You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
==A particle finite element method for  analysis of industrial forming processes==
2
3
'''E. Oñate''', '''A. Franci''', '''J.M. Carbonell'''
4
5
Centre Internacional de Metodes Numerics a l'Enginyeria - CIMNE, Barcelona, Spain<br />
6
Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
7
8
9
10
==Abstract==
11
12
'''keywords''': Updated Lagrangian formulation, finite element method, incompressible fluids, consistent tangent matrix, mixed formulation, stabilized method
13
14
==1 INTRODUCTION==
15
16
There is a large number of  forming manufacturing processes in industry that involve the interaction of highly deformable continua, including viscous fluids and solids that undergo large deformations. Typically these problems also include coupled thermal effects between the interacting bodies during the forming process.
17
18
A number of numerical methods has been developed over the years for the simulation of    industrial forming processes. The different methods can be classified as those based on a pure fluid mechanics formulation, i.e. the so-called flow approach developed around  the 1980's <span id='citeF-6'></span><span id='citeF-39'></span><span id='citeF-40'></span><span id='citeF-44'></span><span id='citeF-45'></span><span id='citeF-48'></span>[[#cite-6|[6,39,40,44,45,48]]] and those based on a solid mechanics formulation <span id='citeF-11'></span><span id='citeF-12'></span><span id='citeF-19'></span><span id='citeF-31'></span><span id='citeF-47'></span>[[#cite-11|[11,12,19,31,47]]].
19
20
In this work we present a generalized continuum mechanics formulation for the analysis of industrial forming processes that involve thermally coupled interactions between  deformable continua (both fluids and solids).
21
22
The motion of the deformable bodies (either a solid or a fluid) is described using a  Lagrangian mixed formulation with the velocities, the pressure and the temperature as the unknown variables. Appropriate constitutive laws for the different constituent materials in the different parts of the analysis domain  are used. The mixed  Lagrangian formulation allows us to model the non linear interaction (including coupled thermal effects) between the different bodies involved in the forming process in a unified manner.
23
24
The continuum mechanics equations are solved with the Particle Finite Element Method (PFEM, www.cimne.com/pfem). The PFEM treats the mesh nodes in the analysis domain as virtual particles that model the behaviour of the underlying  can freely move and even separate from the  domain representing, for instance, the effect of water drops or cutting particles in drilling problems and machining. A mesh connects the nodes discretizing the continuum domain where the governing equations are solved using a stabilized FEM. Examples of application of PFEM to problems in fluid and solid mechanics including fluid-structure interaction (FSI) situations and coupled thermal flow problems can be found in <span id='citeF-1'></span><span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-9'></span><span id='citeF-13'></span><span id='citeF-14'></span><span id='citeF-15'></span><span id='citeF-16'></span><span id='citeF-17'></span><span id='citeF-18'></span><span id='citeF-20'></span><span id='citeF-26'></span><span id='citeF-27'></span><span id='citeF-34'></span><span id='citeF-35'></span><span id='citeF-37'></span><span id='citeF-38'></span><span id='citeF-43'></span>[[#cite-1|[1,2,4,5,9,13,14,15,16,17,18,20,26,27,34,35,37,38,43]]]. Early attempts of the using the PFEM for solving metal forming problems were reported in <span id='citeF-20'></span><span id='citeF-30'></span>[[#cite-20|[20,30]]].
25
26
In Lagrangian analysis procedures (such as  PFEM) the motion of the virtual particles (i.e. the nodes) and of physical particles is tracked during the transient solution. Hence, the convective terms vanish in the momentum and heat transfer equations for the continuum part of the domain and no numerical stabilization is needed for treating those terms. Another source of numerical instability however remains in Lagrangian formulation, namely the treatment of incompressibility using equal order FEM interpolation for the velocities and the pressure. In this work a stabilized form of the discretized mass conservation equation is obtaining using the Finite Calculus (FIC) method proposed by Oñate et al. <span id='citeF-21'></span><span id='citeF-22'></span><span id='citeF-23'></span><span id='citeF-24'></span><span id='citeF-25'></span><span id='citeF-28'></span><span id='citeF-29'></span><span id='citeF-30'></span><span id='citeF-36'></span>[[#cite-21|[21,22,23,24,25,28,29,30,36]]] that has excellent mass preservation features.
27
28
The generalized Lagrangian approach here described follows the ideas presented in <span id='citeF-15'></span>[[#cite-15|[15]]] where a PFEM formulation for treating fluids and solids in a unified  manner was proposed. These ideas have been extended by Franci, Oñate and Carbonell <span id='citeF-10'></span>[[#cite-10|[10]]] using a stabilized PFEM formulation based on the FIC method.
29
30
The lay-out of the paper is the following. In the next section we present the basic equations for conservation of linear momentum, mass conservation and heat transfer for a  continuum using a generalized Lagrangian framework. Next we derive the stabilized FIC form of the mass conservation equation. An incompressible continuum can be considered as the limit case of the compressible problem. Then the mixed finite element discretization using simplicial element with equal order approximation for the velocity,  the pressure and the temperature is presented and the relevant matrices and vectors of the discretized problem are given.  Details of the implicit solution of the Lagrangian FEM equations in time using an updated Lagrangian approach and a Newton-Raphson type iterative scheme are presented. The relevance of the bulk stiffness terms in the tangent matrix  for enhancing the convergence and accuracy of the iterative solution  for problems involving quasi and fully incompressible continua is discussed. The basic steps of the PFEM are described.
31
32
The efficiency and general applicability of the PFEM  are verified by solving a set of thermally coupled industrial forming problems in two (2D) and three (3D) dimensions. The excellent performance of the numerical method proposed for all the problems analyzed is highlighted.
33
34
<div id='img-1'></div>
35
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
36
|-
37
|[[Image:draft_Samper_718004671-Figura1.png|600px|Initial (t =⁰t), current (t=ⁿt) and updated (t=ⁿ⁺¹ t) configurations of a  domain V with Neumann (Γₜ) and Dirichlet (Γ<sub>v</sub>) boundaries. Trajectory of a material point i and velocity  (v<sub>i</sub>) and displacement (u<sub>i</sub>) vectors of the point at each configuration. ⁿu, ⁿ⁺¹u and ∆u denote schematically the trajectories of the overall domain between two configurations.]]
38
|- style="text-align: center; font-size: 75%;"
39
| colspan="1" | '''Figure 1:''' Initial (<math>t ={}^0 t</math>), current (<math>t={}^n t</math>) and updated (<math>t={}^{n+1} t</math>) configurations of a  domain <math>V</math> with Neumann (<math>\Gamma _t</math>) and Dirichlet (<math>\Gamma _v</math>) boundaries. Trajectory of a material point <math>i</math> and velocity  (<math>{v}_i</math>) and displacement (<math>{u}_i</math>) vectors of the point at each configuration. <math>{}^n {u}</math>, <math>{}^{n+1}{u}</math> and <math>\Delta {u}</math> denote schematically the trajectories of the overall domain between two configurations.
40
|}
41
42
==2 GOVERNING EQUATIONS FOR A LAGRANGIAN CONTINUUM==
43
44
We will consider a domain containing a deformable material (either a fluid or a solid) which evolves in time due to external and internal forces and prescribed velocities and thermal conditions from an ''initial configuration'' at time <math display="inline">t={}^0 t</math> (typically <math display="inline">{}^0t =0</math>) to a ''current configuration'' at time <math display="inline">t={}^n t</math>. The volume <math display="inline">V</math> and its boundary <math display="inline">\Gamma </math> at the initial and current configurations are denoted as (<math display="inline">{}^0 V, {}^0 \Gamma </math>) and (<math display="inline">{}^n V, {}^n \Gamma </math>), respectively. The goal is to find the domain that the material  occupies, as well as the velocities, strain rates and stresses (the deviatoric stresses and the pressure) and the temperature in the so-called ''updated configuration''  at time <math display="inline">{}^{n+1} t= {}^n t+\Delta t</math> (Figure 1). In the following a left superindex denotes the configuration where the variable is computed.
45
46
===2.1 Momentum equations===
47
48
The equations of conservation of linear momentum for a deformable continuum are written in the Lagrangian description as <span id='citeF-3'></span>[[#cite-3|[3]]]
49
50
<span id="eq-1"></span>
51
{| class="formulaSCP" style="width: 100%; text-align: left;" 
52
|-
53
| 
54
{| style="text-align: left; margin:auto;" 
55
|-
56
| style="text-align: center;" | <math>\rho \frac{Dv_i}{Dt}-{\partial {}^{n+1}\sigma _{ij} \over \partial {}^{n+1}x_j} - {}^{n+1} b_i=0\quad , \quad i,j=1,\cdots , n_s \quad  \hbox{in } {}^{n+1}V  </math>
57
|}
58
| style="width: 5px;text-align: right;" | (1)
59
|}
60
61
In Eq.([[#eq-1|1]]), <math display="inline">{}^{n+1}V</math> is the analysis domain in the ''updated configuration'' at time <math display="inline">^{n+1}t</math> with boundary <math display="inline">{}^{n+1}\Gamma </math>, <math display="inline">v_i</math> and <math display="inline">b_i</math> are the velocity and body force components  along the <math display="inline">i</math>th Cartesian axis, <math display="inline">\rho </math> is the density, <math display="inline">n_s</math> is the number of space dimensions (i.e. <math display="inline">n_s=3</math> for 3D problems) and <math display="inline">{}^{n+1}\sigma _{ij}</math> are the Cauchy stresses in <math display="inline">{}^{n+1}V</math>  that are split in the deviatoric (<math display="inline">s_{ij}</math>) and pressure (<math display="inline">p</math>) components as
62
63
<span id="eq-2"></span>
64
{| class="formulaSCP" style="width: 100%; text-align: left;" 
65
|-
66
| 
67
{| style="text-align: left; margin:auto;" 
68
|-
69
| style="text-align: center;" | <math>{}^{n+1}\sigma _{ij} = {}^{n+1}s_{ij}+ {}^{n+1}p \delta _{ij} </math>
70
|}
71
| style="width: 5px;text-align: right;" | (2)
72
|}
73
74
where <math display="inline">\delta _{ij}</math> is the Kronecker delta. The pressure is assumed to be positive for a tension state. Summation of terms with repeated indices  is assumed in Eq.([[#eq-1|1]]) and in  the following.
75
76
'''Remark 1.''' The term <math display="inline">\frac{Dv_i}{Dt}</math> in Eq.([[#eq-1|1]]) is the ''material derivative'' of the velocity. This term is typically computed in a Lagrangian framework as
77
78
<span id="eq-3"></span>
79
{| class="formulaSCP" style="width: 100%; text-align: left;" 
80
|-
81
| 
82
{| style="text-align: left; margin:auto;" 
83
|-
84
| style="text-align: center;" | <math>\frac{Dv_i}{Dt} = \frac{ {}^{n+1}v_i- {}^n v_i }{\Delta t}     </math>
85
|}
86
| style="width: 5px;text-align: right;" | (3)
87
|}
88
89
with
90
91
<span id="eq-4"></span>
92
{| class="formulaSCP" style="width: 100%; text-align: left;" 
93
|-
94
| 
95
{| style="text-align: left; margin:auto;" 
96
|-
97
| style="text-align: center;" | <math>{}^{n+1} v_i:=v_i ({}^{n+1} {x},{}^{n+1} t)\quad ,\quad {}^n v_i:=v_i ({}^n{x},{}^n t)       </math>
98
|}
99
| style="width: 5px;text-align: right;" | (4)
100
|}
101
102
where <math display="inline">{}^n v_i</math> is the value of the velocity  at the material point that has the position <math display="inline">{}^n{x}</math> at time <math display="inline">t={}^nt</math> and <math display="inline">{x}</math> is the coordinates vector in a fixed Cartesian  system <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-48'></span>[[#cite-3|[3,7,48]]].
103
104
===2.2 Constitutive equations===
105
106
===''Newtonian fluids''===
107
108
The relationship between the deviatoric Cauchy stresses <math display="inline">{}^{n+1}s_{ij}</math> and the  rates of deformation <math display="inline">\varepsilon _{ij}</math> has the standard form for a Newtonian fluid,
109
110
<span id="eq-5"></span>
111
{| class="formulaSCP" style="width: 100%; text-align: left;" 
112
|-
113
| 
114
{| style="text-align: left; margin:auto;" 
115
|-
116
| style="text-align: center;" | <math>{}^{n+1}s_{ij} = 2\mu \varepsilon '_{ij} \quad \hbox{with}\quad  \varepsilon '_{ij}= \varepsilon _{ij} - {1 \over 3}\varepsilon _v \delta _{ij}\quad \hbox{and}\quad  \varepsilon _{ij} = {1 \over 2}\left({\partial {}^{n+1}v_i \over \partial {}^{n+1}x_j} +  {\partial {}^{n+1}v_j \over \partial {}^{n+1}x_i}  \right) </math>
117
|}
118
| style="width: 5px;text-align: right;" | (5)
119
|}
120
121
where <math display="inline">\mu </math> is the viscosity, <math display="inline">\varepsilon '_{ij}</math> are the deviatoric rates of deformation and <math display="inline">\varepsilon _v</math> is the volumetric strain rate defined as <math display="inline">\varepsilon _v= \varepsilon _{ii}</math>.
122
123
The above constitutive equation  can be written in matrix form as (for 2D problems)
124
125
<span id="eq-6"></span>
126
{| class="formulaSCP" style="width: 100%; text-align: left;" 
127
|-
128
| 
129
{| style="text-align: left; margin:auto;" 
130
|-
131
| style="text-align: center;" | <math>{}^{n+1}{s} = {D} {\boldsymbol \varepsilon } \quad \hbox{with}\quad   {D}=2 \mu \left[                      \begin{array}{cccccc}2/3 & -1/3 & 0 \\                         -1/3 &2/3  &0  \\                       0 & 0 &1/2\\                      \end{array} \right]   </math>
132
|}
133
| style="width: 5px;text-align: right;" | (6)
134
|}
135
136
In Eq.([[#eq-6|6]]) <math display="inline">{s} = [s_{11},s_{22},s_{12}]^T</math> and <math display="inline">{\boldsymbol \varepsilon } = [\varepsilon _{11},\varepsilon _{22},\varepsilon _{12}]^T</math> are the deviatoric Cauchy stress vector and the strain rate vector, respectively.
137
138
===''Hypo-elastic solids''===
139
140
We will assume a hipo-elastic solid with a constitutive equation of the form
141
142
<span id="eq-7"></span>
143
{| class="formulaSCP" style="width: 100%; text-align: left;" 
144
|-
145
| 
146
{| style="text-align: left; margin:auto;" 
147
|-
148
| style="text-align: center;" | <math>\sigma _{ij}^{\nabla ^J} = 2\bar \mu \varepsilon _{ij} + \lambda \varepsilon _v \delta _{ij}  </math>
149
|}
150
| style="width: 5px;text-align: right;" | (7)
151
|}
152
153
where <math display="inline">\bar \mu </math> and <math display="inline">\lambda </math> are the Lame constants and <math display="inline">\sigma _{ij}^{\nabla ^J}</math> is the Jaumann rate of the  Cauchy stresses <span id='citeF-3'></span>[[#cite-3|[3]]].
154
155
Tensor <math display="inline">{\boldsymbol \sigma }^{\nabla ^J}</math> is approximated in this work as
156
157
<span id="eq-8"></span>
158
{| class="formulaSCP" style="width: 100%; text-align: left;" 
159
|-
160
| 
161
{| style="text-align: left; margin:auto;" 
162
|-
163
| style="text-align: center;" | <math>{\boldsymbol \sigma }^{\nabla ^J}\simeq \frac{1}{J} L ({\boldsymbol \tau })  </math>
164
|}
165
| style="width: 5px;text-align: right;" | (8)
166
|}
167
168
where <math display="inline">J</math> is the determinant of the deformation tensor <math display="inline">{F}</math> <math display="inline">\left(F_{ij} ={\partial {}^{n+1}x_i \over \partial ^{n}x_j}\right)</math>, and <math display="inline">L ({\boldsymbol \tau }) </math> is the Lie derivative of the Kirchhoff stress tensor <math display="inline">\tau _{ij}</math> <span id='citeF-3'></span>[[#cite-3|[3]]].
169
170
Combining Eqs.([[#eq-7|7]]) and ([[#eq-8|8]]) gives the following approximation for <math display="inline">L ({\boldsymbol \tau })</math>
171
172
<span id="eq-9"></span>
173
{| class="formulaSCP" style="width: 100%; text-align: left;" 
174
|-
175
| 
176
{| style="text-align: left; margin:auto;" 
177
|-
178
| style="text-align: center;" | <math>L(\tau _{ij}) \simeq J (2\bar \mu \varepsilon _{ij} + \lambda \varepsilon _v \delta _{ij})  </math>
179
|}
180
| style="width: 5px;text-align: right;" | (9)
181
|}
182
183
'''Remark 2.''' Assumption ([[#eq-8|8]]) is equivalent to accepting that the Truesdell and Jaumann rates of the Cauchy stresses are identical. A more accurate assumption for solving the same problem can be found in <span id='citeF-10'></span>[[#cite-10|[10]]].
184
185
Using standard transformations of continuum mechanics gives <span id='citeF-3'></span>[[#cite-3|[3]]]
186
187
<span id="eq-10"></span>
188
{| class="formulaSCP" style="width: 100%; text-align: left;" 
189
|-
190
| 
191
{| style="text-align: left; margin:auto;" 
192
|-
193
| style="text-align: center;" | <math>{L} ({\boldsymbol \tau }) =  {F}\dot {S} {F}^T = \frac{1}{\Delta t} {F} (\Delta {S}) {F}^T = \frac{J}{\Delta t}\Delta{\boldsymbol \sigma }  </math>
194
|}
195
| style="width: 5px;text-align: right;" | (10)
196
|}
197
198
where <math display="inline">{S}</math> are the 2nd Piola-Kirchhoff stress tensor, the upper dot denotes the time derivative and <math display="inline"> \Delta{\boldsymbol \sigma }</math> is the increment of the Cauchy stress tensor.
199
200
Substituting Eq.([[#eq-10|10]]) into ([[#eq-9|9]])  gives after grouping terms
201
202
<span id="eq-11"></span>
203
{| class="formulaSCP" style="width: 100%; text-align: left;" 
204
|-
205
| 
206
{| style="text-align: left; margin:auto;" 
207
|-
208
| style="text-align: center;" | <math>{}^{n+1}\sigma _{ij}= {}^{n}\sigma _{ij} + \Delta \sigma _{ij}  </math>
209
|}
210
| style="width: 5px;text-align: right;" | (11)
211
|}
212
213
where
214
215
<span id="eq-12"></span>
216
{| class="formulaSCP" style="width: 100%; text-align: left;" 
217
|-
218
| 
219
{| style="text-align: left; margin:auto;" 
220
|-
221
| style="text-align: center;" | <math>\Delta \sigma _{ij} = \Delta s_{ij}+ \Delta p \delta _{ij}  </math>
222
|}
223
| style="width: 5px;text-align: right;" | (12)
224
|}
225
226
with
227
228
<span id="eq-13"></span>
229
{| class="formulaSCP" style="width: 100%; text-align: left;" 
230
|-
231
| 
232
{| style="text-align: left; margin:auto;" 
233
|-
234
| style="text-align: center;" | <math>\Delta s_{ij} = 2\bar \mu \Delta t \varepsilon '_{ij}\quad \hbox{and}\quad \Delta p = \bar \kappa \Delta t \varepsilon _v  </math>
235
|}
236
| style="width: 5px;text-align: right;" | (13)
237
|}
238
239
where
240
241
<span id="eq-14"></span>
242
{| class="formulaSCP" style="width: 100%; text-align: left;" 
243
|-
244
| 
245
{| style="text-align: left; margin:auto;" 
246
|-
247
| style="text-align: center;" | <math>\bar \kappa = \frac{2}{3} \bar \mu + \lambda    </math>
248
|}
249
| style="width: 5px;text-align: right;" | (14)
250
|}
251
252
is the bulk modulus of the solid material.
253
254
The Cauchy stresses <math display="inline">{}^{n}{\boldsymbol \sigma }</math> in Eq.([[#eq-12|12]]) are computed on the updated configuration. These stresses can be obtained from the 2nd Piola-Kirchhoff stresses <math display="inline">{}^n{S}</math> on the current configuration  as
255
256
<span id="eq-15"></span>
257
{| class="formulaSCP" style="width: 100%; text-align: left;" 
258
|-
259
| 
260
{| style="text-align: left; margin:auto;" 
261
|-
262
| style="text-align: center;" | <math>{}^{n}{\boldsymbol \sigma } = \frac{1}{J} {F}  ({}^n{S}){F}^T   </math>
263
|}
264
| style="width: 5px;text-align: right;" | (15)
265
|}
266
267
'''Remark 3.''' The relationship between the deviatoric Cauchy stress increments and the rates of deformation for a solid material can be written in the same matrix form as Eq.(6) substituting in matrix <math display="inline">D</math> the viscosity <math display="inline">\mu </math> by <math display="inline">\bar \mu \Delta t </math>.
268
269
===2.3 Mass conservation equation===
270
271
The  mass conservation equation can be written for both fluid and solids as <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-48'></span>[[#cite-3|[3,7,48]]]
272
273
<span id="eq-16"></span>
274
{| class="formulaSCP" style="width: 100%; text-align: left;" 
275
|-
276
| 
277
{| style="text-align: left; margin:auto;" 
278
|-
279
| style="text-align: center;" | <math>r_v =0  \quad  \hbox{in } {}^{n+1}V  </math>
280
|}
281
| style="width: 5px;text-align: right;" | (16)
282
|}
283
284
with
285
286
<span id="eq-17"></span>
287
{| class="formulaSCP" style="width: 100%; text-align: left;" 
288
|-
289
| 
290
{| style="text-align: left; margin:auto;" 
291
|-
292
| style="text-align: center;" | <math>r_v:=-\frac{1}{\kappa }\frac{Dp}{Dt}+\varepsilon _v </math>
293
|}
294
| style="width: 5px;text-align: right;" | (17)
295
|}
296
297
For a quasi-incompressible fluid material <math display="inline">\kappa =\rho c^2</math> where <math display="inline">c</math> is the speed of sound in the fluid. For a solid material, <math display="inline">\kappa = \bar \kappa </math> with <math display="inline">\bar \kappa </math> given by Eq.([[#eq-14|14]]). Eqs.([[#2.3 Mass conservation equation|2.3]]) define the constitutive equation for the pressure for both solids and quasi-incompressible fluids as <math display="inline">\Delta p = \kappa  \Delta t \varepsilon _v</math>. This is consisted with the expression obtained in Eq.([[#eq-13|13]]) for a hypo-elastic solid material.
298
299
For a fully incompressible material <math display="inline">\kappa =\infty </math> and Eq.([[#eq-16|16]]) simplifies to the standard form, <math display="inline">\varepsilon _v =0</math>. In this case the pressure increment can not be obtained from Eqs.([[#2.3 Mass conservation equation|2.3]]) and then the pressure becomes an independent variable <span id='citeF-7'></span><span id='citeF-48'></span>[[#cite-7|[7,48]]]. In our work we will retain the quasi-incompressible form of <math display="inline">r_v</math>  for convenience.
300
301
'''Remark 4.''' Note that for Newtonian fluids the deviatoric stresses are directly related to the rates of deformation by Eq.([[#eq-5|5]]), whereas for solids the ''deviatoric stress increments'' are related to the rates of deformation by Eq.([[#eq-13|13]]). On the other hand, the relationship between the pressure increment and the volumetric strain rate has the form of Eq.([[#eq-13|13]]) for both fluids and solids, with the adequate definition of the bulk modulus for each case.
302
303
===2.4 Thermal balance===
304
305
The thermal balance equation is written in a Lagrangian framework as
306
307
<span id="eq-18"></span>
308
{| class="formulaSCP" style="width: 100%; text-align: left;" 
309
|-
310
| 
311
{| style="text-align: left; margin:auto;" 
312
|-
313
| style="text-align: center;" | <math>\rho c \frac{DT}{Dt} - {\partial  \over \partial {}^{n+1} x_i} \left(k {\partial T \over \partial {}^{n+1} x_i}\right)+ {}^{n+1} Q =0  \quad ,\quad  i,j=1,\cdots , n_s  \quad \hbox{in } {}^{n+1}V  </math>
314
|}
315
| style="width: 5px;text-align: right;" | (18)
316
|}
317
318
where <math display="inline">T</math> is the temperature, <math display="inline">c</math> is the thermal capacity, <math display="inline">k</math> is the heat conductivity and <math display="inline">Q</math> is the external heat source.
319
320
===2.5 Boundary conditions===
321
322
===''Mechanical problem''===
323
324
The boundary conditions at the Dirichlet (<math display="inline">\Gamma _v</math>) and Neumann (<math display="inline">\Gamma _t</math>) boundaries with <math display="inline">\Gamma  = \Gamma _v \cup \Gamma _t</math> are
325
326
<span id="eq-19"></span>
327
{| class="formulaSCP" style="width: 100%; text-align: left;" 
328
|-
329
| 
330
{| style="text-align: left; margin:auto;" 
331
|-
332
| style="text-align: center;" | <math>{}^{n+1} v_i -{}^{n+1} v_i^p =0 \qquad \hbox{on }{}^{n+1}\Gamma _v </math>
333
|}
334
| style="width: 5px;text-align: right;" | (19)
335
|}
336
337
<span id="eq-20"></span>
338
{| class="formulaSCP" style="width: 100%; text-align: left;" 
339
|-
340
| 
341
{| style="text-align: left; margin:auto;" 
342
|-
343
| style="text-align: center;" | <math>{}^{n+1}\sigma _{ij}n_j - {}^{n+1} t_i^p =0 \quad \hbox{on }{}^{n+1}\Gamma _t \quad , \quad i,j=1,\cdots , n_s  </math>
344
|}
345
| style="width: 5px;text-align: right;" | (20)
346
|}
347
348
where <math display="inline">v_i^p</math> and <math display="inline">t_i^p</math> are the prescribed velocities and prescribed tractions on the respective boundaries and <math display="inline">n_j</math> are the components of the unit normal vector to the boundary <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-48'></span>[[#cite-3|[3,7,48]]].
349
350
===''Thermal problem''===
351
352
<span id="eq-21"></span>
353
<span id="eq-22"></span>
354
{| class="formulaSCP" style="width: 100%; text-align: left;" 
355
|-
356
| 
357
{| style="text-align: left; margin:auto;" 
358
|-
359
| style="text-align: center;" | <math>{}^{n+1}T - {}^{n+1}T^p =0 \quad \hbox{on }{}^{n+1}\Gamma _T</math>
360
| style="width: 5px;text-align: right;" | (21)
361
|-
362
| style="text-align: center;" | <math> k {\partial T \over \partial n} + {}^{n+1} q_n^p =0 \quad \hbox{on }{}^{n+1}\Gamma _q  </math>
363
| style="width: 5px;text-align: right;" | (22)
364
|}
365
|}
366
367
where <math display="inline">T^p</math> and <math display="inline">q_n^p</math> are the prescribed temperature and the prescribed normal heat flux at the boundaries <math display="inline">\Gamma _T</math> and <math display="inline">\Gamma _q</math>, respectively and <math display="inline">n</math> is the direction normal to be boundary.
368
369
==3 STABILIZED MASS CONSERVATION EQUATION==
370
371
In this work we will use the following stabilized form of the mass conservation equation obtained using the Finite Calculus (FIC) approach <span id='citeF-38'></span>[[#cite-38|[38]]]
372
373
<span id="eq-23"></span>
374
{| class="formulaSCP" style="width: 100%; text-align: left;" 
375
|-
376
| 
377
{| style="text-align: left; margin:auto;" 
378
|-
379
| style="text-align: center;" | <math>-\frac{1}{\kappa }\frac{Dp}{Dt}+  \varepsilon _v  +\tau {\partial {}^{n+1} \hat r_{m_i} \over \partial {}^{n+1}x_i} =0 \qquad \hbox{in }{}^{n+1}V  </math>
380
|}
381
| style="width: 5px;text-align: right;" | (23)
382
|}
383
384
The last term in Eq.([[#eq-23|23]]) is the so-called stabilization term introduced by the FIC technique; in this equation <math display="inline">\hat r_{m_i}</math> is a ''static momentum term'' defined as
385
386
<span id="eq-24"></span>
387
{| class="formulaSCP" style="width: 100%; text-align: left;" 
388
|-
389
| 
390
{| style="text-align: left; margin:auto;" 
391
|-
392
| style="text-align: center;" | <math>\hat r_{m_i}= {\partial s_{ij} \over \partial x_j} + \frac{\partial p}{\partial x_i} + b_i   </math>
393
|}
394
| style="width: 5px;text-align: right;" | (24)
395
|}
396
397
and <math display="inline">\tau </math> is a ''stabilization parameter''. Eq.([[#eq-23|23]]) is a simplification of a more general FIC-based stabilized expression for quasi-incompressible fluids detailed  in <span id='citeF-38'></span>[[#cite-38|[38]]].
398
399
The stabilization parameter <math display="inline">\tau </math> is typically computed for each element  as
400
401
<span id="eq-25"></span>
402
{| class="formulaSCP" style="width: 100%; text-align: left;" 
403
|-
404
| 
405
{| style="text-align: left; margin:auto;" 
406
|-
407
| style="text-align: center;" | <math>\tau = \left(\frac{8\mu }{(l^e)^2} + \frac{2\rho }{\Delta t}  \right)^{-1} </math>
408
|}
409
| style="width: 5px;text-align: right;" | (25)
410
|}
411
412
where <math display="inline">\Delta t</math> is the time step used for the transient solution and <math display="inline">l^e</math> is a characteristic element length computed as <math display="inline">l^e = 2(V^e)^{1/n_s}</math> where <math display="inline">V^e</math> is the element area (for 3-noded triangles) or volume (for 4-noded tetrahedra). For heterogeneous material the values of <math display="inline">\mu </math> and <math display="inline">\rho </math>  are computed at the element center <span id='citeF-38'></span>[[#cite-38|[38]]]. For  a solid material, the viscosity <math display="inline">\mu </math> is substituted by <math display="inline">\bar \mu \Delta t</math> with <math display="inline">\bar \mu </math> defined in Eq.(7).
413
414
We note that <math display="inline">\tau =0</math> for “compressible” type problems not requiring stabilization. In these cases Eq.([[#eq-23|23]]) recovers the standard form for the conservation of mass of the infinitesimal theory (see Eqs.([[#2.3 Mass conservation equation|2.3]])).
415
416
==4 VARIATIONAL EQUATIONS==
417
418
===4.1 Momentum equations===
419
420
Multiplying Eq.(1) by arbitrary test functions <math display="inline">w_i</math> with dimensions of velocity and integrating over the analysis domain <math display="inline">{}^{n+1}V</math> gives the weighted residual form of the momentum equations as <span id='citeF-46'></span><span id='citeF-48'></span>[[#cite-46|[46,48]]]
421
422
<span id="eq-26"></span>
423
{| class="formulaSCP" style="width: 100%; text-align: left;" 
424
|-
425
| 
426
{| style="text-align: left; margin:auto;" 
427
|-
428
| style="text-align: center;" | <math>\int _{{}^{n+1}V} w_i \left(\rho \frac{Dv_i}{Dt}- {\partial {}^{n+1}\sigma _{ij} \over \partial {}^{n+1} x_j}- {}^{n+1} b_i\right)dV =0 </math>
429
|}
430
| style="width: 5px;text-align: right;" | (26)
431
|}
432
433
Integrating by parts  the term involving <math display="inline">\sigma _{ij}</math> and using the Neumann boundary conditions ([[#eq-20|20]]) yields the weak variational form of the momentum equations as
434
435
<span id="eq-27"></span>
436
{| class="formulaSCP" style="width: 100%; text-align: left;" 
437
|-
438
| 
439
{| style="text-align: left; margin:auto;" 
440
|-
441
| style="text-align: center;" | <math>\int _{{}^{n+1}V} w_i \rho \frac{Dv_i}{Dt} dV + \int _{{}^{n+1}V} \delta \varepsilon _{ij} {}^{n+1} \sigma _{ij} dV - \int _{{}^{n+1}V} w_i {}^{n+1} b_i dV - \int _{{}^{n+1}\Gamma _t} w_i {}^{n+1} t_i^p d\Gamma =0 </math>
442
|}
443
| style="width: 5px;text-align: right;" | (27)
444
|}
445
446
where <math display="inline">\delta \varepsilon _{ij}= {\partial w_i \over \partial {}^{n+1}x_j}+{\partial w_j \over \partial {}^{n+1}x_i}</math> is an arbitrary (virtual) strain rate field. Eq.([[#eq-27|27]]) is the standard form of the ''principle of virtual power''  <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-48'></span>[[#cite-3|[3,7,48]]].
447
448
Substituting  the stresses from Eq.([[#eq-2|2]]) into ([[#eq-27|27]]) gives the following expression (in matrix form)
449
450
<span id="eq-28"></span>
451
{| class="formulaSCP" style="width: 100%; text-align: left;" 
452
|-
453
| 
454
{| style="text-align: left; margin:auto;" 
455
|-
456
| style="text-align: center;" | <math>\int _{{}^{n+1}V} {w}^T \rho \frac{D\hbox{v}}{Dt} dV + \!\int _{{}^{n+1}V} \delta {\boldsymbol \varepsilon }^T {}^{n+1}{s} dV  + \!\int _{{}^{n+1}V} \delta {\boldsymbol \varepsilon }^T {m} {}^{n+1}{p} dV -</math>
457
|-
458
| style="text-align: center;" | <math>  -\int _{{}^{n+1}V} {w}^T {}^{n+1}{b}dV - \!\int _{{}^{n+1}\Gamma _t} \hbox{w}^T {}^{n+1}\hbox{t}^p d\Gamma =0  </math>
459
|}
460
| style="width: 5px;text-align: right;" | (28)
461
|}
462
463
In Eq.([[#eq-28|28]]) <math display="inline">{w},{v}</math> and <math display="inline">\delta {\boldsymbol \varepsilon }</math> are vectors containing the test functions, the velocities and the virtual strain rates respectively; <math display="inline">{b}</math> and <math display="inline">\hbox{t}^p</math> are the body force and surface traction vectors, respectively and <math display="inline">{m}</math> is an auxiliary vector. These vectors are defined as (for 2D problems)
464
465
<span id="eq-29"></span>
466
{| class="formulaSCP" style="width: 100%; text-align: left;" 
467
|-
468
| 
469
{| style="text-align: left; margin:auto;" 
470
|-
471
| style="text-align: center;" | <math>\begin{array}{l}\hbox{w} =[w_1,w_2]^T\quad ,\quad \hbox{v} =[v_1,v_2]^T \quad ,\quad \hbox{b} =[b_1,b_2]^T \quad ,\quad  \hbox{t}^p =[t_1^p,t_2^p]^T\\[.5cm]  \delta {\boldsymbol \varepsilon }= [\delta \varepsilon _{11},\delta \varepsilon _{22}, \delta \varepsilon _{12}]^T \quad ,\quad  {m}=[1,1,0]^T  \end{array} </math>
472
|}
473
| style="width: 5px;text-align: right;" | (29)
474
|}
475
476
===4.2 Mass conservation equation===
477
478
We multiply Eq.([[#eq-23|23]]) by arbitrary (continuous) test functions <math display="inline">q</math> (with dimensions of pressure) defined over the analysis domain. Integrating over <math display="inline">{}^{n+1}V</math> gives
479
480
<span id="eq-30"></span>
481
{| class="formulaSCP" style="width: 100%; text-align: left;" 
482
|-
483
| 
484
{| style="text-align: left; margin:auto;" 
485
|-
486
| style="text-align: center;" | <math>\int _{{}^{n+1}V} -\frac{q}{\kappa } \frac{Dp}{Dt}dV +  \int _{{}^{n+1}V} q \varepsilon _v dV + \int _{{}^{n+1}V} q \tau {\partial {}^{n+1}\hat r_{m_i} \over \partial {}^{n+1}x_i} dV =0  </math>
487
|}
488
| style="width: 5px;text-align: right;" | (30)
489
|}
490
491
The third integral in Eq.([[#eq-30|30]]) corresponding to the stabilization term is zero in the compressible parts of the continuum.
492
493
Integrating by parts the last integral in Eq.([[#eq-30|30]]) and using ([[#eq-24|24]]) gives after some transformations <span id='citeF-38'></span>[[#cite-38|[38]]]
494
495
<span id="eq-31"></span>
496
{| class="formulaSCP" style="width: 100%; text-align: left;" 
497
|-
498
| 
499
{| style="text-align: left; margin:auto;" 
500
|-
501
| style="text-align: center;" | <math>\begin{array}{r}\displaystyle \int _{{}^{n+1}V} \frac{q}{\kappa } \frac{Dp}{Dt}dV - \int _{{}^{n+1}V}q \varepsilon _v dV + \int _{{}^{n+1}V} \tau {\partial q \over \partial {}^{n+1}x_i} \left({\partial {}^{n+1}s_{ij} \over \partial {}^{n+1}x_j} + {\partial {}^{n+1}p \over \partial {}^{n+1}x_i} + {}^{n+1}b_i\right)dV\\ \displaystyle - \int _{{}^{n+1}\Gamma _t} q \tau \left[\rho \frac{Dv_n}{Dt}-\frac{2}{h_n} \left({}^{n+1}s_n +{}^{n+1} p - {}^{n+1}t_n\right)\right]d\Gamma =0 \end{array}   </math>
502
|}
503
| style="width: 5px;text-align: right;" | (31)
504
|}
505
506
where <math display="inline">v_n</math> and <math display="inline">t_n</math> are the velocity and the traction force normal to the boundary <math display="inline">\Gamma _t</math>, respectively and <math display="inline">s_n = s_{ij} n_j</math>. The characteristic length <math display="inline">h_n</math> in Eq.([[#eq-31|31]]) is taken as <math display="inline">h_n = \frac{l^e}{2}</math> in practice.
507
508
===4.3 Thermal balance equation===
509
510
Application of the standard weighted residual method to the thermal balance equations ([[#eq-18|18]]), ([[#eq-21|21]]) and ([[#eq-22|22]]) leads, after standard operations, to <span id='citeF-46'></span><span id='citeF-48'></span>[[#cite-46|[46,48]]]
511
512
<span id="eq-32"></span>
513
{| class="formulaSCP" style="width: 100%; text-align: left;" 
514
|-
515
| 
516
{| style="text-align: left; margin:auto;" 
517
|-
518
| style="text-align: center;" | <math>\int _{{}^{n+1}V} \hat w \rho c \frac{DT}{Dt}dV + \int _{{}^{n+1}V} {\partial \hat w  \over \partial {}^{n+1}x_i}  k {\partial T \over \partial {}^{n+1}x_i}dV - \int _{{}^{n+1}V} \hat w {}^{n+1} Q dV+ \int _{{}^{n+1}\Gamma _q} \hat w {}^{n+1} q_n^p d\Gamma =0 </math>
519
|}
520
| style="width: 5px;text-align: right;" | (32)
521
|}
522
523
where <math display="inline">\hat w</math> are the space weighting functions for the temperature.
524
525
==5 FEM DISCRETIZATION==
526
527
We discretize  the analysis domain into finite elements with <math display="inline">n</math> nodes in the standard manner leading to a mesh with a total number of <math display="inline">N_e</math> elements and <math display="inline">N</math> nodes <span id='citeF-33'></span><span id='citeF-46'></span>[[#cite-33|[33,46]]]. In our work we will choose simple 3-noded linear triangles (<math display="inline">n=3</math>) for 2D problems and 4-noded tetrahedra (<math display="inline">n=4</math>) for 3D problems with local linear shape functions <math display="inline">N_i^e</math> defined for each node <math display="inline">i</math> (<math display="inline">i=1,\cdots , n</math>) of element <math display="inline">e</math> <span id='citeF-33'></span><span id='citeF-47'></span>[[#cite-33|[33,47]]]. The velocity components, the  pressure and the temperature are interpolated over the mesh in terms of their nodal values in the same manner using the  ''global linear shape functions'' <math display="inline">N_j</math> spanning over the elements sharing node <math display="inline">j</math> (<math display="inline">j=1,\cdots , N</math>) <span id='citeF-33'></span><span id='citeF-46'></span>[[#cite-33|[33,46]]]. In matrix form we have (for 2D problems)
528
529
<span id="eq-33"></span>
530
{| class="formulaSCP" style="width: 100%; text-align: left;" 
531
|-
532
| 
533
{| style="text-align: left; margin:auto;" 
534
|-
535
| style="text-align: center;" | <math>{v} = {N}_v\bar {v}  \quad ,\quad p = {N}_p\bar {p}\quad  , \quad T = {N}_T \bar {T}  </math>
536
|}
537
| style="width: 5px;text-align: right;" | (33)
538
|}
539
540
where
541
542
<span id="eq-34"></span>
543
{| class="formulaSCP" style="width: 100%; text-align: left;" 
544
|-
545
| 
546
{| style="text-align: left; margin:auto;" 
547
|-
548
| style="text-align: center;" | <math>\begin{array}{c}\displaystyle \bar {v} = \left\{\begin{matrix}\bar{v}^1\\\bar{v}^2\\\vdots \\ \bar{v}^N\end{matrix}  \right\}\quad \hbox{with}~ \bar{v}^i = \left\{\begin{matrix}\bar{v}^i_1\\\bar{v}^i_2\end{matrix}  \right\}~, ~ \bar {p} =\left\{\begin{matrix}\bar{p}^1\\\bar{p}^2\\\vdots \\ \bar{p}^{N}\end{matrix}  \right\}~, ~ \bar {T}= \left\{\begin{matrix}\bar{T}_1\\\bar{T}_2\\\vdots \\ \bar{T}^N\end{matrix}  \right\}\\[.5cm] \displaystyle {N}_v = [{N}_1, {N}_2,\cdots , {N}_N ]^T ~,~ {N}_p = {N}_T = [{N}_1, { N}_2,\cdots , {N}_N ] \end{array} </math>
549
|}
550
| style="width: 5px;text-align: right;" | (34)
551
|}
552
553
with <math display="inline">{N}_j = N_j {I}_2</math> where <math display="inline">{I}_2</math> is the <math display="inline">2\times 2</math> unit matrix.
554
555
In Eq.([[#eq-34|34]]) vectors <math display="inline">\bar{v}</math>, <math display="inline">\bar {p}</math> and <math display="inline">\bar {T}</math>  contain the nodal velocities, the nodal pressures and the nodal temperatures for the whole mesh, respectively and the upperindex denotes the nodal value for each vector or scalar magnitude.
556
557
Substituting Eqs.([[#eq-33|33]]) into Eqs.([[#eq-27|27]]), ([[#eq-31|31]]) and ([[#eq-32|32]]) and choosing a Galerkin formulation with <math display="inline">w_i = q =  \hat w_i =N_i</math> leads to the following system of algebraic equations
558
559
<span id="eq-35"></span>
560
{| class="formulaSCP" style="width: 100%; text-align: left;" 
561
|-
562
| 
563
{| style="text-align: left; margin:auto;" 
564
|-
565
| style="text-align: center;" | <math>{M}_0 {\dot{\bar{v}}} + {g} +{Q}{}^{n+1}\bar {p}- {f}_v={0} </math>
566
|}
567
| style="width: 5px;text-align: right;" | (35)
568
|}
569
570
<span id="eq-36"></span>
571
{| class="formulaSCP" style="width: 100%; text-align: left;" 
572
|-
573
| 
574
{| style="text-align: left; margin:auto;" 
575
|-
576
| style="text-align: center;" | <math>\hbox{M}_1 {\dot{\bar{p}}}-{Q}^T {}^{n+1}\bar{v} + ({L}+{M}_b){}^{n+1} \bar {p}- {f}_p={0} </math>
577
|}
578
| style="width: 5px;text-align: right;" | (36)
579
|}
580
581
<span id="eq-37"></span>
582
{| class="formulaSCP" style="width: 100%; text-align: left;" 
583
|-
584
| 
585
{| style="text-align: left; margin:auto;" 
586
|-
587
| style="text-align: center;" | <math>{C} {\dot{\bar{T}}}+\hat {L} {}^{n+1}\bar{T} -  {f}_T={0}  </math>
588
|}
589
| style="width: 5px;text-align: right;" | (37)
590
|}
591
592
where <math display="inline">{\dot{\bar{a}}}</math>  denotes the material time derivative of the components of  a vector <math display="inline">{a}</math>. The element form of the matrices and vectors in Eqs.([[#5 FEM DISCRETIZATION|5]]) is given in Box 1.
593
594
We note that Eqs.([[#5 FEM DISCRETIZATION|5]]) involve the geometry at the updated configuration (<math display="inline">{}^{n+1}V</math>). This geometry is unknown; hence the solution of Eqs.([[#5 FEM DISCRETIZATION|5]]) has to be found iteratively. The iterative solution scheme chosen in this work is presented in the next section.
595
596
<br/>
597
598
'''Remark 5.''' The boundary terms of vector <math display="inline">{f}_p</math> can be incorporated into the matrices of Eq.([[#eq-36|36]]). This leads to a non symmetrical set of equations. These boundary terms are computed here iteratively within the incremental solution scheme.
599
600
'''Remark 6.''' The presence of matrix <math display="inline">{M}_b</math> in Eq.([[#eq-36|36]]) allows us to compute the pressure without the need of prescribing its value at the free surface <span id='citeF-38'></span>[[#cite-38|[38]]].
601
602
==6 TRANSIENT SOLUTION OF THE DISCRETIZED EQUATIONS==
603
604
Eqs.([[#5 FEM DISCRETIZATION|5]]) are solved in time with an implicit Newton-Raphson type iterative scheme <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-47'></span>[[#cite-3|[3,7,47]]]. The basic steps within a time increment <math display="inline">[n,n+1]</math> are:<br/>
605
606
* Initialize variables: <math display="inline">({}^{n+1}\hbox{x}^1,{}^{n+1}\bar{v}^1,{}^{n+1}{s}^1,{}^{n+1}\bar{p}^1,  {}^{n+1}\bar{T}^1)\equiv  \left\{{}^{n}{x},{}^{n}\bar{v},{}^{n}{s},{}^{n}\bar{p},{}^{n}\bar{T}\right\}</math>.<p> In the following <math display="inline">(\cdot )^i</math> denotes a value computed at the <math display="inline">i</math>th iteration. </p>
607
* Iteration loop: <math display="inline">i=1,\cdots , N_{iter}</math>.<p> For each iteration. 
608
609
</p>
610
611
===''Step 1. Compute the initial Cauchy stresses <math>{}^{n}{\boldsymbol \sigma }^i</math> for solid elements''===
612
613
<span id="eq-38"></span>
614
{| class="formulaSCP" style="width: 100%; text-align: left;" 
615
|-
616
| 
617
{| style="text-align: left; margin:auto;" 
618
|-
619
| style="text-align: center;" | <math>{}^{n} {\boldsymbol \sigma }^i =  \frac{1}{J^i}{F}^i [{}^{n}{S}] {F}^{iT} \quad \hbox{with } F_{kl}^i = {\partial {}^{n+1}x_k^i \over \partial {}^{n} x_l} \quad \hbox{and } {J^i} = \vert {F}^i\vert   </math>
620
|}
621
| style="width: 5px;text-align: right;" | (38)
622
|}
623
624
with
625
626
<span id="eq-39"></span>
627
{| class="formulaSCP" style="width: 100%; text-align: left;" 
628
|-
629
| 
630
{| style="text-align: left; margin:auto;" 
631
|-
632
| style="text-align: center;" | <math>{}^{n}{S} = {}^{n} {\boldsymbol \sigma }\quad \hbox{and}\quad {}^{n}{\sigma }_{ij} = {}^{n}s_{ij} + {}^{n}p \delta _{ij}  </math>
633
|}
634
| style="width: 5px;text-align: right;" | (39)
635
|}
636
637
===''Step 2. Compute the nodal velocity increments <math>\Delta \bar {v}</math>''===
638
639
From Eq.([[#5 FEM DISCRETIZATION|5]]a)
640
641
<span id="eq-40"></span>
642
{| class="formulaSCP" style="width: 100%; text-align: left;" 
643
|-
644
| 
645
{| style="text-align: left; margin:auto;" 
646
|-
647
| style="text-align: center;" | <math>{H}_v^i \Delta \bar {v} = - {}^{n+1}\bar{\hbox{r}}_m^i \rightarrow  \Delta \bar{v} </math>
648
|}
649
| style="width: 5px;text-align: right;" | (40)
650
|}
651
652
with the momentum residual <math display="inline">\bar{r}_m</math> and the iteration matrix <math display="inline">{H}_v</math>  given by
653
654
<span id="eq-41"></span>
655
{| class="formulaSCP" style="width: 100%; text-align: left;" 
656
|-
657
| 
658
{| style="text-align: left; margin:auto;" 
659
|-
660
| style="text-align: center;" | <math>\bar{\hbox{r}}_m = \hbox{M}_0 {\dot{\bar{v}}} + \hbox{g}+\hbox{Q}\bar {p}-\hbox{f}_v\quad , \quad \hbox{H}_v = \frac{1}{\Delta t} \hbox{M}_0 + \hbox{K} + \hbox{K}_v  </math>
661
|}
662
| style="width: 5px;text-align: right;" | (41)
663
|}
664
665
where <math display="inline"> \hbox{K}_{v}</math> is the bulk tangent matrix (see Remark 9) and
666
667
<span id="eq-42"></span>
668
{| class="formulaSCP" style="width: 100%; text-align: left;" 
669
|-
670
| 
671
{| style="text-align: left; margin:auto;" 
672
|-
673
| style="text-align: center;" | <math>\hbox{K}_{ij}^e = \int _{{}^nV^e} \left(\hbox{B}_i^{eT} {\boldsymbol{\cal C}}_T \hbox{B}_j^{e} dV + {G}^T_i [{S} ]  {G}_j \Delta t \right)dV   </math>
674
|}
675
| style="width: 5px;text-align: right;" | (42)
676
|}
677
678
where <math display="inline">{\boldsymbol{\cal C}}_T</math> is the tangent constitutive matrix emanating from the linearization of Eq.([[#eq-35|35]]) (expressed in the current configuration) with respect to the nodal velocities <span id='citeF-10'></span><span id='citeF-37'></span>[[#cite-10|[10,37]]]. The second term in matrix <math display="inline">\hbox{K}^e</math> is explained in  Remark 7.
679
680
===''Step 3. Update the nodal velocities''===
681
682
<span id="eq-43"></span>
683
{| class="formulaSCP" style="width: 100%; text-align: left;" 
684
|-
685
| 
686
{| style="text-align: left; margin:auto;" 
687
|-
688
| style="text-align: center;" | <math>{}^{n+1}\bar{v}^{i+1}= \bar{v}^i + \Delta \bar{v} </math>
689
|}
690
| style="width: 5px;text-align: right;" | (43)
691
|}
692
693
===''Step 4. Compute the nodal pressures''===
694
695
From Eq.([[#eq-36|36]]) we obtain
696
697
<span id="eq-44"></span>
698
{| class="formulaSCP" style="width: 100%; text-align: left;" 
699
|-
700
| 
701
{| style="text-align: left; margin:auto;" 
702
|-
703
| style="text-align: center;" | <math>\hbox{H}_p^i  {}^{n+1}\bar{p}^{i+1}= \frac{1}{\Delta t} \hbox{M}_1\bar{p}^i  + {Q}^T \bar{v}^{i+1}+ \bar{f}^{i}_p  \rightarrow {}^{n+1}\bar{p}^{i+1}   </math>
704
|}
705
| style="width: 5px;text-align: right;" | (44)
706
|}
707
708
with
709
710
<span id="eq-45"></span>
711
{| class="formulaSCP" style="width: 100%; text-align: left;" 
712
|-
713
| 
714
{| style="text-align: left; margin:auto;" 
715
|-
716
| style="text-align: center;" | <math>\hbox{H}_p = \frac{1}{\Delta t} \hbox{M}_1 + \hbox{L} + \hbox{M}_b </math>
717
|}
718
| style="width: 5px;text-align: right;" | (45)
719
|}
720
721
===''Step 5. Update the nodal coordinates and the deformation gradient''===
722
723
<span id="eq-46"></span>
724
{| class="formulaSCP" style="width: 100%; text-align: left;" 
725
|-
726
| 
727
{| style="text-align: left; margin:auto;" 
728
|-
729
| style="text-align: center;" | <math>{}^{n+1}{x}^{i+1}= {x}^i + \frac{1}{2} (\bar{v}^{i+1} + {}^{n}\bar{v})\Delta t </math>
730
|}
731
| style="width: 5px;text-align: right;" | (46)
732
|}
733
734
{| class="formulaSCP" style="width: 100%; text-align: left;" 
735
|-
736
| 
737
{| style="text-align: left; margin:auto;" 
738
|-
739
| style="text-align: center;" | <math>{}^{n+1}F^{i+1}_{ij} = {\partial {}^{n+1}{x}^{i+1}_i \over \partial {}^{n}{x_j}}</math>
740
|}
741
|}
742
743
A more accurate expression for computing <math display="inline">{}^{n+1}{x}^{i+1}</math> can be used involving the  nodal accelerations <span id='citeF-37'></span>[[#cite-37|[37]]].
744
745
===''Step 6.Compute the deviatoric Cauchy stresses''===
746
747
''Fluids:''
748
749
<span id="eq-47"></span>
750
{| class="formulaSCP" style="width: 100%; text-align: left;" 
751
|-
752
| 
753
{| style="text-align: left; margin:auto;" 
754
|-
755
| style="text-align: center;" | <math>{}^{n+1}{s}^{i+1} = {D}_T\hbox{B}\bar {v}^{i+1}  </math>
756
|}
757
| style="width: 5px;text-align: right;" | (47)
758
|}
759
760
''Solids:''
761
762
<span id="eq-48"></span>
763
{| class="formulaSCP" style="width: 100%; text-align: left;" 
764
|-
765
| 
766
{| style="text-align: left; margin:auto;" 
767
|-
768
| style="text-align: center;" | <math>\Delta  {s}= {D}_T  \hbox{B} \Delta \bar {v}  </math>
769
|}
770
| style="width: 5px;text-align: right;" | (48)
771
|}
772
773
where <math display="inline">{D}_T</math> is the tangent constitutive matrix for the deviatoric Cauchy stresses. For elastic solids and Newtonian fluids <math display="inline">{D}_T = {D}</math> where <math display="inline">{D}</math> is given by Eq.([[#eq-6|6]]) and <math display="inline">\mu =\bar \mu \Delta t</math> for solids.
774
775
For non-linear continua, the adequate expression for <math display="inline">{D}_T</math> has to be used <span id='citeF-3'></span><span id='citeF-10'></span>[[#cite-3|[3,10]]].
776
777
===''Step 7.Compute the  stresses''===
778
779
''Solids:''<br/>
780
781
Cauchy stresses:
782
783
<span id="eq-49"></span>
784
{| class="formulaSCP" style="width: 100%; text-align: left;" 
785
|-
786
| 
787
{| style="text-align: left; margin:auto;" 
788
|-
789
| style="text-align: center;" | <math>{}^{n+1}\sigma _{ij}^{i+1} = {}^{n}\sigma _{ij}^{i} + \Delta  {s}_{ij} + \Delta \bar{p}\delta _{ij}  </math>
790
|}
791
| style="width: 5px;text-align: right;" | (49)
792
|}
793
794
with
795
796
<span id="eq-50"></span>
797
{| class="formulaSCP" style="width: 100%; text-align: left;" 
798
|-
799
| 
800
{| style="text-align: left; margin:auto;" 
801
|-
802
| style="text-align: center;" | <math>\Delta \bar{p}= {}^{n+1}\bar{p}^{i+1} - {}^{n}\bar {p}  </math>
803
|}
804
| style="width: 5px;text-align: right;" | (50)
805
|}
806
807
2d Piola Kirchhoff stresses:
808
809
<span id="eq-51"></span>
810
{| class="formulaSCP" style="width: 100%; text-align: left;" 
811
|-
812
| 
813
{| style="text-align: left; margin:auto;" 
814
|-
815
| style="text-align: center;" | <math>{}^{n+1}{S}^{i+1} = J {F}^{-1}[{}^{n+1}{\boldsymbol \sigma }^{i+1}] {F}^{-T} ~~\hbox{with } ~~{F} \equiv {}^{n+1}{F}^{i+1}  </math>
816
|}
817
| style="width: 5px;text-align: right;" | (51)
818
|}
819
820
''Fluids:''
821
822
<span id="eq-52"></span>
823
{| class="formulaSCP" style="width: 100%; text-align: left;" 
824
|-
825
| 
826
{| style="text-align: left; margin:auto;" 
827
|-
828
| style="text-align: center;" | <math>{}^{n+1}\sigma _{ij}^{i+1} = {}^{n+1}{s}^{i+1}_{ij} + {}^{n+1}{p}^{i+1}\delta _{ij}  </math>
829
|}
830
| style="width: 5px;text-align: right;" | (52)
831
|}
832
833
===''Step 8.Compute the nodal temperatures''===
834
835
<span id="eq-53"></span>
836
{| class="formulaSCP" style="width: 100%; text-align: left;" 
837
|-
838
| 
839
{| style="text-align: left; margin:auto;" 
840
|-
841
| style="text-align: center;" | <math>\left[\frac{1}{\Delta t}{C} + \hat{L}   \right]\Delta \bar{T}=- {}^{n+1} \bar{r}^i_T \quad ,\quad  {}^{n+1}\bar{T}^{i+1}= {}^{n}\bar{T}^i + \Delta \bar{T} </math>
842
|}
843
| style="width: 5px;text-align: right;" | (53)
844
|}
845
846
with
847
848
<span id="eq-54"></span>
849
{| class="formulaSCP" style="width: 100%; text-align: left;" 
850
|-
851
| 
852
{| style="text-align: left; margin:auto;" 
853
|-
854
| style="text-align: center;" | <math>\bar {r}_T= {C} {\dot{\bar{T}}} + \hat{L} \bar{T} - {f}_T </math>
855
|}
856
| style="width: 5px;text-align: right;" | (54)
857
|}
858
859
===''Step 9. Check convergence''===
860
861
Verify the following conditions:
862
863
<span id="eq-55"></span>
864
{| class="formulaSCP" style="width: 100%; text-align: left;" 
865
|-
866
| 
867
{| style="text-align: left; margin:auto;" 
868
|-
869
| style="text-align: center;" | <math>\begin{array}{c}\displaystyle \Vert {}^{n+1}\bar {v}^{i+1}- {}^{n+1}\bar{v}^{i}\Vert \le e_v \Vert {}^{n}\bar {v}\Vert \\ \displaystyle \Vert {}^{n+1}\bar {p}^{i+1}-{}^{n+1}\bar {p}^i\Vert \le e_p  \Vert {}^{n}\bar{p}\Vert \\ \displaystyle \Vert {}^{n+1}\bar {T}^{i+1} - {}^{n+1}\bar {T}^i\Vert \le e_T  \Vert {}^{n}\bar{T}\Vert  \end{array}   </math>
870
|}
871
| style="width: 5px;text-align: right;" | (55)
872
|}
873
874
where <math display="inline">e_v</math>, <math display="inline">e_p</math> and <math display="inline">e_T</math> are prescribed error norms. In the examples presented in the paper we have set <math display="inline">e_v = e_p=e_T = 10^{-3}</math>.
875
876
If  conditions ([[#eq-55|55]]) are satisfied then make <math display="inline">n \leftarrow n+1 </math> and proceed to the next  time step. Otherwise, make the iteration counter <math display="inline">i \leftarrow i+1 </math> and repeat Steps 1&#8211;9.
877
878
The derivatives and integrals in all the matrices of the iteration matrix <math display="inline">{H}_v</math>  are computed on the ''updated discretized configuration at time'' <math display="inline">n</math> (<math display="inline">{}^nV</math>) while the residual vectors <math display="inline">\bar{r}_T</math> and <math display="inline">\bar{r}_m</math> are computed in the current configuration. This is a particular version of the ''updated Lagrangian formulation'' <span id='citeF-3'></span><span id='citeF-10'></span><span id='citeF-37'></span><span id='citeF-47'></span><span id='citeF-48'></span>[[#cite-3|[3,10,37,47,48]]].
879
880
'''Remark 7.''' The  tangent deviatoric constitutive matrix <math display="inline">{\boldsymbol{\cal C}}_T</math> in Eq.([[#eq-42|42]]) depends on the constitutive model chosen. For Newtonian fluids <math display="inline">{\boldsymbol{\cal C}}_T = {\boldsymbol{\cal C}}</math> where <math display="inline">{\boldsymbol{\cal C}}</math> is obtained by transforming the deviatoric constitutive tensor <math display="inline">{c}_{ijkl}=\mu (\delta _{ik}\delta _{jl} + \delta _{il}\delta _{jk})</math> from the updated to the current configuration as <math display="inline"> {\cal C}_{ijkl}=F^{-1}_{A_i}F^{-1}_{B_j} F^{-1}_{C_k} F^{-1}_{D_l}     {c}_{ABCD}</math> <span id='citeF-3'></span><span id='citeF-37'></span>[[#cite-3|[3,37]]]. Matrix <math display="inline">\boldsymbol{\cal C}</math> is formed by applying Voigt rule to the terms of tensor <math display="inline">{\cal C}_{ijkl}</math>. A similar expression is obtained for elastic solids changing <math display="inline">\mu </math> by <math display="inline">\bar \mu \Delta t</math> <span id='citeF-10'></span>[[#cite-10|[10]]].
881
882
The second term in the integral of Eq.([[#eq-42|42]]) represents the initial stress contribution to matrix <math display="inline">{K}</math> <span id='citeF-3'></span><span id='citeF-10'></span><span id='citeF-37'></span>[[#cite-3|[3,10,37]]]. Matrices <math display="inline">{G}</math> and <math display="inline">[ S]</math> in Eq.([[#eq-42|42]]) are given by (for 2D problems)
883
884
{| class="formulaSCP" style="width: 100%; text-align: left;" 
885
|-
886
| 
887
{| style="text-align: left; margin:auto;" 
888
|-
889
| style="text-align: center;" | <math> {G} = \begin{bmatrix}     \bar {G} & \bar {0}\\ \bar {0}& \bar {G}     \end{bmatrix}~~,~~  \bar {G} = \begin{bmatrix}   {}_nN_{1,1} & 0 &|& {}_nN_{2,1} & 0 &|& \cdots & {}_nN_{n,1}\\     {}_nN_{1,2} & 0 &|& {}_nN_{2,2} & 0 &|& \cdots & {}_nN_{n,1}     \end{bmatrix} ~~,~~  \bar {0} = \left\{\begin{matrix} 0\\0\end{matrix} \right\}     </math>
890
|}
891
|}
892
893
{| class="formulaSCP" style="width: 100%; text-align: left;" 
894
|-
895
| 
896
{| style="text-align: left; margin:auto;" 
897
|-
898
| style="text-align: center;" | <math>[{ S}] =  \begin{bmatrix}{S} &  {0}\\ {0}& {S}     \end{bmatrix}~~,~~ {0} = \begin{bmatrix}0&0\\0&0\end{bmatrix} ~~,~~     {}_nN_{i,j}={\partial N_i \over \partial ^{n}x_j}     </math>
899
|}
900
| style="width: 5px;text-align: right;" | (56)
901
|}
902
903
where <math display="inline">{S}</math> is the 2d Piola-Kirchhoff stress tensor.
904
905
'''Remark 8.''' The iteration matrix <math display="inline">\hbox{H}_v</math> in Eq.([[#eq-40|40]]) is an ''approximation of the exact tangent matrix for the solid/fluid problem'' in the updated Lagrangian formulation <span id='citeF-3'></span><span id='citeF-10'></span><span id='citeF-37'></span>[[#cite-3|[3,10,37]]]. The form of <math display="inline">\hbox{H}_v</math>  used in this work has yielded good results  with convergence achieved for the nodal values for the velocities,  the pressure and the temperature in 3&#8211;4 iterations for all the problems analyzed.
906
907
'''Remark 9.'''  Including the  bulk stiffness matrix <math display="inline">\hbox{K}_v</math> in <math display="inline">\hbox{H}_v</math> is important for the fast convergence, mass preservation and overall accuracy of the iterative solution for quasi and fully incompressible materials <span id='citeF-9'></span><span id='citeF-38'></span>[[#cite-9|[9,38]]].     The element expression of <math display="inline">\hbox{K}_v</math> can be obtained as <span id='citeF-38'></span>[[#cite-38|[38]]]
908
909
<span id="eq-57"></span>
910
{| class="formulaSCP" style="width: 100%; text-align: left;" 
911
|-
912
| 
913
{| style="text-align: left; margin:auto;" 
914
|-
915
| style="text-align: center;" | <math>\hbox{K}_v^e = \int _{{}^nV^e} \hbox{B}^T \hbox{m} \theta \Delta t\kappa \hbox{m}^T \hbox{B}dV </math>
916
|}
917
| style="width: 5px;text-align: right;" | (57)
918
|}
919
920
where <math display="inline">\theta </math> is a positive number such that <math display="inline">0<   \theta \le 1</math> that has the role of preventing the ill-conditioning of the iteration matrix <math display="inline">{H}_v</math> for highly incompressible materials. For a fully incompressible material (<math display="inline">\kappa =\infty </math>), a finite  value of <math display="inline">\kappa </math> is used in practice within <math display="inline">{K}_v</math> as this helps to obtaining an accurate solution with reduced mass loss in few iterations per time step <span id='citeF-9'></span>[[#cite-9|[9]]]. These considerations, however, do not affect the value of <math display="inline">\kappa </math> within matrix <math display="inline">{M}_1</math> in Eq.([[#eq-36|36]]) that vanishes for a fully incompressible material. A similar approach for improving mass conservation in incompressible fluids was proposed  in <span id='citeF-41'></span>[[#cite-41|[41]]].
921
922
'''Remark 10.''' The time step within a time interval <math display="inline">[n,n+1]</math> is chosen as <math display="inline">\Delta t =\min \left(\frac{^n l_{\min }^e}{\vert {}^n{v}\vert _{\max }},\Delta t_b\right)</math> where <math display="inline">^n l_{\min }^e</math> is the minimum characteristic distance  of all elements in the mesh, with <math display="inline">l^e</math> computed as explained in Section 3, <math display="inline">\vert ^n{v}\vert _{\max }</math> is the maximum value of the modulus of the velocity of all nodes in the mesh  and <math display="inline">\Delta t_b</math> is the critical time step of all nodes approaching a solid boundary defined as <math display="inline">\Delta t_b = \min \left(\frac{^n l_b}{\vert ^n{v}_b\vert _{\max }}\right)</math> where <math display="inline">^n l_b</math> is the distance from the node to the boundary and <math display="inline">^n{v}_b</math> is the velocity of the node. This definition of <math display="inline">\Delta t</math> intends that no node crosses a solid boundary during a time step <span id='citeF-38'></span>[[#cite-38|[38]]].
923
924
'''Remark 11.''' The material properties for the fluid and the solid may be dependent on the temperature. This effect is accounted for by updating the material properties in terms of the temperature within the iteration loop.
925
926
==7 ABOUT THE PARTICLE FINITE ELEMENT METHOD (PFEM)==
927
928
===7.1 The basis of the PFEM===
929
930
Let us consider a domain <math display="inline">V</math> containing  fluid and solid subdomains. Each subdomain is characterized by a set of points, hereafter termed ''virtual particles''. The virtual particles contain all the information  for defining the geometry and the material and mechanical properties of the underlying subdomain. In the PFEM both subdomains are modelled using an ''updated'' ''Lagrangian formulation'' <span id='citeF-3'></span><span id='citeF-47'></span>[[#cite-3|[3,47]]].
931
932
The solution steps within a time step in the PFEM are as follows:
933
934
<div id='img-2'></div>
935
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
936
|-
937
|[[Image:draft_Samper_718004671-Figure2a.png|600px|Sequence of steps to update a “cloud” of virtual particles (nodes) representing a domain containing a fluid and a solid  from ⁿt  to ⁿ⁺²t. u, v,a,ɛ , ̇ɛ and σ  denote the displacement, the velocity, the acceleration, the strain, the strain rates and the Cauchy stresses, respectively.]]
938
|- style="text-align: center; font-size: 75%;"
939
| colspan="1" | '''Figure 2:''' Sequence of steps to update a “cloud” of virtual particles (nodes) representing a domain containing a fluid and a solid  from <math>^n t</math>  to <math>{}^{n+2}t</math>. <math>{u}, {v},{a},{\boldsymbol \varepsilon } , \dot {\boldsymbol \varepsilon }</math> and <math>{\boldsymbol \sigma }</math>  denote the displacement, the velocity, the acceleration, the strain, the strain rates and the Cauchy stresses, respectively.
940
|}
941
942
<ol>
943
944
<li>The starting point at each time step is the cloud of points <math display="inline">C</math> in the fluid and solid domains. For instance <math display="inline">^{n} C</math> denotes the cloud at time <math display="inline">t={}^n t </math> (Figure [[#img-1|1]]). The virtual particles are assumed to be coincident with the nodes in the finite element mesh generated in Step 3. </li>
945
946
<li>Identify the boundaries defining the analysis domain <math display="inline">^{n} V</math>, as well as the subdomains in the fluid and the solid. This is an essential step as some boundaries (such as the free surface in fluids) may be severely distorted during the solution, including separation and re-entering of nodes. The Alpha Shape method <span id='citeF-8'></span>[[#cite-8|[8]]] is used for the boundary definition. Clearly, the accuracy in the reconstruction of the boundaries depends on the number of points in the vicinity of each boundary and on the Alpha Shape parameter. In the problems solved in this work the Alpha Shape method has been implementation as described in <span id='citeF-14'></span><span id='citeF-26'></span>[[#cite-14|[14,26]]]. </li>
947
948
<li> Discretize  the analysis domain <math display="inline">^{n} V</math> with a finite element mesh <math display="inline">{}^{n} M</math> using the virtual particles as the mesh nodes. We use an efficient mesh generation scheme based on an enhanced Delaunay tesselation <span id='citeF-13'></span><span id='citeF-14'></span>[[#cite-13|[13,14]]]. </li>
949
950
<li> Solve the Lagrangian equations of motion for the overall continuum using the standard FEM. Compute the state variables in  the next (updated) configuration for <math display="inline">^n t+\Delta t</math>: velocities, pressure, strain rate and viscous stresses in the fluid and displacements, stresses and strains in the solid. </li>
951
952
<li>  Move the mesh nodes to a new position <math display="inline">^{n+1} C</math> where ''n''+1 denotes the time <math display="inline">{}^n t +\Delta t</math>, in terms of the time increment size. </li>
953
954
<li> Go back to step 1 and repeat the solution for the next time step to obtain <math display="inline">{}^{n+2} C</math>. </li>
955
956
</ol>
957
958
Note that the key differences between the PFEM and the classical FEM are the remeshing technique and the identification of the domain boundary at each time step.
959
960
The CPU time required for meshing grows linearly with the number of nodes. As a general rule,  meshing consumes for 3D problems around 15% of the total CPU time per time step, while the solution of the equations (with typically 3 iterations per time step) and the system assembly consume approximately 70% and 15% of the CPU time per time step, respectively. These figures refer to analyses in a single processor Pentium IV PC <span id='citeF-35'></span>[[#cite-35|[35]]]. Considerable speed can be gained using parallel computing techniques.
961
962
Application of the PFEM in fluid and solid mechanics and in fluid-structure interaction problems can be found in <span id='citeF-1'></span><span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-8'></span><span id='citeF-9'></span><span id='citeF-13'></span><span id='citeF-14'></span><span id='citeF-15'></span><span id='citeF-16'></span><span id='citeF-17'></span><span id='citeF-18'></span><span id='citeF-20'></span><span id='citeF-26'></span><span id='citeF-27'></span><span id='citeF-34'></span><span id='citeF-35'></span><span id='citeF-37'></span><span id='citeF-38'></span><span id='citeF-41'></span><span id='citeF-43'></span>[[#cite-1|[1,2,4,5,8,9,13,14,15,16,17,18,20,26,27,34,35,37,38,41,43]]] as well in www.cimne.com/pfem.
963
964
===7.2 Treatment of contact conditions in the PFEM===
965
966
Known velocities at boundaries in the PFEM are prescribed in strong form to the boundary nodes. These nodes might belong to fixed external boundaries or to moving boundaries linked to the interacting solids. Surface tractions are applied to the Neumann part of the boundary, as it is usual in the FEM.
967
968
Contact between fluid particles and fixed boundaries is accounted for by the incompressibility condition which  naturally prevents fluid nodes to penetrate into the solid boundaries <span id='citeF-14'></span><span id='citeF-26'></span><span id='citeF-32'></span><span id='citeF-35'></span>[[#cite-14|[14,26,32,35]]].
969
970
The contact between two solid interfaces is treated by introducing a layer of ''contact elements'' between the two interacting solid interfaces (Figure [[#img-3|3]]). This contact layer is ''automatically created during the mesh generation step'' by prescribing a minimum distance <math display="inline">\left(h_{c} \right)</math> between two solid boundaries. If the distance exceeds the minimum value <math display="inline">\left(h_{c} \right)</math> then the generated elements are treated as fluid elements. Otherwise the elements are treated as contact elements where a relationship between the tangential and normal forces and the corresponding displacement is introduced  in <span id='citeF-26'></span><span id='citeF-32'></span><span id='citeF-35'></span>[[#cite-26|[26,32,35]]].
971
972
This algorithm allows us to model complex frictional contact conditions between two or more interacting bodies moving in water in  a simple manner. The algorithm has  been used to model frictional contact situations between rigid or elastic solids in structural mechanics applications, such as soil/rock excavation problems <span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-4|[4,5]]]. The frictional contact algorithm described above has been extended by Oliver ''et al.'' <span id='citeF-20'></span>[[#cite-20|[20]]] for analysis of metal cutting and machining problems.
973
974
<div id='img-3'></div>
975
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 65%;max-width: 100%;"
976
|-
977
|[[Image:draft_Samper_718004671-contact-solid-boundaries.png|390px|Layer of contact elements at a soil-solid interface modelled with the PFEM]]
978
|- style="text-align: center; font-size: 75%;"
979
| colspan="1" | '''Figure 3:''' Layer of contact elements at a soil-solid interface modelled with the PFEM
980
|}
981
982
==8 EXAMPLES==
983
984
===8.1 Numerical examples of manufacturing problems===
985
986
Some examples are presented next to show the capabilities of the method for the simulation of industrial forming processes. All the problems presented involve large strains and big changes in the geometry boundaries. The “particle” description of the continuum assumed in the PFEM introduces the capability of adapting the geometry to the computed displacement solution automatically.
987
988
The numerical solution is computed taking in account thermal and mechanical effects with the solution strategy described in Section 6.
989
990
The changes in the geometry are recognized by the PFEM features. As explained in Section 7.1, the finite element mesh is obtained by  a reconnection of the particles and a remeshing of the domain. A refinement of the critical areas at each time step has been performed. The criterion to detect the critical areas for refining the mesh is based on the evaluation of the plastic energy dissipation, but other mechanical variables can be used for this purpose. Details of the application of the PFEM to solid mechanics problems can be found in <span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-4|[4,5]]].
991
992
===8.2 Extrusion of a steel plate===
993
994
Extrusion is one of the techniques used to reduce the section of pieces of metal and form a reduced piece of the same object. This example considers a piece of steel with the dimensions shown in  Figure [[#img-4|4]] pushed towards a rigid wall die. Two different shapes of the wall die have been analysed. Both models are depicted in Figure [[#img-4|4]]. The symmetry of the problem allows us to consider only the upper part of the piece and a 2D simulation to solve the problem. The material is modelled with a thermo-elastoplastic constitutive law with a Huber-Von Misses yield surface. The constitutive model can be found in <span id='citeF-42'></span>[[#cite-42|[42]]]. The physical properties of the material (steel) considered in the example are shown in Box 2.
995
996
997
{| class="wikitable" style="text-align: left; margin: 1em auto;"
998
999
|-
1000
| colspan='2' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;" | ''MATERIAL PROPERTIES'':
1001
1002
|-
1003
| style="border-left: 2px solid;" | Young  Modulus 
1004
| style="border-right: 2px solid;" | <math> 206.9 \times 10^9  Pa</math>
1005
|-
1006
| style="border-left: 2px solid;" | Poisson Coefficient 
1007
| style="border-right: 2px solid;" | 0.29 
1008
|-
1009
| style="border-left: 2px solid;" | Yield Stress 
1010
| style="border-right: 2px solid;" | <math>450\times 10^6  Pa</math>
1011
|-
1012
| style="border-left: 2px solid;" | Linear Hardening Modulus &nbsp;~&nbsp;
1013
| style="border-right: 2px solid;" | <math>129.24\times 10^6  Pa</math>
1014
|-
1015
| style="border-left: 2px solid;" | Reference Hardening 
1016
| style="border-right: 2px solid;" | <math>450\times 10^6  Pa</math>
1017
|-
1018
| style="border-left: 2px solid;" | Saturation Hardening 
1019
| style="border-right: 2px solid;" | <math>715\times 10^6  Pa</math>
1020
|-
1021
| style="border-left: 2px solid;" | Hardening Exponent 
1022
| style="border-right: 2px solid;" | 16.93 
1023
|-
1024
| style="border-left: 2px solid;" | Conductivity 
1025
| style="border-right: 2px solid;" | <math>45 N/s K</math>
1026
|-
1027
| style="border-left: 2px solid;" | Density 
1028
| style="border-right: 2px solid;" | <math>7800 kg/m^3 </math>
1029
|-
1030
| style="border-left: 2px solid;" | Specific Capacity 
1031
| style="border-right: 2px solid;" | <math>460  m^2/s^2 K</math>
1032
|-
1033
| style="border-left: 2px solid;" | Flow Stress Softening 
1034
| style="border-right: 2px solid;" | <math>0.002 K^{-1}</math>
1035
|-
1036
| style="border-left: 2px solid;" | Hardening Softening 
1037
| style="border-right: 2px solid;" | <math>0.002 K^{-1}</math>
1038
|-
1039
| style="border-left: 2px solid;" | Dissipation Factor 
1040
| style="border-right: 2px solid;" | 0.9 
1041
|- style="border-bottom: 2px solid;"
1042
| style="border-left: 2px solid;" | Expansion Coefficient 
1043
| style="border-right: 2px solid;" | <math>10^{-5} K^{-1} </math>
1044
1045
|}<br/>
1046
1047
'''Box 2.''' Material properties for the steel extrusion problem
1048
1049
An imposed velocity is set on the left side of the models: <math display="inline">10 mm/s</math> for the vertical die wall and <math display="inline">2.5 mm/s</math> for the inclined wall. In both models the vertical displacement is imposed to a zero value at the lower side of the steel plate. The initial temperature is <math display="inline">^\circ </math>T=293.15 K and the left boundary is fixed to this temperature during the analysis.
1050
1051
<div id='img-4'></div>
1052
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1053
|-
1054
|[[Image:draft_Samper_718004671-dimensions_wall_step.png|570px|Extrusion of a steel plate with two wall dies. Dimensions expressed in mm. ]]
1055
|- style="text-align: center; font-size: 75%;"
1056
| colspan="1" | '''Figure 4:''' Extrusion of a steel plate with two wall dies. Dimensions expressed in mm. 
1057
|}
1058
1059
<div id='img-5'></div>
1060
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1061
|-
1062
|[[Image:draft_Samper_718004671-extrusion_step_mesh.png|570px|Extrusion of a steel plate at three  time instants: t = 0.09s, t = 2.59s, t = 5.19s. Vertical die wall]]
1063
|- style="text-align: center; font-size: 75%;"
1064
| colspan="1" | '''Figure 5:''' Extrusion of a steel plate at three  time instants: t = 0.09s, t = 2.59s, t = 5.19s. Vertical die wall
1065
|}
1066
1067
The results of the extrusion analysis with the vertical step are shown in Figures [[#img-5|5]] and [[#img-6|6]]. Different time instants are considered, from the beginning to the end of the process. The contact forces with the wall, the temperature of the model, the plastic strain and the plastic strain rate are measures that can be obtained from the numerical results. With the distribution and the values of these quantities the extrusion process can be studied and optimized.
1068
1069
A similar set of results for a different extrusion problems using a die wall with a progressive reduction of the section are depicted in Figures [[#img-7|7]] and [[#img-8|8]].
1070
1071
<div id='img-6'></div>
1072
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1073
|-
1074
|[[Image:draft_Samper_718004671-extrusion_step_results.png|570px|Results of the extrusion of a steel plate  (vertical die wall) at t = 2.59s. Nodal forces in Newtons, pressure in N/mm², temperature in Kelvins and plastic strain rate in 1/s. ]]
1075
|- style="text-align: center; font-size: 75%;"
1076
| colspan="1" | '''Figure 6:''' Results of the extrusion of a steel plate  (vertical die wall) at t = 2.59s. Nodal forces in Newtons, pressure in <math>N/mm^2</math>, temperature in Kelvins and plastic strain rate in <math>1/s</math>. 
1077
|}
1078
1079
<div id='img-7'></div>
1080
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1081
|-
1082
|[[Image:draft_Samper_718004671-extrusion_slope_mesh.png|570px|Extrusion of a steel plate at three  time instants: t = 0.9s, t = 11.9s, t = 24.9s. Inclined die wall]]
1083
|- style="text-align: center; font-size: 75%;"
1084
| colspan="1" | '''Figure 7:''' Extrusion of a steel plate at three  time instants: t = 0.9s, t = 11.9s, t = 24.9s. Inclined die wall
1085
|}
1086
1087
<div id='img-8'></div>
1088
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1089
|-
1090
|[[Image:draft_Samper_718004671-extrusion_slope_results.png|570px|Results of the extrusion of a steel plate at t = 11.9s (inclined die wall). Nodal forces in Newtons, pressure in N/mm², temperature in Kelvins and plastic strain rate in 1/s. ]]
1091
|- style="text-align: center; font-size: 75%;"
1092
| colspan="1" | '''Figure 8:''' Results of the extrusion of a steel plate at t = 11.9s (inclined die wall). Nodal forces in Newtons, pressure in <math>N/mm^2</math>, temperature in Kelvins and plastic strain rate in <math>1/s</math>. 
1093
|}
1094
1095
<div id='img-9'></div>
1096
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1097
|-
1098
|[[Image:draft_Samper_718004671-single_shear_cut.png|570px|Cutting of a steel plate with a single cutter. Dimensions in mm.]]
1099
|- style="text-align: center; font-size: 75%;"
1100
| colspan="1" | '''Figure 9:''' Cutting of a steel plate with a single cutter. Dimensions in mm.
1101
|}
1102
1103
<div id='img-10'></div>
1104
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1105
|-
1106
|[[Image:draft_Samper_718004671-double_shear_cut.png|570px|Cutting of a steel plate with a two symmetric cutters. Dimensions in mm.]]
1107
|- style="text-align: center; font-size: 75%;"
1108
| colspan="1" | '''Figure 10:''' Cutting of a steel plate with a two symmetric cutters. Dimensions in mm.
1109
|}
1110
1111
===8.3 Shear cutting===
1112
1113
The next example shows the cutting of solid plate in 2D. It is a thermo-mechanical problem which involves large deformations and the process of cutting by means of a rigid tool. The initial conditions of the problem are depicted in Figures [[#img-9|9]] and [[#img-10|10]]. A thermo-elastoplastic constitutive law with the same  material properties as described in the previous example has been used. As previously mentioned, the PFEM combines the Lagrangian updating of the configuration with a redefinition of the domain geometry. These features allow to model naturally the cutting region by  refining  the solid model in the tool tip and by  inserting  new particles (nodes) when large flat boundaries appear at the tip contact zone.
1114
1115
The cutting tool moves downwards with a velocity of <math display="inline">5 mm/s</math> in the single cutter model and with a velocity of <math display="inline">200mm/s</math> in the problem with two cutters. In both models the horizontal displacement is imposed to zero in the outer sides of the plate. The initial temperature in the domain is set to 293.15 K and is kept fixed to this value in the outer boundary sides during  the analysis.
1116
1117
The PFEM results of the material deformation and the temperature distribution for various time instants are shown in Figures [[#img-11|11]] and [[#img-12|12]].
1118
1119
<div id='img-11'></div>
1120
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1121
|-
1122
|[[Image:draft_Samper_718004671-single_cut_results.png|570px|Cutting process. Results at the onset,  the middle and  the end of the process using a single cutter. Nodal forces are expressed in Newtons and the temperature in Kelvins.]]
1123
|- style="text-align: center; font-size: 75%;"
1124
| colspan="1" | '''Figure 11:''' Cutting process. Results at the onset,  the middle and  the end of the process using a single cutter. Nodal forces are expressed in Newtons and the temperature in Kelvins.
1125
|}
1126
1127
<div id='img-12'></div>
1128
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1129
|-
1130
|[[Image:draft_Samper_718004671-double_cut_results.png|570px|Results at the onset, the middle and  the end of a plate cutting process with two symmetric cutters. Nodal forces are expressed in Newtons and the temperature in Kelvins.]]
1131
|- style="text-align: center; font-size: 75%;"
1132
| colspan="1" | '''Figure 12:''' Results at the onset, the middle and  the end of a plate cutting process with two symmetric cutters. Nodal forces are expressed in Newtons and the temperature in Kelvins.
1133
|}
1134
1135
<div id='img-13'></div>
1136
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1137
|-
1138
|[[Image:draft_Samper_718004671-dimensions_forge.png|570px|Forging of a steel cylinder against to curved rigid walls. Dimensions in meters.]]
1139
|- style="text-align: center; font-size: 75%;"
1140
| colspan="1" | '''Figure 13:''' Forging of a steel cylinder against to curved rigid walls. Dimensions in meters.
1141
|}
1142
1143
===8.4 Forging of a cylindrical steel piece===
1144
1145
The next example considers the forging of a  steel cylinder. The material properties are the same as in Box 2. The mould is defined by two rigid walls that move  towards each other at the same speed, (<math display="inline">1 m/s</math>)  and enclose the steel piece. The dimensions of the model are depicted in Figure [[#img-13|13]]. An axisymmetric solution is considered. The initial temperature of the steel material is <math display="inline">^\circ </math>T =293.15 K.
1146
1147
The results of the material deformation, the pressure contours and the temperature distribution for various time instants are shown in Figures [[#img-14|14]] and [[#img-15|15]].
1148
1149
<div id='img-14'></div>
1150
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1151
|-
1152
|[[Image:draft_Samper_718004671-forge_mesh_force.png|570px|Meshes and wall nodal forces at the beginning,  the middle and  the end of the forging process. Nodal forces are expressed in Newtons.]]
1153
|- style="text-align: center; font-size: 75%;"
1154
| colspan="1" | '''Figure 14:''' Meshes and wall nodal forces at the beginning,  the middle and  the end of the forging process. Nodal forces are expressed in Newtons.
1155
|}
1156
1157
<div id='img-15'></div>
1158
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1159
|-
1160
|[[Image:draft_Samper_718004671-forge_pressure_temperature.png|570px|Pressure and temperatures at the beginning,  the middle and  the end of the forging process. Pressure is expressed in Pascals and the temperature in Kelvins.]]
1161
|- style="text-align: center; font-size: 75%;"
1162
| colspan="1" | '''Figure 15:''' Pressure and temperatures at the beginning,  the middle and  the end of the forging process. Pressure is expressed in Pascals and the temperature in Kelvins.
1163
|}
1164
1165
===8.5 Hot forging of a metal piece===
1166
1167
Metal hot forging consists on deforming a work piece  at high temperature under compressive forces in order to obtain the desired shape of the final product. It is a largely used process in industrial metal manufacturing as it allows an improvement of the material properties of the final part via a controlled deformation process. For example, via  hot forging it is possible to reduce the impurities and  defects in the material, thereby avoiding stress concentrations in the final product.
1168
1169
The metal forging can be performed using an open die or a closed die. In this work, the latter case is considered. The geometry and the problem data for the 2D simulation are shown in Figure [[#img-16|16]]. The forging process is performed by controlling the displacement of the upper rectangular die which is pushed downwards with a velocity v=0.01<math display="inline">m/s</math> for a duration of 5.65<math display="inline">s</math>, while the material rigid walls are kept at the same position during the analysis. At the beginning of the process the metal piece and the lower walls have temperatures <math display="inline">^\circ </math>T=2000 K and <math display="inline">^\circ </math>T =1000 K, respectively. The forging is carried out through two steps: during the first one the piece is compressed by the descending rectangular  die; then the die is stopped and from t=6.0<math display="inline">s</math> to t=50.0<math display="inline">s</math> the piece is cooled down.  The cooling process is carried out by applying the temperature given by the following step function to both the upper rectangular die and the internal walls.
1170
1171
<span id="eq-58"></span>
1172
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1173
|-
1174
| 
1175
{| style="text-align: left; margin:auto;" 
1176
|-
1177
| style="text-align: center;" | <math>\displaystyle  \begin{array}{l}\displaystyle  T=850K   6.0s < t \leq 8.5s\\ \displaystyle T=600K   8.5s < t \leq 10.5s\\ \displaystyle T=300K   10.5s < t \leq 50s\\ \end{array}   </math>
1178
|}
1179
| style="width: 5px;text-align: right;" | (58)
1180
|}
1181
1182
It is assumed that the rectangular die has the same temperature of the metal piece during the compression phase. The normal heat flux through the surfaces in contact with the air has not been taken into account in the analysis.
1183
1184
The metal is modelled as an isotropic incompressible non-Newtonian fluid with a non-linear viscosity  given by the following relation <span id='citeF-44'></span><span id='citeF-45'></span>[[#cite-44|[44,45]]]
1185
1186
<span id="eq-59"></span>
1187
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1188
|-
1189
| 
1190
{| style="text-align: left; margin:auto;" 
1191
|-
1192
| style="text-align: center;" | <math>\mu = \frac{\sigma _{y}}{\sqrt{3}\bar \varepsilon }  </math>
1193
|}
1194
| style="width: 5px;text-align: right;" | (59)
1195
|}
1196
1197
where <math display="inline">{\sigma _{y}}</math> is the uniaxial yield stress of the material and <math display="inline">\bar{{\varepsilon }}</math> is the deviatoric strain rate invariant defined as:
1198
1199
<span id="eq-60"></span>
1200
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1201
|-
1202
| 
1203
{| style="text-align: left; margin:auto;" 
1204
|-
1205
| style="text-align: center;" | <math>\bar \varepsilon = \sqrt{\frac{2}{3}{\varepsilon }_{ij} {\varepsilon }_{ij}}  </math>
1206
|}
1207
| style="width: 5px;text-align: right;" | (60)
1208
|}
1209
1210
The uniaxial yield stress <math display="inline">{\sigma _{y}}</math> depends on the temperature as follows:
1211
1212
<span id="eq-61"></span>
1213
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1214
|-
1215
| 
1216
{| style="text-align: left; margin:auto;" 
1217
|-
1218
| style="text-align: center;" | <math>\displaystyle  \begin{array}{l}\displaystyle {\sigma _{y}}=157.7                                                            T \leq 1500\\ \displaystyle {\sigma _{y}}=157.7+3.6\cdot (T-1500)^2-3250\cdot (T-1500)     1500< T \leq 1930 \\ \displaystyle {\sigma _{y}}=79.4                                                               T >1930 \\ \end{array}   </math>
1219
|}
1220
| style="width: 5px;text-align: right;" | (61)
1221
|}
1222
1223
The constitutive equation ([[#eq-59|59]]) is typical in the study of industrial forming processes by the plastic/viscoplastic flow approach <span id='citeF-44'></span><span id='citeF-45'></span><span id='citeF-48'></span>[[#cite-44|[44,45,48]]].
1224
1225
The metal piece has been discretized using 6849 3-noded triangular finite elements. The 2D coupled thermal-mechanical simulation has been run for 50<math display="inline">s</math> with <math display="inline">\Delta t</math>=<math display="inline">0.0005s</math>.
1226
1227
The snapshots of Figure [[#img-17|17]] refer to the initial compression phase that has a duration of 5.65<math display="inline">s</math>. The upper rectangular die moves downwards forcing the metal piece to take the shape of the lower rigid walls.
1228
1229
Figure [[#img-18|18]] shows four representative snapshots of the cooling period.
1230
1231
<div id='img-16'></div>
1232
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1233
|-
1234
|[[Image:draft_Samper_718004671-forgingInput2.png|400px|]]
1235
|[[Image:draft_Samper_718004671-forgingData.png|400px|]]
1236
|-
1237
| colspan="2"|[[Image:draft_Samper_718004671-metalData.png|600px|Hot forging of a metal piece. Initial geometry, coordinates of corner points and material properties.]]
1238
|- style="text-align: center; font-size: 75%;"
1239
| colspan="2" | '''Figure 16:''' Hot forging of a metal piece. Initial geometry, coordinates of corner points and material properties.
1240
|}
1241
1242
<div id='img-17'></div>
1243
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1244
|-
1245
|[[Image:draft_Samper_718004671-forging800.png|400px|]]
1246
|[[Image:draft_Samper_718004671-forging1500.png|400px|]]
1247
|-
1248
|[[Image:draft_Samper_718004671-forging3610.png|400px|]]
1249
|[[Image:draft_Samper_718004671-tempComp.png|400px|]]
1250
|-
1251
|[[Image:draft_Samper_718004671-forging5320.png|400px|]]
1252
|[[Image:draft_Samper_718004671-forging5560.png|400px|]]
1253
|-
1254
| colspan="2"|[[Image:draft_Samper_718004671-forging5650.png|300px|Hot forging of a metal piece. Compression phase. Snapshots of the deformation with temperature contours at different time instants.]]
1255
|- style="text-align: center; font-size: 75%;"
1256
| colspan="2" | '''Figure 17:''' Hot forging of a metal piece. Compression phase. Snapshots of the deformation with temperature contours at different time instants.
1257
|}
1258
1259
<div id='img-18'></div>
1260
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1261
|-
1262
|[[Image:draft_Samper_718004671-forgingCooling8450.png|400px|]]
1263
|[[Image:draft_Samper_718004671-forgingCooling10445.png|400px|]]
1264
|-
1265
|[[Image:draft_Samper_718004671-forgingCooling25000.png|400px|]]
1266
|[[Image:draft_Samper_718004671-forgingCooling50000.png|400px|]]
1267
|-
1268
| colspan="2"|[[Image:draft_Samper_718004671-tempCooling.png|300px|Hot forging of a metal piece. Cooling period. Snapshots of the  temperature contours on the deformed geometry at different time steps.]]
1269
|- style="text-align: center; font-size: 75%;"
1270
| colspan="2" | '''Figure 18:''' Hot forging of a metal piece. Cooling period. Snapshots of the  temperature contours on the deformed geometry at different time steps.
1271
|}
1272
1273
<div id='img-19'></div>
1274
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1275
|-
1276
|[[Image:draft_Samper_718004671-ballsInput2.png|400px|]]
1277
|[[Image:draft_Samper_718004671-ballDataGeo.png|400px|]]
1278
|-
1279
| colspan="2"|[[Image:draft_Samper_718004671-ballDataMat.png|600px|Falling of three solid objects in a heated tank filled with a fluid. Initial geometry, thermal conditions and material properties.]]
1280
|- style="text-align: center; font-size: 75%;"
1281
| colspan="2" | '''Figure 19:''' Falling of three solid objects in a heated tank filled with a fluid. Initial geometry, thermal conditions and material properties.
1282
|}
1283
1284
===8.6 Falling of three solid objects in a heated tank filled with fluid===
1285
1286
Three solid objects with the same shape fall from the same height into a tank containing a fluid at rest. The geometry, the problem data, and the initial thermal conditions are shown in Figure [[#img-19|19]].
1287
1288
The fluid in the tank has an initial temperature of T=340<math display="inline">K</math>, while the solid bodies from left to right have initial temperatures of T=180 K, T=200 K, and T=220 K, respectively. The solid and the fluid domains have been discretized with a finite element mesh of 9394 3-noded triangular elements. The simulation has been run for eight seconds with <math display="inline">\Delta t</math>=<math display="inline">0.0001 s</math>. The heat flux in the normal direction is assumed to be zero for the boundaries in contact with the air and the walls. Figure [[#img-20|20]] shows six representative snapshots of the numerical simulation with the temperature results plotted over the fluid domain and the objects domains.
1289
1290
<div id='img-20'></div>
1291
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1292
|-
1293
|[[Image:draft_Samper_718004671-Balls664.png|400px|]]
1294
|[[Image:draft_Samper_718004671-Balls1816.png|400px|]]
1295
|-
1296
|[[Image:draft_Samper_718004671-Balls2656.png|400px|]]
1297
|[[Image:draft_Samper_718004671-tempIce.png|400px|]]
1298
|-
1299
|[[Image:draft_Samper_718004671-Balls4500.png|400px|]]
1300
|[[Image:draft_Samper_718004671-Balls7000.png|400px|]]
1301
|-
1302
| colspan="2"|[[Image:draft_Samper_718004671-Balls8000.png|300px|Falling of three solid objects in a heated tank filled with a fluid. Snapshots with temperature contours at different time steps.]]
1303
|- style="text-align: center; font-size: 75%;"
1304
| colspan="2" | '''Figure 20:''' Falling of three solid objects in a heated tank filled with a fluid. Snapshots with temperature contours at different time steps.
1305
|}
1306
1307
<div id='img-21'></div>
1308
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 85%;max-width: 100%;"
1309
|-
1310
|[[Image:draft_Samper_718004671-REPBalls6hGraph.png|510px|Falling of three solid objects in a heated tank filled with a fluid. Evolution of the temperature at the center of the three objects.]]
1311
|- style="text-align: center; font-size: 75%;"
1312
| colspan="1" | '''Figure 21:''' Falling of three solid objects in a heated tank filled with a fluid. Evolution of the temperature at the center of the three objects.
1313
|}
1314
1315
In the graph of Figure [[#img-21|21]] the evolution of the temperature at the central point of the three solid objects is plotted.
1316
1317
===8.7 Melting of an ice block===
1318
1319
A cylindrical ice block at initial temperature <math display="inline">^\circ </math>T=270 K is dropped into a tank containing water at rest at an initial temperature <math display="inline">^\circ </math>T=340 K. The initial geometry, the problem data and the initial thermal conditions for the 2D simulation are shown in Figure [[#img-22|22]].
1320
1321
<div id='img-22'></div>
1322
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1323
|-
1324
|[[Image:draft_Samper_718004671-iceInput2.png|400px|]]
1325
|[[Image:draft_Samper_718004671-iceDataGeo.png|400px|]]
1326
|-
1327
| colspan="2"|[[Image:draft_Samper_718004671-iceDataMat.png|600px|Melting of an ice cylinder. Geometry, material data and initial thermal conditions.]]
1328
|- style="text-align: center; font-size: 75%;"
1329
| colspan="2" | '''Figure 22:''' Melting of an ice cylinder. Geometry, material data and initial thermal conditions.
1330
|}
1331
1332
Ice is treated as a hypoelastic solid until  some of its elements reach the fusion temperature (T=273.15 K ). These elements are transferred to the fluid domain and take the physical properties of the fluid. For this analysis the following assumptions were made: the mechanical and thermal properties of water and  ice do not change with  temperature and the heat normal flux along the boundaries in contact with the air or the walls have been considered to be zero.
1333
1334
In Figure [[#img-23|23]] snapshots of some representative instants of the analysis are shown. The temperature contours are plotted over the water domain and the ice block.
1335
1336
In Figure [[#img-24|24]] the detail of the melting of the ice block is illustrated. The finite element mesh is drawn over the solid and the fluid domains.
1337
1338
<div id='img-23'></div>
1339
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1340
|-
1341
|[[Image:draft_Samper_718004671-Ice44.png|400px|]]
1342
|[[Image:draft_Samper_718004671-Ice110.png|400px|]]
1343
|-
1344
|[[Image:draft_Samper_718004671-Ice263.png|400px|]]
1345
|[[Image:draft_Samper_718004671-tempIce.png|400px|]]
1346
|-
1347
|[[Image:draft_Samper_718004671-Ice455.png|400px|]]
1348
|[[Image:draft_Samper_718004671-Ice1001.png|400px|]]
1349
|-
1350
| colspan="2"|[[Image:draft_Samper_718004671-Ice1600.png|300px|Melting of an ice cylinder. Snapshots of the melting process with temperature contours at different time steps.]]
1351
|- style="text-align: center; font-size: 75%;"
1352
| colspan="2" | '''Figure 23:''' Melting of an ice cylinder. Snapshots of the melting process with temperature contours at different time steps.
1353
|}
1354
1355
<div id='img-24'></div>
1356
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1357
|-
1358
|[[Image:draft_Samper_718004671-iceZoom281.png|400px|]]
1359
|[[Image:draft_Samper_718004671-iceZoom470.png|400px|]]
1360
|-
1361
|[[Image:draft_Samper_718004671-iceZoom977.png|400px|]]
1362
|[[Image:draft_Samper_718004671-iceZoom1274.png|400px|]]
1363
|-
1364
|[[Image:draft_Samper_718004671-iceZoom1469.png|400px|]]
1365
|[[Image:draft_Samper_718004671-iceZoom1547.png|400px|Melting of an ice cylinder. Zoom of the ice domain at different time instants.]]
1366
|- style="text-align: center; font-size: 75%;"
1367
| colspan="2" | '''Figure 24:''' Melting of an ice cylinder. Zoom of the ice domain at different time instants.
1368
|}
1369
1370
===8.8 Falling and warming of a solid sphere in a cilindrical tank containing hot water===
1371
1372
A solid sphere at <math display="inline">^\circ </math>T=270 K is dropped into a cilndrical tank containing still water  at <math display="inline">^\circ </math>T=340 K. In  Figure [[#img-22|22]] the geometry and the problem data are given. The 3D simulation is run for a duration of 3<math display="inline">s</math>  with <math display="inline">\Delta t</math>=<math display="inline">0.001 s</math>. A finite element mesh of 144663 4-noded tetrahedral elements has been used to discretize both the fluid domain and the sphere. Figure [[#img-26|26]] shows six representative snapshots of the analysis. The temperature contours have been plotted over the fluid domain and the sphere.
1373
1374
Figure [[#img-27|27]] shows the  evolution of the temperature at the center of the sphere versus time. The solid material has high conductivity and this explains its fast warming. After three seconds, it practically reaches the equilibrium temperature. We note that the  normal heat flux along the boundaries in contact with the air have been considered to be zero.
1375
1376
<div id='img-25'></div>
1377
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1378
|-
1379
|[[Image:draft_Samper_718004671-ball3DInput.png|400px|]]
1380
|[[Image:draft_Samper_718004671-ball3DDataGeo.png|400px|]]
1381
|-
1382
| colspan="2"|[[Image:draft_Samper_718004671-ball3DDataMat.png|600px|Warming of a solid sphere with initial temperature ^∘T=270 K falling into a cylindrical tank containing a fluid at ^∘T=340 K. Initial geometry and material properties.]]
1383
|- style="text-align: center; font-size: 75%;"
1384
| colspan="2" | '''Figure 25:''' Warming of a solid sphere with initial temperature <math>^\circ </math>T=270 K falling into a cylindrical tank containing a fluid at <math>^\circ </math>T=340 K. Initial geometry and material properties.
1385
|}
1386
1387
<div id='img-26'></div>
1388
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1389
|-
1390
|[[Image:draft_Samper_718004671-ball3D8.png|400px|]]
1391
|[[Image:draft_Samper_718004671-ball3D17.png|400px|]]
1392
|-
1393
|[[Image:draft_Samper_718004671-ball3D38.png|400px|]]
1394
|[[Image:draft_Samper_718004671-tempIce.png|400px|]]
1395
|-
1396
|[[Image:draft_Samper_718004671-ball3D53.png|400px|]]
1397
|[[Image:draft_Samper_718004671-ball3D71.png|400px|]]
1398
|-
1399
| colspan="2"|[[Image:draft_Samper_718004671-ball3D300.png|300px|Warming of a solid sphere (^∘T=270 K) falling into a cylindrical tank containing a fluid at ^∘T=340 K. Snapshots of the  motion of the sphere and the temperature contours at different time steps.]]
1400
|- style="text-align: center; font-size: 75%;"
1401
| colspan="2" | '''Figure 26:''' Warming of a solid sphere (<math>^\circ </math>T=270 K) falling into a cylindrical tank containing a fluid at <math>^\circ </math>T=340 K. Snapshots of the  motion of the sphere and the temperature contours at different time steps.
1402
|}
1403
1404
<div id='img-27'></div>
1405
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 80%;max-width: 100%;"
1406
|-
1407
|[[Image:draft_Samper_718004671-ball3DEvolution.png|480px|Warming of a solid sphere (^∘T=270 K) falling into a cylindrical tank containing a fluid at ^∘T=340 K. Evolution of the temperature at the center of the sphere.]]
1408
|- style="text-align: center; font-size: 75%;"
1409
| colspan="1" | '''Figure 27:''' Warming of a solid sphere (<math>^\circ </math>T=270 K) falling into a cylindrical tank containing a fluid at <math>^\circ </math>T=340 K. Evolution of the temperature at the center of the sphere.
1410
|}
1411
1412
==9 CONCLUDING REMARKS==
1413
1414
We have presented a unified Lagrangian formulation for analysis of industrial forming processes involving thermally coupled interactions between deformable continua containing fluids and solids. A  residual-based  expression of the mass conservation equation obtained using the FIC method  provides the necessary stability for quasi/fully incompressible situations. The  governing equations for the generalized continuum are discretized with the FEM using simplicial elements with equal linear interpolation for the velocities, the pressure and the temperature. The merits of the formulation in terms of its general applicability have been demonstrated in the solution of a variety of thermally-coupled industrial forming processes using the Particle Finite Element Method (PFEM).
1415
1416
==ACKNOWLEDGEMENTS==
1417
1418
This research was partially supported by the Advanced Grant  project SAFECON of the European Research Council and the HFLUIDS project of the National Research Programme of Spain.
1419
1420
===BIBLIOGRAPHY===
1421
1422
<div id="cite-1"></div>
1423
'''[[#citeF-1|[1]]]'''  Aubry R, Idelsohn SR, Oñate E (2005)  Particle finite element method in fluid-mechanics including thermal convection-diffusion. Computers and Structures,  Vol. 83, (17-18), pp 1459&#8211;1475.
1424
1425
<div id="cite-2"></div>
1426
'''[[#citeF-2|[2]]]'''   Aubry R, Idelsohn SR, Oñate E (2006)  Fractional step like schemes for free surface problems with thermal coupling using the Lagrangian PFEM. Computational Mechanics,  Vol. 38 (4-5), pp. 294&#8211;309.
1427
1428
<div id="cite-3"></div>
1429
'''[[#citeF-3|[3]]]'''  Belytschko T, Liu WK, Moran B, Non linear finite element for continua and structures, 2d Edition, Wiley, 2013.
1430
1431
<div id="cite-4"></div>
1432
'''[[#citeF-4|[4]]]'''  Carbonell JM, Oñate E, Suárez B (2010) Modeling of ground excavation with the Particle Finite Element Method. Journal of Engineering Mechanics (ASCE) 136(4):455&#8211;463
1433
1434
<div id="cite-5"></div>
1435
'''[[#citeF-5|[5]]]'''  Carbonell JM, Oñate E, Suárez B (2013) Modelling of tunnelling processes and cutting tool wear with the Particle Finite Element Method (PFEM). Comput. Mech. 52(3):607&#8211;629
1436
1437
<div id="cite-6"></div>
1438
'''[[#citeF-6|[6]]]'''  Chenot JL, Oñate E (1988) ''Modelling of Metal Forming Processes'', Kluwer Academic, Dordrecht.
1439
1440
<div id="cite-7"></div>
1441
'''[[#citeF-7|[7]]]'''   Donea J,  Huerta A  (2003) Finite element method for flow problems. J. Wiley
1442
1443
<div id="cite-8"></div>
1444
'''[[#citeF-8|[8]]]'''  Edelsbrunner H,  Mucke EP (1999) Three dimensional alpha shapes. ACM   Trans. Graphics  13:43&#8211;72
1445
1446
<div id="cite-9"></div>
1447
'''[[#citeF-9|[9]]]'''  Franci A, Oñate E, Carbonell JM (2013) On the effect of the  tangent bulk stiffness matrix in the analysis of free surface Lagrangian flows using PFEM. Research Report CIMNE PI402. Submitted to Int. J. Numer. Meth. Biomed. Engng.
1448
1449
<div id="cite-10"></div>
1450
'''[[#citeF-10|[10]]]'''  Franci A, Oñate E, Carbonell JM (2014) Unified updated Lagrangian formulation for fluid-structure interaction problems. Publication CIMNE No. PI404.
1451
1452
<div id="cite-11"></div>
1453
'''[[#citeF-11|[11]]]'''  Ghosh S, Castro JC,   Lee JK (2004) Material Processing and Design: Simulation and Applications. NUMIFORM 2004, American Institute of Physics.
1454
1455
<div id="cite-12"></div>
1456
'''[[#citeF-12|[12]]]'''  Huetnik J, Baaijens FPT  (Eds) (1998) ''Simulation of Materials Processing: Theory,  Methods and Applications, NUMIFORM 98''.  Enschede, Países Bajos,  A.A. Balkema, Rotterdam, 22&#8211;5 Jun.
1457
1458
<div id="cite-13"></div>
1459
'''[[#citeF-13|[13]]]'''  Idelsohn SR, Calvo N, Oñate E (2003c) Polyhedrization of an arbitrary point set. Comput. Method Appl. Mech. Engng. 192(22-24):2649&#8211;2668
1460
1461
<div id="cite-14"></div>
1462
'''[[#citeF-14|[14]]]'''  Idelsohn SR, Oñate E, Del Pin F (2004)  The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Numer. Meth. Biomed. Engng.,  61(7):964&#8211;989
1463
1464
<div id="cite-15"></div>
1465
'''[[#citeF-15|[15]]]'''  Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Engrg.  197:1762&#8211;1776
1466
1467
<div id="cite-16"></div>
1468
'''[[#citeF-16|[16]]]'''  Idelsohn SR, Mier-Torrecilla M, Oñate E  (2009) Multi-fluid flows with the Particle Finite Element Method. Comput Methods Appl Mech Engrg. 198:2750&#8211;2767
1469
1470
<div id="cite-17"></div>
1471
'''[[#citeF-17|[17]]]'''  Larese A,  Rossi R, Oñate E, Idelsohn SR (2008)  Validation of the Particle Finite Element Method (PFEM) for simulation of free surface flows. Engineering Computations 25(4):385&#8211;425
1472
1473
<div id="cite-18"></div>
1474
'''[[#citeF-18|[18]]]'''  Limache A, Idelsohn, SR, Rossi R, Oñate E (2007) The violation of objectivity in Laplace formulation of the Navier-Stokes equations. Int. J. Numerical Methods in Fluids, 54:639&#8211;664.
1475
1476
<div id="cite-19"></div>
1477
'''[[#citeF-19|[19]]]'''  Mori K (2001) ''Simulation of Material Processing: Theory, Methods and Applications'', A.A. Balkema, Lisse.
1478
1479
<div id="cite-20"></div>
1480
'''[[#citeF-20|[20]]]'''  Oliver X, Cante JC, Weyler R, González C, Hernández J (2007) Particle finite element methods in solid mechanics problems. In: Oñate E, Owen R (Eds) Computational Plasticity. Springer, Berlin, pp 87&#8211;103
1481
1482
<div id="cite-21"></div>
1483
'''[[#citeF-21|[21]]]'''  Oñate E (1998) Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput. Meth. Appl. Mech. Engng. 151:233&#8211;267
1484
1485
<div id="cite-22"></div>
1486
'''[[#citeF-22|[22]]]'''  Oñate E, Manzan M (1999)  A general procedure for deriving stabilized space-time finite element methods for advective-diffusive problems. International Journal for Numerical Methods in Fluids,  Vol. 31, pp. 203&#8211;221.
1487
1488
<div id="cite-23"></div>
1489
'''[[#citeF-23|[23]]]'''  Oñate E (2000) A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput Methods Appl Mech Engrg. 182(1&#8211;2):355&#8211;370
1490
1491
<div id="cite-24"></div>
1492
'''[[#citeF-24|[24]]]'''   Oñate E (2004) Possibilities of finite calculus in computational mechanics. Int. J. Num. Meth. Engng. 60(1):255&#8211;281
1493
1494
<div id="cite-25"></div>
1495
'''[[#citeF-25|[25]]]'''   Oñate E, Rojek J, Taylor R, Zienkiewicz O (2004a) Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int. J. Numer. Meth. Engng. 59(11):1473&#8211;1500
1496
1497
<div id="cite-26"></div>
1498
'''[[#citeF-26|[26]]]'''  Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004b) The particle   finite element method. An overview. Int. J. Comput. Methods    1(2):267&#8211;307
1499
1500
<div id="cite-27"></div>
1501
'''[[#citeF-27|[27]]]'''  Oñate E, M.A. Celigueta, Idelsohn SR (2006) Modeling bed erosion in   free surface flows by the Particle Finite Element Method, Acta   Geotechnia 1(4):237&#8211;252
1502
1503
<div id="cite-28"></div>
1504
'''[[#citeF-28|[28]]]'''  Oñate E, Valls A, García J  (2006) FIC/FEM formulation   with matrix stabilizing terms for incompressible flows at low and high   Reynold's numbers. Computational Mechanics 38 (4-5):440&#8211;455
1505
1506
<div id="cite-29"></div>
1507
'''[[#citeF-29|[29]]]'''  Oñate E, García J,  SR Idelsohn, Del Pin F (2006)  FIC   formulations for finite element analysis of incompressible flows. Eulerian,   ALE and Lagrangian approaches.  Comput. Meth. Appl. Mech. Engng.   195(23-24):3001&#8211;3037
1508
1509
<div id="cite-30"></div>
1510
'''[[#citeF-30|[30]]]'''  Oñate E, Rojek J, Chiumenti M, Idelsohn SR, Del Pin F, Aubry R (2006) Advances in stabilized finite element and particle methods for bulk forming processes. Comput. Meth. Appl. Mech. Engng. 195:6750&#8211;6777
1511
1512
<div id="cite-31"></div>
1513
'''[[#citeF-31|[31]]]'''  Oñate E, Owen DRJ, (Eds.), ''Computational Plasticity'', Springer 2007
1514
1515
<div id="cite-32"></div>
1516
'''[[#citeF-32|[32]]]'''  Oñate E, Idelsohn SR,  Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput. Meth. Appl. Mech. Engng. 197(19-20):1777&#8211;1800
1517
1518
<div id="cite-33"></div>
1519
'''[[#citeF-33|[33]]]'''  Oñate E (2009)  Structural analysis with the finite element method. Linear statics. Volume 1. Basis and Solids.  CIMNE-Springer
1520
1521
<div id="cite-34"></div>
1522
'''[[#citeF-34|[34]]]'''  Oñate E, Rossi R,  Idelsohn SR, Butler K (2010) Melting and spread of polymers in fire with the particle finite element method. Int. J. Numerical Methods in Engineering, 81(8):1046&#8211;1072
1523
1524
<div id="cite-35"></div>
1525
'''[[#citeF-35|[35]]]'''  Oñate E, Celigueta MA, Idelsohn SR,  Salazar F, Suárez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Computational Mechanics, 48(3):307&#8211;318
1526
1527
<div id="cite-36"></div>
1528
'''[[#citeF-36|[36]]]'''  Oñate E, Idelsohn SR, Felippa C (2011) Consistent pressure Laplacian stabilization for incompressible continua via higher-order finite calculus. Int. J. Numer. Meth. Engng, 87 (1-5): 171&#8211;195
1529
1530
<div id="cite-37"></div>
1531
'''[[#citeF-37|[37]]]'''  Oñate E, Carbonell JM  (2013) Updated Lagrangian finite element formulation for quasi-incompressible fluids. Research Report PI393, CIMNE. Submitted to Comput. Mechanics
1532
1533
<div id="cite-38"></div>
1534
'''[[#citeF-38|[38]]]'''  Oñate E, Franci A, Carbonell JM (2013) Lagrangian formulation  for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int. J. Num. Meth. Fluids, DOI: 10.1002/fld.3870
1535
1536
<div id="cite-39"></div>
1537
'''[[#citeF-39|[39]]]'''  Pietrzyk M, Kusiak J, Majta J, Hartley P, Pillinger I (2000) ''Metal Forming 2000''. A.A. Balkema, Rotterdam
1538
1539
<div id="cite-40"></div>
1540
'''[[#citeF-40|[40]]]'''  Pittman JFT, Zienkiewicz OC,  Wood RD, Alexander JM (Eds) (1984) '' Numerical Analysis of Forming Processes''. Wiley, Chichester
1541
1542
<div id="cite-41"></div>
1543
'''[[#citeF-41|[41]]]'''  Ryzhakov P, Oñate E, Rossi R, Idelsohn SR (2012) Improving mass conservation in simulation of incompressible flows. Int. J. Numer. Meth. Engng.  90(12):1435&#8211;1451
1544
1545
<div id="cite-42"></div>
1546
'''[[#citeF-42|[42]]]'''    Simo JC, Miehe C (1992)   Associative coupled thermoplasticity at finite strains Formulation, numerical analysis and implementation.   ''Computer Methods in Applied Mechanics and Engineering'', 98:41-104
1547
1548
<div id="cite-43"></div>
1549
'''[[#citeF-43|[43]]]'''  Tang B, Li JF, Wang TS (2009) Some improvements on free surface simulation by the particle finite element method. ''Int. J. Num. Methods in Fluids'', 60 (9):1032–-1054
1550
1551
<div id="cite-44"></div>
1552
'''[[#citeF-44|[44]]]'''  Zienkiewicz OC, Jain PC, Oñate E (1978) Flow of solids during forming and extrusion: some aspects of numerical solutions. ''Int. J. Solids Struct.'', 14:15&#8211;38
1553
1554
<div id="cite-45"></div>
1555
'''[[#citeF-45|[45]]]'''  Zienkiewicz OC, Oñate E,  Heinrich JC (1981)  A general formulation for coupled thermal flow of metals using finite elements, ''Int. J. Num. Meth. Eng.'', 17:1497&#8211;514, 1981
1556
1557
<div id="cite-46"></div>
1558
'''[[#citeF-46|[46]]]'''  Zienkiewicz OC,  Taylor RL, Zhu JZ (2005) The finite element method. The basis.  Vol. 1, 6th Ed., Elsevier
1559
1560
<div id="cite-47"></div>
1561
'''[[#citeF-47|[47]]]'''  Zienkiewicz OC,  Taylor RL (2005) The finite element method for   solid and structural mechanics. Vol. 2,  6th Ed., Elsevier
1562
1563
<div id="cite-48"></div>
1564
'''[[#citeF-48|[48]]]'''  Zienkiewicz OC,  Taylor RL, Nithiarasu P (2005)  The finite element   method for fluid dynamics.  Vol. 3, 6th Ed.,  Elsevier
1565

Return to Onate et al 2014c.

Back to Top

Document information

Published on 01/01/2014

Licence: CC BY-NC-SA license

Document Score

0

Views 32
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?