You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
==Abstract==
2
3
The aim of the present study was to document the knowledge of traditional ''Siddha''  medical practitioners from Thiruvarur district in Tamil Nadu, India, and to quantitatively analyze the data to identify some useful leads of medicinal plants and to screening the phytocomounds. Field study was carried out for a period of 1 year in Thiruvarur district of Tamil Nadu. The ethnomedicinal information were collected from ''Siddha''  medical practitioners. The collected data were analyzed through quantitative analysis. The molecular docking studies were performed three marketed drugs and eleven different medicinal plant compounds against HBeAg using Schrodinger suite. A total of 33 species of plants distributed in 22 genera belonging to 22 families were identified as commonly used ethno medicinal plants by traditional ''Siddha''  practitioners in Thiruvarur. An interesting point in molecular docking study is that luteolin is an effective inhibitor for the inhibition of HBV when compared to commercial drugs. Traditional ''Siddha''  medical practitioner and remarkable medicinal plant knowledge and uses were documented for the study area.  
4
5
==Keywords==
6
7
Siddha practitioners ; Phytocompounds ; Hepatitis B virus
8
9
==Introduction==
10
11
Plants have played a very important role in human life for a long time, supplying basic needs such as food, clothing, medicine, and housing. Information about the art of using herbs is a legacy passed from one generation to another. Studies dealing with the relationship between humans and plants are placed in the field of science called Ethnobotany. [[#bb0075|Khajoei Nasab and Khosravi (2014)]]  reported that ethnobotany surveys include interviewing local people, use of the available data in the literature, and the folklore of each region. The goal of ethnobotany is to protect and to pass the valuable and useful traditional knowledge to future generations. Uncontrolled harvest of medicinal plants by people has increased the risk of extinction of many species and subsequently the loss of local knowledge as how to use them.      
12
13
India is the second largest country in the world with over one billion people with diverse socio-cultural backgrounds. It accounts for 16% of the worlds population and holds 21% of the worlds global burden of diseases. The impact of traditional systems of medicine in the public healthcare system of India is substantially high and medicine is intimately interwoven with religiosity and ethnicity ([[#bb0030|Broom et al., 2009]] ). The first written ''Siddha''  medical text ‘Thirumanthiram’ dates back around 6th–7th century A. D. and the ''Siddha''  medicine as it now exists both in theory and practice, began in Tamil Nadu around the16th century, but elements of healing practices which became part of ''Siddha''  medicine including those they hold in common with Ayurveda, came from an earlier period as evidenced by the concepts for good health in Thirukural, collection of Tamil poems that dates around 450–550 A.D. ([[#bb0190|Zysk, 2008]] ). The Government of India has been supporting and running colleges to teach ''Siddha''  system of medicine. But the comparatively feeble institutionalization of ''Siddha''  medicine is brought out by the figures for January 2005, which fixes the ratio of registered nonqualified/qualified practitioners at 7.71:2.29, whereas for Ayurveda, it was 2.27:7.73 ( [[#bb0185|WHO, 2007]] ). These traditionally trained practitioners are accused of ignorance and of practicing a false medicine by those who avoid their treatment as well as by ''Siddha''  doctors who lay claim to the true medical knowledge ( [[#bb0135|Sebastia, 2011]] ).      
14
15
According to the WHO, worldwide around two billion people are infected with the hepatitis B virus and 6,000,000 peoples die each year due to its consequences. In India, approximately 80 million people affected in hepatitis B virus, which results in around 2,400,000 deaths annually due to complications from the disease. Hepatitis means inflammation of the liver. It is caused by several mechanisms, including certain infectious agents. Viral hepatitis is caused by different type of viruses such as hepatitis A, B, C, D, and E. The two commonly used vaccines, namely pegylated interferon and ribavirin, are now being used in combination than separately, which shows higher rate of response. But this treatment shows side effects such as hemolytic anemia, renal failure, etc ([[#bb0020|Balavignesh et al., 2013]] ). The aim of the present study was to document and to quantitatively analyze the knowledge of traditional Siddha medical practitioners from Thiruvarur district in Tamil Nadu, India, on medicinal plants and to screening the better drug candidates against hepatitis B virus through ''in silico''  methods.      
16
17
==Materials and Methods==
18
19
===Geographical Location===
20
21
Thiruvarur is located at 9.28°N 79.3°E. The town is bounded by Sukumar river in the north, Valaiyar river in the south, while the Odambokki river flows through the center. The town has an average elevation of 3 m (9.8 ft) from the sea level. The municipality covers an area of 10.47 km<sup>2</sup>  (4.04 sq. mi). The town along with the district receives an annual rainfall of 1260 mm (50 in.). The town experiences tropical climate during summer, from March to May. The proximity to sea results in high humidity throughout the year and peaks 70% from August to May. The town has a plain terrain of alluvial soil consisting of sand, silt, and clay. Vennar and Vettar, the tributaries of river Cauvery, are the major water bodies around the town. Surface water canals contribute 89% to irrigation, while the rest 11% is accounted by dug wells and tube wells. Paddy is the major crop while the others being black gram, green gram, ground nut and gingely.      
22
23
===Investigation Sites and Selection of Traditional Siddha Practitioners===
24
25
The study area was investigated to get information from local traditional practitioners having practical knowledge of medicinal plants, who were interviewed in Thiruvarur district of 7 taluks (Kudavasal, Mannarkudi, Nannilam, Needamangalam, Thiruthuraipoondi, Thiruvarur, and Valangaiman) during June 2014–April 2015. In 2011, Thiruvarur had a population of 1,264,277 of which male and female were 626,693 and 637,584, respectively. Scheduled castes and scheduled tribes accounted for 14.35% and .66% of the population, respectively ([[#f0005|Fig. 1]] ). Methods of selecting informants depended upon the distribution of traditional practitioners having sound knowledge. They were requested to collect specimens of the plants they know or to show the plant species on site. These informants were traditional practitioners themselves or had tradition of healing in their families and had knowledge of the medicinal use of the plants. The wealth of medicinal plant knowledge among the people of this district is based on hundreds of years of beliefs and observations. Totally, 87 informants were selected. Of them, 56 men and 31 women between the ages of 18–84 years were included to get ethnomedicinal information through direct interviews or oral conversation ([[#t0005|Table 1]] ).
26
27
<span id='f0005'></span>
28
29
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
30
|-
31
|
32
33
34
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr1.jpg|center|496px|Fig. 1]]
35
36
37
|-
38
| <span style="text-align: center; font-size: 75%;">
39
40
Fig. 1.
41
42
Investigation sites.
43
44
</span>
45
|}
46
47
<span id='t0005'></span>
48
49
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
50
|+
51
52
Table 1.
53
54
Demographic profile of the informants included in the survey (''N''  = ''87'' ).                  
55
56
|-
57
58
! ''Age''
59
! ''NI''
60
! % Informants
61
|-
62
63
! 28–37
64
| 8
65
| 9.19%
66
|-
67
68
! 38–44
69
| 21
70
| 24.13%
71
|-
72
73
! 45–57
74
| 23
75
| 26.43%
76
|-
77
78
! 58–69
79
| 17
80
| 19.54%
81
|-
82
83
! 70–77
84
| 13
85
| 14.94%
86
|-
87
88
! 78–84
89
| 9
90
| 10.34%
91
|-
92
93
! ''Gender''
94
| 
95
| 
96
|-
97
98
! Men
99
| 66
100
| 75.86%
101
|-
102
103
! Women
104
| 21
105
| 24.14%
106
|-
107
108
! ''Experience''
109
| 
110
| 
111
|-
112
113
! < 5 years
114
| 16
115
| 18.39%
116
|-
117
118
! 8–11 years
119
| 30
120
| 34.48%
121
|-
122
123
! 12–19 years
124
| 27
125
| 31.03%
126
|-
127
128
! 20 years above
129
| 14
130
| 16.09%
131
|-
132
133
! ''Main occupation''
134
| 
135
| 
136
|-
137
138
! Self-employed
139
| 17
140
| 19.54%
141
|-
142
143
! Agriculture
144
| 25
145
| 28.73%
146
|-
147
148
! Homemade practitioners
149
| 21
150
| 24.13%
151
|-
152
153
! Clinical practitioners
154
| 24
155
| 25.28%
156
|}
157
158
===Preservation of Plant Specimens===
159
160
Standard method was followed with record to collection of plant materials, drying, mounting, preparation, and preservation of plant specimens ([[#bb0065|Jain, 1964]] ). Voucher specimens of medicinal plants in triplicate were collected, prepared, and identified. Plants with their correct nomenclature were arranged alphabetically by family name, vernacular name, ethnomedicinal uses and applications. The identification and nomenclature of the listed plants were based on the Flora of Presidency of Madras ([[#bb0040|Gamble, 1935]] ) and the Flora of Tamil Nadu Carnatic ([[#bb0105|Matthew, 1983]] ). They were later verified at Botanical Survey of India, Southern Circle, Coimbatore, India.      
161
162
===Quantitative Analysis===
163
164
====Relative Frequency Citation (RFC)====
165
166
This index used here is the relative frequency of citation (RFC). This index is obtained by dividing the number of informants mentioning a useful species (FC or frequency of citation), by the total number of informants in the survey (N). RFC value varies from 0 (when nobody refers to a plant as a useful one) to 1 (when all the informants mentioning it as useful) ([[#bb0155|Tardio and Pardo-de Santayana, 2008]] ). RFC index, which does not consider the use-category (UR or use-report is a single record for use of a plant mentioned by an individual) and RFC calculated by the following formula:
167
168
{| class="formulaSCP" style="width: 100%; text-align: center;" 
169
|-
170
| 
171
{| style="text-align: center; margin:auto;" 
172
|-
173
| <math>RFC_S=\frac{FC_S}{N}=\frac{{\sum }_{i=i_1}^{i_N}UR_i}{N}</math>
174
|}
175
| style="width: 5px;text-align: right;white-space: nowrap;" | 
176
|}
177
178
====Use value (UV)====
179
180
The use value (UV) demonstrates the relative importance of plants known locally. It was calculated using the following formula ([[#bb0045|Gazzaneo et al., 2005]] ):
181
182
{| class="formulaSCP" style="width: 100%; text-align: center;" 
183
|-
184
| 
185
{| style="text-align: center; margin:auto;" 
186
|-
187
| <math>UV=\sum Ui/N</math>
188
|}
189
| style="width: 5px;text-align: right;white-space: nowrap;" | 
190
|}
191
192
where Ui is the number of uses mentioned by each informant for a given species and N is the total number of informants.      
193
194
====Relative Importance====
195
196
The relative importance (RI) of plant species cited by the informants is calculated as follows ([[#bb0070|Kadir et al., 2012]] ): RI = PP + AC, where PP = the number of pharmacological properties (reported specific ailments) attributed to a species divided by the maximum number of properties attributed to the most resourceful species (species with the highest number of properties). AC = the number of ailment categories treated by a given species divided by the maximum number of ailment categories treated by the most resourceful species. A value of 2 is the highest possible value for relative importance (RI) indicating the most versatile species with the greatest number of medicinal properties ([[#bb0115|Oliveira et al., 2010]] ).      
197
198
====Calculation of Informant Agreement Ratio (IAR)====
199
200
The importance of the individual species was estimated by calculating the IAR ([[#bb0170|Trotter and Logan, 1986]] ) for each species. IAR was calculated using the following formula:
201
202
{| class="formulaSCP" style="width: 100%; text-align: center;" 
203
|-
204
| 
205
{| style="text-align: center; margin:auto;" 
206
|-
207
| <math>IAR=n_{r-}n_a/\left(n_{r-1}\right)</math>
208
|}
209
| style="width: 5px;text-align: right;white-space: nowrap;" | 
210
|}
211
212
where n<sub>r</sub>  is the total number of citations registered for species s and n<sub>a is</sub>  the number of illness categories that are treated with this species. These values range between zero (when the number of illness categories equals the number of citations) and one (whereby all the participants agree upon the exclusive use of the species for the particular illness) ([[#bb0165|Thomas et al., 2009]] ).      
213
214
===Computational Methods with Glide Version 6.3===
215
216
All computational studies were carried out using Glide version 6.3, installed in a single machine running on Intel Core i7 Duo processor with 1 GB RAM and 275 GB hard disk with Black Dell inspiron version 7.0 as the operating system.
217
218
===Preparation of Protein Target Structure===
219
220
The X-ray crystal structure of hepatitis B virus e-antigen enzyme is obtained from the Protein Data Bank. After selection, protein preparation wizard of Schrodinger suite has been used to prepare protein. All water molecules were removed, HET numbers are removed, missing side chains were added, hydrogen atoms are added to the proteins, and all atom force field (OPSL-2001) charges and atom types were assigned. Preparation and refinement were done running ProteinPrep job on the structure in a standard procedure. Optimize and Minimized the protein were performed until the average root mean square deviation of non-hydrogen atoms reached 0.3 Å.
221
222
===Identification and Validation of Binding Site (SiteMap)===
223
224
The SiteMap was used to locate the ligand binding sites over the protein molecule. The SiteMap helps for the ligand to interact with amino acid residues from protein molecule.
225
226
===Ligand Preparation===
227
228
These twelve natural compounds were selected from medicinal plants; these ligands were used in our molecular docking studies. These twelve compounds were sketched from Schrödinger Suit (Maestro 10.5 version) and the commercial compound was retrieved from the ChemSpider database. The compounds were prepared with the help of LigPrep (2.3) module ([[#bb0090|Ligprep, Version 2.3, 2009]] ), the drawn ligands were geometry optimized by using the optimized potentials for liquid simulations-2005 (OPLS-2005) force field with the steepest descent followed by truncated Newton conjugate gradient protocol. Partial atomic charges were computed using the OPLS-2005 force field. The LigPrep is a utility in Schrodinger software suite that combines tools for generating 3D structures from 1D (Smiles) and 2D (SDF) representation, searching for tautomers and steric isomers and geometry minimization of ligands.      
229
230
==Results==
231
232
===Demographic Profile of the Siddha Practitioners===
233
234
Demographic characteristics of respondents were determined and recorded through face-to-face interviews. The number of practitioners between the age groups 45–57 was high when compared to the other groups. The percentage of practitioners with an experience lower than 5 years was only 18.39%. There was uneven distribution in the male–female ratio. Nearly 24.13% of the practitioners were homemade medicine in study area. 25.28% of the practitioners were practicing it only as a clinical practitioner ([[#t0005|Table 1]] ). Regarding the demography of the informants, both dominated middle-aged healers and non-dominated other workers were documented in our studies. As indicated, there was high male–female ratio; womens role as a traditional medical practitioner was less than the male practitioner. Still, it remains a male-exclusive domain. Even in several previous works with traditional medical practitioners in India the same fact was recorded. [[#bb0100|Mati and De Boer (2011)]]  conducted a study in Kurdish markets and reported that women occupied a major of part consumers while men occupied a major portion of the sellers of traditional medicine. But as far as our study is concerned, a major portion of women involved in traditional medicine perform their service as birth attendants. Though the general figure showed that a major portion of the healers were uneducated or poorly educated, cattle drovers, many of the young practitioners hold a degree/diploma. Some of the practitioners also refer the patients to biomedical doctors/technician stores, who view their health status and they are able to read and understand the reports of some basic lab tests such as blood glucose levels. Some of them are also collecting these reports as proof of efficacy of their treatment. A major portion of the practitioners practice this medicine as a part-time job. The consultation charges usually ranged between INR11–51,and in some cases, it was free.      
235
236
===Different Plant Families Recorded===
237
238
The plants used for medicinal purposes in the region are presented in [[#t0010|Table 2]]  with relevant information. As a result of study, 33 medicinal plant species belonging to 22 families were found in the research area. The most presented families are Euphorbiaceae (each 4 species) followed by Fabaceae, Moraceae and Rutaceae (each 3 species), Anacardiaceae and Solanaceae (each 2 species), and others (16 species) ([[#f0010|Fig. 2]] ). Among the families, Euphorbiaceae, Fabaceae, Moraceae, and Rutaceae, which were most dominant in this study, are consistently in other ethnobotanical studies ([[#bb0010|Ayyanar and Ignacimuthu, 2011]] , [[#bb0130|Prabhu et al., 2014]]  and [[#bb0110|Morvin Yabesh et al., 2014]] ; [[#bb0085|Kim and Song, 2014]] ), which can be attributed to their having a wide range of bio-active ingredients ([[#bb0045|Gazzaneo et al., 2005]] ). Euphorbiaceae is also known to have the highest number species, more than any other plant family in the world ([[#bb0095|Marles and Farnsworth, 1995]] ).
239
240
<span id='t0010'></span>
241
242
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
243
|+
244
245
Table 2.
246
247
Medicinal plants to treat various diseases in traditional ''Siddha''  medical practitioners from Thiruvarur (''dt'' ).                  
248
249
|-
250
251
! No.
252
! Plant name and voucher number
253
! Family
254
! Practitioner and vernacular name
255
! Parts used
256
! Ailment categories with number of informants
257
! Preparations
258
! UR and FC
259
! RFC
260
! Use value
261
! RI
262
! IAR
263
|-
264
265
! 1.
266
| ''Aegle mermelos''  L. PHC-2019                                                    
267
| Rutaceae
268
| Vila maram
269
| Fruit Fruit                                                    
270
| NA:18 (Nerves throne) PB:27 (Insect bite)                                                    
271
| Paste Paste                                                    
272
| 45/51
273
| 0.586
274
| 0.517
275
| 0.535
276
| 0.977
277
|-
278
279
! 2.
280
| ''Acalypha indica''  L. PHC-2025                                                    
281
| Euphorbiaceae
282
| Kuppaimeni
283
| Leaves Leaves Leaves                                                    
284
| PB: 4 (Scorpion sting) DID: 7 (Scabies) GIA: 6 (To kill intestinal worms)                                                    
285
| Paste Paste Paste                                                    
286
| 17/43
287
| 0.492
288
| 0.195
289
| 0.803
290
| 0.875
291
|-
292
293
! 3.
294
| ''Achyranthes aspera''  L. PHC-2031                                                    
295
| Amarathanceae
296
| Nayuruvi
297
| Seed Whole plant Seed Root Leaves Leaves Leaves Leaves                                                    
298
| RSD:15 (Cough) GUA:24 (Stone formation) GH:23 (Body strength) PB:10 (Scorpion bite) DID:11 (Wounds) HA:23(Hepatitis B viral infection FVR:16 (Fever) GH:17 (Body refresh)                                                    
299
| Powder Juice Powder Juice Paste Juice Paste Juice                                                    
300
| 139/87
301
| 1.000
302
| 1.597
303
| 2.000
304
| 0.949
305
|-
306
307
! 4.
308
| ''Adhatoda vasica''  Nees. PHC-2036                                                    
309
| Acanthaceae
310
| Adathodai
311
| Leaves Leaves Leaves                                                    
312
| ED:5 (Diabetes) RSD:6 (Cough) FVR:1 (Fever)                                                    
313
| Paste Juice Paste                                                    
314
| 12/23
315
| 0.264
316
| 0.137
317
| 0.803
318
| 0.818
319
|-
320
321
! 5.
322
| ''Allium cepa''  L. PHC-2020                                                    
323
| Liliaceae
324
| Vengayam
325
| Bulb Leaves Bulb                                                    
326
| ED:11 (Diabetes) AA:13 (Erectile of sex organ) PB:8 (Scorpion bite)                                                    
327
| Paste Raw Raw                                                    
328
| 32/41
329
| 0.471
330
| 0.367
331
| 0.803
332
| 0.935
333
|-
334
335
! 6.
336
| ''Azadirachta indica''  A. Juss. PHC-2026                                                    
337
| Meliaceae
338
| Vaembu
339
| Young bark Bark Leaves Leaves Leaves Flower Seed                                                    
340
| SMSD:12 (Rheumatism) DID:13 (Scabies) DID:21 (Small pox) FVR:11 (Scarlet fever) ED:19 (Diabetes) GIA: 17 (To kill intestinal warms) HC: 23 (To kill insect)                                                    
341
| Paste Paste Paste Juice Juice Juice Paste                                                    
342
| 116/86
343
| 0.988
344
| 1.333
345
| 1.772
346
| 0.947
347
|-
348
349
! 7.
350
| ''Cajanus cajan''  (L.) PHC-2030 Millsp                                                    
351
| Fabaceae
352
| Ilanthai
353
| Fruits
354
| AA:10 (Increase sperm production)
355
| Raw
356
| 10/25
357
| 0.287
358
| 0.114
359
| 0.267
360
| 1.000
361
|-
362
363
! 8.
364
| ''Calotropis procera''  PHC-2032                                                    
365
| Asclepiadaceae
366
| Erukku
367
| Latex Root Root                                                    
368
| DID:12 (Abscess) PB:7 (Scorpion sting) PB: 9 (Dog bite)                                                    
369
| Raw Paste Paste                                                    
370
| 28/43
371
| 0.494
372
| 0.321
373
| 0.660
374
| 0.925
375
|-
376
377
! 9.
378
| ''Cardiospermum halicacabum''  L. PHC-2035                                                    
379
| Sapindaceae
380
| Mudakkathan
381
| Leaves Leaves                                                    
382
| SMSD:13 (Rheumatism) GIA:9 (Gastric problem)                                                    
383
| Decoction Juice                                                    
384
| 22/38
385
| 0.321
386
| 0.252
387
| 0.535
388
| 0.952
389
|-
390
391
! 10.
392
| ''Carica papaya''  L. PHC-2040                                                    
393
| Caricaceae
394
| Pappali
395
| Fruits Latex Leaves                                                    
396
| GA:3 (Easy delivery) DA:7 (Tooth ache) FVR:7 (Viral fever) OA:4 (Eye ache)                                                    
397
| Raw Raw Decoction Raw                                                    
398
| 21/33
399
| 0.379
400
| 0.241
401
| 0.827
402
| 0.850
403
|-
404
405
! 11.
406
| ''Citrus''''aurantifolia*''  (Christm.) Swingle. PHC-2044                                                    
407
| Rutaceae
408
| Elumitchai
409
| Fruit Leaves                                                    
410
| NA:16 (Cure head ache) RSD:18 (Cold and control vomit)                                                    
411
| Raw Raw                                                    
412
| 34/23
413
| 0.264
414
| 0.390
415
| 0.535
416
| 0.969
417
|-
418
419
! 12.
420
| ''Coccinia grandis''  Wight & Arn. PHC-2044                                                    
421
| Cucurbitaceae
422
| Kovai
423
| Fruits
424
| ED:14 (Diabetes)
425
| Raw
426
| 14/19
427
| 0.218
428
| 0.160
429
| 0.267
430
| 1.000
431
|-
432
433
! 13.
434
| ''Cynodon dactylon''  (L.) Pers. PHC-2027                                                    
435
| Poaceae
436
| Arugampul
437
| Leaves Leaves                                                    
438
| GIA:5 (Motion problem) GH:11 (Blood purification) ED:3 (Diabetes)                                                    
439
| Juice Juice Paste                                                    
440
| 19/27
441
| 0.310
442
| 0.218
443
| 0.803
444
| 0.888
445
|-
446
447
! 14.
448
| ''Coriandrum sativum''  L. PHC-2021                                                    
449
| Umbelliferae
450
| Koththamalli
451
| Leaves Seed Leaves Leaves                                                    
452
| GIA:6 (Indigestion and vomiting) AA: 3 (Avoid stone formation) DID: 8 (Epilepsy) GIA: 9 (Control bloody diarrhea)                                                    
453
| Paste Powder Paste Paste                                                    
454
| 26/29
455
| 0.333
456
| 0.298
457
| 0.267
458
| 0.880
459
|-
460
461
! 15.
462
| ''Euphorbia hirta''  L. PHC-2036                                                    
463
| Euphorbiaceae
464
| Amman pacharasi
465
| Leaves
466
| DID:16 (Swellings)
467
| Juice
468
| 16/24
469
| 0.275
470
| 0.183
471
| 0.267
472
| 1.000
473
|-
474
475
! 16.
476
| ''Hypanthus enneaspermus''  (L.) F. Muell PHC-2043                                                    
477
| Violaceae
478
| Orithal thamarai
479
| Whole plant
480
| AA:17 (Increase sperm production)
481
| Powder
482
| 17/22
483
| 0.252
484
| 0.195
485
| 0.660
486
| 1.000
487
|-
488
489
! 17.
490
| ''Ficus benghalensis''  L. PHC-2027                                                    
491
| Moraceae
492
| Alamaram
493
| Seed Lateral root                                                    
494
| AA:12 (Increase sperm production) DCA:7 (Teeth strength and control blood leaking of teeth)                                                    
495
| Powder Raw                                                    
496
| 19/21
497
| 0.241
498
| 0.218
499
| 0.660
500
| 0.944
501
|-
502
503
! 18.
504
| ''Ficus racemosa''  L. PHC-2033                                                    
505
| Moraceae
506
| Aththi
507
| Fruit Fruit Fruit                                                    
508
| AA:9 (Sperm production) GA:6 (Easy delivery) GA:15 (Lactation)                                                    
509
| Raw Raw Raw                                                    
510
| 30/47
511
| 0.540
512
| 0.344
513
| 0.660
514
| 0.931
515
|-
516
517
! 19.
518
| ''Ficus religiosa''  L. PHC-2037                                                    
519
| Moraceae
520
| Arasamaram
521
| Leaves Leaves Fruit                                                    
522
| DID:17 (Cuts) DID: Wounds AA:11 (Sperm production)                                                    
523
| Paste Powder Powder                                                    
524
| 28/29
525
| 0.333
526
| 0.321
527
| 0.660
528
| 0.962
529
|-
530
531
! 20.
532
| ''Lawsonia inermis''  L. PHC-2028                                                    
533
| Lythraceae
534
| Maruthani
535
| Leaves Bark                                                    
536
| HC:29 (Hair growth and natural hair colouring) GA:7 (Gonorrhoea)                                                    
537
| Paste
538
| 36/32
539
| 0.367
540
| 0.333
541
| 0.666
542
| 0.971
543
|-
544
545
! 21.
546
| ''Glycyrrhiza glabra L.''  PHC-2045                                                    
547
| Leguminosae
548
| Athimathuram
549
| Whole plant
550
| HA: 19 (HBV infection)
551
| Paste
552
| 19/24
553
| 0.275
554
| 0.218
555
| 0.267
556
| 1.000
557
|-
558
559
! 22.
560
| ''Mangifera indica''  L. PHC-2038                                                    
561
| Anacardiaceae
562
| Maa maram
563
| Leaves Fruits Leaves                                                    
564
| GIA:4 (Intestinal warms) GA: 3 (Pregnancy) OA: 1 (Tumour)                                                    
565
| Juice Raw Paste                                                    
566
| 8/11
567
| 0.126
568
| 0.091
569
| 0.803
570
| 0.714
571
|-
572
573
! 23.
574
| ''Moringa oleifera''  L. PHC-2022                                                    
575
| Moringaceae
576
| Murungai
577
| Leaves Flower Bark                                                    
578
| GH:7 (Increase immune power) AA:5 (Sperm production) GA:13 (Venereal disease)                                                    
579
| Paste Juice Paste                                                    
580
| 25/31
581
| 0.356
582
| 0.287
583
| 0.803
584
| 0.916
585
|-
586
587
! 24.
588
| ''Murraya koengii''  Spreng. PHC-2041                                                    
589
| Rutaceae
590
| Karuveppilai
591
| Leaves
592
| HC:16 (Hair growth and Hair strength)
593
| Paste
594
| 16/19
595
| 0.218
596
| 0.183
597
| 0.392
598
| 0.960
599
|-
600
601
! 25.
602
| ''Ocimum sanctum''  L. PHC-2043                                                    
603
| Lamiaceae
604
| Thulasi
605
| Leaves Leaves                                                    
606
| GH:9 (Body Refresh) AA: 17 (Affected sperm counting)                                                    
607
| Paste Raw                                                    
608
| 26/51
609
| 0.586
610
| 0.298
611
| 0.535
612
| 0.960
613
|-
614
615
! 26.
616
| ''Odina wodier''  Roxb. FL PHC-2034                                                    
617
| Anacardiaceae
618
| Othiya maram
619
| Bark Bark Bark                                                    
620
| GA:11 (Venereal disease) DID:14 (Inflammation) GH:3 (Remove body pain)                                                    
621
| Juice Paste Juice                                                    
622
| 28/61
623
| 0.701
624
| 0.321
625
| 0.803
626
| 0.925
627
|-
628
629
! 27.
630
| ''Phyllanthus amarus''  L. PHC-2028                                                    
631
| Euphorbiaceae
632
| Keela nelli
633
| Leaves Leaves Seed Seed                                                    
634
| DID:19 (Scabies) HA:27(Hepatitis B viral infection) GH:22 (Increase immune system) DID:12 (Wound)                                                    
635
| Paste Juice Raw Raw                                                    
636
| 80/87
637
| 1.000
638
| 0.919
639
| 0.928
640
| 0.962
641
|-
642
643
! 28.
644
| ''Phyllanthus emblica''  L. PHC-2042                                                    
645
| Euphorbiaceae
646
| Nelli
647
| Fruit Fruit Fruit                                                    
648
| HC:5 (Hair growth) GH:11 (Increase immune system and body strength) HEM:7 (Hepatitis B viral infection)                                                    
649
| Juice Juice Juice                                                    
650
| 23/33
651
| 0.379
652
| 0.264
653
| 0.803
654
| 0.909
655
|-
656
657
! 29.
658
| ''Pongamia glabra''  Vent. PHC-2039                                                    
659
| Fabaceae
660
| Pungan
661
| Leaves Seed                                                    
662
| DID:5 (Avoid microbes infection) GIA:6 (Control child dysentery (Maantham))                                                    
663
| Paste Raw                                                    
664
| 11/16
665
| 0.183
666
| 0.126
667
| 0.535
668
| 0.900
669
|-
670
671
! 30.
672
| ''Solanum nigrum''  SW. PHC-2023                                                    
673
| Solanaceae
674
| Manaththakkali
675
| Leaves Whole plant Root Whole plant                                                    
676
| RSD: 24 (Cough) HEM: 17 (Piles) ED:27 (Diabetes) HA:18 (Hepatitis B viral infection)                                                    
677
| Paste Juice Juice Juice                                                    
678
| 86/57
679
| 0.655
680
| 0.988
681
| 0.928
682
| 0.964
683
|-
684
685
! 31.
686
| ''Solanum trilobatum''  L. PHC-2035                                                    
687
| Solanaceae
688
| Thuthuvalai
689
| Leaves
690
| GIA:24 (Easy delivery)
691
| Paste
692
| 31/42
693
| 0.482
694
| 0.356
695
| 0.267
696
| 1.000
697
|-
698
699
! 32.
700
| ''Tectona grandis''  L. PHC-2029                                                    
701
| Fabaceae
702
| Thaekku
703
| Leaves
704
| DID:18 (Dandruff)
705
| Paste
706
| 18/20
707
| 0.229
708
| 0.206
709
| 0.267
710
| 1.000
711
|-
712
713
! 33.
714
| ''Thespesia populneae''  Cat. PHC-2024                                                    
715
| Malvaceae
716
| Poovarasu
717
| Leaves Seed                                                    
718
| DID:23 (Swelling) DID:11 (Skin disease)                                                    
719
| Paste Paste                                                    
720
| 34/39
721
| 0.448
722
| 0.390
723
| 0.392
724
| 0.969
725
|}
726
727
''UR'' : use report, ''FC'' : frequency citation, ''RFC'' : relative frequency citation, ''RI'' : relative importance, ''IAR'' : informant agreement remedies.
728
729
<span id='f0010'></span>
730
731
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
732
|-
733
|
734
735
736
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr2.jpg|center|496px|Fig. 2]]
737
738
739
|-
740
| <span style="text-align: center; font-size: 75%;">
741
742
Fig. 2.
743
744
Percentage of plant families used.
745
746
</span>
747
|}
748
749
===Plant Parts Used for Traditional Siddha Medicine===
750
751
The most frequently used plant parts were leaves (46%), followed by fruits (18%), seed (11%), bark (8%), whole plant and root (5%), flower (3%), and bulb and latex (2%) ([[#f0015|Fig. 3]] ). All over the world, tribal communities use leaves for the preparation of herbal medicine ([[#bb0175|Ullah et al., 2013]] , [[#bb0180|Vijayakumar et al., 2015]] , [[#bb0130|Prabhu et al., 2014]]  and [[#bb0110|Morvin Yabesh et al., 2014]] ). The leaf is the major site for photosynthesis, or in other words, it is metabolically the most active part of the plant. As a result, various biogenetic pathways take place to produce secondary metabolites which contribute toward its medicinal value ([[#bb0025|Balick and Cox, 1996]]  and [[#bb0050|Ghorbani, 2005]] ). Moreover, collection and the mode of preparation of medicine from leaves is much easier than other parts of the plant, which makes them the first choice for use ([[#bb0055|Giday et al., 2009]]  and [[#bb0160|Telefo et al., 2011]] ).
752
753
<span id='f0015'></span>
754
755
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
756
|-
757
|
758
759
760
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr3.jpg|center|336px|Fig. 3]]
761
762
763
|-
764
| <span style="text-align: center; font-size: 75%;">
765
766
Fig. 3.
767
768
Percentage of plant parts used.
769
770
</span>
771
|}
772
773
===Mode of Preparations and Application===
774
775
There are various methods of preparation and application for different types of ailments and they have various preparation forms like paste (42%), juice (27%), raw (22%), powder (7%), and decoction (2%). Among the methods of preparation, decoction (28%) and powder (24%) are the methods mostly used for the remedies ([[#f0020|Fig. 4]] ). Medicinal plant is mostly prepared in paste from the ''Siddha''  medical practitioners. According to the informants, preparation of paste for the treatment of ailments is a common method of the tribal communities in a global level ( [[#bb0005|Amri and Kisangau, 2012]] , [[#bb0055|Giday et al., 2009]]  and [[#bb0175|Ullah et al., 2013]] ). The paste is prepared by grinding the fresh or dried plant parts with oil or water. In some cases, the processing involves drying of the plant material followed by grinding into fine powder. The juice is taken as orally along with water or milk or honey. Raw is taken as raw plant parts orally. Decoction is obtained by boiling the plant parts in water until the volume of water is reduced to required amount.
776
777
<span id='f0020'></span>
778
779
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
780
|-
781
|
782
783
784
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr4.jpg|center|313px|Fig. 4]]
785
786
787
|-
788
| <span style="text-align: center; font-size: 75%;">
789
790
Fig. 4.
791
792
Percentage of preparations.
793
794
</span>
795
|}
796
797
===Quantitative Analysis===
798
799
====Relative Frequency Citation====
800
801
This means that this species has been mentioned by all informants and is the most recognized plant in the region. Also, because of the highest values of these species, they have the most diverse uses''. Achyranthes aspera'' , ''Phyllanthus amarus'' , and ''Solanum nigrum''  were ranked first by RFC, respectively ( [[#t0010|Table. 2]] ).      
802
803
====Use Value====
804
805
The most commonly used species was ''Achyranthes aspera''  with 139 use reports by 87 informants, giving the highest use value of 1.577,which is a new claim in the treatment of hepatitis B viral infection. Followed by ''Azadirachta indica'' , with 116 use reports by 87 informants giving the highest value (1.333); ''Solanum nigrum''  with 86 use reports by 87 informants with UV of 0.988, attributed to its use in the treatment of various diseases, and it is well recognized by all the informants as having hepatoprotective power. Generally, these plants were frequently used by traditional ''Siddha''  medical practitioners in Radhapuram taluk, Tamil Nadu, India ( [[#bb0035|Chellppandian et al., 2012]] ) and local health care practices of Sikkim ([[#bb0015|Badola and Pradhan, 2013]] ), India, for treatment of various diseases.      
806
807
The very low use value of ''Solanum torvum'' , ''Nerium oleander'' , and ''Passiflora foetida'' , which is reported by only one informant with a UV of 0.12, of which ''Passiflora foetida''  was a new claim and also used in headache; others are regularly using this plant in the treatment of body cooling and ear ache. Similar were supported (Chellaiah et al., 2006;  [[#bb0060|Itharat and Ooraikul, 2007]]  and [[#bb0140|Seyid et al., 2013]] ).      
808
809
[[#bb0180|Vijayakumar et al. (2015)]]  reported that plants in the study area lead to their low use value as in the case of Nelliyampathy hills of Kerala, India. In the present study, plants reported with low use value (16 use reports by 87 informants with a UV of 0.183) were ''Mangifera indica''  (8 use reports by 87 informants) followed by ''Cajanus cajan''  (10 use reports by 87 informants with a UV of 0.114), ''Pongamia glabra''  (11 use reports by 87 informants with a UV of), ''Adathoda vasica''  (12 use reports by 87 informants with a UV of 0.137), ''Coccinia grandis''  (14 use reports by 87 informants with a UV of 0.184), and ''Euphorbia hirta'' , which has a very low UV of 0.186 among the traditional ''Siddha''  medical practitioners as treatment for cough, fever, swellings, and diabetes and increase sperm production.      
810
811
====Relative Importance====
812
813
The collected ethnomedicinal plants possessed a number of pharmacological properties (Variers, 1993; [[#bb0080|Khare, 2007]] ). The plants with the greatest number of illness treated and ailment categories were found to be ''Achyranthes aspera''  (2.000) followed by ''Azadirachta indica''  (1.339). Moreover, the high relative importance (RI) value of ''Achyranthes aspera''  (RI = 2.00) reported might be an indication of its high availability and affordability in the study area ([[#t0010|Table 2]] ). The plant with more number of pharmacological properties (PP) were ''Achyranthes aspera''  (8 PP), so they have a normalized PP value of 1.000 (8/8). ''Achyranthes aspera''  was employed to treat eight ailment categories and had a normalized AC value of 1.00 (7/7).      
814
815
According to [[#bb0110|Morvin Yabesh et al. (2014)]] , ''Achyranthes aspera''  was recognized as the most resourceful taxa since it was mentioned by most of the informants among the traditional healers in Silent Valley of Kerala, India. ''Azadiractha indica''  resourceful taxa were used against hyperdipsia, eczema, leucoderma, intermittent, and fever and as spermicidal by the village peoples of Thoppampatti, Dindigul district, Tamil Nadu, India ( [[#bb0150|Sivasankari et al., 2014]] ). Many of the most versatile species reported in this study were similar for some neighboring indigenous communities in India ( [[#bb0010|Ayyanar and Ignacimuthu, 2011]] , [[#bb0125|Pandikumar et al., 2011]] , [[#bb0110|Morvin Yabesh et al., 2014]]  and [[#bb0180|Vijayakumar et al., 2015]] ).      
816
817
====Informant Agreement Remedies====
818
819
Also, the high index of agreement on remedies (IAR) values documented for 5 medicinal plant species in the current study implies that all informants agree upon the exclusive use of the medicinal animal species for a particular ailment condition. Moreover, the significantly high IAR values of easily available medicinal plant species, for instance, ''Coccinia indica''  (1.000), ''Glycyrrhiza glabra''  (1.000), ''Lawsonia inermis''  (1.000), ''Murraya koenigii''  (1.000), and ''Tectona grandis''  (1.000) recorded in the present study, indicate the need to document the traditional knowledge over their usage in order to prevent the loss of such traditional knowledge ( [[#t0010|Table 2]] ). Similarly, it is reported that for IAR value in Tamil Nadu hair care, ''Tectona grandis''  had high number of citations and high IAR value indicating that it had been recommended only for the treatment of dandruff, and ''Glycyrrhiza glabra''  had a high number of citations and high IAR value, indicating that it had been recommended only for cough. In liver ailments, ''Coccinia grandis''  had a high number of citations, had a high IAR value, indicating that it had been recommended only for the treatment of diabetes ( [[#bb0145|Silambarasan and Ayyanar, 2015]]  and [[#bb0035|Chellppandian et al., 2012]] ).      
820
821
The medicinal herbs were collected by local people living in the study area on daily payment basis from local ''Siddha''  medical practitioners without any consideration of age and size of the plants, resulting in depletion of their natural resources in the area. However, with the migration of young people to search for better jobs in cities, the collection of plant is slowly declining. It is very important that the emphasis should be on organized cultivation, which will involve and provide jobs for the local community, which is virtually absent at present.      
822
823
===Molecular Docking Study===
824
825
Molecular docking was performed between the bioactive compounds of ethnomedicinal plant and hepatitis B virus e-antigen enzyme ([[#f0025|Fig. 5]]  and [[#f0030|Fig. 6]] ). The 3-D structure of the HBeAg was provided; five ligand binding sites are evaluated. The bioactive compounds recognized the first site as a major active binding site for the molecular docking ([[#f0035|Fig. 7]] ). The above target protein (HBeAg) and ligands (bioactive compounds) were geometrically optimized. All the ligand molecules were docked against the active sites of the target protein using Glide software. The docking results were presented in the form of glide docking score in negative values ([[#t0015|Table 3]] ). In the docking studies, higher negative values represent high binding affinity between the receptor and ligand molecules, indicating the higher efficiency of the bioactive compounds.
826
827
<span id='f0025'></span>
828
829
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
830
|-
831
|
832
833
834
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr5.jpg|center|496px|Fig. 5]]
835
836
837
|-
838
| <span style="text-align: center; font-size: 75%;">
839
840
Fig. 5.
841
842
3D structure of 3V6Z receptor.
843
844
</span>
845
|}
846
847
<span id='f0030'></span>
848
849
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
850
|-
851
|
852
853
854
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr6.jpg|center|535px|Fig. 6]]
855
856
857
|-
858
| <span style="text-align: center; font-size: 75%;">
859
860
Fig. 6.
861
862
3D structure of some phytocompounds and commercial drug model with Schrodinger suite.
863
864
</span>
865
|}
866
867
<span id='f0035'></span>
868
869
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
870
|-
871
|
872
873
874
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr7.jpg|center|496px|Fig. 7]]
875
876
877
|-
878
| <span style="text-align: center; font-size: 75%;">
879
880
Fig. 7.
881
882
Active binding site of 3V6Z receptor.
883
884
</span>
885
|}
886
887
<span id='t0015'></span>
888
889
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
890
|+
891
892
Table 3.
893
894
Docking scores of hepatitis B virus e-antigen enzyme protein with phytocompounds.
895
896
|-
897
898
! S. no.
899
! Phytocompounds
900
! Docking scores
901
|-
902
903
! 1.
904
| Luteolin
905
| − 8.08747
906
|-
907
908
! 2.
909
| Glabrene
910
| − 7.77192
911
|-
912
913
! 3.
914
| Isoliquiritigenin
915
| − 7.57663
916
|-
917
918
! 4.
919
| Chrysophanic acid
920
| − 7.03012
921
|-
922
923
! 5.
924
| Cymene
925
| − 6.98227
926
|-
927
928
! 6.
929
| Cyclosativene
930
| − 6.86796
931
|-
932
933
! 7.
934
| Sabinene
935
| − 6.694
936
|-
937
938
! 9.
939
| Querceitin
940
| − 6.62595
941
|-
942
943
! 10.
944
| Sabinene
945
| − 6.37937
946
|-
947
948
! 11.
949
| Methyl eugenol
950
| − 6.04532
951
|-
952
953
! 12.
954
| Gallic acid
955
| − 5.22005
956
|}
957
958
Molecular docking enables a scientist to virtually screen a number of candidate compounds based on their docking score with a target molecule. In the present study, phytocompounds have been docked against HBeAg target. Binding energies of the protein (target)-ligand (drug) interactions are important to describe how fit the drug binds to the target macromolecule. Twelve phytocompounds (luteolin, glabrene, isoliquritigenenin, chrysopanic acid, cymene, cyclosativene, sabinene, quercetin, sabinene, methyl eugenol, gallic acid, and transaconitic acid) and three commercial drugs (lamivudine, tenofovir and ribivirin) were selected for the docking studies.
959
960
An interesting point in this study is that luteolin (− 8.087), glabrene (− 7.772), isoliquritigenenin (− 7.577), chrysopanic acid (− 7.03), cymene (− 6.982), cyclosativene (− 6.868), sabinene (− 6.379), quercitin (− 6.626), sabinene (− 6.379), methyl eugenol (− 6.045), gallic acid (− 5.220), and transaconitic acid (− 3.884) dock into the binding pockets of HBeAg protein. The analysis of docking score showed the best results than commercial drugs. Specifically, luteolin (− 8.087), glabrene (− 7.772), isoliquritigenenin (− 7.577), chrysopanic acid (− 7.03), cymene (− 6.982), cyclosativene (− 6.868), and sabinene (− 6.379), the effective inhibitors for the inhibition of HBV, were compared to the commercial drugs (i.e, lamivudine (− 6.113), tenofovir (− 6.074), and ribivirin (− 5.041)). The commercial drugs had the very lowest value compared to phytocompounds ([[#t0015|Table 3]]  and [[#t0020|Table 4]] ). Out of 15 ligands, luteolin showed the highest glide score of − 8.087 with ligand and amino acid residues ([[#f0040|Fig. 8]]  and [[#f0045|Fig. 8a]] ). During docking, luteolin showed two pi-pi stacking bonding between the ligand molecule and the amino acid residues of the receptor showing a perfect binding ([[#f0050|Fig. 9]] ). The commercial drug lamivudine showed the lowest glide score of − 6.113 with ligand and amino acid residues ([[#f0055|Fig. 10]]  and [[#f0060|Fig. 10a]] ). This docking studies commercial drug of ribivirin showed one H bond interaction bonding between the ligand molecule and the amino acid residues of the receptor showing a perfect binding ([[#f0065|Fig. 11]] ). Among the 12 bioactive compounds and 3 commercial drugs, luteolin was identified as the most suitable drug for hepatitis B virus. Thus, it is evident that the plant parts of ''Glycyrrhiza glabra'' , ''Phyllanthus amarus'' , ''Phyllanthus embilica'' , and ''Solanum nigrum''  exhibit anti-hepatitis nature. Similarly,  [[#bb0120|Omprakash et al. (2011)]]  reported that phytocompounds were found to be best docking with hepatitis B virus. It can be observed that the binding energy decreases and increases after the ligand is docked with energy minimized structure of 1QGT protein. The present study also confirmed these reports.
961
962
<span id='t0020'></span>
963
964
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
965
|+
966
967
Table 4.
968
969
Docking scores of hepatitis B virus e-antigen enzyme protein with commercial drug.
970
971
|-
972
973
! S. no.
974
! Commercial drug
975
! Docking score
976
|-
977
978
! 1.
979
| Lamivudine
980
| − 6.11301
981
|-
982
983
! 2.
984
| Tenofovir
985
| − 6.07362
986
|-
987
988
! 3.
989
| Rivirin
990
| − 5.041
991
|}
992
993
<span id='f0040'></span>
994
995
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
996
|-
997
|
998
999
1000
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr8.jpg|center|535px|Fig. 8]]
1001
1002
1003
|-
1004
| <span style="text-align: center; font-size: 75%;">
1005
1006
Fig. 8.
1007
1008
Luteolin interacted with 3V6Z receptor.
1009
1010
</span>
1011
|}
1012
1013
<span id='f0045'></span>
1014
1015
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
1016
|-
1017
|
1018
1019
1020
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr9.jpg|center|525px|Fig. 8a]]
1021
1022
1023
|-
1024
| <span style="text-align: center; font-size: 75%;">
1025
1026
Fig. 8a.
1027
1028
A portion enlarged.
1029
1030
</span>
1031
|}
1032
1033
<span id='f0050'></span>
1034
1035
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
1036
|-
1037
|
1038
1039
1040
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr10.jpg|center|px|Fig. 9]]
1041
1042
1043
|-
1044
| <span style="text-align: center; font-size: 75%;">
1045
1046
Fig. 9.
1047
1048
Amino acid residues from luteolin interaction.
1049
1050
</span>
1051
|}
1052
1053
<span id='f0055'></span>
1054
1055
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
1056
|-
1057
|
1058
1059
1060
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr11.jpg|center|535px|Fig. 10]]
1061
1062
1063
|-
1064
| <span style="text-align: center; font-size: 75%;">
1065
1066
Fig. 10.
1067
1068
Lamivudine interacted with 3V6Z enzyme.
1069
1070
</span>
1071
|}
1072
1073
<span id='f0060'></span>
1074
1075
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
1076
|-
1077
|
1078
1079
1080
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr12.jpg|center|496px|Fig. 10a]]
1081
1082
1083
|-
1084
| <span style="text-align: center; font-size: 75%;">
1085
1086
Fig. 10a.
1087
1088
Amino acid residues from lamivudine interaction.
1089
1090
</span>
1091
|}
1092
1093
<span id='f0065'></span>
1094
1095
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
1096
|-
1097
|
1098
1099
1100
[[Image:draft_Content_252429595-1-s2.0-S2078152015300407-gr13.jpg|center|535px|Fig. 11]]
1101
1102
1103
|-
1104
| <span style="text-align: center; font-size: 75%;">
1105
1106
Fig. 11.
1107
1108
Amino acid residues from ribivirin interaction.
1109
1110
</span>
1111
|}
1112
1113
==Conclusion==
1114
1115
A remarkable traditional medicinal plants knowledge, practice, and preparation were documented from the study area. This is the first study which quantifies the use of medicinal plants by the traditional ''Siddha''  medical practitioners in this area. In the present findings, it is well documented that the compounds luteolin, glabrene, isoliquritigenenin, chrysopanic acid, cymene, cyclosativene, sabinene, quercetin, and sabinene play a part in the management of HBV and also exhibited good docking profiles and can be considered safe for development into a commercial drug, thereby justifying the ''in silico''  methods and traditional claim. These compounds could be a better candidate to treat HBV. In this way, we have compiled significant baseline data regarding indigenous knowledge about the medicinal plants for treating HBV, which are now ready to be further investigated pharmacologically, which would lead to natural drug discovery and development.
1116
1117
==Acknowledgments==
1118
1119
The authors are grateful to the SERB/F/8339/2914-15 for providing financial assistant in this project. We specially express our thanks to the management of A.V.V.M. Sri Pushpam College (Autonomous), Poondi, for providing them necessary facilities and support to carry out this work.
1120
1121
==References==
1122
1123
<ol style='list-style-type: none;margin-left: 0px;'><li><span id='bb0005'></span>
1124
[[#bb0005|Amri and Kisangau, 2012]] E. Amri, D. Kisangau; Ethnomedicinal study of plants used in villages around Kimboza Forest Reserve in Morogoro, Tanzania; J. Ethnobiol. Ethnomed., 8 (2012), p. 1</li>
1125
<li><span id='bb0010'></span>
1126
[[#bb0010|Ayyanar and Ignacimuthu, 2011]] M. Ayyanar, S. Ignacimuthu; Ethnobotanical survey of medicinal plants commonly used by Kani tribals in Tirunelveli hills of Western Ghats, India; J. Ethnopharmacol., 134 (2011), pp. 851–864</li>
1127
<li><span id='bb0015'></span>
1128
[[#bb0015|Badola and Pradhan, 2013]] H.K. Badola, B.K. Pradhan; Plants used in healthcare practices by Limboo tribe in South-West of Khangchendzonga Biosphere Reserve, Sikkim, India; Indian J. Tradit. Knowl., 12 (3) (2013), pp. 355–369</li>
1129
<li><span id='bb0020'></span>
1130
[[#bb0020|Balavignesh et al., 2013]] V. Balavignesh, E. Srinivasan, N.G. Ramesh Babu, N. Saravanan; Molecular docking study ON NS5B polymerase of hepatitis c virus by screening of volatile compounds from ''Acacia concinna''  and ADMET prediction                                        ; Int. J. Pharm. Life Sci., 4 (4) (2013), pp. 2548–2558</li>
1131
<li><span id='bb0025'></span>
1132
[[#bb0025|Balick and Cox, 1996]] M. Balick, P. Cox; Plants culture and people; Scientific American Network New York (1996)</li>
1133
<li><span id='bb0030'></span>
1134
[[#bb0030|Broom et al., 2009]] A. Broom, A. Doron, P. Tove; The in equalities of medical pluralism: hierarchies of health, the politics of tradition and the economies of care in Indian oncology; Soc. Sci. Med., 69 (2009), pp. 698–706</li>
1135
<li><span id='bb0035'></span>
1136
[[#bb0035|Chellppandian et al., 2012]] M. Chellppandian, S. Mutheeswaran, P. Pandikumar, V. Duraipandiyan, S. Ignacimuthu; Quantitative ethnobotany of traditional Siddha medicinal practitioners from Radhapuram taluk of Tirunelveli District, Tamilnadu, India; J. Ethnopharmacol., 143 (2012), pp. 540–547</li>
1137
<li><span id='bb0040'></span>
1138
[[#bb0040|Gamble, 1935]] J.S. Gamble; The Flora of the Presidency of Madras; Adlard & Son, Ltd., London (1935)</li>
1139
<li><span id='bb0045'></span>
1140
[[#bb0045|Gazzaneo et al., 2005]] L.R.S. Gazzaneo, R.F.P. Lucena, U.P. Albuquerque; Knowledge and use of medicinal plants by local specialists in a region of Atlantic Forest in the state of Pernambuco; J. Ethnobiol. Ethnomed., 1 (2005), p. 9</li>
1141
<li><span id='bb0050'></span>
1142
[[#bb0050|Ghorbani, 2005]] A. Ghorbani; Studies on pharmaceutical ethno botany in the region of Turkmen Sahra North of Iran (Part 1): general results; J. Ethnopharmacol., 102 (2005), pp. 58–68</li>
1143
<li><span id='bb0055'></span>
1144
[[#bb0055|Giday et al., 2009]] M. Giday, Z. Asfaw, Z. Woldu; Medicinal plants of the Meinit ethnic group of Ethiopia: an ethnobotanical study; J. Ethnopharmacol., 124 (2009), pp. 513–521</li>
1145
<li><span id='bb0060'></span>
1146
[[#bb0060|Itharat and Ooraikul, 2007]] A. Itharat, B. Ooraikul; Research of Thai medicinal plants for cancer treatment; Adv. Med. Plant Res. (2007), pp. 287–317</li>
1147
<li><span id='bb0065'></span>
1148
[[#bb0065|Jain, 1964]] S.K. Jain; The role of botanist in folklore research; Folklore, 5 (1964), pp. 145–150</li>
1149
<li><span id='bb0070'></span>
1150
[[#bb0070|Kadir et al., 2012]] M.F. Kadir, M.S.B. Sayeed, M.M.K. Mia; Ethnopharmacological survey of medicinal plants used by the indigenous and tribal people in Rangamati Bangladesh; J. Ethnopharmacol., 144 (2012), pp. 627–637</li>
1151
<li><span id='bb0075'></span>
1152
[[#bb0075|Khajoei Nasab and Khosravi, 2014]] F. Khajoei Nasab, A.R. Khosravi; Ethnobotanical study of medicinal plants of Sirjan in Kerman Province, Iran; J. Ethnopharmacol., 154 (2014), pp. 190–197</li>
1153
<li><span id='bb0080'></span>
1154
[[#bb0080|Khare, 2007]] C.P. Khare; Indian Medicinal Plants, An Illustrated Dictionary; Springer Science Business Media LLC, 233 Spring street, New York, NY 10013, USA (2007), p. 836</li>
1155
<li><span id='bb0085'></span>
1156
[[#bb0085|Kim and Song, 2014]] H. Kim, M.J. Song; Analysis of traditional knowledge about medicinal plants utilized in communities of Jirisan Park (Korea); J. Ethnopharmacol., 153 (2014), pp. 85–89</li>
1157
<li><span id='bb0090'></span>
1158
[[#bb0090|Ligprep, Version 2.3, 2009]] Ligprep, Version 2.3; Schrodinger, LLC, New York (2009)</li>
1159
<li><span id='bb0095'></span>
1160
[[#bb0095|Marles and Farnsworth, 1995]] R. Marles, N. Farnsworth; Antidiabetic plants and their active constituents; Phytomedicine, 2 (1995), pp. 137–165</li>
1161
<li><span id='bb0100'></span>
1162
[[#bb0100|Mati and De Boer, 2011]] E. Mati, H.J. De Boer; Trade and commercialization of herbal medicine in the Qaysari Market, Kurdish Autonomous region; Iraq. J. Ethnopharmacol., 133 (2011), pp. 490–510</li>
1163
<li><span id='bb0105'></span>
1164
[[#bb0105|Matthew, 1983]] K.M. Matthew; The Flora of the Tamil Nadu Carnatic.; The Rapinat Herbarium, 3. St. Josephs College, Tiruchirapalli, India (1983), p. lxxxiv (2154)</li>
1165
<li><span id='bb0110'></span>
1166
[[#bb0110|Morvin Yabesh et al., 2014]] J.E. Morvin Yabesh, S. Prabhu, S. Vijayakumar; An ethnobotanical study of medicinal plants used by traditional healers in silent valley of kerala, India; J. Ethnopharmacol., 154 (2014), pp. 774–789</li>
1167
<li><span id='bb0115'></span>
1168
[[#bb0115|Oliveira et al., 2010]] E.S. Oliveira, D.F. Torres, S.E. Brooks, R.R.N. Alves; The medicinal animal markets in the metropolitan region of Natal City, north eastern Brazil; J. Ethnopharmacol., 130 (2010), pp. 54–60</li>
1169
<li><span id='bb0120'></span>
1170
[[#bb0120|Omprakash et al., 2011]] K.K. Omprakash, B. Vadivukkarasi, R. Rajasekaran, A. Narayana; Insilico studies of antigen-E (hepatits-B) against principal components of 9 medicinal plants; Asian J. Pharm. Clin. Res., 4 (2) (2011), pp. 1–4</li>
1171
<li><span id='bb0125'></span>
1172
[[#bb0125|Pandikumar et al., 2011]] P. Pandikumar, M. Chellappandian, S. Mutheeswaran, S. Ignacimuthu; Consensus of local knowledge on medicinal plants among traditional healers in Mayiladumparai block of Theni District, Tamil Nadu, India; J. Ethnopharmacol., 134 (2011), pp. 851–864</li>
1173
<li><span id='bb0130'></span>
1174
[[#bb0130|Prabhu et al., 2014]] S. Prabhu, S. Vijayakumar, J.E. MorvinYabesh, K. Ravichandran, B. Sakthivel; Documentation and quantitative analysis of the local on medicinal plants in Kalrayan hills of Villupuram district, Tamil Nadu, India; J. Ethnopharmacol., 157 (2014), pp. 7–20</li>
1175
<li><span id='bb0135'></span>
1176
[[#bb0135|Sebastia, 2011]] B. Sebastia; Border crossings of medicines not very sweet: prevent safety or preserve the authenticity?; J. Anthopol. Knowl., 5 (2011), pp. 71–98</li>
1177
<li><span id='bb0140'></span>
1178
[[#bb0140|Seyid et al., 2013]] A.S. Seyid, A. Ekrem, S. Selami; An ethno botanical study of medicinal plants used by the local people of Alsehir (Manisa) in Turkey; J. Ethnopharmacol., 150 (2013), pp. 860–874</li>
1179
<li><span id='bb0145'></span>
1180
[[#bb0145|Silambarasan and Ayyanar, 2015]] R. Silambarasan, M. Ayyanar; An ethnobotanical study of medicinal plants in Palamalai region of Eastern Ghats, India; J. Ethnopharmacol., 172 (2015), pp. 162–178</li>
1181
<li><span id='bb0150'></span>
1182
[[#bb0150|Sivasankari et al., 2014]] B. Sivasankari, N. Anandharaj, P. Gunasekaran; An ethnobotanical study of indigenous knowledge on medicinal plants used the village peoples of Thoppampatti, Dindukal district, Tamilnadu, India; J. Ethnopharmacol., 153 (2014), pp. 408–423</li>
1183
<li><span id='bb0155'></span>
1184
[[#bb0155|Tardio and Pardo-de Santayana, 2008]] J. Tardio, M. Pardo-de Santayana; Cultural importance indices: a comparative analysis based on the useful wild plants of southern Cantabria (Northern Spain); Econ. Bot., 62 (2008), pp. 24–39</li>
1185
<li><span id='bb0160'></span>
1186
[[#bb0160|Telefo et al., 2011]] P.B. Telefo, L.L. Lienou, M.D. Yemele, M.C. Lemfack, C. Mouokeu, C.S. Goka, S.R. Tagne, F.P. Moundipa; Ethnopharmacological survey of plants used for the treatment of female infertility in Baham, Cameroon; J. Ethnopharmacol., 136 (2011), pp. 178–187</li>
1187
<li><span id='bb0165'></span>
1188
[[#bb0165|Thomas et al., 2009]] E. Thomas, I. Vandebroek, S. Sanca, P.V. Damma; Cultural significance of medicinal plant families and species among Quechua farmers in Apillapampa, Bolivia; J. Ethnopharmacol., 122 (2009), pp. 60–67</li>
1189
<li><span id='bb0170'></span>
1190
[[#bb0170|Trotter and Logan, 1986]] R.T. Trotter, M.H. Logan; Informant consensus: a new approach for identifying potentially effective medicinal plants; N.L. Etkin (Ed.), Plants in Indigenous Medicine and Diet, Behavioural Approaches, Redgrave Publishing Company, Bred ford Hills, New York (1986), pp. 91–112</li>
1191
<li><span id='bb0175'></span>
1192
[[#bb0175|Ullah et al., 2013]] M. Ullah, M.U. Khan, A. Mahmood, R.N. Malik, M. Hussain, S.M. Wazir, M. Daud, Z.K. Shinwari; An ethnobotanical survey of indigenous medicinal plants in Wana district south Waziristan agency; Pakistan. J. Ethnopharmacol., 150 (2013), pp. 918–924</li>
1193
<li><span id='bb0180'></span>
1194
[[#bb0180|Vijayakumar et al., 2015]] S. Vijayakumar, J.E. MorvinYabesh, S. Prabhu, R. Manikandan, B. Muralidharan; Quantitative ethnomedicinal study of plants used in the Nelliyampathy hills of Kerala, India; J. Ethnopharmacol., 161 (2015), pp. 238–254</li>
1195
<li><span id='bb0185'></span>
1196
[[#bb0185|WHO, 2007]]  WHO; WHO Country Cooperation Strategy 2006–2011; Supplement on Traditional Medicine, WHO Country Office for India, New Delhi (2007)</li>
1197
<li><span id='bb0190'></span>
1198
[[#bb0190|Zysk, 2008]] K.G. Zysk; Siddha Medicine in Tamil Nadu; National museets Tranque bar Initiative, København (2008)</li>
1199
</ol>
1200

Return to Vijayakumar et al 2016a.

Back to Top

Document information

Published on 27/03/17

Licence: Other

Document Score

0

Views 102
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?