| style="width: 5px;text-align: right;white-space: nowrap;" | 
487
|}
488
489
{| class="formulaSCP" style="width: 100%; text-align: center;" 
490
|-
491
| 
492
{| style="text-align: center; margin:auto;" 
493
|-
494
| <math>\overset{\sim}{T}(\tilde{x}\mbox{,}FO)=(-500exp(-10+</math><math>10\tilde{x}-100FO)-0.0001852317134exp(10\tilde{x}-</math><math>100FO)</math>
495
|-
496
|<math>-504.08exp(-10\tilde{x}-100FO))FO+2\times {10}^{\left(-14\right)}exp(-</math><math>10+10\tilde{x}-100FO)(-2.5\times {10}^{16}exp(-10+</math><math>20\tilde{x})</math>
497
|-
498
|<math>-9.079985950\times {10}^9exp(20\tilde{x})-2.52\times {10}^{16})FO+</math><math>0.01sin(\pi \tilde{x}/2)-20.10323640exp(-10+10\tilde{x}-</math><math>100FO)</math>
499
|-
500
|<math>-0.000007513361496exp(10\tilde{x}-100FO)+(-0.003079929687-</math><math>0.003771047093{\tilde{x}}^2</math>
501
|-
502
|<math>+1.25\times {10}^{\left(-7\right)}sin(0.5\pi \tilde{x}){\pi }^4+</math><math>0.003070600247\tilde{x}-5.208333328\times {10}^{\left(-9\right)}sin(0.5\pi \tilde{x}){\pi }^6){FO}^5</math>
503
|-
504
|<math>+(0.01515384609+0.01284233263\tilde{x}-0.0388019220{\tilde{x}}^2+</math><math>0.8012429018{\tilde{x}}^3-0.00125sin(0.5\pi \tilde{x}){\pi }^2</math>
505
|-
506
|<math>-0.5892261085{\tilde{x}}^4){FO}^2+(1.122163031\tilde{x}-</math><math>1.191386191{\tilde{x}}^2+0.2670809671{\tilde{x}}^3-</math><math>0.1964087028{\tilde{x}}^4</math>
507
|-
508
|<math>+0.00002604166665sin(0.5\pi \tilde{x}){\pi }^4-0.0004166666665sin(0.5\pi \tilde{x}){\pi }^2-</math><math>0.1392924726){FO}^4</math>
509
|-
510
|<math>+(-0.1381420813-2.170138887\times {10}^{\left(-7\right)}sin(0.5\pi \tilde{x}){\pi }^6+</math><math>0.00001041666666sin(0.5\pi \tilde{x}){\pi }^4</math>
511
|-
512
|<math>-0.00005555555553sin(0.5\pi \tilde{x}){\pi }^2+0.2564541244\tilde{x}-</math><math>.3159784543{\tilde{x}}^2+0.03561079560{\tilde{x}}^3</math>
513
|-
514
|<math>-0.02618782703{\tilde{x}}^4){FO}^6+\cdots (\mbox{many other terms})</math>
515
|}
516
| style="width: 5px;text-align: right;white-space: nowrap;" | 
517
|}
518
519
<span id='f0010'></span>
520
521
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
522
|-
523
|
524
525
526
[[Image:draft_Content_301677003-1-s2.0-S1110016816300357-gr2.jpg|center|359px|Validation of ADM with a linear analytical study [29]. Case 1: gl=10, gr=10, ...]]
527
528
529
|-
530
| <span style="text-align: center; font-size: 75%;">
531
532
Figure 2.
533
534
Validation of ADM with a linear analytical study [[#b0145|[29]]]. Case 1: ''g<sub>l</sub>'' = 10, ''g<sub>r</sub>'' = 10, ''t<sub>p</sub>'' = 0.001, ''μ'' = 10, ''β'' = 0.004, ''γ'' = 0, ''Ve'' = 1, ''FO'' = 0.3. Case 2: ''g<sub>l</sub>'' = 10, ''g<sub>r</sub>'' = 0, ''t<sub>p</sub>'' = 0.001, ''μ'' = 10, ''β'' = 0.004, ''γ'' = 0, ''Ve'' = 1, ''FO'' = 0.4.
535
536
</span>
537
|}
538
539
As can be seen in the figures, there is a good agreement between the results of the analytical solution and the results obtained from ADM. Quantitatively, ADM has a 0.23% average error in case 1 and 0.2% average error in case 2 compared to the analytical solution. In both graphs, the behavior of ADM is consistent with the analytic solution.
540
541
It should be noted that because of symmetry, only half of temperature profiles will be shown in next figures. [[#f0015|Fig. 3]] shows the effect of variations in the Vernotte number on the temperature profile. At the beginning of the body, variations in the Vernotte number did not significantly affect the temperature, but as <math display="inline">\tilde{x}</math> increased, an increased Vernotte number increased the temperature, and the diagrams moved apart. This behavior was reversed when the diagrams reached their peak. A deceased Vernotte number extended the temperature variation range and increased the amplitude, width, and velocity of the heat wave. A reduced Vernotte number formed stronger and faster wave; consequently, more parts of the body were affected by the wave. This behavior is due to the nature of the Vernotte number <math display="inline">\left(Ve=\frac{{\alpha }_0}{{Lc}_0}\right)</math>, where the thermal wave velocity is inversely related to the Vernotte number.
542
543
<span id='f0015'></span>
544
545
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
546
|-
547
|
548
549
550
[[Image:draft_Content_301677003-1-s2.0-S1110016816300357-gr3.jpg|center|359px|The effect of Vernotte number on temperature profiles. (gl=10, gr=10, tp=0.01, ...]]
551
552
553
|-
554
| <span style="text-align: center; font-size: 75%;">
555
556
Figure 3.
557
558
The effect of Vernotte number on temperature profiles. (''g<sub>l</sub>'' = 10, ''g<sub>r</sub>'' = 10, ''t<sub>p</sub>'' = 0.01, ''μ'' = 10, ''β'' = 0.004, ''γ'' = 0.1, ''FO'' = 0.3).
559
560
</span>
561
|}
562
563
[[#f0020|Fig. 4]] shows the effect of variations in thermal conductivity coefficient (''γ'') on the temperature profiles. In the early parts of the body, an increased ''γ'' increased the temperature. The trend was reversed when temperature reached its peak. On the other hand, an increased ''γ'' increased both thermal wave velocity and the slope of the wave front. In fact, unlike  [[#f0015|Fig. 3]], where the waveform did not change at different Vernotte numbers, in [[#f0020|Fig. 4]], an increase in ''γ'' caused the wave take a more aggressive form. In addition, the diagram showed lower maximum temperatures in the negative values of ''γ''.  [[#f0020|Fig. 4]] generally shows that to what extent the variations in the thermal conductivity with the temperature can affect the temperature profile.
564
565
<span id='f0020'></span>
566
567
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
568
|-
569
|
570
571
572
[[Image:draft_Content_301677003-1-s2.0-S1110016816300357-gr4.jpg|center|361px|The effect of γ on temperature profiles. (gl=10, gr=10, tp=0.01, μ=10, β=0.004, ...]]
573
574
575
|-
576
| <span style="text-align: center; font-size: 75%;">
577
578
Figure 4.
579
580
The effect of ''γ'' on temperature profiles. (''g<sub>l</sub>'' = 10, ''g<sub>r</sub>'' = 10, ''t<sub>p</sub>'' = 0.01, ''μ'' = 10, ''β'' = 0.004, ''Ve'' = 1, ''FO'' = 0.3).
581
582
</span>
583
|}
584
585
The effects of variations in the Fourier number on the temperature profile are shown in [[#f0025|Fig. 5]]. As can be seen, temperature completely depended on the Fourier number. Since the Fourier number represents the dimensionless time, with increase in time (or the Fourier number), the heat wave continuously moved forward and reversed upon reaching the end point of the body and being reflected.
586
587
<span id='f0025'></span>
588
589
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
590
|-
591
|
592
593
594
[[Image:draft_Content_301677003-1-s2.0-S1110016816300357-gr5.jpg|center|px|The effect of Fourier number on temperature profiles. (gl=10, gr=10, tp=0.01, ...]]
595
596
597
|-
598
| <span style="text-align: center; font-size: 75%;">
599
600
Figure 5.
601
602
The effect of Fourier number on temperature profiles. (''g<sub>l</sub>'' = 10, ''g<sub>r</sub>'' = 10, ''t<sub>p</sub>'' = 0.01, ''μ'' = 10, ''β'' = 0.004, ''Ve'' = 1, ''γ'' = 0.1).
603
604
</span>
605
|}
606
607
In fact, [[#f0025|Fig. 5]] shows the position of a heat wave at different times. As time increased, the wave amplitude decreased, the peak point took lesser values, and the wave was gradually damped. The temperature throughout the body increased at the same time that the wave was being damped.
608
609
A comparison between different heat transfer models is made in [[#f0030|Fig. 6]], where the effects of variations in ''γ'' in the models are shown. Two values were considered for ''γ'' (linear case, i.e., ''γ'' = 0, and the nonlinear case, i.e., ''γ'' = 0.25). Different values of ''β'' yield different heat transfer models. For ''β'' = 0, we have the C–V non-Fourier heat transfer model; for ''β'' = 1, we have the Fourier heat transfer model; and for 0 < ''β'' < 1 we have the DPL model. As can be seen in [[#f0030|Fig. 6]], the effects of a non-constant thermal conductivity are more prominent in the non-Fourier models. As previously mentioned, non-Fourier models better predict the temperature distribution compared to the Fourier model in real-world applications. Therefore, when it is intended to use such models in order to obtain a more accurate temperature distribution, consideration of a variable thermal conductivity is essential, and a constant thermal conductivity coefficient creates significant errors.
610
611
<span id='f0030'></span>
612
613
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
614
|-
615
|
616
617
618
[[Image:draft_Content_301677003-1-s2.0-S1110016816300357-gr6.jpg|center|356px|The comparison between different models of heat transfer for linear (γ=0) and ...]]
619
620
621
|-
622
| <span style="text-align: center; font-size: 75%;">
623
624
Figure 6.
625
626
The comparison between different models of heat transfer for linear (''γ'' = 0) and nonlinear (''γ'' = 0.25) cases. (''g<sub>l</sub>'' = 10, ''g<sub>r</sub>'' = 10, ''t<sub>p</sub>'' = 0.01, ''μ'' = 10, ''Ve'' = 1, ''FO'' = 0.3, Fourier: ''β'' = 1, C–V: ''β'' = 0, DPL: ''β'' = 0.1).
627
628
</span>
629
|}
630
631
In this section, the sensitivity of the midpoint temperature (<math display="inline">\tilde{x}</math> = 0.5) to the variations in different parameters in the problem was analyzed. [[#f0035|Fig. 7]] shows the percentage changes in temperature versus the percentage changes in different parameters. In fact, it indicates that how and to what extent (in percent) the dimensionless midpoint temperature changed when the value of a parameter was changed from its reference value. Variations in the Fourier number had the greatest effect on the temperature, with its effectiveness being much higher than other parameters. After the Fourier number, variations in the Vernotte number had greatest effect on the temperature, followed by the parameters related to the heat source. Finally, ''γ'' and ''β'' had the least effect. It is noteworthy that only the midpoint of the body was considered here, while, as seen in  [[#f0020|Fig. 4]], variations in ''γ'' significantly affected the temperature throughout the body.
632
633
<span id='f0035'></span>
634
635
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
636
|-
637
|
638
639
640
[[Image:draft_Content_301677003-1-s2.0-S1110016816300357-gr7.jpg|center|486px|Sensitivity analysis of the dimensionless temperature with respect to different ...]]
641
642
643
|-
644
| <span style="text-align: center; font-size: 75%;">
645
646
Figure 7.
647
648
Sensitivity analysis of the dimensionless temperature with respect to different parameters. The reference values of parameters: (''g<sub>l</sub>'' = 10, ''g<sub>r</sub>'' = 10, ''t<sub>p</sub>'' = 0.01, ''μ'' = 10, ''β'' = 0.004, ''Ve'' = 1, ''γ'' = 0.1, ''FO'' = 0.3).
649
650
</span>
651
|}
652
653
==6. Conclusion==
654
655
The present study investigated heat transfer problem in a thin film. The Dual Phase Lagging (DPL) heat conduction model was employed for this purpose. Thermal conductivity was assumed temperature-dependent which resulted in a nonlinear equation. The modified semi-analytical Adomian Decomposition Method was used for solving the equations. Results are summarized as follows:
656
* It was concluded that the modified ADM used in this paper had a suitable accuracy in solving nonlinear PDE problems considering non-Fourier heat transfer.
657
* It was observed that a reduced Vernotte number increased the velocity, amplitude, and width of the heat wave.
658
* The assumption of temperature-dependent thermal conductivity caused significant differences in temperature profiles which makes nonlinear analysis important. Particularly, the difference was much more evident in the non-Fourier models.
659
* The Fourier and Vernotte numbers had the greatest effect on the temperature variations; therefore, dimensionless numbers significantly affected the analysis of non-Fourier heat transfer problems.
660
661
==References==
662
663
<ol style='list-style-type: none;margin-left: 0px;'><li><span id='b0005'></span>
664
[[#b0005|[1]]] J. Fourier; Analytical Theory of Heat; Dover, New York (1955)</li>
665
<li><span id='b0010'></span>
666
[[#b0010|[2]]] V. Peshkov; Second sound in Helium II; J. Phys., USSR, 3 (1944), p. 381</li>
667
<li><span id='b0015'></span>
668
[[#b0015|[3]]] R. Shirmohammadi; Thermal response of microparticles due to laser pulse heating; Nanoscale Microscale Thermophys. Eng., 15 (3) (2011), pp. 151–164</li>
669
<li><span id='b0020'></span>
670
[[#b0020|[4]]] M.M. Tung, M. Trujillo, J.A. López Molina, M.J. Rivera, E.J. Berjano; Modeling the heating of biological tissue based on the hyperbolic heat transfer equation; Math. Comput. Model., 50 (5–6) (2009), pp. 665–672</li>
671
<li><span id='b0025'></span>
672
[[#b0025|[5]]] C. Catteneo; A form of heat conduction equation which eliminates the paradox of instantaneous propagation; Comput. Rendus, 247 (1958), pp. 431–433</li>
673
<li><span id='b0030'></span>
674
[[#b0030|[6]]] P. Vernotte; Some possible complications in the phenomenon of thermal conduction; Comput. Rendus, 252 (1961), pp. 2190–2191</li>
675
<li><span id='b0035'></span>
676
[[#b0035|[7]]] D.Y. Tzou; A unified field approach for heat conduction from macro- to micro-scales; J. Heat Transfer, 117 (1) (1995), pp. 8–16</li>
677
<li><span id='b0040'></span>
678
[[#b0040|[8]]] D.Y. Tzou; Experimental support for the lagging behavior in heat propagation; J. Thermophys. Heat Transfer, 9 (4) (1995), pp. 686–693</li>
679
<li><span id='b0045'></span>
680
[[#b0045|[9]]] K. Liu, H. Chen; Investigation for the dual phase lag behavior of bio-heat transfer; Int. J. Therm. Sci., 49 (7) (2010), pp. 1138–1146</li>
681
<li><span id='b0050'></span>
682
[[#b0050|[10]]] D.D. Joseph, L. Preziosi; Heat waves; Rev. Mod. Phys., 61 (1) (1989), pp. 41–73</li>
683
<li><span id='b0055'></span>
684
[[#b0055|[11]]] M.N. Özişik, D.Y. Tzou; On the wave theory in heat conduction; J. Heat Transfer, 116 (3) (1994), pp. 526–535</li>
685
<li><span id='b0060'></span>
686
[[#b0060|[12]]] G. Adomian; Stochastic Systems; Academic Press, New York (1983)</li>
687
<li><span id='b0065'></span>
688
[[#b0065|[13]]] J. He; An approximate solution technique depending on an artificial parameter: a special example; Commun. Nonlinear Sci. Numer. Simul., 3 (2) (1998), pp. 92–97</li>
689
<li><span id='b0070'></span>
690
[[#b0070|[14]]] J. He; Newton-like iteration method for solving algebraic equations; Commun. Nonlinear Sci. Numer. Simul., 3 (2) (1998), pp. 106–109</li>
691
<li><span id='b0075'></span>
692
[[#b0075|[15]]] S.J. Liao; The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems; Tong University (1992)</li>
693
<li><span id='b0080'></span>
694
[[#b0080|[16]]] J.K. Zhou; Differential Transform and Its Applications for Electrical Circuits; Huarjung University Press (1986)</li>
695
<li><span id='b0085'></span>
696
[[#b0085|[17]]] J. He; Variational iteration method—a kind of non-linear analytical technique: some examples; Int. J. Nonlinear Mech., 34 (1999), pp. 699–708</li>
697
<li><span id='b0090'></span>
698
[[#b0090|[18]]] D.D. Ganji, A. Rajabi; Assessment of homotopy – perturbation and perturbation methods in heat radiation equations; Int. Commun. Heat Mass Transfer, 33 (2006), pp. 391–400</li>
699
<li><span id='b0095'></span>
700
[[#b0095|[19]]] D.D. Ganji; The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer; Phys. Lett. A, 355 (4–5) (2006), pp. 337–341</li>
701
<li><span id='b0100'></span>
702
[[#b0100|[20]]] D.D. Ganji, A. Sadighi; Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations; J. Comput. Appl. Math., 207 (2007), pp. 24–34</li>
703
<li><span id='b0105'></span>
704
[[#b0105|[21]]] S. Chakraverty, D. Behera; Dynamic responses of fractionally damped mechanical system using homotopy perturbation method; Alexandria Eng. J., 52 (3) (2013), pp. 557–562</li>
705
<li><span id='b0110'></span>
706
[[#b0110|[22]]] V. Meena, K. Indira, S. Kumar, L. Rajendran; A new mathematical model for effectiveness factors in biofilm under toxic conditions; Alexandria Eng. J., 53 (4) (2014), pp. 917–928</li>
707
<li><span id='b0115'></span>
708
[[#b0115|[23]]] S. Gupta, D. Kumar, J. Singh; Analytical solutions of convection–diffusion problems by combining Laplace transform method and homotopy perturbation method; Alexandria Eng. J., 54 (3) (2015), pp. 645–651</li>
709
<li><span id='b0120'></span>
710
[[#b0120|[24]]] S. Nadeem, H. Sadaf, N.S. Akbar; Effects of nanoparticles on the peristaltic motion of tangent hyperbolic fluid model in an annulus; Alexandria Eng. J., 54 (4) (2015), pp. 843–851</li>
711
<li><span id='b0125'></span>
712
[[#b0125|[25]]] M. Torabi, H. Yaghoobi, S. Saedodin; Assessment of homotopy perturbation method in non-linear convective-radiative non-fourier conduction; Therm. Sci., 15 (2011), pp. 263–274</li>
713
<li><span id='b0130'></span>
714
[[#b0130|[26]]] S. Saedodin, H. Yaghoobi, M. Torabi; Application of the variational iteration method to nonlinear non-Fourier conduction heat transfer equation with variable coefficient; Heat Transfer—Asian Res., 40 (6) (2011), pp. 513–523</li>
715
<li><span id='b0135'></span>
716
[[#b0135|[27]]] M. Torabi, H. Yaghoobi, K. Boubaker; Thermal analysis of non-linear convective – radiative hyperbolic lumped systems with simultaneous variation of temperature-dependent specific heat and surface emissivity by MsDTM and BPES; Int. J. Thermophys., 34 (1) (2013), pp. 122–138</li>
717
<li><span id='b0140'></span>
718
[[#b0140|[28]]] P. Malekzadeh, H. Rahideh; IDQ two-dimensional nonlinear transient heat transfer analysis of variable section annular fins; Energy Convers. Manag., 48 (1) (2007), pp. 269–276</li>
719
<li><span id='b0145'></span>
720
[[#b0145|[29]]] T.T. Lam; A unified solution of several heat conduction models; Int. J. Heat Mass Transfer, 56 (1–2) (2013), pp. 653–666</li>
721
<li><span id='b0150'></span>
722
[[#b0150|[30]]] J. Biazar, M.R. Islam; The adomian decomposition method for the solution of the transient energy equation in rocks subjected to laser irradiation; Iran. J. Sci. Technol. Trans. A, 30 (A2) (2006), pp. 201–212</li>
723
<li><span id='b0155'></span>
724
[[#b0155|[31]]] A. García-Olivares; Analytic solution of partial differential equations with Adomian’s decomposition; Kybernetes, 32 (3) (2003), pp. 354–368</li>
725
</ol>
726

Return to Javad-Noroozi et al 2016a.

Back to Top

Document information

Published on 12/04/17

Licence: Other

Document Score

0

Views 54
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?