You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
==A PARTICLE FINITE ELEMENT METHOD  FOR  ANALYSIS OF INDUSTRIAL FORMING PROCESSES==
2
3
'''E. Oñate<math>^{1,2}</math>, A. Franci<math>^1</math>, J. M. Carbonell<math>^{1,2}</math>'''
4
5
{|
6
|-
7
8
|}
9
10
{|
11
|-
12
<math>^{1}</math> Centre Internacional de Metodes Numerics en Enginyeria (CIMNE) 
13
|-
14
| <math>^{2}</math> Universitat Politecnica de Catalunya (UPC)
15
|-
16
| Barcelona, Spain 
17
|-
18
| onate,falessandro,[mailto:cpuigbo@cimne.upc.edu cpuigbo@cimne.upc.edu]
19
|}
20
21
==Abstract==
22
23
'''keywords''' Updated Lagrangian formulation, finite element method, incompressible fluids, consistent tangent matrix, mixed formulation, stabilized method
24
25
==1 INTRODUCTION==
26
27
There is a large number of  forming manufacturing processes in industry that involve the interaction of highly deformable continua, including viscous fluids and solids that undergo large deformations. Typically these problems also include coupled thermal effects between the interacting bodies during the forming process.
28
29
A number of numerical methods has been developed over the years for the simulation of    industrial forming processes. The different methods can be classified as those based on a pure fluid mechanics formulation, i.e. the so-called flow approach developed around  the 1980's <span id='citeF-6'></span><span id='citeF-39'></span><span id='citeF-40'></span><span id='citeF-44'></span><span id='citeF-45'></span><span id='citeF-48'></span>[[#cite-6|[6,39,40,44,45,48]]] and those based on a solid mechanics formulation <span id='citeF-11'></span><span id='citeF-12'></span><span id='citeF-19'></span><span id='citeF-31'></span><span id='citeF-47'></span>[[#cite-11|[11,12,19,31,47]]].
30
31
In this work we present a generalized continuum mechanics formulation for the analysis of industrial forming processes that involve thermally coupled interactions between  deformable continua (both fluids and solids).
32
33
The motion of the deformable bodies (either a solid or a fluid) is described using a  Lagrangian mixed formulation with the velocities, the pressure and the temperature as the unknown variables. Appropriate constitutive laws for the different constituent materials in the different parts of the analysis domain  are used. The mixed  Lagrangian formulation allows us to model the non linear interaction (including coupled thermal effects) between the different bodies involved in the forming process in a unified manner.
34
35
The continuum mechanics equations are solved with the Particle Finite Element Method (PFEM, www.cimne.com/pfem). The PFEM treats the mesh nodes in the analysis domain as virtual particles that model the behaviour of the underlying  can freely move and even separate from the  domain representing, for instance, the effect of water drops or cutting particles in drilling problems and machining. A mesh connects the nodes discretizing the continuum domain where the governing equations are solved using a stabilized FEM. Examples of application of PFEM to problems in fluid and solid mechanics including fluid-structure interaction (FSI) situations and coupled thermal flow problems can be found in <span id='citeF-1'></span><span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-9'></span><span id='citeF-13'></span><span id='citeF-14'></span><span id='citeF-15'></span><span id='citeF-16'></span><span id='citeF-17'></span><span id='citeF-18'></span><span id='citeF-20'></span><span id='citeF-26'></span><span id='citeF-27'></span><span id='citeF-34'></span><span id='citeF-35'></span><span id='citeF-37'></span><span id='citeF-38'></span><span id='citeF-43'></span>[[#cite-1|[1,2,4,5,9,13,14,15,16,17,18,20,26,27,34,35,37,38,43]]]. Early attempts of the using the PFEM for solving metal forming problems were reported in <span id='citeF-20'></span><span id='citeF-30'></span>[[#cite-20|[20,30]]].
36
37
In Lagrangian analysis procedures (such as  PFEM) the motion of the virtual particles (i.e. the nodes) and of physical particles is tracked during the transient solution. Hence, the convective terms vanish in the momentum and heat transfer equations for the continuum part of the domain and no numerical stabilization is needed for treating those terms. Another source of numerical instability however remains in Lagrangian formulation, namely the treatment of incompressibility using equal order FEM interpolation for the velocities and the pressure. In this work a stabilized form of the discretized mass conservation equation is obtaining using the Finite Calculus (FIC) method proposed by Oñate et al. <span id='citeF-21'></span><span id='citeF-22'></span><span id='citeF-23'></span><span id='citeF-24'></span><span id='citeF-25'></span><span id='citeF-28'></span><span id='citeF-29'></span><span id='citeF-30'></span><span id='citeF-36'></span>[[#cite-21|[21,22,23,24,25,28,29,30,36]]] that has excellent mass preservation features.
38
39
The generalized Lagrangian approach here described follows the ideas presented in <span id='citeF-15'></span>[[#cite-15|[15]]] where a PFEM formulation for treating fluids and solids in a unified  manner was proposed. These ideas have been extended by Franci, Oñate and Carbonell <span id='citeF-10'></span>[[#cite-10|[10]]] using a stabilized PFEM formulation based on the FIC method.
40
41
The lay-out of the paper is the following. In the next section we present the basic equations for conservation of linear momentum, mass conservation and heat transfer for a  continuum using a generalized Lagrangian framework. Next we derive the stabilized FIC form of the mass conservation equation. An incompressible continuum can be considered as the limit case of the compressible problem. Then the mixed finite element discretization using simplicial element with equal order approximation for the velocity,  the pressure and the temperature is presented and the relevant matrices and vectors of the discretized problem are given.  Details of the implicit solution of the Lagrangian FEM equations in time using an updated Lagrangian approach and a Newton-Raphson type iterative scheme are presented. The relevance of the bulk stiffness terms in the tangent matrix  for enhancing the convergence and accuracy of the iterative solution  for problems involving quasi and fully incompressible continua is discussed. The basic steps of the PFEM are described.
42
43
The efficiency and general applicability of the PFEM  are verified by solving a set of thermally coupled industrial forming problems in two (2D) and three (3D) dimensions. The excellent performance of the numerical method proposed for all the problems analyzed is highlighted.
44
45
<div id='img-1'></div>
46
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
47
|-
48
|[[Image:draft_Samper_718004671-Figura1.png|600px|Initial (t =⁰t), current (t=ⁿt) and updated (t=ⁿ⁺¹ t) configurations of a  domain V with Neumann (Γₜ) and Dirichlet (Γ<sub>v</sub>) boundaries. Trajectory of a material point i and velocity  (v<sub>i</sub>) and displacement (u<sub>i</sub>) vectors of the point at each configuration. ⁿu, ⁿ⁺¹u and ∆u denote schematically the trajectories of the overall domain between two configurations.]]
49
|- style="text-align: center; font-size: 75%;"
50
| colspan="1" | '''Figure 1:''' Initial (<math>t ={}^0 t</math>), current (<math>t={}^n t</math>) and updated (<math>t={}^{n+1} t</math>) configurations of a  domain <math>V</math> with Neumann (<math>\Gamma _t</math>) and Dirichlet (<math>\Gamma _v</math>) boundaries. Trajectory of a material point <math>i</math> and velocity  (<math>{v}_i</math>) and displacement (<math>{u}_i</math>) vectors of the point at each configuration. <math>{}^n {u}</math>, <math>{}^{n+1}{u}</math> and <math>\Delta {u}</math> denote schematically the trajectories of the overall domain between two configurations.
51
|}
52
53
==2 GOVERNING EQUATIONS FOR A LAGRANGIAN CONTINUUM==
54
55
We will consider a domain containing a deformable material (either a fluid or a solid) which evolves in time due to external and internal forces and prescribed velocities and thermal conditions from an ''initial configuration'' at time <math display="inline">t={}^0 t</math> (typically <math display="inline">{}^0t =0</math>) to a ''current configuration'' at time <math display="inline">t={}^n t</math>. The volume <math display="inline">V</math> and its boundary <math display="inline">\Gamma </math> at the initial and current configurations are denoted as (<math display="inline">{}^0 V, {}^0 \Gamma </math>) and (<math display="inline">{}^n V, {}^n \Gamma </math>), respectively. The goal is to find the domain that the material  occupies, as well as the velocities, strain rates and stresses (the deviatoric stresses and the pressure) and the temperature in the so-called ''updated configuration''  at time <math display="inline">{}^{n+1} t= {}^n t+\Delta t</math> (Figure 1). In the following a left superindex denotes the configuration where the variable is computed.
56
57
===2.1 Momentum equations===
58
59
The equations of conservation of linear momentum for a deformable continuum are written in the Lagrangian description as <span id='citeF-3'></span>[[#cite-3|[3]]]
60
61
<span id="eq-1"></span>
62
{| class="formulaSCP" style="width: 100%; text-align: left;" 
63
|-
64
| 
65
{| style="text-align: left; margin:auto;" 
66
|-
67
| style="text-align: center;" | <math>\rho \frac{Dv_i}{Dt}-{\partial {}^{n+1}\sigma _{ij} \over \partial {}^{n+1}x_j} - {}^{n+1} b_i=0\quad , \quad i,j=1,\cdots , n_s \quad  \hbox{in } {}^{n+1}V  </math>
68
|}
69
| style="width: 5px;text-align: right;" | (1)
70
|}
71
72
In Eq.([[#eq-1|1]]), <math display="inline">{}^{n+1}V</math> is the analysis domain in the ''updated configuration'' at time <math display="inline">^{n+1}t</math> with boundary <math display="inline">{}^{n+1}\Gamma </math>, <math display="inline">v_i</math> and <math display="inline">b_i</math> are the velocity and body force components  along the <math display="inline">i</math>th Cartesian axis, <math display="inline">\rho </math> is the density, <math display="inline">n_s</math> is the number of space dimensions (i.e. <math display="inline">n_s=3</math> for 3D problems) and <math display="inline">{}^{n+1}\sigma _{ij}</math> are the Cauchy stresses in <math display="inline">{}^{n+1}V</math>  that are split in the deviatoric (<math display="inline">s_{ij}</math>) and pressure (<math display="inline">p</math>) components as
73
74
<span id="eq-2"></span>
75
{| class="formulaSCP" style="width: 100%; text-align: left;" 
76
|-
77
| 
78
{| style="text-align: left; margin:auto;" 
79
|-
80
| style="text-align: center;" | <math>{}^{n+1}\sigma _{ij} = {}^{n+1}s_{ij}+ {}^{n+1}p \delta _{ij} </math>
81
|}
82
| style="width: 5px;text-align: right;" | (2)
83
|}
84
85
where <math display="inline">\delta _{ij}</math> is the Kronecker delta. The pressure is assumed to be positive for a tension state. Summation of terms with repeated indices  is assumed in Eq.([[#eq-1|1]]) and in  the following.
86
87
'''Remark 1.''' The term <math display="inline">\frac{Dv_i}{Dt}</math> in Eq.([[#eq-1|1]]) is the ''material derivative'' of the velocity. This term is typically computed in a Lagrangian framework as
88
89
<span id="eq-3"></span>
90
{| class="formulaSCP" style="width: 100%; text-align: left;" 
91
|-
92
| 
93
{| style="text-align: left; margin:auto;" 
94
|-
95
| style="text-align: center;" | <math>\frac{Dv_i}{Dt} = \frac{ {}^{n+1}v_i- {}^n v_i }{\Delta t}     </math>
96
|}
97
| style="width: 5px;text-align: right;" | (3)
98
|}
99
100
with
101
102
<span id="eq-4"></span>
103
{| class="formulaSCP" style="width: 100%; text-align: left;" 
104
|-
105
| 
106
{| style="text-align: left; margin:auto;" 
107
|-
108
| style="text-align: center;" | <math>{}^{n+1} v_i:=v_i ({}^{n+1} {x},{}^{n+1} t)\quad ,\quad {}^n v_i:=v_i ({}^n{x},{}^n t)       </math>
109
|}
110
| style="width: 5px;text-align: right;" | (4)
111
|}
112
113
where <math display="inline">{}^n v_i</math> is the value of the velocity  at the material point that has the position <math display="inline">{}^n{x}</math> at time <math display="inline">t={}^nt</math> and <math display="inline">{x}</math> is the coordinates vector in a fixed Cartesian  system <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-48'></span>[[#cite-3|[3,7,48]]].
114
115
===2.2 Constitutive equations===
116
117
===''Newtonian fluids''===
118
119
The relationship between the deviatoric Cauchy stresses <math display="inline">{}^{n+1}s_{ij}</math> and the  rates of deformation <math display="inline">\varepsilon _{ij}</math> has the standard form for a Newtonian fluid,
120
121
<span id="eq-5"></span>
122
{| class="formulaSCP" style="width: 100%; text-align: left;" 
123
|-
124
| 
125
{| style="text-align: left; margin:auto;" 
126
|-
127
| style="text-align: center;" | <math>{}^{n+1}s_{ij} = 2\mu \varepsilon '_{ij} \quad \hbox{with}\quad  \varepsilon '_{ij}= \varepsilon _{ij} - {1 \over 3}\varepsilon _v \delta _{ij}\quad \hbox{and}\quad  \varepsilon _{ij} = {1 \over 2}\left({\partial {}^{n+1}v_i \over \partial {}^{n+1}x_j} +  {\partial {}^{n+1}v_j \over \partial {}^{n+1}x_i}  \right) </math>
128
|}
129
| style="width: 5px;text-align: right;" | (5)
130
|}
131
132
where <math display="inline">\mu </math> is the viscosity, <math display="inline">\varepsilon '_{ij}</math> are the deviatoric rates of deformation and <math display="inline">\varepsilon _v</math> is the volumetric strain rate defined as <math display="inline">\varepsilon _v= \varepsilon _{ii}</math>.
133
134
The above constitutive equation  can be written in matrix form as (for 2D problems)
135
136
<span id="eq-6"></span>
137
{| class="formulaSCP" style="width: 100%; text-align: left;" 
138
|-
139
| 
140
{| style="text-align: left; margin:auto;" 
141
|-
142
| style="text-align: center;" | <math>{}^{n+1}{s} = {D} {\boldsymbol \varepsilon } \quad \hbox{with}\quad   {D}=2 \mu \left[                      \begin{array}{cccccc}2/3 & -1/3 & 0 \\                         -1/3 &2/3  &0  \\                       0 & 0 &1/2\\                      \end{array} \right]   </math>
143
|}
144
| style="width: 5px;text-align: right;" | (6)
145
|}
146
147
In Eq.([[#eq-6|6]]) <math display="inline">{s} = [s_{11},s_{22},s_{12}]^T</math> and <math display="inline">{\boldsymbol \varepsilon } = [\varepsilon _{11},\varepsilon _{22},\varepsilon _{12}]^T</math> are the deviatoric Cauchy stress vector and the strain rate vector, respectively.
148
149
===''Hypo-elastic solids''===
150
151
We will assume a hipo-elastic solid with a constitutive equation of the form
152
153
<span id="eq-7"></span>
154
{| class="formulaSCP" style="width: 100%; text-align: left;" 
155
|-
156
| 
157
{| style="text-align: left; margin:auto;" 
158
|-
159
| style="text-align: center;" | <math>\sigma _{ij}^{\nabla ^J} = 2\bar \mu \varepsilon _{ij} + \lambda \varepsilon _v \delta _{ij}  </math>
160
|}
161
| style="width: 5px;text-align: right;" | (7)
162
|}
163
164
where <math display="inline">\bar \mu </math> and <math display="inline">\lambda </math> are the Lame constants and <math display="inline">\sigma _{ij}^{\nabla ^J}</math> is the Jaumann rate of the  Cauchy stresses <span id='citeF-3'></span>[[#cite-3|[3]]].
165
166
Tensor <math display="inline">{\boldsymbol \sigma }^{\nabla ^J}</math> is approximated in this work as
167
168
<span id="eq-8"></span>
169
{| class="formulaSCP" style="width: 100%; text-align: left;" 
170
|-
171
| 
172
{| style="text-align: left; margin:auto;" 
173
|-
174
| style="text-align: center;" | <math>{\boldsymbol \sigma }^{\nabla ^J}\simeq \frac{1}{J} L ({\boldsymbol \tau })  </math>
175
|}
176
| style="width: 5px;text-align: right;" | (8)
177
|}
178
179
where <math display="inline">J</math> is the determinant of the deformation tensor <math display="inline">{F}</math> <math display="inline">\left(F_{ij} ={\partial {}^{n+1}x_i \over \partial ^{n}x_j}\right)</math>, and <math display="inline">L ({\boldsymbol \tau }) </math> is the Lie derivative of the Kirchhoff stress tensor <math display="inline">\tau _{ij}</math> <span id='citeF-3'></span>[[#cite-3|[3]]].
180
181
Combining Eqs.([[#eq-7|7]]) and ([[#eq-8|8]]) gives the following approximation for <math display="inline">L ({\boldsymbol \tau })</math>
182
183
<span id="eq-9"></span>
184
{| class="formulaSCP" style="width: 100%; text-align: left;" 
185
|-
186
| 
187
{| style="text-align: left; margin:auto;" 
188
|-
189
| style="text-align: center;" | <math>L(\tau _{ij}) \simeq J (2\bar \mu \varepsilon _{ij} + \lambda \varepsilon _v \delta _{ij})  </math>
190
|}
191
| style="width: 5px;text-align: right;" | (9)
192
|}
193
194
'''Remark 2.''' Assumption ([[#eq-8|8]]) is equivalent to accepting that the Truesdell and Jaumann rates of the Cauchy stresses are identical. A more accurate assumption for solving the same problem can be found in <span id='citeF-10'></span>[[#cite-10|[10]]].
195
196
Using standard transformations of continuum mechanics gives <span id='citeF-3'></span>[[#cite-3|[3]]]
197
198
<span id="eq-10"></span>
199
{| class="formulaSCP" style="width: 100%; text-align: left;" 
200
|-
201
| 
202
{| style="text-align: left; margin:auto;" 
203
|-
204
| style="text-align: center;" | <math>{L} ({\boldsymbol \tau }) =  {F}\dot {S} {F}^T = \frac{1}{\Delta t} {F} (\Delta {S}) {F}^T = \frac{J}{\Delta t}\Delta{\boldsymbol \sigma }  </math>
205
|}
206
| style="width: 5px;text-align: right;" | (10)
207
|}
208
209
where <math display="inline">{S}</math> are the 2nd Piola-Kirchhoff stress tensor, the upper dot denotes the time derivative and <math display="inline"> \Delta{\boldsymbol \sigma }</math> is the increment of the Cauchy stress tensor.
210
211
Substituting Eq.([[#eq-10|10]]) into ([[#eq-9|9]])  gives after grouping terms
212
213
<span id="eq-11"></span>
214
{| class="formulaSCP" style="width: 100%; text-align: left;" 
215
|-
216
| 
217
{| style="text-align: left; margin:auto;" 
218
|-
219
| style="text-align: center;" | <math>{}^{n+1}\sigma _{ij}= {}^{n}\sigma _{ij} + \Delta \sigma _{ij}  </math>
220
|}
221
| style="width: 5px;text-align: right;" | (11)
222
|}
223
224
where
225
226
<span id="eq-12"></span>
227
{| class="formulaSCP" style="width: 100%; text-align: left;" 
228
|-
229
| 
230
{| style="text-align: left; margin:auto;" 
231
|-
232
| style="text-align: center;" | <math>\Delta \sigma _{ij} = \Delta s_{ij}+ \Delta p \delta _{ij}  </math>
233
|}
234
| style="width: 5px;text-align: right;" | (12)
235
|}
236
237
with
238
239
<span id="eq-13"></span>
240
{| class="formulaSCP" style="width: 100%; text-align: left;" 
241
|-
242
| 
243
{| style="text-align: left; margin:auto;" 
244
|-
245
| style="text-align: center;" | <math>\Delta s_{ij} = 2\bar \mu \Delta t \varepsilon '_{ij}\quad \hbox{and}\quad \Delta p = \bar \kappa \Delta t \varepsilon _v  </math>
246
|}
247
| style="width: 5px;text-align: right;" | (13)
248
|}
249
250
where
251
252
<span id="eq-14"></span>
253
{| class="formulaSCP" style="width: 100%; text-align: left;" 
254
|-
255
| 
256
{| style="text-align: left; margin:auto;" 
257
|-
258
| style="text-align: center;" | <math>\bar \kappa = \frac{2}{3} \bar \mu + \lambda    </math>
259
|}
260
| style="width: 5px;text-align: right;" | (14)
261
|}
262
263
is the bulk modulus of the solid material.
264
265
The Cauchy stresses <math display="inline">{}^{n}{\boldsymbol \sigma }</math> in Eq.([[#eq-12|12]]) are computed on the updated configuration. These stresses can be obtained from the 2nd Piola-Kirchhoff stresses <math display="inline">{}^n{S}</math> on the current configuration  as
266
267
<span id="eq-15"></span>
268
{| class="formulaSCP" style="width: 100%; text-align: left;" 
269
|-
270
| 
271
{| style="text-align: left; margin:auto;" 
272
|-
273
| style="text-align: center;" | <math>{}^{n}{\boldsymbol \sigma } = \frac{1}{J} {F}  ({}^n{S}){F}^T   </math>
274
|}
275
| style="width: 5px;text-align: right;" | (15)
276
|}
277
278
'''Remark 3.''' The relationship between the deviatoric Cauchy stress increments and the rates of deformation for a solid material can be written in the same matrix form as Eq.(6) substituting in matrix <math display="inline">D</math> the viscosity <math display="inline">\mu </math> by <math display="inline">\bar \mu \Delta t </math>.
279
280
===2.3 Mass conservation equation===
281
282
The  mass conservation equation can be written for both fluid and solids as <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-48'></span>[[#cite-3|[3,7,48]]]
283
284
<span id="eq-16"></span>
285
{| class="formulaSCP" style="width: 100%; text-align: left;" 
286
|-
287
| 
288
{| style="text-align: left; margin:auto;" 
289
|-
290
| style="text-align: center;" | <math>r_v =0  \quad  \hbox{in } {}^{n+1}V  </math>
291
|}
292
| style="width: 5px;text-align: right;" | (16)
293
|}
294
295
with
296
297
<span id="eq-17"></span>
298
{| class="formulaSCP" style="width: 100%; text-align: left;" 
299
|-
300
| 
301
{| style="text-align: left; margin:auto;" 
302
|-
303
| style="text-align: center;" | <math>r_v:=-\frac{1}{\kappa }\frac{Dp}{Dt}+\varepsilon _v </math>
304
|}
305
| style="width: 5px;text-align: right;" | (17)
306
|}
307
308
For a quasi-incompressible fluid material <math display="inline">\kappa =\rho c^2</math> where <math display="inline">c</math> is the speed of sound in the fluid. For a solid material, <math display="inline">\kappa = \bar \kappa </math> with <math display="inline">\bar \kappa </math> given by Eq.([[#eq-14|14]]). Eqs.([[#2.3 Mass conservation equation|2.3]]) define the constitutive equation for the pressure for both solids and quasi-incompressible fluids as <math display="inline">\Delta p = \kappa  \Delta t \varepsilon _v</math>. This is consisted with the expression obtained in Eq.([[#eq-13|13]]) for a hypo-elastic solid material.
309
310
For a fully incompressible material <math display="inline">\kappa =\infty </math> and Eq.([[#eq-16|16]]) simplifies to the standard form, <math display="inline">\varepsilon _v =0</math>. In this case the pressure increment can not be obtained from Eqs.([[#2.3 Mass conservation equation|2.3]]) and then the pressure becomes an independent variable <span id='citeF-7'></span><span id='citeF-48'></span>[[#cite-7|[7,48]]]. In our work we will retain the quasi-incompressible form of <math display="inline">r_v</math>  for convenience.
311
312
'''Remark 4.''' Note that for Newtonian fluids the deviatoric stresses are directly related to the rates of deformation by Eq.([[#eq-5|5]]), whereas for solids the ''deviatoric stress increments'' are related to the rates of deformation by Eq.([[#eq-13|13]]). On the other hand, the relationship between the pressure increment and the volumetric strain rate has the form of Eq.([[#eq-13|13]]) for both fluids and solids, with the adequate definition of the bulk modulus for each case.
313
314
===2.4 Thermal balance===
315
316
The thermal balance equation is written in a Lagrangian framework as
317
318
<span id="eq-18"></span>
319
{| class="formulaSCP" style="width: 100%; text-align: left;" 
320
|-
321
| 
322
{| style="text-align: left; margin:auto;" 
323
|-
324
| style="text-align: center;" | <math>\rho c \frac{DT}{Dt} - {\partial  \over \partial {}^{n+1} x_i} \left(k {\partial T \over \partial {}^{n+1} x_i}\right)+ {}^{n+1} Q =0  \quad ,\quad  i,j=1,\cdots , n_s  \quad \hbox{in } {}^{n+1}V  </math>
325
|}
326
| style="width: 5px;text-align: right;" | (18)
327
|}
328
329
where <math display="inline">T</math> is the temperature, <math display="inline">c</math> is the thermal capacity, <math display="inline">k</math> is the heat conductivity and <math display="inline">Q</math> is the external heat source.
330
331
===2.5 Boundary conditions===
332
333
===''Mechanical problem''===
334
335
The boundary conditions at the Dirichlet (<math display="inline">\Gamma _v</math>) and Neumann (<math display="inline">\Gamma _t</math>) boundaries with <math display="inline">\Gamma  = \Gamma _v \cup \Gamma _t</math> are
336
337
<span id="eq-19"></span>
338
{| class="formulaSCP" style="width: 100%; text-align: left;" 
339
|-
340
| 
341
{| style="text-align: left; margin:auto;" 
342
|-
343
| style="text-align: center;" | <math>{}^{n+1} v_i -{}^{n+1} v_i^p =0 \qquad \hbox{on }{}^{n+1}\Gamma _v </math>
344
|}
345
| style="width: 5px;text-align: right;" | (19)
346
|}
347
348
<span id="eq-20"></span>
349
{| class="formulaSCP" style="width: 100%; text-align: left;" 
350
|-
351
| 
352
{| style="text-align: left; margin:auto;" 
353
|-
354
| style="text-align: center;" | <math>{}^{n+1}\sigma _{ij}n_j - {}^{n+1} t_i^p =0 \quad \hbox{on }{}^{n+1}\Gamma _t \quad , \quad i,j=1,\cdots , n_s  </math>
355
|}
356
| style="width: 5px;text-align: right;" | (20)
357
|}
358
359
where <math display="inline">v_i^p</math> and <math display="inline">t_i^p</math> are the prescribed velocities and prescribed tractions on the respective boundaries and <math display="inline">n_j</math> are the components of the unit normal vector to the boundary <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-48'></span>[[#cite-3|[3,7,48]]].
360
361
===''Thermal problem''===
362
363
<span id="eq-21"></span>
364
<span id="eq-22"></span>
365
{| class="formulaSCP" style="width: 100%; text-align: left;" 
366
|-
367
| 
368
{| style="text-align: left; margin:auto;" 
369
|-
370
| style="text-align: center;" | <math>{}^{n+1}T - {}^{n+1}T^p =0 \quad \hbox{on }{}^{n+1}\Gamma _T</math>
371
| style="width: 5px;text-align: right;" | (21)
372
|-
373
| style="text-align: center;" | <math> k {\partial T \over \partial n} + {}^{n+1} q_n^p =0 \quad \hbox{on }{}^{n+1}\Gamma _q  </math>
374
| style="width: 5px;text-align: right;" | (22)
375
|}
376
|}
377
378
where <math display="inline">T^p</math> and <math display="inline">q_n^p</math> are the prescribed temperature and the prescribed normal heat flux at the boundaries <math display="inline">\Gamma _T</math> and <math display="inline">\Gamma _q</math>, respectively and <math display="inline">n</math> is the direction normal to be boundary.
379
380
==3 STABILIZED MASS CONSERVATION EQUATION==
381
382
In this work we will use the following stabilized form of the mass conservation equation obtained using the Finite Calculus (FIC) approach <span id='citeF-38'></span>[[#cite-38|[38]]]
383
384
<span id="eq-23"></span>
385
{| class="formulaSCP" style="width: 100%; text-align: left;" 
386
|-
387
| 
388
{| style="text-align: left; margin:auto;" 
389
|-
390
| style="text-align: center;" | <math>-\frac{1}{\kappa }\frac{Dp}{Dt}+  \varepsilon _v  +\tau {\partial {}^{n+1} \hat r_{m_i} \over \partial {}^{n+1}x_i} =0 \qquad \hbox{in }{}^{n+1}V  </math>
391
|}
392
| style="width: 5px;text-align: right;" | (23)
393
|}
394
395
The last term in Eq.([[#eq-23|23]]) is the so-called stabilization term introduced by the FIC technique; in this equation <math display="inline">\hat r_{m_i}</math> is a ''static momentum term'' defined as
396
397
<span id="eq-24"></span>
398
{| class="formulaSCP" style="width: 100%; text-align: left;" 
399
|-
400
| 
401
{| style="text-align: left; margin:auto;" 
402
|-
403
| style="text-align: center;" | <math>\hat r_{m_i}= {\partial s_{ij} \over \partial x_j} + \frac{\partial p}{\partial x_i} + b_i   </math>
404
|}
405
| style="width: 5px;text-align: right;" | (24)
406
|}
407
408
and <math display="inline">\tau </math> is a ''stabilization parameter''. Eq.([[#eq-23|23]]) is a simplification of a more general FIC-based stabilized expression for quasi-incompressible fluids detailed  in <span id='citeF-38'></span>[[#cite-38|[38]]].
409
410
The stabilization parameter <math display="inline">\tau </math> is typically computed for each element  as
411
412
<span id="eq-25"></span>
413
{| class="formulaSCP" style="width: 100%; text-align: left;" 
414
|-
415
| 
416
{| style="text-align: left; margin:auto;" 
417
|-
418
| style="text-align: center;" | <math>\tau = \left(\frac{8\mu }{(l^e)^2} + \frac{2\rho }{\Delta t}  \right)^{-1} </math>
419
|}
420
| style="width: 5px;text-align: right;" | (25)
421
|}
422
423
where <math display="inline">\Delta t</math> is the time step used for the transient solution and <math display="inline">l^e</math> is a characteristic element length computed as <math display="inline">l^e = 2(V^e)^{1/n_s}</math> where <math display="inline">V^e</math> is the element area (for 3-noded triangles) or volume (for 4-noded tetrahedra). For heterogeneous material the values of <math display="inline">\mu </math> and <math display="inline">\rho </math>  are computed at the element center <span id='citeF-38'></span>[[#cite-38|[38]]]. For  a solid material, the viscosity <math display="inline">\mu </math> is substituted by <math display="inline">\bar \mu \Delta t</math> with <math display="inline">\bar \mu </math> defined in Eq.(7).
424
425
We note that <math display="inline">\tau =0</math> for “compressible” type problems not requiring stabilization. In these cases Eq.([[#eq-23|23]]) recovers the standard form for the conservation of mass of the infinitesimal theory (see Eqs.([[#2.3 Mass conservation equation|2.3]])).
426
427
==4 VARIATIONAL EQUATIONS==
428
429
===4.1 Momentum equations===
430
431
Multiplying Eq.(1) by arbitrary test functions <math display="inline">w_i</math> with dimensions of velocity and integrating over the analysis domain <math display="inline">{}^{n+1}V</math> gives the weighted residual form of the momentum equations as <span id='citeF-46'></span><span id='citeF-48'></span>[[#cite-46|[46,48]]]
432
433
<span id="eq-26"></span>
434
{| class="formulaSCP" style="width: 100%; text-align: left;" 
435
|-
436
| 
437
{| style="text-align: left; margin:auto;" 
438
|-
439
| style="text-align: center;" | <math>\int _{{}^{n+1}V} w_i \left(\rho \frac{Dv_i}{Dt}- {\partial {}^{n+1}\sigma _{ij} \over \partial {}^{n+1} x_j}- {}^{n+1} b_i\right)dV =0 </math>
440
|}
441
| style="width: 5px;text-align: right;" | (26)
442
|}
443
444
Integrating by parts  the term involving <math display="inline">\sigma _{ij}</math> and using the Neumann boundary conditions ([[#eq-20|20]]) yields the weak variational form of the momentum equations as
445
446
<span id="eq-27"></span>
447
{| class="formulaSCP" style="width: 100%; text-align: left;" 
448
|-
449
| 
450
{| style="text-align: left; margin:auto;" 
451
|-
452
| style="text-align: center;" | <math>\int _{{}^{n+1}V} w_i \rho \frac{Dv_i}{Dt} dV + \int _{{}^{n+1}V} \delta \varepsilon _{ij} {}^{n+1} \sigma _{ij} dV - \int _{{}^{n+1}V} w_i {}^{n+1} b_i dV - \int _{{}^{n+1}\Gamma _t} w_i {}^{n+1} t_i^p d\Gamma =0 </math>
453
|}
454
| style="width: 5px;text-align: right;" | (27)
455
|}
456
457
where <math display="inline">\delta \varepsilon _{ij}= {\partial w_i \over \partial {}^{n+1}x_j}+{\partial w_j \over \partial {}^{n+1}x_i}</math> is an arbitrary (virtual) strain rate field. Eq.([[#eq-27|27]]) is the standard form of the ''principle of virtual power''  <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-48'></span>[[#cite-3|[3,7,48]]].
458
459
Substituting  the stresses from Eq.([[#eq-2|2]]) into ([[#eq-27|27]]) gives the following expression (in matrix form)
460
461
<span id="eq-28"></span>
462
{| class="formulaSCP" style="width: 100%; text-align: left;" 
463
|-
464
| 
465
{| style="text-align: left; margin:auto;" 
466
|-
467
| style="text-align: center;" | <math>\int _{{}^{n+1}V} {w}^T \rho \frac{D\hbox{v}}{Dt} dV + \!\int _{{}^{n+1}V} \delta {\boldsymbol \varepsilon }^T {}^{n+1}{s} dV  + \!\int _{{}^{n+1}V} \delta {\boldsymbol \varepsilon }^T {m} {}^{n+1}{p} dV -</math>
468
|-
469
| style="text-align: center;" | <math>  -\int _{{}^{n+1}V} {w}^T {}^{n+1}{b}dV - \!\int _{{}^{n+1}\Gamma _t} \hbox{w}^T {}^{n+1}\hbox{t}^p d\Gamma =0  </math>
470
|}
471
| style="width: 5px;text-align: right;" | (28)
472
|}
473
474
In Eq.([[#eq-28|28]]) <math display="inline">{w},{v}</math> and <math display="inline">\delta {\boldsymbol \varepsilon }</math> are vectors containing the test functions, the velocities and the virtual strain rates respectively; <math display="inline">{b}</math> and <math display="inline">\hbox{t}^p</math> are the body force and surface traction vectors, respectively and <math display="inline">{m}</math> is an auxiliary vector. These vectors are defined as (for 2D problems)
475
476
<span id="eq-29"></span>
477
{| class="formulaSCP" style="width: 100%; text-align: left;" 
478
|-
479
| 
480
{| style="text-align: left; margin:auto;" 
481
|-
482
| style="text-align: center;" | <math>\begin{array}{l}\hbox{w} =[w_1,w_2]^T\quad ,\quad \hbox{v} =[v_1,v_2]^T \quad ,\quad \hbox{b} =[b_1,b_2]^T \quad ,\quad  \hbox{t}^p =[t_1^p,t_2^p]^T\\[.5cm]  \delta {\boldsymbol \varepsilon }= [\delta \varepsilon _{11},\delta \varepsilon _{22}, \delta \varepsilon _{12}]^T \quad ,\quad  {m}=[1,1,0]^T  \end{array} </math>
483
|}
484
| style="width: 5px;text-align: right;" | (29)
485
|}
486
487
===4.2 Mass conservation equation===
488
489
We multiply Eq.([[#eq-23|23]]) by arbitrary (continuous) test functions <math display="inline">q</math> (with dimensions of pressure) defined over the analysis domain. Integrating over <math display="inline">{}^{n+1}V</math> gives
490
491
<span id="eq-30"></span>
492
{| class="formulaSCP" style="width: 100%; text-align: left;" 
493
|-
494
| 
495
{| style="text-align: left; margin:auto;" 
496
|-
497
| style="text-align: center;" | <math>\int _{{}^{n+1}V} -\frac{q}{\kappa } \frac{Dp}{Dt}dV +  \int _{{}^{n+1}V} q \varepsilon _v dV + \int _{{}^{n+1}V} q \tau {\partial {}^{n+1}\hat r_{m_i} \over \partial {}^{n+1}x_i} dV =0  </math>
498
|}
499
| style="width: 5px;text-align: right;" | (30)
500
|}
501
502
The third integral in Eq.([[#eq-30|30]]) corresponding to the stabilization term is zero in the compressible parts of the continuum.
503
504
Integrating by parts the last integral in Eq.([[#eq-30|30]]) and using ([[#eq-24|24]]) gives after some transformations <span id='citeF-38'></span>[[#cite-38|[38]]]
505
506
<span id="eq-31"></span>
507
{| class="formulaSCP" style="width: 100%; text-align: left;" 
508
|-
509
| 
510
{| style="text-align: left; margin:auto;" 
511
|-
512
| style="text-align: center;" | <math>\begin{array}{r}\displaystyle \int _{{}^{n+1}V} \frac{q}{\kappa } \frac{Dp}{Dt}dV - \int _{{}^{n+1}V}q \varepsilon _v dV + \int _{{}^{n+1}V} \tau {\partial q \over \partial {}^{n+1}x_i} \left({\partial {}^{n+1}s_{ij} \over \partial {}^{n+1}x_j} + {\partial {}^{n+1}p \over \partial {}^{n+1}x_i} + {}^{n+1}b_i\right)dV\\ \displaystyle - \int _{{}^{n+1}\Gamma _t} q \tau \left[\rho \frac{Dv_n}{Dt}-\frac{2}{h_n} \left({}^{n+1}s_n +{}^{n+1} p - {}^{n+1}t_n\right)\right]d\Gamma =0 \end{array}   </math>
513
|}
514
| style="width: 5px;text-align: right;" | (31)
515
|}
516
517
where <math display="inline">v_n</math> and <math display="inline">t_n</math> are the velocity and the traction force normal to the boundary <math display="inline">\Gamma _t</math>, respectively and <math display="inline">s_n = s_{ij} n_j</math>. The characteristic length <math display="inline">h_n</math> in Eq.([[#eq-31|31]]) is taken as <math display="inline">h_n = \frac{l^e}{2}</math> in practice.
518
519
===4.3 Thermal balance equation===
520
521
Application of the standard weighted residual method to the thermal balance equations ([[#eq-18|18]]), ([[#eq-21|21]]) and ([[#eq-22|22]]) leads, after standard operations, to <span id='citeF-46'></span><span id='citeF-48'></span>[[#cite-46|[46,48]]]
522
523
<span id="eq-32"></span>
524
{| class="formulaSCP" style="width: 100%; text-align: left;" 
525
|-
526
| 
527
{| style="text-align: left; margin:auto;" 
528
|-
529
| style="text-align: center;" | <math>\int _{{}^{n+1}V} \hat w \rho c \frac{DT}{Dt}dV + \int _{{}^{n+1}V} {\partial \hat w  \over \partial {}^{n+1}x_i}  k {\partial T \over \partial {}^{n+1}x_i}dV - \int _{{}^{n+1}V} \hat w {}^{n+1} Q dV+ \int _{{}^{n+1}\Gamma _q} \hat w {}^{n+1} q_n^p d\Gamma =0 </math>
530
|}
531
| style="width: 5px;text-align: right;" | (32)
532
|}
533
534
where <math display="inline">\hat w</math> are the space weighting functions for the temperature.
535
536
==5 FEM DISCRETIZATION==
537
538
We discretize  the analysis domain into finite elements with <math display="inline">n</math> nodes in the standard manner leading to a mesh with a total number of <math display="inline">N_e</math> elements and <math display="inline">N</math> nodes <span id='citeF-33'></span><span id='citeF-46'></span>[[#cite-33|[33,46]]]. In our work we will choose simple 3-noded linear triangles (<math display="inline">n=3</math>) for 2D problems and 4-noded tetrahedra (<math display="inline">n=4</math>) for 3D problems with local linear shape functions <math display="inline">N_i^e</math> defined for each node <math display="inline">i</math> (<math display="inline">i=1,\cdots , n</math>) of element <math display="inline">e</math> <span id='citeF-33'></span><span id='citeF-47'></span>[[#cite-33|[33,47]]]. The velocity components, the  pressure and the temperature are interpolated over the mesh in terms of their nodal values in the same manner using the  ''global linear shape functions'' <math display="inline">N_j</math> spanning over the elements sharing node <math display="inline">j</math> (<math display="inline">j=1,\cdots , N</math>) <span id='citeF-33'></span><span id='citeF-46'></span>[[#cite-33|[33,46]]]. In matrix form we have (for 2D problems)
539
540
<span id="eq-33"></span>
541
{| class="formulaSCP" style="width: 100%; text-align: left;" 
542
|-
543
| 
544
{| style="text-align: left; margin:auto;" 
545
|-
546
| style="text-align: center;" | <math>{v} = {N}_v\bar {v}  \quad ,\quad p = {N}_p\bar {p}\quad  , \quad T = {N}_T \bar {T}  </math>
547
|}
548
| style="width: 5px;text-align: right;" | (33)
549
|}
550
551
where
552
553
<span id="eq-34"></span>
554
{| class="formulaSCP" style="width: 100%; text-align: left;" 
555
|-
556
| 
557
{| style="text-align: left; margin:auto;" 
558
|-
559
| style="text-align: center;" | <math>\begin{array}{c}\displaystyle \bar {v} = \left\{\begin{matrix}\bar{v}^1\\\bar{v}^2\\\vdots \\ \bar{v}^N\end{matrix}  \right\}\quad \hbox{with}~ \bar{v}^i = \left\{\begin{matrix}\bar{v}^i_1\\\bar{v}^i_2\end{matrix}  \right\}~, ~ \bar {p} =\left\{\begin{matrix}\bar{p}^1\\\bar{p}^2\\\vdots \\ \bar{p}^{N}\end{matrix}  \right\}~, ~ \bar {T}= \left\{\begin{matrix}\bar{T}_1\\\bar{T}_2\\\vdots \\ \bar{T}^N\end{matrix}  \right\}\\[.5cm] \displaystyle {N}_v = [{N}_1, {N}_2,\cdots , {N}_N ]^T ~,~ {N}_p = {N}_T = [{N}_1, { N}_2,\cdots , {N}_N ] \end{array} </math>
560
|}
561
| style="width: 5px;text-align: right;" | (34)
562
|}
563
564
with <math display="inline">{N}_j = N_j {I}_2</math> where <math display="inline">{I}_2</math> is the <math display="inline">2\times 2</math> unit matrix.
565
566
In Eq.([[#eq-34|34]]) vectors <math display="inline">\bar{v}</math>, <math display="inline">\bar {p}</math> and <math display="inline">\bar {T}</math>  contain the nodal velocities, the nodal pressures and the nodal temperatures for the whole mesh, respectively and the upperindex denotes the nodal value for each vector or scalar magnitude.
567
568
Substituting Eqs.([[#eq-33|33]]) into Eqs.([[#eq-27|27]]), ([[#eq-31|31]]) and ([[#eq-32|32]]) and choosing a Galerkin formulation with <math display="inline">w_i = q =  \hat w_i =N_i</math> leads to the following system of algebraic equations
569
570
<span id="eq-35"></span>
571
{| class="formulaSCP" style="width: 100%; text-align: left;" 
572
|-
573
| 
574
{| style="text-align: left; margin:auto;" 
575
|-
576
| style="text-align: center;" | <math>{M}_0 {\dot{\bar{v}}} + {g} +{Q}{}^{n+1}\bar {p}- {f}_v={0} </math>
577
|}
578
| style="width: 5px;text-align: right;" | (35)
579
|}
580
581
<span id="eq-36"></span>
582
{| class="formulaSCP" style="width: 100%; text-align: left;" 
583
|-
584
| 
585
{| style="text-align: left; margin:auto;" 
586
|-
587
| style="text-align: center;" | <math>\hbox{M}_1 {\dot{\bar{p}}}-{Q}^T {}^{n+1}\bar{v} + ({L}+{M}_b){}^{n+1} \bar {p}- {f}_p={0} </math>
588
|}
589
| style="width: 5px;text-align: right;" | (36)
590
|}
591
592
<span id="eq-37"></span>
593
{| class="formulaSCP" style="width: 100%; text-align: left;" 
594
|-
595
| 
596
{| style="text-align: left; margin:auto;" 
597
|-
598
| style="text-align: center;" | <math>{C} {\dot{\bar{T}}}+\hat {L} {}^{n+1}\bar{T} -  {f}_T={0}  </math>
599
|}
600
| style="width: 5px;text-align: right;" | (37)
601
|}
602
603
where <math display="inline">{\dot{\bar{a}}}</math>  denotes the material time derivative of the components of  a vector <math display="inline">{a}</math>. The element form of the matrices and vectors in Eqs.([[#5 FEM DISCRETIZATION|5]]) is given in Box 1.
604
605
We note that Eqs.([[#5 FEM DISCRETIZATION|5]]) involve the geometry at the updated configuration (<math display="inline">{}^{n+1}V</math>). This geometry is unknown; hence the solution of Eqs.([[#5 FEM DISCRETIZATION|5]]) has to be found iteratively. The iterative solution scheme chosen in this work is presented in the next section.
606
607
<br/>
608
609
'''Remark 5.''' The boundary terms of vector <math display="inline">{f}_p</math> can be incorporated into the matrices of Eq.([[#eq-36|36]]). This leads to a non symmetrical set of equations. These boundary terms are computed here iteratively within the incremental solution scheme.
610
611
'''Remark 6.''' The presence of matrix <math display="inline">{M}_b</math> in Eq.([[#eq-36|36]]) allows us to compute the pressure without the need of prescribing its value at the free surface <span id='citeF-38'></span>[[#cite-38|[38]]].
612
613
==6 TRANSIENT SOLUTION OF THE DISCRETIZED EQUATIONS==
614
615
Eqs.([[#5 FEM DISCRETIZATION|5]]) are solved in time with an implicit Newton-Raphson type iterative scheme <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-47'></span>[[#cite-3|[3,7,47]]]. The basic steps within a time increment <math display="inline">[n,n+1]</math> are:<br/>
616
617
* Initialize variables: <math display="inline">({}^{n+1}\hbox{x}^1,{}^{n+1}\bar{v}^1,{}^{n+1}{s}^1,{}^{n+1}\bar{p}^1,  {}^{n+1}\bar{T}^1)\equiv  \left\{{}^{n}{x},{}^{n}\bar{v},{}^{n}{s},{}^{n}\bar{p},{}^{n}\bar{T}\right\}</math>.<p> In the following <math display="inline">(\cdot )^i</math> denotes a value computed at the <math display="inline">i</math>th iteration. </p>
618
* Iteration loop: <math display="inline">i=1,\cdots , N_{iter}</math>.<p> For each iteration. 
619
620
</p>
621
622
===''Step 1. Compute the initial Cauchy stresses <math>{}^{n}{\boldsymbol \sigma }^i</math> for solid elements''===
623
624
<span id="eq-38"></span>
625
{| class="formulaSCP" style="width: 100%; text-align: left;" 
626
|-
627
| 
628
{| style="text-align: left; margin:auto;" 
629
|-
630
| style="text-align: center;" | <math>{}^{n} {\boldsymbol \sigma }^i =  \frac{1}{J^i}{F}^i [{}^{n}{S}] {F}^{iT} \quad \hbox{with } F_{kl}^i = {\partial {}^{n+1}x_k^i \over \partial {}^{n} x_l} \quad \hbox{and } {J^i} = \vert {F}^i\vert   </math>
631
|}
632
| style="width: 5px;text-align: right;" | (38)
633
|}
634
635
with
636
637
<span id="eq-39"></span>
638
{| class="formulaSCP" style="width: 100%; text-align: left;" 
639
|-
640
| 
641
{| style="text-align: left; margin:auto;" 
642
|-
643
| style="text-align: center;" | <math>{}^{n}{S} = {}^{n} {\boldsymbol \sigma }\quad \hbox{and}\quad {}^{n}{\sigma }_{ij} = {}^{n}s_{ij} + {}^{n}p \delta _{ij}  </math>
644
|}
645
| style="width: 5px;text-align: right;" | (39)
646
|}
647
648
===''Step 2. Compute the nodal velocity increments <math>\Delta \bar {v}</math>''===
649
650
From Eq.([[#5 FEM DISCRETIZATION|5]]a)
651
652
<span id="eq-40"></span>
653
{| class="formulaSCP" style="width: 100%; text-align: left;" 
654
|-
655
| 
656
{| style="text-align: left; margin:auto;" 
657
|-
658
| style="text-align: center;" | <math>{H}_v^i \Delta \bar {v} = - {}^{n+1}\bar{\hbox{r}}_m^i \rightarrow  \Delta \bar{v} </math>
659
|}
660
| style="width: 5px;text-align: right;" | (40)
661
|}
662
663
with the momentum residual <math display="inline">\bar{r}_m</math> and the iteration matrix <math display="inline">{H}_v</math>  given by
664
665
<span id="eq-41"></span>
666
{| class="formulaSCP" style="width: 100%; text-align: left;" 
667
|-
668
| 
669
{| style="text-align: left; margin:auto;" 
670
|-
671
| style="text-align: center;" | <math>\bar{\hbox{r}}_m = \hbox{M}_0 {\dot{\bar{v}}} + \hbox{g}+\hbox{Q}\bar {p}-\hbox{f}_v\quad , \quad \hbox{H}_v = \frac{1}{\Delta t} \hbox{M}_0 + \hbox{K} + \hbox{K}_v  </math>
672
|}
673
| style="width: 5px;text-align: right;" | (41)
674
|}
675
676
where <math display="inline"> \hbox{K}_{v}</math> is the bulk tangent matrix (see Remark 9) and
677
678
<span id="eq-42"></span>
679
{| class="formulaSCP" style="width: 100%; text-align: left;" 
680
|-
681
| 
682
{| style="text-align: left; margin:auto;" 
683
|-
684
| style="text-align: center;" | <math>\hbox{K}_{ij}^e = \int _{{}^nV^e} \left(\hbox{B}_i^{eT} {\boldsymbol{\cal C}}_T \hbox{B}_j^{e} dV + {G}^T_i [{S} ]  {G}_j \Delta t \right)dV   </math>
685
|}
686
| style="width: 5px;text-align: right;" | (42)
687
|}
688
689
where <math display="inline">{\boldsymbol{\cal C}}_T</math> is the tangent constitutive matrix emanating from the linearization of Eq.([[#eq-35|35]]) (expressed in the current configuration) with respect to the nodal velocities <span id='citeF-10'></span><span id='citeF-37'></span>[[#cite-10|[10,37]]]. The second term in matrix <math display="inline">\hbox{K}^e</math> is explained in  Remark 7.
690
691
===''Step 3. Update the nodal velocities''===
692
693
<span id="eq-43"></span>
694
{| class="formulaSCP" style="width: 100%; text-align: left;" 
695
|-
696
| 
697
{| style="text-align: left; margin:auto;" 
698
|-
699
| style="text-align: center;" | <math>{}^{n+1}\bar{v}^{i+1}= \bar{v}^i + \Delta \bar{v} </math>
700
|}
701
| style="width: 5px;text-align: right;" | (43)
702
|}
703
704
===''Step 4. Compute the nodal pressures''===
705
706
From Eq.([[#eq-36|36]]) we obtain
707
708
<span id="eq-44"></span>
709
{| class="formulaSCP" style="width: 100%; text-align: left;" 
710
|-
711
| 
712
{| style="text-align: left; margin:auto;" 
713
|-
714
| style="text-align: center;" | <math>\hbox{H}_p^i  {}^{n+1}\bar{p}^{i+1}= \frac{1}{\Delta t} \hbox{M}_1\bar{p}^i  + {Q}^T \bar{v}^{i+1}+ \bar{f}^{i}_p  \rightarrow {}^{n+1}\bar{p}^{i+1}   </math>
715
|}
716
| style="width: 5px;text-align: right;" | (44)
717
|}
718
719
with
720
721
<span id="eq-45"></span>
722
{| class="formulaSCP" style="width: 100%; text-align: left;" 
723
|-
724
| 
725
{| style="text-align: left; margin:auto;" 
726
|-
727
| style="text-align: center;" | <math>\hbox{H}_p = \frac{1}{\Delta t} \hbox{M}_1 + \hbox{L} + \hbox{M}_b </math>
728
|}
729
| style="width: 5px;text-align: right;" | (45)
730
|}
731
732
===''Step 5. Update the nodal coordinates and the deformation gradient''===
733
734
<span id="eq-46"></span>
735
{| class="formulaSCP" style="width: 100%; text-align: left;" 
736
|-
737
| 
738
{| style="text-align: left; margin:auto;" 
739
|-
740
| style="text-align: center;" | <math>{}^{n+1}{x}^{i+1}= {x}^i + \frac{1}{2} (\bar{v}^{i+1} + {}^{n}\bar{v})\Delta t </math>
741
|}
742
| style="width: 5px;text-align: right;" | (46)
743
|}
744
745
{| class="formulaSCP" style="width: 100%; text-align: left;" 
746
|-
747
| 
748
{| style="text-align: left; margin:auto;" 
749
|-
750
| style="text-align: center;" | <math>{}^{n+1}F^{i+1}_{ij} = {\partial {}^{n+1}{x}^{i+1}_i \over \partial {}^{n}{x_j}}</math>
751
|}
752
|}
753
754
A more accurate expression for computing <math display="inline">{}^{n+1}{x}^{i+1}</math> can be used involving the  nodal accelerations <span id='citeF-37'></span>[[#cite-37|[37]]].
755
756
===''Step 6.Compute the deviatoric Cauchy stresses''===
757
758
''Fluids:''
759
760
<span id="eq-47"></span>
761
{| class="formulaSCP" style="width: 100%; text-align: left;" 
762
|-
763
| 
764
{| style="text-align: left; margin:auto;" 
765
|-
766
| style="text-align: center;" | <math>{}^{n+1}{s}^{i+1} = {D}_T\hbox{B}\bar {v}^{i+1}  </math>
767
|}
768
| style="width: 5px;text-align: right;" | (47)
769
|}
770
771
''Solids:''
772
773
<span id="eq-48"></span>
774
{| class="formulaSCP" style="width: 100%; text-align: left;" 
775
|-
776
| 
777
{| style="text-align: left; margin:auto;" 
778
|-
779
| style="text-align: center;" | <math>\Delta  {s}= {D}_T  \hbox{B} \Delta \bar {v}  </math>
780
|}
781
| style="width: 5px;text-align: right;" | (48)
782
|}
783
784
where <math display="inline">{D}_T</math> is the tangent constitutive matrix for the deviatoric Cauchy stresses. For elastic solids and Newtonian fluids <math display="inline">{D}_T = {D}</math> where <math display="inline">{D}</math> is given by Eq.([[#eq-6|6]]) and <math display="inline">\mu =\bar \mu \Delta t</math> for solids.
785
786
For non-linear continua, the adequate expression for <math display="inline">{D}_T</math> has to be used <span id='citeF-3'></span><span id='citeF-10'></span>[[#cite-3|[3,10]]].
787
788
===''Step 7.Compute the  stresses''===
789
790
''Solids:''<br/>
791
792
Cauchy stresses:
793
794
<span id="eq-49"></span>
795
{| class="formulaSCP" style="width: 100%; text-align: left;" 
796
|-
797
| 
798
{| style="text-align: left; margin:auto;" 
799
|-
800
| style="text-align: center;" | <math>{}^{n+1}\sigma _{ij}^{i+1} = {}^{n}\sigma _{ij}^{i} + \Delta  {s}_{ij} + \Delta \bar{p}\delta _{ij}  </math>
801
|}
802
| style="width: 5px;text-align: right;" | (49)
803
|}
804
805
with
806
807
<span id="eq-50"></span>
808
{| class="formulaSCP" style="width: 100%; text-align: left;" 
809
|-
810
| 
811
{| style="text-align: left; margin:auto;" 
812
|-
813
| style="text-align: center;" | <math>\Delta \bar{p}= {}^{n+1}\bar{p}^{i+1} - {}^{n}\bar {p}  </math>
814
|}
815
| style="width: 5px;text-align: right;" | (50)
816
|}
817
818
2d Piola Kirchhoff stresses:
819
820
<span id="eq-51"></span>
821
{| class="formulaSCP" style="width: 100%; text-align: left;" 
822
|-
823
| 
824
{| style="text-align: left; margin:auto;" 
825
|-
826
| style="text-align: center;" | <math>{}^{n+1}{S}^{i+1} = J {F}^{-1}[{}^{n+1}{\boldsymbol \sigma }^{i+1}] {F}^{-T} ~~\hbox{with } ~~{F} \equiv {}^{n+1}{F}^{i+1}  </math>
827
|}
828
| style="width: 5px;text-align: right;" | (51)
829
|}
830
831
''Fluids:''
832
833
<span id="eq-52"></span>
834
{| class="formulaSCP" style="width: 100%; text-align: left;" 
835
|-
836
| 
837
{| style="text-align: left; margin:auto;" 
838
|-
839
| style="text-align: center;" | <math>{}^{n+1}\sigma _{ij}^{i+1} = {}^{n+1}{s}^{i+1}_{ij} + {}^{n+1}{p}^{i+1}\delta _{ij}  </math>
840
|}
841
| style="width: 5px;text-align: right;" | (52)
842
|}
843
844
===''Step 8.Compute the nodal temperatures''===
845
846
<span id="eq-53"></span>
847
{| class="formulaSCP" style="width: 100%; text-align: left;" 
848
|-
849
| 
850
{| style="text-align: left; margin:auto;" 
851
|-
852
| style="text-align: center;" | <math>\left[\frac{1}{\Delta t}{C} + \hat{L}   \right]\Delta \bar{T}=- {}^{n+1} \bar{r}^i_T \quad ,\quad  {}^{n+1}\bar{T}^{i+1}= {}^{n}\bar{T}^i + \Delta \bar{T} </math>
853
|}
854
| style="width: 5px;text-align: right;" | (53)
855
|}
856
857
with
858
859
<span id="eq-54"></span>
860
{| class="formulaSCP" style="width: 100%; text-align: left;" 
861
|-
862
| 
863
{| style="text-align: left; margin:auto;" 
864
|-
865
| style="text-align: center;" | <math>\bar {r}_T= {C} {\dot{\bar{T}}} + \hat{L} \bar{T} - {f}_T </math>
866
|}
867
| style="width: 5px;text-align: right;" | (54)
868
|}
869
870
===''Step 9. Check convergence''===
871
872
Verify the following conditions:
873
874
<span id="eq-55"></span>
875
{| class="formulaSCP" style="width: 100%; text-align: left;" 
876
|-
877
| 
878
{| style="text-align: left; margin:auto;" 
879
|-
880
| style="text-align: center;" | <math>\begin{array}{c}\displaystyle \Vert {}^{n+1}\bar {v}^{i+1}- {}^{n+1}\bar{v}^{i}\Vert \le e_v \Vert {}^{n}\bar {v}\Vert \\ \displaystyle \Vert {}^{n+1}\bar {p}^{i+1}-{}^{n+1}\bar {p}^i\Vert \le e_p  \Vert {}^{n}\bar{p}\Vert \\ \displaystyle \Vert {}^{n+1}\bar {T}^{i+1} - {}^{n+1}\bar {T}^i\Vert \le e_T  \Vert {}^{n}\bar{T}\Vert  \end{array}   </math>
881
|}
882
| style="width: 5px;text-align: right;" | (55)
883
|}
884
885
where <math display="inline">e_v</math>, <math display="inline">e_p</math> and <math display="inline">e_T</math> are prescribed error norms. In the examples presented in the paper we have set <math display="inline">e_v = e_p=e_T = 10^{-3}</math>.
886
887
If  conditions ([[#eq-55|55]]) are satisfied then make <math display="inline">n \leftarrow n+1 </math> and proceed to the next  time step. Otherwise, make the iteration counter <math display="inline">i \leftarrow i+1 </math> and repeat Steps 1&#8211;9.
888
889
The derivatives and integrals in all the matrices of the iteration matrix <math display="inline">{H}_v</math>  are computed on the ''updated discretized configuration at time'' <math display="inline">n</math> (<math display="inline">{}^nV</math>) while the residual vectors <math display="inline">\bar{r}_T</math> and <math display="inline">\bar{r}_m</math> are computed in the current configuration. This is a particular version of the ''updated Lagrangian formulation'' <span id='citeF-3'></span><span id='citeF-10'></span><span id='citeF-37'></span><span id='citeF-47'></span><span id='citeF-48'></span>[[#cite-3|[3,10,37,47,48]]].
890
891
'''Remark 7.''' The  tangent deviatoric constitutive matrix <math display="inline">{\boldsymbol{\cal C}}_T</math> in Eq.([[#eq-42|42]]) depends on the constitutive model chosen. For Newtonian fluids <math display="inline">{\boldsymbol{\cal C}}_T = {\boldsymbol{\cal C}}</math> where <math display="inline">{\boldsymbol{\cal C}}</math> is obtained by transforming the deviatoric constitutive tensor <math display="inline">{c}_{ijkl}=\mu (\delta _{ik}\delta _{jl} + \delta _{il}\delta _{jk})</math> from the updated to the current configuration as <math display="inline"> {\cal C}_{ijkl}=F^{-1}_{A_i}F^{-1}_{B_j} F^{-1}_{C_k} F^{-1}_{D_l}     {c}_{ABCD}</math> <span id='citeF-3'></span><span id='citeF-37'></span>[[#cite-3|[3,37]]]. Matrix <math display="inline">\boldsymbol{\cal C}</math> is formed by applying Voigt rule to the terms of tensor <math display="inline">{\cal C}_{ijkl}</math>. A similar expression is obtained for elastic solids changing <math display="inline">\mu </math> by <math display="inline">\bar \mu \Delta t</math> <span id='citeF-10'></span>[[#cite-10|[10]]].
892
893
The second term in the integral of Eq.([[#eq-42|42]]) represents the initial stress contribution to matrix <math display="inline">{K}</math> <span id='citeF-3'></span><span id='citeF-10'></span><span id='citeF-37'></span>[[#cite-3|[3,10,37]]]. Matrices <math display="inline">{G}</math> and <math display="inline">[ S]</math> in Eq.([[#eq-42|42]]) are given by (for 2D problems)
894
895
{| class="formulaSCP" style="width: 100%; text-align: left;" 
896
|-
897
| 
898
{| style="text-align: left; margin:auto;" 
899
|-
900
| style="text-align: center;" | <math> {G} = \begin{bmatrix}     \bar {G} & \bar {0}\\ \bar {0}& \bar {G}     \end{bmatrix}~~,~~  \bar {G} = \begin{bmatrix}   {}_nN_{1,1} & 0 &|& {}_nN_{2,1} & 0 &|& \cdots & {}_nN_{n,1}\\     {}_nN_{1,2} & 0 &|& {}_nN_{2,2} & 0 &|& \cdots & {}_nN_{n,1}     \end{bmatrix} ~~,~~  \bar {0} = \left\{\begin{matrix} 0\\0\end{matrix} \right\}     </math>
901
|}
902
|}
903
904
{| class="formulaSCP" style="width: 100%; text-align: left;" 
905
|-
906
| 
907
{| style="text-align: left; margin:auto;" 
908
|-
909
| style="text-align: center;" | <math>[{ S}] =  \begin{bmatrix}{S} &  {0}\\ {0}& {S}     \end{bmatrix}~~,~~ {0} = \begin{bmatrix}0&0\\0&0\end{bmatrix} ~~,~~     {}_nN_{i,j}={\partial N_i \over \partial ^{n}x_j}     </math>
910
|}
911
| style="width: 5px;text-align: right;" | (56)
912
|}
913
914
where <math display="inline">{S}</math> is the 2d Piola-Kirchhoff stress tensor.
915
916
'''Remark 8.''' The iteration matrix <math display="inline">\hbox{H}_v</math> in Eq.([[#eq-40|40]]) is an ''approximation of the exact tangent matrix for the solid/fluid problem'' in the updated Lagrangian formulation <span id='citeF-3'></span><span id='citeF-10'></span><span id='citeF-37'></span>[[#cite-3|[3,10,37]]]. The form of <math display="inline">\hbox{H}_v</math>  used in this work has yielded good results  with convergence achieved for the nodal values for the velocities,  the pressure and the temperature in 3&#8211;4 iterations for all the problems analyzed.
917
918
'''Remark 9.'''  Including the  bulk stiffness matrix <math display="inline">\hbox{K}_v</math> in <math display="inline">\hbox{H}_v</math> is important for the fast convergence, mass preservation and overall accuracy of the iterative solution for quasi and fully incompressible materials <span id='citeF-9'></span><span id='citeF-38'></span>[[#cite-9|[9,38]]].     The element expression of <math display="inline">\hbox{K}_v</math> can be obtained as <span id='citeF-38'></span>[[#cite-38|[38]]]
919
920
<span id="eq-57"></span>
921
{| class="formulaSCP" style="width: 100%; text-align: left;" 
922
|-
923
| 
924
{| style="text-align: left; margin:auto;" 
925
|-
926
| style="text-align: center;" | <math>\hbox{K}_v^e = \int _{{}^nV^e} \hbox{B}^T \hbox{m} \theta \Delta t\kappa \hbox{m}^T \hbox{B}dV </math>
927
|}
928
| style="width: 5px;text-align: right;" | (57)
929
|}
930
931
where <math display="inline">\theta </math> is a positive number such that <math display="inline">0<   \theta \le 1</math> that has the role of preventing the ill-conditioning of the iteration matrix <math display="inline">{H}_v</math> for highly incompressible materials. For a fully incompressible material (<math display="inline">\kappa =\infty </math>), a finite  value of <math display="inline">\kappa </math> is used in practice within <math display="inline">{K}_v</math> as this helps to obtaining an accurate solution with reduced mass loss in few iterations per time step <span id='citeF-9'></span>[[#cite-9|[9]]]. These considerations, however, do not affect the value of <math display="inline">\kappa </math> within matrix <math display="inline">{M}_1</math> in Eq.([[#eq-36|36]]) that vanishes for a fully incompressible material. A similar approach for improving mass conservation in incompressible fluids was proposed  in <span id='citeF-41'></span>[[#cite-41|[41]]].
932
933
'''Remark 10.''' The time step within a time interval <math display="inline">[n,n+1]</math> is chosen as <math display="inline">\Delta t =\min \left(\frac{^n l_{\min }^e}{\vert {}^n{v}\vert _{\max }},\Delta t_b\right)</math> where <math display="inline">^n l_{\min }^e</math> is the minimum characteristic distance  of all elements in the mesh, with <math display="inline">l^e</math> computed as explained in Section 3, <math display="inline">\vert ^n{v}\vert _{\max }</math> is the maximum value of the modulus of the velocity of all nodes in the mesh  and <math display="inline">\Delta t_b</math> is the critical time step of all nodes approaching a solid boundary defined as <math display="inline">\Delta t_b = \min \left(\frac{^n l_b}{\vert ^n{v}_b\vert _{\max }}\right)</math> where <math display="inline">^n l_b</math> is the distance from the node to the boundary and <math display="inline">^n{v}_b</math> is the velocity of the node. This definition of <math display="inline">\Delta t</math> intends that no node crosses a solid boundary during a time step <span id='citeF-38'></span>[[#cite-38|[38]]].
934
935
'''Remark 11.''' The material properties for the fluid and the solid may be dependent on the temperature. This effect is accounted for by updating the material properties in terms of the temperature within the iteration loop.
936
937
==7 ABOUT THE PARTICLE FINITE ELEMENT METHOD (PFEM)==
938
939
===7.1 The basis of the PFEM===
940
941
Let us consider a domain <math display="inline">V</math> containing  fluid and solid subdomains. Each subdomain is characterized by a set of points, hereafter termed ''virtual particles''. The virtual particles contain all the information  for defining the geometry and the material and mechanical properties of the underlying subdomain. In the PFEM both subdomains are modelled using an ''updated'' ''Lagrangian formulation'' <span id='citeF-3'></span><span id='citeF-47'></span>[[#cite-3|[3,47]]].
942
943
The solution steps within a time step in the PFEM are as follows:
944
945
<div id='img-2'></div>
946
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
947
|-
948
|[[Image:draft_Samper_718004671-Figure2a.png|600px|Sequence of steps to update a “cloud” of virtual particles (nodes) representing a domain containing a fluid and a solid  from ⁿt  to ⁿ⁺²t. u, v,a,ɛ , ̇ɛ and σ  denote the displacement, the velocity, the acceleration, the strain, the strain rates and the Cauchy stresses, respectively.]]
949
|- style="text-align: center; font-size: 75%;"
950
| colspan="1" | '''Figure 2:''' Sequence of steps to update a “cloud” of virtual particles (nodes) representing a domain containing a fluid and a solid  from <math>^n t</math>  to <math>{}^{n+2}t</math>. <math>{u}, {v},{a},{\boldsymbol \varepsilon } , \dot {\boldsymbol \varepsilon }</math> and <math>{\boldsymbol \sigma }</math>  denote the displacement, the velocity, the acceleration, the strain, the strain rates and the Cauchy stresses, respectively.
951
|}
952
953
<ol>
954
955
<li>The starting point at each time step is the cloud of points <math display="inline">C</math> in the fluid and solid domains. For instance <math display="inline">^{n} C</math> denotes the cloud at time <math display="inline">t={}^n t </math> (Figure [[#img-1|1]]). The virtual particles are assumed to be coincident with the nodes in the finite element mesh generated in Step 3. </li>
956
957
<li>Identify the boundaries defining the analysis domain <math display="inline">^{n} V</math>, as well as the subdomains in the fluid and the solid. This is an essential step as some boundaries (such as the free surface in fluids) may be severely distorted during the solution, including separation and re-entering of nodes. The Alpha Shape method <span id='citeF-8'></span>[[#cite-8|[8]]] is used for the boundary definition. Clearly, the accuracy in the reconstruction of the boundaries depends on the number of points in the vicinity of each boundary and on the Alpha Shape parameter. In the problems solved in this work the Alpha Shape method has been implementation as described in <span id='citeF-14'></span><span id='citeF-26'></span>[[#cite-14|[14,26]]]. </li>
958
959
<li> Discretize  the analysis domain <math display="inline">^{n} V</math> with a finite element mesh <math display="inline">{}^{n} M</math> using the virtual particles as the mesh nodes. We use an efficient mesh generation scheme based on an enhanced Delaunay tesselation <span id='citeF-13'></span><span id='citeF-14'></span>[[#cite-13|[13,14]]]. </li>
960
961
<li> Solve the Lagrangian equations of motion for the overall continuum using the standard FEM. Compute the state variables in  the next (updated) configuration for <math display="inline">^n t+\Delta t</math>: velocities, pressure, strain rate and viscous stresses in the fluid and displacements, stresses and strains in the solid. </li>
962
963
<li>  Move the mesh nodes to a new position <math display="inline">^{n+1} C</math> where ''n''+1 denotes the time <math display="inline">{}^n t +\Delta t</math>, in terms of the time increment size. </li>
964
965
<li> Go back to step 1 and repeat the solution for the next time step to obtain <math display="inline">{}^{n+2} C</math>. </li>
966
967
</ol>
968
969
Note that the key differences between the PFEM and the classical FEM are the remeshing technique and the identification of the domain boundary at each time step.
970
971
The CPU time required for meshing grows linearly with the number of nodes. As a general rule,  meshing consumes for 3D problems around 15% of the total CPU time per time step, while the solution of the equations (with typically 3 iterations per time step) and the system assembly consume approximately 70% and 15% of the CPU time per time step, respectively. These figures refer to analyses in a single processor Pentium IV PC <span id='citeF-35'></span>[[#cite-35|[35]]]. Considerable speed can be gained using parallel computing techniques.
972
973
Application of the PFEM in fluid and solid mechanics and in fluid-structure interaction problems can be found in <span id='citeF-1'></span><span id='citeF-2'></span><span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-8'></span><span id='citeF-9'></span><span id='citeF-13'></span><span id='citeF-14'></span><span id='citeF-15'></span><span id='citeF-16'></span><span id='citeF-17'></span><span id='citeF-18'></span><span id='citeF-20'></span><span id='citeF-26'></span><span id='citeF-27'></span><span id='citeF-34'></span><span id='citeF-35'></span><span id='citeF-37'></span><span id='citeF-38'></span><span id='citeF-41'></span><span id='citeF-43'></span>[[#cite-1|[1,2,4,5,8,9,13,14,15,16,17,18,20,26,27,34,35,37,38,41,43]]] as well in www.cimne.com/pfem.
974
975
===7.2 Treatment of contact conditions in the PFEM===
976
977
Known velocities at boundaries in the PFEM are prescribed in strong form to the boundary nodes. These nodes might belong to fixed external boundaries or to moving boundaries linked to the interacting solids. Surface tractions are applied to the Neumann part of the boundary, as it is usual in the FEM.
978
979
Contact between fluid particles and fixed boundaries is accounted for by the incompressibility condition which  naturally prevents fluid nodes to penetrate into the solid boundaries <span id='citeF-14'></span><span id='citeF-26'></span><span id='citeF-32'></span><span id='citeF-35'></span>[[#cite-14|[14,26,32,35]]].
980
981
The contact between two solid interfaces is treated by introducing a layer of ''contact elements'' between the two interacting solid interfaces (Figure [[#img-3|3]]). This contact layer is ''automatically created during the mesh generation step'' by prescribing a minimum distance <math display="inline">\left(h_{c} \right)</math> between two solid boundaries. If the distance exceeds the minimum value <math display="inline">\left(h_{c} \right)</math> then the generated elements are treated as fluid elements. Otherwise the elements are treated as contact elements where a relationship between the tangential and normal forces and the corresponding displacement is introduced  in <span id='citeF-26'></span><span id='citeF-32'></span><span id='citeF-35'></span>[[#cite-26|[26,32,35]]].
982
983
This algorithm allows us to model complex frictional contact conditions between two or more interacting bodies moving in water in  a simple manner. The algorithm has  been used to model frictional contact situations between rigid or elastic solids in structural mechanics applications, such as soil/rock excavation problems <span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-4|[4,5]]]. The frictional contact algorithm described above has been extended by Oliver ''et al.'' <span id='citeF-20'></span>[[#cite-20|[20]]] for analysis of metal cutting and machining problems.
984
985
<div id='img-3'></div>
986
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 65%;max-width: 100%;"
987
|-
988
|[[Image:draft_Samper_718004671-contact-solid-boundaries.png|390px|Layer of contact elements at a soil-solid interface modelled with the PFEM]]
989
|- style="text-align: center; font-size: 75%;"
990
| colspan="1" | '''Figure 3:''' Layer of contact elements at a soil-solid interface modelled with the PFEM
991
|}
992
993
==8 EXAMPLES==
994
995
===8.1 Numerical examples of manufacturing problems===
996
997
Some examples are presented next to show the capabilities of the method for the simulation of industrial forming processes. All the problems presented involve large strains and big changes in the geometry boundaries. The “particle” description of the continuum assumed in the PFEM introduces the capability of adapting the geometry to the computed displacement solution automatically.
998
999
The numerical solution is computed taking in account thermal and mechanical effects with the solution strategy described in Section 6.
1000
1001
The changes in the geometry are recognized by the PFEM features. As explained in Section 7.1, the finite element mesh is obtained by  a reconnection of the particles and a remeshing of the domain. A refinement of the critical areas at each time step has been performed. The criterion to detect the critical areas for refining the mesh is based on the evaluation of the plastic energy dissipation, but other mechanical variables can be used for this purpose. Details of the application of the PFEM to solid mechanics problems can be found in <span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-4|[4,5]]].
1002
1003
===8.2 Extrusion of a steel plate===
1004
1005
Extrusion is one of the techniques used to reduce the section of pieces of metal and form a reduced piece of the same object. This example considers a piece of steel with the dimensions shown in  Figure [[#img-4|4]] pushed towards a rigid wall die. Two different shapes of the wall die have been analysed. Both models are depicted in Figure [[#img-4|4]]. The symmetry of the problem allows us to consider only the upper part of the piece and a 2D simulation to solve the problem. The material is modelled with a thermo-elastoplastic constitutive law with a Huber-Von Misses yield surface. The constitutive model can be found in <span id='citeF-42'></span>[[#cite-42|[42]]]. The physical properties of the material (steel) considered in the example are shown in Box 2.
1006
1007
1008
{| class="wikitable" style="text-align: left; margin: 1em auto;"
1009
1010
|-
1011
| colspan='2' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;" | ''MATERIAL PROPERTIES'':
1012
1013
|-
1014
| style="border-left: 2px solid;" | Young  Modulus 
1015
| style="border-right: 2px solid;" | <math> 206.9 \times 10^9  Pa</math>
1016
|-
1017
| style="border-left: 2px solid;" | Poisson Coefficient 
1018
| style="border-right: 2px solid;" | 0.29 
1019
|-
1020
| style="border-left: 2px solid;" | Yield Stress 
1021
| style="border-right: 2px solid;" | <math>450\times 10^6  Pa</math>
1022
|-
1023
| style="border-left: 2px solid;" | Linear Hardening Modulus &nbsp;~&nbsp;
1024
| style="border-right: 2px solid;" | <math>129.24\times 10^6  Pa</math>
1025
|-
1026
| style="border-left: 2px solid;" | Reference Hardening 
1027
| style="border-right: 2px solid;" | <math>450\times 10^6  Pa</math>
1028
|-
1029
| style="border-left: 2px solid;" | Saturation Hardening 
1030
| style="border-right: 2px solid;" | <math>715\times 10^6  Pa</math>
1031
|-
1032
| style="border-left: 2px solid;" | Hardening Exponent 
1033
| style="border-right: 2px solid;" | 16.93 
1034
|-
1035
| style="border-left: 2px solid;" | Conductivity 
1036
| style="border-right: 2px solid;" | <math>45 N/s K</math>
1037
|-
1038
| style="border-left: 2px solid;" | Density 
1039
| style="border-right: 2px solid;" | <math>7800 kg/m^3 </math>
1040
|-
1041
| style="border-left: 2px solid;" | Specific Capacity 
1042
| style="border-right: 2px solid;" | <math>460  m^2/s^2 K</math>
1043
|-
1044
| style="border-left: 2px solid;" | Flow Stress Softening 
1045
| style="border-right: 2px solid;" | <math>0.002 K^{-1}</math>
1046
|-
1047
| style="border-left: 2px solid;" | Hardening Softening 
1048
| style="border-right: 2px solid;" | <math>0.002 K^{-1}</math>
1049
|-
1050
| style="border-left: 2px solid;" | Dissipation Factor 
1051
| style="border-right: 2px solid;" | 0.9 
1052
|- style="border-bottom: 2px solid;"
1053
| style="border-left: 2px solid;" | Expansion Coefficient 
1054
| style="border-right: 2px solid;" | <math>10^{-5} K^{-1} </math>
1055
1056
|}<br/>
1057
1058
'''Box 2.''' Material properties for the steel extrusion problem
1059
1060
An imposed velocity is set on the left side of the models: <math display="inline">10 mm/s</math> for the vertical die wall and <math display="inline">2.5 mm/s</math> for the inclined wall. In both models the vertical displacement is imposed to a zero value at the lower side of the steel plate. The initial temperature is <math display="inline">^\circ </math>T=293.15 K and the left boundary is fixed to this temperature during the analysis.
1061
1062
<div id='img-4'></div>
1063
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1064
|-
1065
|[[Image:draft_Samper_718004671-dimensions_wall_step.png|570px|Extrusion of a steel plate with two wall dies. Dimensions expressed in mm. ]]
1066
|- style="text-align: center; font-size: 75%;"
1067
| colspan="1" | '''Figure 4:''' Extrusion of a steel plate with two wall dies. Dimensions expressed in mm. 
1068
|}
1069
1070
<div id='img-5'></div>
1071
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1072
|-
1073
|[[Image:draft_Samper_718004671-extrusion_step_mesh.png|570px|Extrusion of a steel plate at three  time instants: t = 0.09s, t = 2.59s, t = 5.19s. Vertical die wall]]
1074
|- style="text-align: center; font-size: 75%;"
1075
| colspan="1" | '''Figure 5:''' Extrusion of a steel plate at three  time instants: t = 0.09s, t = 2.59s, t = 5.19s. Vertical die wall
1076
|}
1077
1078
The results of the extrusion analysis with the vertical step are shown in Figures [[#img-5|5]] and [[#img-6|6]]. Different time instants are considered, from the beginning to the end of the process. The contact forces with the wall, the temperature of the model, the plastic strain and the plastic strain rate are measures that can be obtained from the numerical results. With the distribution and the values of these quantities the extrusion process can be studied and optimized.
1079
1080
A similar set of results for a different extrusion problems using a die wall with a progressive reduction of the section are depicted in Figures [[#img-7|7]] and [[#img-8|8]].
1081
1082
<div id='img-6'></div>
1083
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1084
|-
1085
|[[Image:draft_Samper_718004671-extrusion_step_results.png|570px|Results of the extrusion of a steel plate  (vertical die wall) at t = 2.59s. Nodal forces in Newtons, pressure in N/mm², temperature in Kelvins and plastic strain rate in 1/s. ]]
1086
|- style="text-align: center; font-size: 75%;"
1087
| colspan="1" | '''Figure 6:''' Results of the extrusion of a steel plate  (vertical die wall) at t = 2.59s. Nodal forces in Newtons, pressure in <math>N/mm^2</math>, temperature in Kelvins and plastic strain rate in <math>1/s</math>. 
1088
|}
1089
1090
<div id='img-7'></div>
1091
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1092
|-
1093
|[[Image:draft_Samper_718004671-extrusion_slope_mesh.png|570px|Extrusion of a steel plate at three  time instants: t = 0.9s, t = 11.9s, t = 24.9s. Inclined die wall]]
1094
|- style="text-align: center; font-size: 75%;"
1095
| colspan="1" | '''Figure 7:''' Extrusion of a steel plate at three  time instants: t = 0.9s, t = 11.9s, t = 24.9s. Inclined die wall
1096
|}
1097
1098
<div id='img-8'></div>
1099
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1100
|-
1101
|[[Image:draft_Samper_718004671-extrusion_slope_results.png|570px|Results of the extrusion of a steel plate at t = 11.9s (inclined die wall). Nodal forces in Newtons, pressure in N/mm², temperature in Kelvins and plastic strain rate in 1/s. ]]
1102
|- style="text-align: center; font-size: 75%;"
1103
| colspan="1" | '''Figure 8:''' Results of the extrusion of a steel plate at t = 11.9s (inclined die wall). Nodal forces in Newtons, pressure in <math>N/mm^2</math>, temperature in Kelvins and plastic strain rate in <math>1/s</math>. 
1104
|}
1105
1106
<div id='img-9'></div>
1107
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1108
|-
1109
|[[Image:draft_Samper_718004671-single_shear_cut.png|570px|Cutting of a steel plate with a single cutter. Dimensions in mm.]]
1110
|- style="text-align: center; font-size: 75%;"
1111
| colspan="1" | '''Figure 9:''' Cutting of a steel plate with a single cutter. Dimensions in mm.
1112
|}
1113
1114
<div id='img-10'></div>
1115
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1116
|-
1117
|[[Image:draft_Samper_718004671-double_shear_cut.png|570px|Cutting of a steel plate with a two symmetric cutters. Dimensions in mm.]]
1118
|- style="text-align: center; font-size: 75%;"
1119
| colspan="1" | '''Figure 10:''' Cutting of a steel plate with a two symmetric cutters. Dimensions in mm.
1120
|}
1121
1122
===8.3 Shear cutting===
1123
1124
The next example shows the cutting of solid plate in 2D. It is a thermo-mechanical problem which involves large deformations and the process of cutting by means of a rigid tool. The initial conditions of the problem are depicted in Figures [[#img-9|9]] and [[#img-10|10]]. A thermo-elastoplastic constitutive law with the same  material properties as described in the previous example has been used. As previously mentioned, the PFEM combines the Lagrangian updating of the configuration with a redefinition of the domain geometry. These features allow to model naturally the cutting region by  refining  the solid model in the tool tip and by  inserting  new particles (nodes) when large flat boundaries appear at the tip contact zone.
1125
1126
The cutting tool moves downwards with a velocity of <math display="inline">5 mm/s</math> in the single cutter model and with a velocity of <math display="inline">200mm/s</math> in the problem with two cutters. In both models the horizontal displacement is imposed to zero in the outer sides of the plate. The initial temperature in the domain is set to 293.15 K and is kept fixed to this value in the outer boundary sides during  the analysis.
1127
1128
The PFEM results of the material deformation and the temperature distribution for various time instants are shown in Figures [[#img-11|11]] and [[#img-12|12]].
1129
1130
<div id='img-11'></div>
1131
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1132
|-
1133
|[[Image:draft_Samper_718004671-single_cut_results.png|570px|Cutting process. Results at the onset,  the middle and  the end of the process using a single cutter. Nodal forces are expressed in Newtons and the temperature in Kelvins.]]
1134
|- style="text-align: center; font-size: 75%;"
1135
| colspan="1" | '''Figure 11:''' Cutting process. Results at the onset,  the middle and  the end of the process using a single cutter. Nodal forces are expressed in Newtons and the temperature in Kelvins.
1136
|}
1137
1138
<div id='img-12'></div>
1139
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1140
|-
1141
|[[Image:draft_Samper_718004671-double_cut_results.png|570px|Results at the onset, the middle and  the end of a plate cutting process with two symmetric cutters. Nodal forces are expressed in Newtons and the temperature in Kelvins.]]
1142
|- style="text-align: center; font-size: 75%;"
1143
| colspan="1" | '''Figure 12:''' Results at the onset, the middle and  the end of a plate cutting process with two symmetric cutters. Nodal forces are expressed in Newtons and the temperature in Kelvins.
1144
|}
1145
1146
<div id='img-13'></div>
1147
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1148
|-
1149
|[[Image:draft_Samper_718004671-dimensions_forge.png|570px|Forging of a steel cylinder against to curved rigid walls. Dimensions in meters.]]
1150
|- style="text-align: center; font-size: 75%;"
1151
| colspan="1" | '''Figure 13:''' Forging of a steel cylinder against to curved rigid walls. Dimensions in meters.
1152
|}
1153
1154
===8.4 Forging of a cylindrical steel piece===
1155
1156
The next example considers the forging of a  steel cylinder. The material properties are the same as in Box 2. The mould is defined by two rigid walls that move  towards each other at the same speed, (<math display="inline">1 m/s</math>)  and enclose the steel piece. The dimensions of the model are depicted in Figure [[#img-13|13]]. An axisymmetric solution is considered. The initial temperature of the steel material is <math display="inline">^\circ </math>T =293.15 K.
1157
1158
The results of the material deformation, the pressure contours and the temperature distribution for various time instants are shown in Figures [[#img-14|14]] and [[#img-15|15]].
1159
1160
<div id='img-14'></div>
1161
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1162
|-
1163
|[[Image:draft_Samper_718004671-forge_mesh_force.png|570px|Meshes and wall nodal forces at the beginning,  the middle and  the end of the forging process. Nodal forces are expressed in Newtons.]]
1164
|- style="text-align: center; font-size: 75%;"
1165
| colspan="1" | '''Figure 14:''' Meshes and wall nodal forces at the beginning,  the middle and  the end of the forging process. Nodal forces are expressed in Newtons.
1166
|}
1167
1168
<div id='img-15'></div>
1169
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
1170
|-
1171
|[[Image:draft_Samper_718004671-forge_pressure_temperature.png|570px|Pressure and temperatures at the beginning,  the middle and  the end of the forging process. Pressure is expressed in Pascals and the temperature in Kelvins.]]
1172
|- style="text-align: center; font-size: 75%;"
1173
| colspan="1" | '''Figure 15:''' Pressure and temperatures at the beginning,  the middle and  the end of the forging process. Pressure is expressed in Pascals and the temperature in Kelvins.
1174
|}
1175
1176
===8.5 Hot forging of a metal piece===
1177
1178
Metal hot forging consists on deforming a work piece  at high temperature under compressive forces in order to obtain the desired shape of the final product. It is a largely used process in industrial metal manufacturing as it allows an improvement of the material properties of the final part via a controlled deformation process. For example, via  hot forging it is possible to reduce the impurities and  defects in the material, thereby avoiding stress concentrations in the final product.
1179
1180
The metal forging can be performed using an open die or a closed die. In this work, the latter case is considered. The geometry and the problem data for the 2D simulation are shown in Figure [[#img-16|16]]. The forging process is performed by controlling the displacement of the upper rectangular die which is pushed downwards with a velocity v=0.01<math display="inline">m/s</math> for a duration of 5.65<math display="inline">s</math>, while the material rigid walls are kept at the same position during the analysis. At the beginning of the process the metal piece and the lower walls have temperatures <math display="inline">^\circ </math>T=2000 K and <math display="inline">^\circ </math>T =1000 K, respectively. The forging is carried out through two steps: during the first one the piece is compressed by the descending rectangular  die; then the die is stopped and from t=6.0<math display="inline">s</math> to t=50.0<math display="inline">s</math> the piece is cooled down.  The cooling process is carried out by applying the temperature given by the following step function to both the upper rectangular die and the internal walls.
1181
1182
<span id="eq-58"></span>
1183
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1184
|-
1185
| 
1186
{| style="text-align: left; margin:auto;" 
1187
|-
1188
| style="text-align: center;" | <math>\displaystyle  \begin{array}{l}\displaystyle  T=850K   6.0s < t \leq 8.5s\\ \displaystyle T=600K   8.5s < t \leq 10.5s\\ \displaystyle T=300K   10.5s < t \leq 50s\\ \end{array}   </math>
1189
|}
1190
| style="width: 5px;text-align: right;" | (58)
1191
|}
1192
1193
It is assumed that the rectangular die has the same temperature of the metal piece during the compression phase. The normal heat flux through the surfaces in contact with the air has not been taken into account in the analysis.
1194
1195
The metal is modelled as an isotropic incompressible non-Newtonian fluid with a non-linear viscosity  given by the following relation <span id='citeF-44'></span><span id='citeF-45'></span>[[#cite-44|[44,45]]]
1196
1197
<span id="eq-59"></span>
1198
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1199
|-
1200
| 
1201
{| style="text-align: left; margin:auto;" 
1202
|-
1203
| style="text-align: center;" | <math>\mu = \frac{\sigma _{y}}{\sqrt{3}\bar \varepsilon }  </math>
1204
|}
1205
| style="width: 5px;text-align: right;" | (59)
1206
|}
1207
1208
where <math display="inline">{\sigma _{y}}</math> is the uniaxial yield stress of the material and <math display="inline">\bar{{\varepsilon }}</math> is the deviatoric strain rate invariant defined as:
1209
1210
<span id="eq-60"></span>
1211
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1212
|-
1213
| 
1214
{| style="text-align: left; margin:auto;" 
1215
|-
1216
| style="text-align: center;" | <math>\bar \varepsilon = \sqrt{\frac{2}{3}{\varepsilon }_{ij} {\varepsilon }_{ij}}  </math>
1217
|}
1218
| style="width: 5px;text-align: right;" | (60)
1219
|}
1220
1221
The uniaxial yield stress <math display="inline">{\sigma _{y}}</math> depends on the temperature as follows:
1222
1223
<span id="eq-61"></span>
1224
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1225
|-
1226
| 
1227
{| style="text-align: left; margin:auto;" 
1228
|-
1229
| style="text-align: center;" | <math>\displaystyle  \begin{array}{l}\displaystyle {\sigma _{y}}=157.7                                                            T \leq 1500\\ \displaystyle {\sigma _{y}}=157.7+3.6\cdot (T-1500)^2-3250\cdot (T-1500)     1500< T \leq 1930 \\ \displaystyle {\sigma _{y}}=79.4                                                               T >1930 \\ \end{array}   </math>
1230
|}
1231
| style="width: 5px;text-align: right;" | (61)
1232
|}
1233
1234
The constitutive equation ([[#eq-59|59]]) is typical in the study of industrial forming processes by the plastic/viscoplastic flow approach <span id='citeF-44'></span><span id='citeF-45'></span><span id='citeF-48'></span>[[#cite-44|[44,45,48]]].
1235
1236
The metal piece has been discretized using 6849 3-noded triangular finite elements. The 2D coupled thermal-mechanical simulation has been run for 50<math display="inline">s</math> with <math display="inline">\Delta t</math>=<math display="inline">0.0005s</math>.
1237
1238
The snapshots of Figure [[#img-17|17]] refer to the initial compression phase that has a duration of 5.65<math display="inline">s</math>. The upper rectangular die moves downwards forcing the metal piece to take the shape of the lower rigid walls.
1239
1240
Figure [[#img-18|18]] shows four representative snapshots of the cooling period.
1241
1242
<div id='img-16'></div>
1243
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1244
|-
1245
|[[Image:draft_Samper_718004671-forgingInput2.png|400px|]]
1246
|[[Image:draft_Samper_718004671-forgingData.png|400px|]]
1247
|-
1248
| colspan="2"|[[Image:draft_Samper_718004671-metalData.png|600px|Hot forging of a metal piece. Initial geometry, coordinates of corner points and material properties.]]
1249
|- style="text-align: center; font-size: 75%;"
1250
| colspan="2" | '''Figure 16:''' Hot forging of a metal piece. Initial geometry, coordinates of corner points and material properties.
1251
|}
1252
1253
<div id='img-17'></div>
1254
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1255
|-
1256
|[[Image:draft_Samper_718004671-forging800.png|400px|]]
1257
|[[Image:draft_Samper_718004671-forging1500.png|400px|]]
1258
|-
1259
|[[Image:draft_Samper_718004671-forging3610.png|400px|]]
1260
|[[Image:draft_Samper_718004671-tempComp.png|400px|]]
1261
|-
1262
|[[Image:draft_Samper_718004671-forging5320.png|400px|]]
1263
|[[Image:draft_Samper_718004671-forging5560.png|400px|]]
1264
|-
1265
| colspan="2"|[[Image:draft_Samper_718004671-forging5650.png|300px|Hot forging of a metal piece. Compression phase. Snapshots of the deformation with temperature contours at different time instants.]]
1266
|- style="text-align: center; font-size: 75%;"
1267
| colspan="2" | '''Figure 17:''' Hot forging of a metal piece. Compression phase. Snapshots of the deformation with temperature contours at different time instants.
1268
|}
1269
1270
<div id='img-18'></div>
1271
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1272
|-
1273
|[[Image:draft_Samper_718004671-forgingCooling8450.png|400px|]]
1274
|[[Image:draft_Samper_718004671-forgingCooling10445.png|400px|]]
1275
|-
1276
|[[Image:draft_Samper_718004671-forgingCooling25000.png|400px|]]
1277
|[[Image:draft_Samper_718004671-forgingCooling50000.png|400px|]]
1278
|-
1279
| colspan="2"|[[Image:draft_Samper_718004671-tempCooling.png|300px|Hot forging of a metal piece. Cooling period. Snapshots of the  temperature contours on the deformed geometry at different time steps.]]
1280
|- style="text-align: center; font-size: 75%;"
1281
| colspan="2" | '''Figure 18:''' Hot forging of a metal piece. Cooling period. Snapshots of the  temperature contours on the deformed geometry at different time steps.
1282
|}
1283
1284
<div id='img-19'></div>
1285
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1286
|-
1287
|[[Image:draft_Samper_718004671-ballsInput2.png|400px|]]
1288
|[[Image:draft_Samper_718004671-ballDataGeo.png|400px|]]
1289
|-
1290
| colspan="2"|[[Image:draft_Samper_718004671-ballDataMat.png|600px|Falling of three solid objects in a heated tank filled with a fluid. Initial geometry, thermal conditions and material properties.]]
1291
|- style="text-align: center; font-size: 75%;"
1292
| colspan="2" | '''Figure 19:''' Falling of three solid objects in a heated tank filled with a fluid. Initial geometry, thermal conditions and material properties.
1293
|}
1294
1295
===8.6 Falling of three solid objects in a heated tank filled with fluid===
1296
1297
Three solid objects with the same shape fall from the same height into a tank containing a fluid at rest. The geometry, the problem data, and the initial thermal conditions are shown in Figure [[#img-19|19]].
1298
1299
The fluid in the tank has an initial temperature of T=340<math display="inline">K</math>, while the solid bodies from left to right have initial temperatures of T=180 K, T=200 K, and T=220 K, respectively. The solid and the fluid domains have been discretized with a finite element mesh of 9394 3-noded triangular elements. The simulation has been run for eight seconds with <math display="inline">\Delta t</math>=<math display="inline">0.0001 s</math>. The heat flux in the normal direction is assumed to be zero for the boundaries in contact with the air and the walls. Figure [[#img-20|20]] shows six representative snapshots of the numerical simulation with the temperature results plotted over the fluid domain and the objects domains.
1300
1301
<div id='img-20'></div>
1302
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1303
|-
1304
|[[Image:draft_Samper_718004671-Balls664.png|400px|]]
1305
|[[Image:draft_Samper_718004671-Balls1816.png|400px|]]
1306
|-
1307
|[[Image:draft_Samper_718004671-Balls2656.png|400px|]]
1308
|[[Image:draft_Samper_718004671-tempIce.png|400px|]]
1309
|-
1310
|[[Image:draft_Samper_718004671-Balls4500.png|400px|]]
1311
|[[Image:draft_Samper_718004671-Balls7000.png|400px|]]
1312
|-
1313
| colspan="2"|[[Image:draft_Samper_718004671-Balls8000.png|300px|Falling of three solid objects in a heated tank filled with a fluid. Snapshots with temperature contours at different time steps.]]
1314
|- style="text-align: center; font-size: 75%;"
1315
| colspan="2" | '''Figure 20:''' Falling of three solid objects in a heated tank filled with a fluid. Snapshots with temperature contours at different time steps.
1316
|}
1317
1318
<div id='img-21'></div>
1319
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 85%;max-width: 100%;"
1320
|-
1321
|[[Image:draft_Samper_718004671-REPBalls6hGraph.png|510px|Falling of three solid objects in a heated tank filled with a fluid. Evolution of the temperature at the center of the three objects.]]
1322
|- style="text-align: center; font-size: 75%;"
1323
| colspan="1" | '''Figure 21:''' Falling of three solid objects in a heated tank filled with a fluid. Evolution of the temperature at the center of the three objects.
1324
|}
1325
1326
In the graph of Figure [[#img-21|21]] the evolution of the temperature at the central point of the three solid objects is plotted.
1327
1328
===8.7 Melting of an ice block===
1329
1330
A cylindrical ice block at initial temperature <math display="inline">^\circ </math>T=270 K is dropped into a tank containing water at rest at an initial temperature <math display="inline">^\circ </math>T=340 K. The initial geometry, the problem data and the initial thermal conditions for the 2D simulation are shown in Figure [[#img-22|22]].
1331
1332
<div id='img-22'></div>
1333
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1334
|-
1335
|[[Image:draft_Samper_718004671-iceInput2.png|400px|]]
1336
|[[Image:draft_Samper_718004671-iceDataGeo.png|400px|]]
1337
|-
1338
| colspan="2"|[[Image:draft_Samper_718004671-iceDataMat.png|600px|Melting of an ice cylinder. Geometry, material data and initial thermal conditions.]]
1339
|- style="text-align: center; font-size: 75%;"
1340
| colspan="2" | '''Figure 22:''' Melting of an ice cylinder. Geometry, material data and initial thermal conditions.
1341
|}
1342
1343
Ice is treated as a hypoelastic solid until  some of its elements reach the fusion temperature (T=273.15 K ). These elements are transferred to the fluid domain and take the physical properties of the fluid. For this analysis the following assumptions were made: the mechanical and thermal properties of water and  ice do not change with  temperature and the heat normal flux along the boundaries in contact with the air or the walls have been considered to be zero.
1344
1345
In Figure [[#img-23|23]] snapshots of some representative instants of the analysis are shown. The temperature contours are plotted over the water domain and the ice block.
1346
1347
In Figure [[#img-24|24]] the detail of the melting of the ice block is illustrated. The finite element mesh is drawn over the solid and the fluid domains.
1348
1349
<div id='img-23'></div>
1350
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1351
|-
1352
|[[Image:draft_Samper_718004671-Ice44.png|400px|]]
1353
|[[Image:draft_Samper_718004671-Ice110.png|400px|]]
1354
|-
1355
|[[Image:draft_Samper_718004671-Ice263.png|400px|]]
1356
|[[Image:draft_Samper_718004671-tempIce.png|400px|]]
1357
|-
1358
|[[Image:draft_Samper_718004671-Ice455.png|400px|]]
1359
|[[Image:draft_Samper_718004671-Ice1001.png|400px|]]
1360
|-
1361
| colspan="2"|[[Image:draft_Samper_718004671-Ice1600.png|300px|Melting of an ice cylinder. Snapshots of the melting process with temperature contours at different time steps.]]
1362
|- style="text-align: center; font-size: 75%;"
1363
| colspan="2" | '''Figure 23:''' Melting of an ice cylinder. Snapshots of the melting process with temperature contours at different time steps.
1364
|}
1365
1366
<div id='img-24'></div>
1367
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1368
|-
1369
|[[Image:draft_Samper_718004671-iceZoom281.png|400px|]]
1370
|[[Image:draft_Samper_718004671-iceZoom470.png|400px|]]
1371
|-
1372
|[[Image:draft_Samper_718004671-iceZoom977.png|400px|]]
1373
|[[Image:draft_Samper_718004671-iceZoom1274.png|400px|]]
1374
|-
1375
|[[Image:draft_Samper_718004671-iceZoom1469.png|400px|]]
1376
|[[Image:draft_Samper_718004671-iceZoom1547.png|400px|Melting of an ice cylinder. Zoom of the ice domain at different time instants.]]
1377
|- style="text-align: center; font-size: 75%;"
1378
| colspan="2" | '''Figure 24:''' Melting of an ice cylinder. Zoom of the ice domain at different time instants.
1379
|}
1380
1381
===8.8 Falling and warming of a solid sphere in a cilindrical tank containing hot water===
1382
1383
A solid sphere at <math display="inline">^\circ </math>T=270 K is dropped into a cilndrical tank containing still water  at <math display="inline">^\circ </math>T=340 K. In  Figure [[#img-22|22]] the geometry and the problem data are given. The 3D simulation is run for a duration of 3<math display="inline">s</math>  with <math display="inline">\Delta t</math>=<math display="inline">0.001 s</math>. A finite element mesh of 144663 4-noded tetrahedral elements has been used to discretize both the fluid domain and the sphere. Figure [[#img-26|26]] shows six representative snapshots of the analysis. The temperature contours have been plotted over the fluid domain and the sphere.
1384
1385
Figure [[#img-27|27]] shows the  evolution of the temperature at the center of the sphere versus time. The solid material has high conductivity and this explains its fast warming. After three seconds, it practically reaches the equilibrium temperature. We note that the  normal heat flux along the boundaries in contact with the air have been considered to be zero.
1386
1387
<div id='img-25'></div>
1388
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1389
|-
1390
|[[Image:draft_Samper_718004671-ball3DInput.png|400px|]]
1391
|[[Image:draft_Samper_718004671-ball3DDataGeo.png|400px|]]
1392
|-
1393
| colspan="2"|[[Image:draft_Samper_718004671-ball3DDataMat.png|600px|Warming of a solid sphere with initial temperature ^∘T=270 K falling into a cylindrical tank containing a fluid at ^∘T=340 K. Initial geometry and material properties.]]
1394
|- style="text-align: center; font-size: 75%;"
1395
| colspan="2" | '''Figure 25:''' Warming of a solid sphere with initial temperature <math>^\circ </math>T=270 K falling into a cylindrical tank containing a fluid at <math>^\circ </math>T=340 K. Initial geometry and material properties.
1396
|}
1397
1398
<div id='img-26'></div>
1399
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1400
|-
1401
|[[Image:draft_Samper_718004671-ball3D8.png|400px|]]
1402
|[[Image:draft_Samper_718004671-ball3D17.png|400px|]]
1403
|-
1404
|[[Image:draft_Samper_718004671-ball3D38.png|400px|]]
1405
|[[Image:draft_Samper_718004671-tempIce.png|400px|]]
1406
|-
1407
|[[Image:draft_Samper_718004671-ball3D53.png|400px|]]
1408
|[[Image:draft_Samper_718004671-ball3D71.png|400px|]]
1409
|-
1410
| colspan="2"|[[Image:draft_Samper_718004671-ball3D300.png|300px|Warming of a solid sphere (^∘T=270 K) falling into a cylindrical tank containing a fluid at ^∘T=340 K. Snapshots of the  motion of the sphere and the temperature contours at different time steps.]]
1411
|- style="text-align: center; font-size: 75%;"
1412
| colspan="2" | '''Figure 26:''' Warming of a solid sphere (<math>^\circ </math>T=270 K) falling into a cylindrical tank containing a fluid at <math>^\circ </math>T=340 K. Snapshots of the  motion of the sphere and the temperature contours at different time steps.
1413
|}
1414
1415
<div id='img-27'></div>
1416
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 80%;max-width: 100%;"
1417
|-
1418
|[[Image:draft_Samper_718004671-ball3DEvolution.png|480px|Warming of a solid sphere (^∘T=270 K) falling into a cylindrical tank containing a fluid at ^∘T=340 K. Evolution of the temperature at the center of the sphere.]]
1419
|- style="text-align: center; font-size: 75%;"
1420
| colspan="1" | '''Figure 27:''' Warming of a solid sphere (<math>^\circ </math>T=270 K) falling into a cylindrical tank containing a fluid at <math>^\circ </math>T=340 K. Evolution of the temperature at the center of the sphere.
1421
|}
1422
1423
==9 CONCLUDING REMARKS==
1424
1425
We have presented a unified Lagrangian formulation for analysis of industrial forming processes involving thermally coupled interactions between deformable continua containing fluids and solids. A  residual-based  expression of the mass conservation equation obtained using the FIC method  provides the necessary stability for quasi/fully incompressible situations. The  governing equations for the generalized continuum are discretized with the FEM using simplicial elements with equal linear interpolation for the velocities, the pressure and the temperature. The merits of the formulation in terms of its general applicability have been demonstrated in the solution of a variety of thermally-coupled industrial forming processes using the Particle Finite Element Method (PFEM).
1426
1427
==ACKNOWLEDGEMENTS==
1428
1429
This research was partially supported by the Advanced Grant  project SAFECON of the European Research Council and the HFLUIDS project of the National Research Programme of Spain.
1430
1431
===BIBLIOGRAPHY===
1432
1433
<div id="cite-1"></div>
1434
'''[[#citeF-1|[1]]]'''  Aubry R, Idelsohn SR, Oñate E (2005)  Particle finite element method in fluid-mechanics including thermal convection-diffusion. Computers and Structures,  Vol. 83, (17-18), pp 1459&#8211;1475.
1435
1436
<div id="cite-2"></div>
1437
'''[[#citeF-2|[2]]]'''   Aubry R, Idelsohn SR, Oñate E (2006)  Fractional step like schemes for free surface problems with thermal coupling using the Lagrangian PFEM. Computational Mechanics,  Vol. 38 (4-5), pp. 294&#8211;309.
1438
1439
<div id="cite-3"></div>
1440
'''[[#citeF-3|[3]]]'''  Belytschko T, Liu WK, Moran B, Non linear finite element for continua and structures, 2d Edition, Wiley, 2013.
1441
1442
<div id="cite-4"></div>
1443
'''[[#citeF-4|[4]]]'''  Carbonell JM, Oñate E, Suárez B (2010) Modeling of ground excavation with the Particle Finite Element Method. Journal of Engineering Mechanics (ASCE) 136(4):455&#8211;463
1444
1445
<div id="cite-5"></div>
1446
'''[[#citeF-5|[5]]]'''  Carbonell JM, Oñate E, Suárez B (2013) Modelling of tunnelling processes and cutting tool wear with the Particle Finite Element Method (PFEM). Comput. Mech. 52(3):607&#8211;629
1447
1448
<div id="cite-6"></div>
1449
'''[[#citeF-6|[6]]]'''  Chenot JL, Oñate E (1988) ''Modelling of Metal Forming Processes'', Kluwer Academic, Dordrecht.
1450
1451
<div id="cite-7"></div>
1452
'''[[#citeF-7|[7]]]'''   Donea J,  Huerta A  (2003) Finite element method for flow problems. J. Wiley
1453
1454
<div id="cite-8"></div>
1455
'''[[#citeF-8|[8]]]'''  Edelsbrunner H,  Mucke EP (1999) Three dimensional alpha shapes. ACM   Trans. Graphics  13:43&#8211;72
1456
1457
<div id="cite-9"></div>
1458
'''[[#citeF-9|[9]]]'''  Franci A, Oñate E, Carbonell JM (2013) On the effect of the  tangent bulk stiffness matrix in the analysis of free surface Lagrangian flows using PFEM. Research Report CIMNE PI402. Submitted to Int. J. Numer. Meth. Biomed. Engng.
1459
1460
<div id="cite-10"></div>
1461
'''[[#citeF-10|[10]]]'''  Franci A, Oñate E, Carbonell JM (2014) Unified updated Lagrangian formulation for fluid-structure interaction problems. Publication CIMNE No. PI404.
1462
1463
<div id="cite-11"></div>
1464
'''[[#citeF-11|[11]]]'''  Ghosh S, Castro JC,   Lee JK (2004) Material Processing and Design: Simulation and Applications. NUMIFORM 2004, American Institute of Physics.
1465
1466
<div id="cite-12"></div>
1467
'''[[#citeF-12|[12]]]'''  Huetnik J, Baaijens FPT  (Eds) (1998) ''Simulation of Materials Processing: Theory,  Methods and Applications, NUMIFORM 98''.  Enschede, Países Bajos,  A.A. Balkema, Rotterdam, 22&#8211;5 Jun.
1468
1469
<div id="cite-13"></div>
1470
'''[[#citeF-13|[13]]]'''  Idelsohn SR, Calvo N, Oñate E (2003c) Polyhedrization of an arbitrary point set. Comput. Method Appl. Mech. Engng. 192(22-24):2649&#8211;2668
1471
1472
<div id="cite-14"></div>
1473
'''[[#citeF-14|[14]]]'''  Idelsohn SR, Oñate E, Del Pin F (2004)  The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Numer. Meth. Biomed. Engng.,  61(7):964&#8211;989
1474
1475
<div id="cite-15"></div>
1476
'''[[#citeF-15|[15]]]'''  Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Engrg.  197:1762&#8211;1776
1477
1478
<div id="cite-16"></div>
1479
'''[[#citeF-16|[16]]]'''  Idelsohn SR, Mier-Torrecilla M, Oñate E  (2009) Multi-fluid flows with the Particle Finite Element Method. Comput Methods Appl Mech Engrg. 198:2750&#8211;2767
1480
1481
<div id="cite-17"></div>
1482
'''[[#citeF-17|[17]]]'''  Larese A,  Rossi R, Oñate E, Idelsohn SR (2008)  Validation of the Particle Finite Element Method (PFEM) for simulation of free surface flows. Engineering Computations 25(4):385&#8211;425
1483
1484
<div id="cite-18"></div>
1485
'''[[#citeF-18|[18]]]'''  Limache A, Idelsohn, SR, Rossi R, Oñate E (2007) The violation of objectivity in Laplace formulation of the Navier-Stokes equations. Int. J. Numerical Methods in Fluids, 54:639&#8211;664.
1486
1487
<div id="cite-19"></div>
1488
'''[[#citeF-19|[19]]]'''  Mori K (2001) ''Simulation of Material Processing: Theory, Methods and Applications'', A.A. Balkema, Lisse.
1489
1490
<div id="cite-20"></div>
1491
'''[[#citeF-20|[20]]]'''  Oliver X, Cante JC, Weyler R, González C, Hernández J (2007) Particle finite element methods in solid mechanics problems. In: Oñate E, Owen R (Eds) Computational Plasticity. Springer, Berlin, pp 87&#8211;103
1492
1493
<div id="cite-21"></div>
1494
'''[[#citeF-21|[21]]]'''  Oñate E (1998) Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput. Meth. Appl. Mech. Engng. 151:233&#8211;267
1495
1496
<div id="cite-22"></div>
1497
'''[[#citeF-22|[22]]]'''  Oñate E, Manzan M (1999)  A general procedure for deriving stabilized space-time finite element methods for advective-diffusive problems. International Journal for Numerical Methods in Fluids,  Vol. 31, pp. 203&#8211;221.
1498
1499
<div id="cite-23"></div>
1500
'''[[#citeF-23|[23]]]'''  Oñate E (2000) A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput Methods Appl Mech Engrg. 182(1&#8211;2):355&#8211;370
1501
1502
<div id="cite-24"></div>
1503
'''[[#citeF-24|[24]]]'''   Oñate E (2004) Possibilities of finite calculus in computational mechanics. Int. J. Num. Meth. Engng. 60(1):255&#8211;281
1504
1505
<div id="cite-25"></div>
1506
'''[[#citeF-25|[25]]]'''   Oñate E, Rojek J, Taylor R, Zienkiewicz O (2004a) Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int. J. Numer. Meth. Engng. 59(11):1473&#8211;1500
1507
1508
<div id="cite-26"></div>
1509
'''[[#citeF-26|[26]]]'''  Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004b) The particle   finite element method. An overview. Int. J. Comput. Methods    1(2):267&#8211;307
1510
1511
<div id="cite-27"></div>
1512
'''[[#citeF-27|[27]]]'''  Oñate E, M.A. Celigueta, Idelsohn SR (2006) Modeling bed erosion in   free surface flows by the Particle Finite Element Method, Acta   Geotechnia 1(4):237&#8211;252
1513
1514
<div id="cite-28"></div>
1515
'''[[#citeF-28|[28]]]'''  Oñate E, Valls A, García J  (2006) FIC/FEM formulation   with matrix stabilizing terms for incompressible flows at low and high   Reynold's numbers. Computational Mechanics 38 (4-5):440&#8211;455
1516
1517
<div id="cite-29"></div>
1518
'''[[#citeF-29|[29]]]'''  Oñate E, García J,  SR Idelsohn, Del Pin F (2006)  FIC   formulations for finite element analysis of incompressible flows. Eulerian,   ALE and Lagrangian approaches.  Comput. Meth. Appl. Mech. Engng.   195(23-24):3001&#8211;3037
1519
1520
<div id="cite-30"></div>
1521
'''[[#citeF-30|[30]]]'''  Oñate E, Rojek J, Chiumenti M, Idelsohn SR, Del Pin F, Aubry R (2006) Advances in stabilized finite element and particle methods for bulk forming processes. Comput. Meth. Appl. Mech. Engng. 195:6750&#8211;6777
1522
1523
<div id="cite-31"></div>
1524
'''[[#citeF-31|[31]]]'''  Oñate E, Owen DRJ, (Eds.), ''Computational Plasticity'', Springer 2007
1525
1526
<div id="cite-32"></div>
1527
'''[[#citeF-32|[32]]]'''  Oñate E, Idelsohn SR,  Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput. Meth. Appl. Mech. Engng. 197(19-20):1777&#8211;1800
1528
1529
<div id="cite-33"></div>
1530
'''[[#citeF-33|[33]]]'''  Oñate E (2009)  Structural analysis with the finite element method. Linear statics. Volume 1. Basis and Solids.  CIMNE-Springer
1531
1532
<div id="cite-34"></div>
1533
'''[[#citeF-34|[34]]]'''  Oñate E, Rossi R,  Idelsohn SR, Butler K (2010) Melting and spread of polymers in fire with the particle finite element method. Int. J. Numerical Methods in Engineering, 81(8):1046&#8211;1072
1534
1535
<div id="cite-35"></div>
1536
'''[[#citeF-35|[35]]]'''  Oñate E, Celigueta MA, Idelsohn SR,  Salazar F, Suárez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Computational Mechanics, 48(3):307&#8211;318
1537
1538
<div id="cite-36"></div>
1539
'''[[#citeF-36|[36]]]'''  Oñate E, Idelsohn SR, Felippa C (2011) Consistent pressure Laplacian stabilization for incompressible continua via higher-order finite calculus. Int. J. Numer. Meth. Engng, 87 (1-5): 171&#8211;195
1540
1541
<div id="cite-37"></div>
1542
'''[[#citeF-37|[37]]]'''  Oñate E, Carbonell JM  (2013) Updated Lagrangian finite element formulation for quasi-incompressible fluids. Research Report PI393, CIMNE. Submitted to Comput. Mechanics
1543
1544
<div id="cite-38"></div>
1545
'''[[#citeF-38|[38]]]'''  Oñate E, Franci A, Carbonell JM (2013) Lagrangian formulation  for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int. J. Num. Meth. Fluids, DOI: 10.1002/fld.3870
1546
1547
<div id="cite-39"></div>
1548
'''[[#citeF-39|[39]]]'''  Pietrzyk M, Kusiak J, Majta J, Hartley P, Pillinger I (2000) ''Metal Forming 2000''. A.A. Balkema, Rotterdam
1549
1550
<div id="cite-40"></div>
1551
'''[[#citeF-40|[40]]]'''  Pittman JFT, Zienkiewicz OC,  Wood RD, Alexander JM (Eds) (1984) '' Numerical Analysis of Forming Processes''. Wiley, Chichester
1552
1553
<div id="cite-41"></div>
1554
'''[[#citeF-41|[41]]]'''  Ryzhakov P, Oñate E, Rossi R, Idelsohn SR (2012) Improving mass conservation in simulation of incompressible flows. Int. J. Numer. Meth. Engng.  90(12):1435&#8211;1451
1555
1556
<div id="cite-42"></div>
1557
'''[[#citeF-42|[42]]]'''    Simo JC, Miehe C (1992)   Associative coupled thermoplasticity at finite strains Formulation, numerical analysis and implementation.   ''Computer Methods in Applied Mechanics and Engineering'', 98:41-104
1558
1559
<div id="cite-43"></div>
1560
'''[[#citeF-43|[43]]]'''  Tang B, Li JF, Wang TS (2009) Some improvements on free surface simulation by the particle finite element method. ''Int. J. Num. Methods in Fluids'', 60 (9):1032–-1054
1561
1562
<div id="cite-44"></div>
1563
'''[[#citeF-44|[44]]]'''  Zienkiewicz OC, Jain PC, Oñate E (1978) Flow of solids during forming and extrusion: some aspects of numerical solutions. ''Int. J. Solids Struct.'', 14:15&#8211;38
1564
1565
<div id="cite-45"></div>
1566
'''[[#citeF-45|[45]]]'''  Zienkiewicz OC, Oñate E,  Heinrich JC (1981)  A general formulation for coupled thermal flow of metals using finite elements, ''Int. J. Num. Meth. Eng.'', 17:1497&#8211;514, 1981
1567
1568
<div id="cite-46"></div>
1569
'''[[#citeF-46|[46]]]'''  Zienkiewicz OC,  Taylor RL, Zhu JZ (2005) The finite element method. The basis.  Vol. 1, 6th Ed., Elsevier
1570
1571
<div id="cite-47"></div>
1572
'''[[#citeF-47|[47]]]'''  Zienkiewicz OC,  Taylor RL (2005) The finite element method for   solid and structural mechanics. Vol. 2,  6th Ed., Elsevier
1573
1574
<div id="cite-48"></div>
1575
'''[[#citeF-48|[48]]]'''  Zienkiewicz OC,  Taylor RL, Nithiarasu P (2005)  The finite element   method for fluid dynamics.  Vol. 3, 6th Ed.,  Elsevier
1576

Return to Onate et al 2014c.

Back to Top