You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
2
== Abstract ==
3
4
This paper shows applications of a recently developed thin shell element adequate for the analysis of membrane and inflatable structures. The element is a three node triangle with only translational degrees of freedom that uses the configuration of the three adjacent elements to evaluate the strains in terms of the nodal displacements only. This allows to compute (constant) bending strains and (linear) membrane strains using a total Lagrangian formulation. Several examples, including inflation and deflation of membranes and some practical applications to the analysis, design and construction of membrane structures formed by low pressure inflatable tubes   are presented.
5
6
'''Keywords''' shell  elements, rotation free shell triangle, membrane structures,   inflatable structures, low pressure inflatable tubes
7
8
==1 Introduction==
9
10
Inflatable structures have unique features. Because of their foldability and air- or helium pneumatic stabilisation they cannot be compared to any classical structural concepts.
11
12
Inflatable structures have become increasingly popular in recent years for a wide range of applications in architecture, civil engineering, aeronautic  and airspace situations.
13
14
The use of inflatable structures can be found in temporary and/or foldable structures to cover large spaces or to support other elements, in permanent roofs or shelters with a high degree of transparency, in mobile buildings as temporary housing in civil logistic missions (e.g. environmental disasters and rescue situations), in the construction of tunnels and dams, in antennas for both ground and aerospace applications, as well as in extremely light airship structures among other uses <span id='citeF-1'></span> <span id='citeF-11'></span>[[#cite-1|[1]]-[[#cite-11|11]]].
15
16
Some efforts have been made in the past years to develop inflated structures formed by assembly of high pressure tubes. The obvious disadvantages of these structures are the design of the joints and their big vulnerability to air losses. In general, high pressure inflated structures are difficult to maintain and repair and have a high cost.
17
18
Inflatable structures formed by an assembly of self-supported low pressure tubular membrane elements are ideal to cover large space areas. They also adapt easily to any design shape and have minimal maintenance requirements, other than keeping a constant low internal pressure accounting for the air losses through the material pores and the seams.
19
20
The simulation of the inflation of membrane structures is normally performed with membrane finite elements, i.e. no bending stiffness included.  The formulation of such elements is simple as they only require <math display="inline">C^{0}</math> continuity <span id='citeF-12'></span>[[#cite-12|[12]]], in contrast with elements based on thin shell theory where <math display="inline">C^{1}</math> continuity implies important obstacles <span id='citeF-13'></span>[[#cite-13|[13]]] in the development of conforming elements.  Triangular elements are naturally preferred as they can easily adapt to arbitrary geometries and due to the robustness of the associated mesh generators.
21
22
Membrane structures components have some, although small, bending stiffness that in most cases is  disregarded. However in many applications it is convenient to include bending energy in the model due to the important regularization effect it introduces. Shell elements are typically more complex and expensive due the increase in degrees of freedom (rotations) and integration points (through the thickness). In the last few years shell elements without rotation degrees of freedom have been developed <span id='citeF-14'></span> <span id='citeF-22'></span>[[#cite-14|[14]]-[[#cite-22|22]]], which make shell elements more efficient for both implicit and explicit integration schemes.
23
24
When only the final configuration of the membrane is of interest implicit schemes are normally used, including special algorithms due to the lack of stiffness of the membrane when no tensile stresses are yet present.  When the inflation/deflation process is of interest, the explicit integration of the momentum equations is largely preferred.  Modeling of complex deformation with constant strain shell triangles, such as those occuring in the inflation-deflation process of inflatable membranes accounting for frictional contact conditions typically require  fine discretizations. These type of simulations can be time consuming due to the time increment limitations. In this paper a rotation-free triangular shell element with similar convergence properties to the linear strain triangle, but without its drawbacks, is used.
25
26
The outline of this chapter is as follows. Next two section summarizes the rotation-free shell triangle used. [[#4 Aeroelastic Analysis|Section 4]] summarices the procedure for aeroelastic analysis. [[#5 Examples|Section 5]] presents examples of application to the analysis of inflatable membranes. The paper concludes with practical examples inflatable structures formed by low pressure inflatable tubes designed and analyzed  using the  technology described in the paper. Finally [[#6 Concluding Remarks|Section 6]] summarizes some conclusions.
27
28
==2 Formulation of the Rotation Free Shell Triangle==
29
30
===2.1 Shell Kinematics===
31
32
A summary of the most relevant hypothesis related to the kinematic behaviour of a thin shell are presented. Further details may be found in the wide literature dedicated to this field <span id='citeF-21'></span> <span id='citeF-23'></span>[[#cite-21|[21]]-[[#cite-23|23]]].
33
34
Consider a shell with undeformed middle surface occupying the domain <math display="inline">\Omega ^{0}</math> in <math display="inline">R^{3}</math> with a boundary <math display="inline">\Gamma ^{0}</math>. At each point of the middle surface a thickness <math display="inline">h^{0}</math> is defined. The positions <math display="inline">\mathbf{x}^{0}</math> and <math display="inline">\mathbf{x}</math> of a point in the undeformed and the deformed configurations can be respectively written as a function of the coordinates of the middle surface <math display="inline">{\boldsymbol \varphi }</math> and the normal <math display="inline">\mathbf{t}_{3}</math> at the point as
35
36
{| class="formulaSCP" style="width: 100%; text-align: left;" 
37
|-
38
| 
39
{| style="text-align: left; margin:auto;width: 100%;" 
40
|-
41
| style="text-align: center;" | <math>\mathbf{x}^{0}\left( \xi _{1},\xi _{2},\zeta \right)    ={\boldsymbol \varphi }^{0}\left( \xi _{1},\xi _{2}\right) +\lambda \mathbf{t}_{3}^{0}</math>
42
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
43
|-
44
| style="text-align: center;" | <math> \mathbf{x}\left( \xi _{1},\xi _{2},\zeta \right)    ={\boldsymbol \varphi }\left( \xi  _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}</math>
45
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
46
|}
47
|}
48
49
where <math display="inline">\xi _{1},\xi _{2}</math> are arc-length curvilinear principal coordinates defined over the middle surface of the shell and <math display="inline">\zeta </math> is the distance from the point to the middle surface in the undeformed configuration. The product <math display="inline">\zeta \lambda </math> is the distance from the point to the middle surface measured on the deformed configuration. The parameter <math display="inline">\lambda </math> relates the thickness at the present and initial configurations as:
50
51
{| class="formulaSCP" style="width: 100%; text-align: left;" 
52
|-
53
| 
54
{| style="text-align: left; margin:auto;width: 100%;" 
55
|-
56
| style="text-align: center;" | <math>\lambda =\frac{h}{h^{0}}</math>
57
|}
58
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
59
|}
60
61
This approach implies a constant strain in the normal direction. Parameter <math display="inline">\lambda </math> will not be considered as an independent variable  and will be computed from purely geometrical considerations (''isochoric'' behaviour) via a staggered iterative update. Besides this, the usual plane stress condition of thin shell theory will be adopted.
62
63
A convective system is computed at each point as
64
65
{| class="formulaSCP" style="width: 100%; text-align: left;" 
66
|-
67
| 
68
{| style="text-align: left; margin:auto;width: 100%;" 
69
|-
70
| style="text-align: center;" | <math>\mathbf{g}_{i}\left( \mathbf{\xi }\right) =\frac{\partial \mathbf{x}}{\partial \xi _{i}}\qquad i=1,2,3</math>
71
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
72
|-
73
| style="text-align: center;" | <math> \mathbf{g}_{\alpha }\left( \mathbf{\xi }\right)    =\frac{\partial \left( \mathbf{\boldsymbol \varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \xi _{\alpha }}={\boldsymbol \varphi }_{^{\prime }\alpha }+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }\alpha }\quad \alpha=1,2</math>
74
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
75
|-
76
| style="text-align: center;" | <math> \mathbf{g}_{3}\left( \mathbf{\xi }\right)    =\frac{\partial \left( \mathbf{\boldsymbol \varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \zeta }=\lambda \mathbf{t}_{3}</math>
77
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
78
|}
79
|}
80
81
This can be particularized for the points on the middle surface as
82
83
{| class="formulaSCP" style="width: 100%; text-align: left;" 
84
|-
85
| 
86
{| style="text-align: left; margin:auto;width: 100%;" 
87
|-
88
| style="text-align: center;" | <math>\mathbf{a}_{\alpha }    =\mathbf{g}_{\alpha }\left( \zeta=0\right) ={\boldsymbol \varphi  }_{^{\prime }\alpha }</math>
89
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
90
|-
91
| style="text-align: center;" | <math> \mathbf{a}_{3}    =\mathbf{g}_{3}\left( \zeta=0\right) =\lambda  \mathbf{t}_{3}</math>
92
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
93
|}
94
|}
95
96
The covariant (first fundamental form) metric tensor of the middle surface is
97
98
<span id="eq-9"></span>
99
{| class="formulaSCP" style="width: 100%; text-align: left;" 
100
|-
101
| 
102
{| style="text-align: left; margin:auto;width: 100%;" 
103
|-
104
| style="text-align: center;" | <math>a_{\alpha \beta }=\mathbf{a}_{\alpha }\cdot \mathbf{a}_{\beta } = {\boldsymbol \varphi }_{^{\prime }\alpha } \cdot  {\boldsymbol \varphi }_{^{\prime }\beta }  </math>
105
|}
106
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
107
|}
108
109
The Green-Lagrange strain vector of the middle surface points (membrane strains) is defined as
110
111
{| class="formulaSCP" style="width: 100%; text-align: left;" 
112
|-
113
| 
114
{| style="text-align: left; margin:auto;width: 100%;" 
115
|-
116
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=[\varepsilon _{m_{11}},\varepsilon _{m_{12}},\varepsilon _{m_{12}}]^{T}</math>
117
|}
118
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
119
|}
120
121
with
122
123
<span id="eq-11"></span>
124
{| class="formulaSCP" style="width: 100%; text-align: left;" 
125
|-
126
| 
127
{| style="text-align: left; margin:auto;width: 100%;" 
128
|-
129
| style="text-align: center;" | <math>\varepsilon _{m_{ij}}=\frac{1}{2}(a_{ij}-a_{ij}^{0}) </math>
130
|}
131
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
132
|}
133
134
The curvatures (second fundamental form) of the middle surface are obtained by
135
136
{| class="formulaSCP" style="width: 100%; text-align: left;" 
137
|-
138
| 
139
{| style="text-align: left; margin:auto;width: 100%;" 
140
|-
141
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\frac{1}{2}\left( {\boldsymbol \varphi }_{^{\prime }\alpha }\cdot \mathbf{t}_{3^{\prime }\beta }+{\boldsymbol \varphi }_{^{\prime }\beta }\cdot  \mathbf{t}_{3^{\prime }\alpha }\right) =- \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{{\prime }\alpha \beta }\quad , \quad \alpha ,\beta=1,2 </math>
142
|}
143
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
144
|}
145
146
The deformation gradient tensor is
147
148
{| class="formulaSCP" style="width: 100%; text-align: left;" 
149
|-
150
| 
151
{| style="text-align: left; margin:auto;width: 100%;" 
152
|-
153
| style="text-align: center;" | <math>\mathbf{F=} [{\boldsymbol x}_{{\prime }1},{\boldsymbol x}_{{\prime }2},{\boldsymbol x}_{{\prime }3}]=\left[ \begin{array}{ccc}{\boldsymbol \varphi }_{^{\prime }1}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime  }1} & {\boldsymbol \varphi }_{^{\prime }2}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }2} & \lambda \mathbf{t}_{3}\end{array} \right] </math>
154
|}
155
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
156
|}
157
158
The product <math display="inline">\mathbf{F}^{T}\mathbf{F=U}^{2}=\mathbf{C}</math> (where <math display="inline">\mathbf{U}</math> is the right stretch tensor, and <math display="inline">\mathbf{C}</math> the right Cauchy-Green deformation tensor) can be written as
159
160
<span id="eq-14"></span>
161
{| class="formulaSCP" style="width: 100%; text-align: left;" 
162
|-
163
| 
164
{| style="text-align: left; margin:auto;width: 100%;" 
165
|-
166
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{ccc}a_{11}+2\kappa _{11}\zeta \lambda & a_{12}+2\kappa _{12}\zeta \lambda & 0\\ a_{12}+2\kappa _{12}\zeta \lambda & a_{22}+2\kappa _{22}\zeta \lambda & 0\\ 0 & 0 & \lambda ^{2}\end{array} \right] </math>
167
|}
168
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
169
|}
170
171
In the derivation of expression ([[#eq-14|14]]) the derivatives of the thickness ratio <math display="inline">\lambda _{^{\prime }a}</math> and the terms associated to <math display="inline">\zeta ^{2}</math> have been neglected.
172
173
Equation ([[#eq-14|14]]) shows that <math display="inline">\mathbf{U}^{2}</math> is not a unit tensor at the original configuration for curved surfaces (<math display="inline">\kappa _{ij}^{0}\neq{0}</math>). The changes of curvature of the middle surface are computed by
174
175
{| class="formulaSCP" style="width: 100%; text-align: left;" 
176
|-
177
| 
178
{| style="text-align: left; margin:auto;width: 100%;" 
179
|-
180
| style="text-align: center;" | <math>\chi _{ij}=\kappa _{ij}-\kappa _{ij}^{0}</math>
181
|}
182
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
183
|}
184
185
Note that <math display="inline">\delta \chi _{ij}=\delta \kappa _{ij}</math>.
186
187
For computational convenience the following approximate expression (which is exact for initially flat surfaces) will be adopted
188
189
<span id="eq-16"></span>
190
{| class="formulaSCP" style="width: 100%; text-align: left;" 
191
|-
192
| 
193
{| style="text-align: left; margin:auto;width: 100%;" 
194
|-
195
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{ccc}a_{11}+2\chi _{11}\zeta \lambda & a_{12}+2\chi _{12}\zeta \lambda & 0\\ a_{12}+2\chi _{12}\zeta \lambda & a_{22}+2\chi _{22}\zeta \lambda & 0\\ 0 & 0 & \lambda ^{2}\end{array} \right]  </math>
196
|}
197
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
198
|}
199
200
This expression is useful to compute different Lagrangian strain measures. An advantage of these measures is that they are associated to material fibres, what makes it easy to take into account material anisotropy. It is also useful to compute the eigen decomposition of <math display="inline">\mathbf{U}</math> as
201
202
{| class="formulaSCP" style="width: 100%; text-align: left;" 
203
|-
204
| 
205
{| style="text-align: left; margin:auto;width: 100%;" 
206
|-
207
| style="text-align: center;" | <math>\mathbf{U=}\sum _{\alpha=1}^{3}\lambda _{\alpha } \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\alpha }</math>
208
|}
209
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
210
|}
211
212
where <math display="inline">\lambda _{\alpha }</math> and <math display="inline">\mathbf{r}_{\alpha }</math> are the eigenvalues and eigenvectors of <math display="inline">\mathbf{U}</math>.
213
214
The resultant stresses  (axial forces and bending moments) are obtained by integrating across the original thickness the second Piola-Kirchhoff stress vector <math display="inline">{ \boldsymbol \sigma }</math> using the actual distance to the middle surface for  evaluating the bending moments. This gives
215
216
<span id="eq-18"></span>
217
{| class="formulaSCP" style="width: 100%; text-align: left;" 
218
|-
219
| 
220
{| style="text-align: left; margin:auto;width: 100%;" 
221
|-
222
| style="text-align: center;" | <math>{\boldsymbol \sigma }_{m}\equiv \lbrack N_{11},N_{22},N_{12}]^{T}=\int _{h^{0}}{\boldsymbol \sigma }d\zeta </math>
223
|}
224
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
225
|}
226
227
<span id="eq-19"></span>
228
{| class="formulaSCP" style="width: 100%; text-align: left;" 
229
|-
230
| 
231
{| style="text-align: left; margin:auto;width: 100%;" 
232
|-
233
| style="text-align: center;" | <math>{\boldsymbol \sigma }_{b}\equiv \lbrack M_{11},M_{22},M_{12}]^{T}=\int _{h^{0}}{\boldsymbol \sigma  }\lambda \zeta  d\zeta </math>
234
|}
235
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
236
|}
237
238
With these values the virtual work can be written as
239
240
<span id="eq-20"></span>
241
{| class="formulaSCP" style="width: 100%; text-align: left;" 
242
|-
243
| 
244
{| style="text-align: left; margin:auto;width: 100%;" 
245
|-
246
| style="text-align: center;" | <math>\iint _{A^{0}}\left[ \delta{\boldsymbol \varepsilon }_{m}^{T}{\boldsymbol \sigma }_{m}+\delta{\boldsymbol \kappa  }^{T}{\boldsymbol \sigma }_{b}\right] dA=\iint _{A^{0}}\delta \mathbf{u}^{T}\mathbf{t}dA </math>
247
|}
248
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
249
|}
250
251
where <math display="inline">\delta \mathbf{u}</math> are virtual displacements, <math display="inline">\delta{\boldsymbol \varepsilon }_{m}</math> is the virtual Green-Lagrange membrane strain vector, <math display="inline">\delta{\boldsymbol \kappa }</math> are the virtual curvatures and <math display="inline">\mathbf{t}</math> are the surface loads. Other load types can be easily included into ([[#eq-20|20]]).
252
253
===2.2 Constitutive Models===
254
255
In order to treat non linear material behaviour at finite strains an adequate stress-strain pair must be used. The Hencky measures will be adopted here. The (logarithmic) strains are defined as
256
257
<span id="eq-21"></span>
258
{| class="formulaSCP" style="width: 100%; text-align: left;" 
259
|-
260
| 
261
{| style="text-align: left; margin:auto;width: 100%;" 
262
|-
263
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=}\left[ \begin{array}{ccc}\varepsilon _{11} & \varepsilon _{21} & 0\\ \varepsilon _{12} & \varepsilon _{22} & 0\\ 0 & 0 & \varepsilon _{33}\end{array} \right] =\sum _{\alpha=1}^{3}\ln \left( \lambda _{\alpha }\right) \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\alpha } </math>
264
|}
265
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
266
|}
267
268
The use of a logarithmic strain measure reasonably allows to adopt an additive decomposition of elastic and non-linear (plastic) strain components as
269
270
<span id="eq-22"></span>
271
{| class="formulaSCP" style="width: 100%; text-align: left;" 
272
|-
273
| 
274
{| style="text-align: left; margin:auto;width: 100%;" 
275
|-
276
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=E}_{\ln }^{e}+\mathbf{E}_{\ln }^{p} </math>
277
|}
278
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
279
|}
280
281
A constant linear relationship between the (plane) Hencky stresses and the logarithmic elastic strains is  chosen giving
282
283
<span id="eq-23"></span>
284
{| class="formulaSCP" style="width: 100%; text-align: left;" 
285
|-
286
| 
287
{| style="text-align: left; margin:auto;width: 100%;" 
288
|-
289
| style="text-align: center;" | <math>\mathbf{T}=\mathbf{H} \mathbf{E}_{\ln }^{e} </math>
290
|}
291
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
292
|}
293
294
where <math display="inline">\boldsymbol H</math> is the constitutive matrix.
295
296
The constitutive equations are integrated using a standard return algorithm. Details of an specific constitutive model for rubber-type materials can be found in <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]],[[#cite-22|22]]]. The Hencky stress tensor <math display="inline">\mathbf{T}</math> can be easily particularized for the plane stress case.
297
298
We define the rotated Hencky and second Piola-Kirchhoff stress tensors as
299
300
<span id="eq-24"></span>
301
<span id="eq-25"></span>
302
{| class="formulaSCP" style="width: 100%; text-align: left;" 
303
|-
304
| 
305
{| style="text-align: left; margin:auto;width: 100%;" 
306
|-
307
| style="text-align: center;" | <math>\mathbf{T}_{L}    =\mathbf{R}_{L}^{T}\;\mathbf{T\;R}_{L}</math>
308
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
309
|-
310
| style="text-align: center;" | <math> \mathbf{S}_{L}    =\mathbf{R}_{L}^{T}\;\mathbf{S\;R}_{L}</math>
311
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
312
|}
313
|}
314
315
where <math display="inline">\mathbf{R}_{L}</math> is the rotation tensor obtained from the eigenvectors of <math display="inline">\mathbf{U}</math> given by
316
317
{| class="formulaSCP" style="width: 100%; text-align: left;" 
318
|-
319
| 
320
{| style="text-align: left; margin:auto;width: 100%;" 
321
|-
322
| style="text-align: center;" | <math>\mathbf{R}_{L}=\left[ \begin{array}{ccc}\mathbf{r}_{1}\quad ,& \mathbf{r}_{2} \quad ,& \mathbf{r}_{3}\end{array} \right] </math>
323
|}
324
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
325
|}
326
327
The relationship between the rotated Hencky and Piola-Kirchhoff stresses is <math display="inline">\left(\alpha , \beta=1,2 \right)</math>
328
329
{| class="formulaSCP" style="width: 100%; text-align: left;" 
330
|-
331
| 
332
{| style="text-align: left; margin:auto;width: 100%;" 
333
|-
334
| style="text-align: center;" | <math>\left[ S_{L}\right] _{\alpha \alpha }    =\frac{1}{\lambda _{\alpha }^{2}}\left[ T_{L}\right] _{\alpha \alpha }</math>
335
|-
336
| style="text-align: center;" | <math> \left[ S_{L}\right] _{\alpha \beta }    =\frac{\ln \left( \lambda _{\alpha  }/\lambda _{\beta }\right) }{\frac{1}{2}\left( \lambda _{\alpha }^{2}-\lambda _{\beta }^{2}\right) }\left[ T_{L}\right] _{\alpha \beta }</math>
337
|}
338
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
339
|}
340
341
The second Piola-Kirchhoff stress tensor can be computed by
342
343
{| class="formulaSCP" style="width: 100%; text-align: left;" 
344
|-
345
| 
346
{| style="text-align: left; margin:auto;width: 100%;" 
347
|-
348
| style="text-align: center;" | <math>\mathbf{S=}\sum _{\alpha=1}^{2}\sum _{\beta=1}^{2}\left[ S_{L}\right] _{\alpha \beta } \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\beta }</math>
349
|}
350
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
351
|}
352
353
The second Piola-Kirchhoff stress vector <math display="inline">{\boldsymbol \sigma }</math> used in Eqs.([[#eq-18|18]]&#8211;[[#eq-19|19]]) can be readily extracted from the <math display="inline">\mathbf{S}</math> tensor.
354
355
==3 Enhanced Basic Shell Triangle==
356
357
The main features of the element formulation (termed EBST for Enhanced Basic Shell Triangle) are the following:
358
359
<ol>
360
361
<li>The geometry of the patch formed by an element and the three adjacent elements is ''quadratically interpolated'' from the position of the six nodes in the patch (Fig.[[#img-1|1]]). </li>
362
363
<li>The membrane strains are assumed to vary ''linearly'' within the central triangle and are expressed in terms of the (continuous) values of the deformation gradient at the mid side points of the triangle. </li>
364
365
<li>An assumed ''constant curvature'' field within the central triangle is chosen. This is computed in terms of the values of the (continuous) deformation gradient at the mid side points. </li>
366
367
</ol>
368
369
Details of the derivation of the EBST element are given below.
370
371
<div id='img-1a'></div>
372
<div id='img-1b'></div>
373
<div id='img-1'></div>
374
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
375
|-
376
|[[File:Draft_Samper_330523237_7304_1.JPG]]
377
|[[File:Draft_Samper_330523237_8216_2.JPG]]
378
|- style="text-align: center; font-size: 75%;"
379
| (a) 
380
| (b) 
381
|- style="text-align: center; font-size: 75%;"
382
| colspan="2" | '''Figure 1:''' (a) Patch of three node triangular elements including the central   triangle (M) and three adjacent triangles (1, 2 and 3); (b) Patch of elements in the isoparametric space
383
|}
384
385
===3.1 Definition of the Element Geometry and Computation of Membrane Strains===
386
387
A  quadratic approximation of the geometry of the four elements patch is chosen using the position of the six nodes in the patch. It is useful to define the patch in the isoparametric space using the nodal positions given in the Table [[#table-1|1]] (see also Fig.[[#img-1|1]]).
388
389
390
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
391
|+ style="font-size: 75%;" |<span id='table-1'></span>Table. 1 Isoparametric coordinates of the six nodes in the patch of Fig.[[#img-1|1]]
392
|- style="border-top: 2px solid;"
393
| style="border-left: 2px solid;border-right: 2px solid;" |  
394
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
395
| style="border-left: 2px solid;border-right: 2px solid;" | 2 
396
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
397
| style="border-left: 2px solid;border-right: 2px solid;" | 4 
398
| style="border-left: 2px solid;border-right: 2px solid;" | 5 
399
| style="border-left: 2px solid;border-right: 2px solid;" | 6
400
|- style="border-top: 2px solid;"
401
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\xi </math> 
402
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
403
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
404
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
405
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
406
| style="border-left: 2px solid;border-right: 2px solid;" | -1 
407
| style="border-left: 2px solid;border-right: 2px solid;" | 1
408
|- style="border-top: 2px solid;border-bottom: 2px solid;"
409
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\eta </math> 
410
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
411
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
412
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
413
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
414
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
415
| style="border-left: 2px solid;border-right: 2px solid;" | -1
416
417
|}
418
419
The quadratic interpolation is defined by
420
421
<span id="eq-29"></span>
422
{| class="formulaSCP" style="width: 100%; text-align: left;" 
423
|-
424
| 
425
{| style="text-align: left; margin:auto;width: 100%;" 
426
|-
427
| style="text-align: center;" | <math>{\boldsymbol \varphi }=\sum _{i=1}^{6}N_{i}{\boldsymbol \varphi }_{i}</math>
428
|}
429
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
430
|}
431
432
with (<math display="inline">\zeta=1-\xi-\eta</math>)
433
434
{| class="formulaSCP" style="width: 100%; text-align: left;" 
435
|-
436
| 
437
{| style="text-align: left; margin:auto;width: 100%;" 
438
|-
439
| style="text-align: center;" | <math>\begin{array}{ccc}N_{1}=\zeta{+\xi}\eta &  & N_{4}=\displaystyle \frac{\zeta }{2}\left( \zeta{-1}\right) \\[.15cm] N_{2}=\xi{+\eta}\zeta &  & N_{5}=\displaystyle \frac{\xi }{2}\left( \xi{-1}\right) \\[.15cm] N_{3}=\eta{+\zeta}\xi &  & N_{6}=\displaystyle \frac{\eta }{2}\left( \eta{-1}\right) \end{array} </math>
440
|}
441
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
442
|}
443
444
This interpolation allows to computing the displacement gradients at selected points in order to use an assumed strain approach. The computation of the gradients is performed at the mid side points of the central element of the patch denoted by <math display="inline">G_{1}</math>, <math display="inline">G_{2}</math> and <math display="inline">G_{3}</math> in Fig. [[#img-1|1]]. This choice has the following advantages.
445
446
* Gradients at the three mid side points depend only on the nodes belonging to the two elements adjacent to each side. This can be easily verified by sampling the derivatives of the shape functions at each mid-side point.
447
448
* When gradients are computed at the common mid-side point of two adjacent elements, the same values are obtained, as the coordinates of the same four points are used. This in practice means that the gradients at the mid-side points are independent of the element where they are computed. A side-oriented implementation of the finite element will therefore lead to a unique evaluation of the gradients per side.
449
450
The Cartesian derivatives of the shape functions are computed at the original configuration by the standard expression
451
452
{| class="formulaSCP" style="width: 100%; text-align: left;" 
453
|-
454
| 
455
{| style="text-align: left; margin:auto;width: 100%;" 
456
|-
457
| style="text-align: center;" | <math>\left[ \begin{array}{c}N_{i,1}\\ N_{i,2}\end{array} \right] =\mathbf{J}^{-1}\left[ \begin{array}{c}N_{i,\xi } \\ N_{i,\eta }\end{array} \right] </math>
458
|}
459
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
460
|}
461
462
where the Jacobian matrix at the original configuration is
463
464
{| class="formulaSCP" style="width: 100%; text-align: left;" 
465
|-
466
| 
467
{| style="text-align: left; margin:auto;width: 100%;" 
468
|-
469
| style="text-align: center;" | <math>\mathbf{J=}\left[ \begin{array}{cc}\mathbf{\boldsymbol \varphi }_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{1} & \mathbf{\boldsymbol \varphi  }_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{1}\\ \mathbf{\boldsymbol \varphi }_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{2} & \mathbf{\boldsymbol \varphi  }_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{2}\end{array} \right] </math>
470
|}
471
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
472
|}
473
474
The deformation gradients on the middle surface, associated to an arbitrary spatial Cartesian system and to the material cartesian system defined on the middle surface are related by
475
476
{| class="formulaSCP" style="width: 100%; text-align: left;" 
477
|-
478
| 
479
{| style="text-align: left; margin:auto;width: 100%;" 
480
|-
481
| style="text-align: center;" | <math>\left[ {\boldsymbol \varphi }_{^{\prime }1},\mathbf{\boldsymbol \varphi }_{^{\prime }2}\right] =\left[ \mathbf{\boldsymbol \varphi }_{^{\prime }\xi },\mathbf{\boldsymbol \varphi }_{^{\prime }\eta }\right]  \mathbf{J}^{-1}</math>
482
|}
483
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
484
|}
485
486
The membrane strains within the central triangle are obtained using a linear assumed strain field <math display="inline">\hat{\boldsymbol \varepsilon }_{m}</math>, i.e.
487
488
{| class="formulaSCP" style="width: 100%; text-align: left;" 
489
|-
490
| 
491
{| style="text-align: left; margin:auto;width: 100%;" 
492
|-
493
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\hat{\boldsymbol \varepsilon }_{m}</math>
494
|}
495
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
496
|}
497
498
with
499
500
<span id="eq-35"></span>
501
{| class="formulaSCP" style="width: 100%; text-align: left;" 
502
|-
503
| 
504
{| style="text-align: left; margin:auto;width: 100%;" 
505
|-
506
| style="text-align: center;" | <math>\hat{\boldsymbol \varepsilon }_{m}=(1-2\zeta ){\boldsymbol \varepsilon }_{m}^{1}+(1-2\xi ){\boldsymbol \varepsilon  }_{m}^{2}+(1-2\eta ){\boldsymbol \varepsilon }_{m}^{3}=\sum _{i=1}^{3}\bar{N}_{i}{\boldsymbol \varepsilon }_{m}^{i}</math>
507
|}
508
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
509
|}
510
511
where <math display="inline">{\boldsymbol \varepsilon }_{m}^{i}</math> are the membrane strains computed at the three mid side points <math display="inline">G_{i}</math> (<math display="inline">i=1,2,3</math>  see Fig.[[#img-1|1]]). In Eq.([[#eq-35|35]]) <math display="inline">\bar{N}_{1}=(1-2\zeta )</math>, etc.
512
513
The gradient at each mid side point is computed from the quadratic interpolation ([[#eq-29|29]]):
514
515
<span id="eq-36"></span>
516
{| class="formulaSCP" style="width: 100%; text-align: left;" 
517
|-
518
| 
519
{| style="text-align: left; margin:auto;width: 100%;" 
520
|-
521
| style="text-align: center;" | <math>\left( {\boldsymbol \varphi }_{^{\prime }\alpha }\right) _{G_{i}}={\boldsymbol \varphi }_{^{\prime  }\alpha }^{i}=\left[ \sum _{j=1}^{3}N_{j,\alpha }^{i}{\boldsymbol \varphi }_{j}\right] +N_{i+3,\alpha }^{i}{\boldsymbol \varphi }_{i+3}\quad ,\quad \alpha=1,2\quad ,\quad  i=1,2,3</math>
522
|}
523
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
524
|}
525
526
Substituting Eq.([[#eq-11|11]]) into ([[#eq-35|35]]) and using Eq.([[#eq-9|9]]) gives the membrane strain vector as
527
528
{| class="formulaSCP" style="width: 100%; text-align: left;" 
529
|-
530
| 
531
{| style="text-align: left; margin:auto;width: 100%;" 
532
|-
533
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\sum _{i=1}^{3}\frac{1}{2}\bar{N}_{i}\left\{ \begin{array}{c}{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}-1\\ {\boldsymbol \varphi }_{^{\prime }2}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}-1\\ 2{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\end{array} \right\} </math>
534
|}
535
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
536
|}
537
538
and the virtual membrane strains as
539
540
<span id="eq-38"></span>
541
{| class="formulaSCP" style="width: 100%; text-align: left;" 
542
|-
543
| 
544
{| style="text-align: left; margin:auto;width: 100%;" 
545
|-
546
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\sum _{i=1}^{3}\bar{N}_{i}\left\{ \begin{array}{c}{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ {\boldsymbol \varphi }_{2}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\\ \delta{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}+{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{2}^{i}\end{array} \right\} </math>
547
|}
548
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
549
|}
550
551
We note that the gradient at each mid side point <math display="inline">G_{i}</math> depends only on the coordinates of the three nodes of the central triangle and on those of an additional node in the patch, associated to the side <math display="inline">i</math> where the gradient is computed.
552
553
Combining Eqs.([[#eq-38|38]]), ([[#eq-36|36]]) and ([[#eq-29|29]]) gives
554
555
{| class="formulaSCP" style="width: 100%; text-align: left;" 
556
|-
557
| 
558
{| style="text-align: left; margin:auto;width: 100%;" 
559
|-
560
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\mathbf{B}_{m}\delta \bar{\boldsymbol u}^{p}</math>
561
|}
562
| style="width: 5px;text-align: right;white-space: nowrap;" | (39.a)
563
|}
564
565
with
566
567
<span id="eq-39.b"></span>
568
{| class="formulaSCP" style="width: 100%; text-align: left;" 
569
|-
570
| 
571
{| style="text-align: left; margin:auto;width: 100%;" 
572
|-
573
| style="text-align: center;" | <math>\underset{18\times 1}{\delta \bar{\boldsymbol u}^p} =[\delta \bar{\boldsymbol u}_{1}^{T},\delta \bar{\boldsymbol u}_{2}^{T},\delta \bar{\boldsymbol u}_{3}^{T},\delta \bar{\boldsymbol u}_{4}^{T},\delta \bar{\boldsymbol u}_{5}^{T},\delta \bar{\boldsymbol u}_{6}^{T}]^{T}</math>
574
|}
575
| style="width: 5px;text-align: right;white-space: nowrap;" | (39.b)
576
|}
577
578
where <math display="inline">\delta \bar{\boldsymbol u}^{p}</math> is the patch displacement vector, <math display="inline">\delta \bar{\boldsymbol u}_i</math> contains the three virtual displacement of node <math display="inline">i</math> and <math display="inline">\mathbf{B}_{m}</math> is the membrane strain matrix. An explicit form of <math display="inline">\mathbf{B}_{m}</math> is given in <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]],[[#cite-22|22]]].
579
580
Note that the membrane strains within the EBST element are  a function of the displacements of the six patch nodes.
581
582
===3.2 Computation of Curvatures===
583
584
We will assume the following constant curvature field within each element
585
586
<span id="eq-40"></span>
587
{| class="formulaSCP" style="width: 100%; text-align: left;" 
588
|-
589
| 
590
{| style="text-align: left; margin:auto;width: 100%;" 
591
|-
592
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\hat{\kappa }_{\alpha \beta } </math>
593
|}
594
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
595
|}
596
597
where <math display="inline">\hat{\kappa }_{\alpha \beta }</math> is the assumed constant curvature field defined by
598
599
<span id="eq-41"></span>
600
{| class="formulaSCP" style="width: 100%; text-align: left;" 
601
|-
602
| 
603
{| style="text-align: left; margin:auto;width: 100%;" 
604
|-
605
| style="text-align: center;" | <math>\hat{\kappa }_{\alpha \beta }=-\frac{1}{A_{M}^{0}}\int _{A_{M}^{0}}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }\beta \alpha }\;dA^{0} </math>
606
|}
607
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
608
|}
609
610
where <math display="inline">A_{M}^{0}</math> is the area (in the original configuration) of the central element in the patch.
611
612
Substituting Eq.([[#eq-41|41]]) into ([[#eq-40|40]]) and integrating by parts the area integral gives the curvature vector within the element in terms of the following line integral
613
614
<span id="eq-42"></span>
615
{| class="formulaSCP" style="width: 100%; text-align: left;" 
616
|-
617
| 
618
{| style="text-align: left; margin:auto;width: 100%;" 
619
|-
620
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\left\{ \begin{array}{c}\kappa _{11}\\ \kappa _{22}\\ 2\kappa _{12}\end{array} \right\} =\frac{1}{A_{M}^{0}}{\displaystyle \oint _{\Gamma _{M}^{0}}} \left[ \begin{array}{cc}-n_{1} & 0\\ 0 & -n_{2}\\ -n_{2} & -n_{1}\end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2}\end{array} \right] d\Gamma </math>
621
|}
622
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
623
|}
624
625
where <math display="inline">n_{i}</math> are the components (in the local system) of the normals to the element sides in the initial configuration <math display="inline">\Gamma _{M}^{0}</math>. The integration by parts of Eq.([[#eq-41|41]]) is typical in finite volume methods for computing second derivatives over volumes by line integrals of gradient terms <span id='citeF-16'></span> <span id='citeF-17'></span> <span id='citeF-19'></span> <span id='citeF-21'></span> <span id='citeF-22'></span>[[#cite-1|[16]],[[#cite-17|17]],[[#cite-19|19]],[[#cite-21|21]],[[#cite-22|22]]]. For the definition of the normal vector <math display="inline">\mathbf{t}_{3}</math>, the linear interpolation over the central element is used. In this case the tangent plane components are
626
627
<span id="eq-43.a"></span>
628
{| class="formulaSCP" style="width: 100%; text-align: left;" 
629
|-
630
| 
631
{| style="text-align: left; margin:auto;width: 100%;" 
632
|-
633
| style="text-align: center;" | <math>{\boldsymbol \varphi }_{^{\prime }\alpha } = \sum _{i=1}^{3} L_{i,\alpha }^M {\boldsymbol \varphi }_{i}\quad ,\quad \alpha=1,2 </math>
634
|}
635
| style="width: 5px;text-align: right;white-space: nowrap;" | (43.a)
636
|}
637
638
<span id="eq-43.b"></span>
639
{| class="formulaSCP" style="width: 100%; text-align: left;" 
640
|-
641
| 
642
{| style="text-align: left; margin:auto;width: 100%;" 
643
|-
644
| style="text-align: center;" | <math>\mathbf{t}_{3}=\frac{{\boldsymbol \varphi }_{\prime{1}}\times{\boldsymbol \varphi }_{\prime{2}}}{\left\vert {\boldsymbol \varphi }_{\prime{1}}\times{\boldsymbol \varphi }_{\prime{2}}\right\vert }=\lambda \;{\boldsymbol \varphi  }_{1}\times{\boldsymbol \varphi }_{2} </math>
645
|}
646
| style="width: 5px;text-align: right;white-space: nowrap;" | (43.b)
647
|}
648
649
From these expressions it is also possible to compute in the original configuration the element area <math display="inline">A^{0}_{M}</math>, the outer normals <math display="inline">\left( n_{1},n_{2}\right) ^{i}</math> at each side and the side lengths <math display="inline">l_{i}^{M}</math>. Equation ([[#eq-43.b|43.b]]) also allows to evaluate the thickness ratio <math display="inline">\lambda </math> in the deformed configuration and the actual normal <math display="inline">\mathbf{t}_{3}</math>.
650
651
The numerical evaluation of the line  integral in Eq.([[#eq-42|42]]) results in a sum over the integration points at the element boundary which are, in fact, the same points used for evaluating the gradients when computing the membrane strains. As one integration point is used over each side, it is not necessary to distinguish between sides (<math display="inline">i</math>) and integration points (<math display="inline">G_{i}</math>). In this way the curvatures can be computed by
652
653
<span id="eq-44"></span>
654
{| class="formulaSCP" style="width: 100%; text-align: left;" 
655
|-
656
| 
657
{| style="text-align: left; margin:auto;width: 100%;" 
658
|-
659
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\frac{1}{A_{M}^{0}} \sum ^3_{i=1} l_i^M \left[ \begin{array}{cc}-n_{1} & 0\\ 0 & -n_{2}\\ -n_{2} & -n_{1}\end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2}\end{array} \right] d\Gamma </math>
660
|}
661
| style="width: 5px;text-align: right;white-space: nowrap;" | (44)
662
|}
663
664
Eq.([[#eq-44|44]]) is now expressed in terms  of the shape functions of the 3-noded triangle <math display="inline">L_i^M</math> (which coincide with the area coordinates <span id='citeF-23'></span>[[#cite-23|[23]]]). Noting the property of the area coordinates
665
666
<span id="eq-45"></span>
667
{| class="formulaSCP" style="width: 100%; text-align: left;" 
668
|-
669
| 
670
{| style="text-align: left; margin:auto;width: 100%;" 
671
|-
672
| style="text-align: center;" | <math>\nabla L_{i}^{M}=\left[ \begin{array}{c}L_{i,x}^{M}\\ L_{i,y}^{M}\end{array} \right] =-\frac{l_{i}^{M}}{2A_{M}}\left[ \begin{array}{c}n_{x}^{i}\\ n_{y}^{i}\end{array} \right]  </math>
673
|}
674
| style="width: 5px;text-align: right;white-space: nowrap;" | (45)
675
|}
676
677
the expression for the curvature can be expressed as
678
679
<span id="eq-46"></span>
680
{| class="formulaSCP" style="width: 100%; text-align: left;" 
681
|-
682
| 
683
{| style="text-align: left; margin:auto;width: 100%;" 
684
|-
685
| style="text-align: center;" | <math>{\boldsymbol \kappa }=2\sum _{i=1}^{3}\left[ \begin{array}{cc}L_{i,1}^M & 0\\ 0         & L_{i,2}^M \\ L_{i,2}^M & L_{i,1}^M \end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2}^{i}\end{array} \right]  </math>
686
|}
687
| style="width: 5px;text-align: right;white-space: nowrap;" | (46)
688
|}
689
690
The gradient <math display="inline">\mathbf{\boldsymbol \varphi  }_{\prime \alpha }^{i}</math>  is evaluated at each side <math display="inline">G_{i}</math> from the quadratic interpolation
691
692
<span id="eq-47"></span>
693
{| class="formulaSCP" style="width: 100%; text-align: left;" 
694
|-
695
| 
696
{| style="text-align: left; margin:auto;width: 100%;" 
697
|-
698
| style="text-align: center;" | <math>\left[ \begin{array}{c}{\boldsymbol \varphi }_{\prime{1}}^{i}\\ {\boldsymbol \varphi }_{\prime{2}}^{i}\end{array} \right] =\left[ \begin{array}{cccc}N_{1,1}^{i} & N_{2,1}^{i} & N_{3,1}^{i} & N_{i+3,1}^{i}\\ N_{1,2}^{i} & N_{2,2}^{i} & N_{3,2}^{i} & N_{i+3,2}^{i}\end{array} \right] \left[ \begin{array}{c}{\boldsymbol \varphi }_{1}\\ {\boldsymbol \varphi }_{2}\\ {\boldsymbol \varphi }_{3}\\ {\boldsymbol \varphi }_{i+3}\end{array} \right]  </math>
699
|}
700
| style="width: 5px;text-align: right;white-space: nowrap;" | (47)
701
|}
702
703
This is a basic difference with respect of the computation of the curvature field in the original Basic Shell Triangle (BST) where the gradient at the side mid-point is computed as the average value between the values at two adjacent elements <span id='citeF-17'></span><span id='citeF-19'></span><span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-17|[17]],[[#cite-19|19]],[[#cite-21|21]],[[#cite-22|22]]].
704
705
Note again than at each side the gradients depend only on the positions of the three nodes of the central triangle and of an extra node (<math display="inline">i+3</math>), associated precisely to the side (<math display="inline">G_{i}</math>) where the gradient is computed.
706
707
Direction '''t'''<math display="inline">_{3}</math> in Eq.([[#eq-46|46]]) can be seen as a reference direction. If a different direction than that given by Eq.([[#eq-43.b|43.b]]) is chosen at an angle <math display="inline">\theta </math> with the former, this has an influence of order <math display="inline">\theta ^{2}</math> in the projection. This justifies Eq.([[#eq-43.b|43.b]]) for the definition of '''t'''<math display="inline">_{3}</math> as a function exclusively of the three nodes of the central triangle, instead of using the 6-node isoparametric interpolation.
708
709
The variation of the curvatures can be expressed as
710
711
<span id="eq-48"></span>
712
{| class="formulaSCP" style="width: 100%; text-align: left;" 
713
|-
714
| 
715
{| style="text-align: left; margin:auto;width: 100%;" 
716
|-
717
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }   =2\sum _{i=1}^{3}\left[ \begin{array}{cc}L_{i,1}^M & 0\\ 0         & L_{i,2}^M\\ L_{i,2}^M & L_{i,1}^M\end{array} \right] \left\{ \sum _{i=1}^{3}\left[ \begin{array}{c}N_{j,1}^{i}(\mathbf{t}_{3}\cdot \delta \bar{\boldsymbol u}_{j})\\ N_{j,2}^{i}(\mathbf{t}_{3}\cdot \delta \bar{\boldsymbol u}_{j}) \end{array} \right] +\left[ \begin{array}{c}N_{i+3,1}^{i}(\mathbf{t}_{3}\cdot \delta \bar{\boldsymbol u}^{i+3})\\ N_{i+3,2}^{i}(\mathbf{t}_{3}\cdot \delta \bar{\boldsymbol u}^{i+3}) \end{array} \right] \right\} -</math>
718
|-
719
| style="text-align: center;" | <math>   -\sum _{i=1}^{3}\left[ \begin{array}{c}(L_{i,1}^M\rho _{11}^{1}+L_{i,2}^M\rho _{11}^{2})\\ (L_{i,1}^M\rho _{22}^{1}+L_{i,2}^M\rho _{22}^{2})\\ (L_{i,1}^M\rho _{12}^{1}+L_{i,2}^M\rho _{12}^{2}) \end{array} \right] (\mathbf{t}_{3}\cdot \delta \bar{\boldsymbol u}_{i})=\mathbf{B}_{b}\delta \bar{\boldsymbol u}^{p}</math>
720
|}
721
| style="width: 5px;text-align: right;white-space: nowrap;" | (48)
722
|}
723
724
In Eq.([[#eq-48|48]])
725
726
<span id="eq-49"></span>
727
{| class="formulaSCP" style="width: 100%; text-align: left;" 
728
|-
729
| 
730
{| style="text-align: left; margin:auto;width: 100%;" 
731
|-
732
| style="text-align: center;" | <math>\mathbf{B}_{b}=[\mathbf{B}_{b_{1}},\mathbf{B}_{b_{2}},\cdots ,\mathbf{B}_{b_{6}}]</math>
733
|}
734
| style="width: 5px;text-align: right;white-space: nowrap;" | (49)
735
|}
736
737
Details of the derivation of the curvature matrix <math display="inline">\mathbf{B}_b</math> are given in <span id='citeF-21'></span><span id='citeF-22'></span><span id='citeF-26'></span>[[#cite-21|[21]],[[#cite-21|22]],[[#cite-26|26]]].
738
739
===3.3 The EBST1 Element===
740
741
A simplified and yet very effective version of the EBST element can be obtained by using ''one point quadrature'' for the computation of all the element integrals. This element is termed EBST1. Note that this only affects the membrane stiffness matrices and it is equivalent to using a assumed constant membrane strain field defined by an average of the metric tensors computed at each side <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]],[[#cite-22|22]]].
742
743
Numerical experiments have shown that both the EBST and the EBST1 elements are free of spurious energy modes <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]],[[#cite-22|22]]].
744
745
===3.4 Boundary Conditions===
746
747
Elements at the domain boundary, where an adjacent element does not exist, deserve a special attention. The treatment of essential boundary conditions associated to translational constraints is straightforward, as they are the natural degrees of freedom of the element. The conditions associated to the normal vector are crucial in the bending  formulation. For clamped sides or symmetry planes, the normal vector <math display="inline">\mathbf{t}_{3}</math> must be kept fixed (clamped case), or constrained to move in the plane of symmetry (symmetry case). The former case can be seen as a special case of the latter, so we will consider symmetry planes only. This restriction can be imposed through the definition of the tangent plane at the boundary, including the normal to the plane of symmetry <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{0}</math> that does not change during the process.
748
749
<div id='img-2'></div>
750
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
751
|-
752
|[[File:Draft_Samper_330523237_7907_3.JPG]]
753
|
754
|- style="text-align: center; font-size: 75%;"
755
| colspan="1" | '''Figure 2:''' Local Cartesian system for the treatment of symmetry boundary conditions
756
|}
757
758
The tangent plane at the boundary (mid-side point) is expressed in terms of two orthogonal unit vectors referred to a local-to-the-boundary Cartesian system (see Fig.[[#img-2|2]]) defined as
759
760
{| class="formulaSCP" style="width: 100%; text-align: left;" 
761
|-
762
| 
763
{| style="text-align: left; margin:auto;width: 100%;" 
764
|-
765
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }n}^{0},\;\bar{\boldsymbol \varphi }_{^{\prime }s}\right] </math>
766
|}
767
| style="width: 5px;text-align: right;white-space: nowrap;" | (50)
768
|}
769
770
where vector <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{0}</math> is fixed during the process while direction <math display="inline">\bar{\boldsymbol \varphi }_{^{\prime }s}</math> emerges from the intersection of the symmetry plane with the plane defined by the central element (<math display="inline">M</math>). The plane (gradient) defined by the central element in the selected original  convective Cartesian system (<math display="inline">\mathbf{t}_{1},\mathbf{t}_{2} </math>) is
771
772
{| class="formulaSCP" style="width: 100%; text-align: left;" 
773
|-
774
| 
775
{| style="text-align: left; margin:auto;width: 100%;" 
776
|-
777
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }1}^{M},\;\boldsymbol \varphi _{^{\prime  }2}^{M}\right] </math>
778
|}
779
| style="width: 5px;text-align: right;white-space: nowrap;" | (51)
780
|}
781
782
the intersection line (side <math display="inline">i</math>) of this plane with the plane of symmetry can be written in terms of the position of the nodes that define the side (<math display="inline">j </math> and <math display="inline">k</math>) and the original length of the side <math display="inline">l_{i}^{M}</math>, i.e.
783
784
{| class="formulaSCP" style="width: 100%; text-align: left;" 
785
|-
786
| 
787
{| style="text-align: left; margin:auto;width: 100%;" 
788
|-
789
| style="text-align: center;" | <math>\boldsymbol \varphi _{^{\prime }s}^{i}=\frac{1}{l_{i}^{M}}\left(\boldsymbol \varphi _{k}-\boldsymbol \varphi _{j}\right) </math>
790
|}
791
| style="width: 5px;text-align: right;white-space: nowrap;" | (52)
792
|}
793
794
That together with the outer normal to the side <math display="inline">\mathbf{n}^{i} =\left[n_{1},n_{2}\right]^{T}=\left[\mathbf{n\cdot t}_{1},\mathbf{n\cdot t}_{2}\right]^{T}</math> (resolved in the selected original convective Cartesian system) leads to
795
796
{| class="formulaSCP" style="width: 100%; text-align: left;" 
797
|-
798
| 
799
{| style="text-align: left; margin:auto;width: 100%;" 
800
|-
801
| style="text-align: center;" | <math>\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}^{iT} \\ \boldsymbol \varphi _{^{\prime }2}^{iT}\end{array}\right]=\left[ \begin{array}{cc}n_{1} & -n_{2} \\ n_{2} & n_{1}\end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }n}^{iT} \\ \boldsymbol \varphi _{^{\prime }s}^{iT}\end{array}\right] </math>
802
|}
803
| style="width: 5px;text-align: right;white-space: nowrap;" | (53)
804
|}
805
806
where, noting  that <math display="inline">\lambda </math> is the determinant of the gradient, the normal component of the gradient <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{i}</math> can be approximated by
807
808
{| class="formulaSCP" style="width: 100%; text-align: left;" 
809
|-
810
| 
811
{| style="text-align: left; margin:auto;width: 100%;" 
812
|-
813
| style="text-align: center;" | <math>\boldsymbol \varphi _{^{\prime }n}^{i}=\frac{\boldsymbol \varphi _{^{\prime }n}^{0}}{\lambda |\boldsymbol \varphi _{^{\prime }s}^{i}|} </math>
814
|}
815
| style="width: 5px;text-align: right;white-space: nowrap;" | (54)
816
|}
817
818
For a simple supported (hinged) side, the problem is not completely defined. The simplest choice is to neglect the contribution to the side rotations from the adjacent element missing in the patch in the evaluation of the curvatures via Eq.([[#eq-42|42]]) [<span id='citeF-17'></span><span id='citeF-19'></span><span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-17|17]],[[#cite-19|19]],[[#cite-21|21]],[[#cite-22|22]]]. This is equivalent to assume that the gradient at the side is equal to the gradient in the central element, i.e.
819
820
{| class="formulaSCP" style="width: 100%; text-align: left;" 
821
|-
822
| 
823
{| style="text-align: left; margin:auto;width: 100%;" 
824
|-
825
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }1}^{i},\;\boldsymbol \varphi _{^{\prime }2}^{i}\right]=\left[\boldsymbol \varphi _{^{\prime }1}^{M},\;\boldsymbol \varphi _{^{\prime }2}^{M}\right] </math>
826
|}
827
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
828
|}
829
830
More precise changes can be however introduced to account for the different natural boundary conditions. One may assume that the curvature normal to the side is zero, and consider a contribution of the missing side to introduce this constraint. As the change of curvature parallel to the side is also zero along the hinged side, this obviously leads to zero curvatures in both directions.
831
832
We note finally that for the membrane formulation of the EBST element, the gradient at the mid-side point of the boundary is assumed equal to the gradient of the main triangle.
833
834
More details on the specification of the boundary conditions on the EBST element can be found in <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]],[[#cite-21|22]]].
835
836
===3.5 Explicit Solution Scheme===
837
838
For simulations presenting large geometrical and/or material non-linearities, involving frictional contact conditions on complex geometries, convergence is difficult to achieve with implicit schemes. In these cases an explicit solution algorithm is typically most advantageous. The explicit  scheme provides the solution for dynamic problems and also for quasi-static problems if an adequate damping is chosen.
839
840
The dynamic equations of motion to solve are of the form
841
842
{| class="formulaSCP" style="width: 100%; text-align: left;" 
843
|-
844
| 
845
{| style="text-align: left; margin:auto;width: 100%;" 
846
|-
847
| style="text-align: center;" | <math>\mathbf{r}(\bar{\boldsymbol u}) + \mathbf{D} \dot{\bar{\mathbf u}} + \mathbf{M}  \ddot{\bar{\mathbf u}} = 0 </math>
848
|}
849
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
850
|}
851
852
where <math display="inline">\bar{\boldsymbol u}</math> is the nodal displacement vector for the whole mesh, <math display="inline">\mathbf{M}</math> is the mass matrix, <math display="inline">\mathbf{D}</math> is the damping matrix and the dot means the time derivative. The solution is performed using the ''central difference method''. To make the method competitive a diagonal (lumped) <math display="inline">\mathbf{M}</math> matrix is typically used and <math display="inline">\mathbf{D}</math> is taken proportional to <math display="inline">\mathbf{M}</math>. As usual, mass lumping is performed by assigning one third of the triangular element mass to each node in the central element.
853
854
The explicit solution scheme can be summarized as follows. At each time step <math display="inline">n</math> where the displacements '''u''' have been computed:
855
856
<ol>
857
858
<li>Compute the residual forces <math display="inline">\mathbf{r}^{n}</math>. This follows the  steps described in Box 1. </li>
859
860
<li>Compute the accelerations at time <math display="inline">t_{n}</math>
861
862
{| class="formulaSCP" style="width: 100%; text-align: left;" 
863
|-
864
| 
865
{| style="text-align: left; margin:auto;width: 100%;" 
866
|-
867
| style="text-align: center;" | <math>
868
869
\ddot{\bar{\boldsymbol u}}^{n} = {\boldsymbol M}_d^{-1} [ \mathbf{r}^{n} - \mathbf{D} \dot{\bar{\mathbf u}}^{n-1/2} ] </math>
870
|}
871
| style="width: 5px;text-align: right;white-space: nowrap;" | (57)
872
|}</li>
873
874
where <math display="inline">{\boldsymbol M}_d</math> is the diagonal (lumped) mass matrix.
875
876
<li>Compute the velocities at time <math display="inline">t_{n+1/2}</math>
877
878
{| class="formulaSCP" style="width: 100%; text-align: left;" 
879
|-
880
| 
881
{| style="text-align: left; margin:auto;width: 100%;" 
882
|-
883
| style="text-align: center;" | <math>
884
885
\dot{\bar{\boldsymbol u}}^{n+1/2} = \dot{\bar{\boldsymbol u}}^{n-1/2}+ \ddot{\bar{\boldsymbol u}}^{n} \delta t </math>
886
|}
887
| style="width: 5px;text-align: right;white-space: nowrap;" | (58)
888
|}</li>
889
890
<li>Compute the displacements at  time <math display="inline">t_{n+1}</math>
891
892
{| class="formulaSCP" style="width: 100%; text-align: left;" 
893
|-
894
| 
895
{| style="text-align: left; margin:auto;width: 100%;" 
896
|-
897
| style="text-align: center;" | <math>
898
899
\bar{\boldsymbol u}^{n+1} = \bar{\mathbf{u}}^{n} +\dot{\bar{\mathbf u}}^{n+1/2} \delta t </math>
900
|}
901
| style="width: 5px;text-align: right;white-space: nowrap;" | (59)
902
|}</li>
903
<li>Update the shell geometry </li>
904
<li>Check frictional contact conditions </li>
905
906
</ol>
907
908
909
910
{|  class="floating_tableSCP wikitable" style="text-align: left; margin: 1em auto;min-width:50%;"
911
|-
912
| style="border-left: 2px solid;border-right: 2px solid;border-top: 2px solid;" | 
913
914
Generate the actual configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n+1}=\mathbf{\boldsymbol \varphi }^{n}+\Delta \bar{\mathbf u}^{n}</math>
915
Compute the metric tensor <math display="inline">a_{\alpha \beta }^{n+1}\mathbf{ }</math>and the curvatures <math display="inline">\kappa _{\alpha \beta }^{n+1}</math>. Then at each layer <math display="inline">k</math> compute the (approximate) right Cauchy-Green tensor. From [[#Eq-14|(14)]]
916
917
{| class="formulaSCP" style="width: 100%; text-align: left;" 
918
|-
919
| 
920
{| style="text-align: left; margin:auto;width: 100%;" 
921
|-
922
| style="text-align: center;" | <math> \mathbf{C}_{k}^{n+1}=\mathbf{a}^{n+1}+z_{k}{\boldsymbol \chi }^{n+1} </math>
923
|}
924
| style="width: 5px;text-align: right;white-space: nowrap;" | (60)
925
|}
926
Compute the total (21) and elastic (22) deformations at each layer <math display="inline">k</math>
927
928
<span id="eq-61"></span>
929
{| class="formulaSCP" style="width: 100%; text-align: left;" 
930
|-
931
| 
932
{| style="text-align: left; margin:auto;width: 100%;" 
933
|-
934
| style="text-align: center;" | <math> {\boldsymbol \varepsilon }_{k}^{n+1}   = \frac{1}{2}\ln{\mathbf{C}_{k}^{n+1}} </math>
935
| style="width: 5px;text-align: right;white-space: nowrap;" | (61)
936
|-
937
| style="text-align: center;" | <math> \left[ {\boldsymbol \varepsilon }_{e}\right] _{k}^{n+1}   ={\boldsymbol \varepsilon  }_{k}^{n+1}-\left[ {\boldsymbol \varepsilon }_{p}\right] _{k}^{n} </math>
938
|}
939
|}
940
Compute the trial Hencky elastic stresses (23) at each layer <math display="inline">k</math>
941
942
{| class="formulaSCP" style="width: 100%; text-align: left;" 
943
|-
944
| 
945
{| style="text-align: left; margin:auto;width: 100%;" 
946
|-
947
| style="text-align: center;" | <math> \mathbf{T} _{k}^{n+1}=\mathbf{H}\left[ {\boldsymbol \varepsilon }_{e}\right] _{k}^{n+1} </math>
948
|}
949
| style="width: 5px;text-align: right;white-space: nowrap;" | (62)
950
|}
951
Check the plasticity condition and return to the plasticity surface. If necessary correct the plastic strains <math display="inline">\left[{\boldsymbol \varepsilon }_{p}\right] _{k}^{n+1}</math> at each layer
952
Compute the second Piola-Kirchhoff stress vector <math display="inline">\boldsymbol \sigma _k^{n+1}</math> and the generalized stresses
953
954
{| class="formulaSCP" style="width: 100%; text-align: left;" 
955
|-
956
| 
957
{| style="text-align: left; margin:auto;width: 100%;" 
958
|-
959
| style="text-align: center;" | <math>\begin{array}{l} {\boldsymbol \sigma }^{n+1}_{m}  &  =\frac{h^{0}}{N_{L}}\sum _{k=1}^{N_{L}}\boldsymbol \sigma _{k}^{n+1} w_{k}\\ {\boldsymbol \sigma }^{n+1}_{b}  &  =\frac{h^{0}}{N_{L}}\sum _{k=1}^{N_{L}}\boldsymbol \sigma _{k}^{n+1}z_{k} w_{k}\end{array}</math>
960
|}
961
| style="width: 5px;text-align: right;white-space: nowrap;" | (63)
962
|}
963
964
Where <math display="inline"> w_{k}</math> is the weight of the through-the-thickness integration point and <math display="inline">N_L</math> is the number of layers (integration points) across the thickness. Recall that <math display="inline">z_{k}</math> is the current distance of the layer to the mid-surface and not the original distance. However, for small strain plasticity this distinction is not important.  This computation of stresses is  exact for an elastic problem.
965
Compute the residual force vector for each element from
966
967
<span id="eq-64"></span>
968
{| class="formulaSCP" style="width: 100%; text-align: left;" 
969
|-
970
| 
971
{| style="text-align: left; margin:auto;width: 100%;" 
972
|-
973
| style="text-align: center;" | <math> \mathbf{r}^e_i =\iint _A L_i {\boldsymbol t}\, dA - \iint _{A^\circ } ({\boldsymbol    B}_{m_i}^T {\boldsymbol \sigma }_m + {\boldsymbol B}_{b_i}^T {\boldsymbol \sigma }_b)dA  </math>
974
|}
975
| style="width: 5px;text-align: right;white-space: nowrap;" | (64)
976
|}
977
978
|- style="border-bottom: 2px solid;"
979
980
| style="border-left: 2px solid;border-right: 2px solid;" | 
981
982
|}
983
984
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">'''Box 1.''' Computation of the residual forces vector for an   elasto-plastic material</div>
985
986
The formulation of the EBST element described above has been implemented in the explicit dynamic code STAMPACK <span id='citeF-31'></span> [[#cite-31|[31]]]. This code has been used for the structural analysis computations shown in the examples section.
987
988
For further details see <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]],[[#cite-22|22]]].
989
990
==4 Aeroelastic Analysis==
991
992
Wind loading analysis is mandatory in outdoor membrane structures such as inflatable structures formed by low pressure inflatable tubes. Aeroelastic forces can induce the instability and failure of the structure. The accurate computation of wind forces is also essential for the correct design of the anchoring system. A simple weakly coupled staggered aeroelastic scheme has been implemented for the EBST rotation-free shell triangle described in the previous sections. The computation of the wind forces on the membrane structure is performed at each time step using the Tdyn fluid-dynamic code based on the solution of the Navier-Stokes equations for a viscous flow using a stabilized finite element formulation <span id='citeF-31'></span> [[#cite-33|[33]]]. Wind forces are used to compute the membrane deformations via the EBST element. This naturally introduces changes in the geometry of the domain where the aerodynamic analysis is performed. These changes are taken into account in the fluid-dynamic analysis at the next time step and so on. The transfer of data between the aerodynamic and structural analysis codes is performed via “ad-hoc” interface for data interchange in fluid-structure interaction problems <span id='citeF-27'></span> [[#cite-27|[27]],<span id='citeF-28'></span> [[#cite-28|28]],<span id='citeF-32'></span> [[#cite-32|32]]].
993
994
==5 Examples==
995
996
All units in the examples are given in the international unit system.
997
998
===5.1 Inflation of a Sphere===
999
1000
As the EBST element uses a quadratic interpolation of geometry, the existance of  membrane locking must be assessed. For this example an originally curved surface is considered, where a standard linear strain triangle would lead to membrane locking. The example is the inflation of a spherical shell under internal pressure. An incompressible Mooney-Rivlin constitutive material have been considered <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]], [[#cite-22|22]]]. The three meshes of EBST elements considered to evaluate convergence are shown in Fig.&nbsp;[[#img-3|3]].a-c. The value of the actual radius as a function of the internal pressure is  plotted in Fig.&nbsp;[[#img-3|3]].d for the different meshes and is also compared with the analytical solution. It can be seen that with a few degrees of freedom it is possible to obtain an excellent agreement for the range of strains considered. The final value corresponds to a thickness radius ratio of <math display="inline">h/R=0.00024</math>. No membrane locking has therefore been detected in this problem. For more details see <span id='citeF-21'></span><span id='citeF-22'></span><span id='citeF-29'></span>[[#cite-21|[21]], [[#cite-22|22]], [[#cite-29|29]]].
1001
1002
<div id='img-3'></div>
1003
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1004
|-
1005
|[[File:Draft_Samper_330523237_5129_4.JPG]]
1006
|- style="text-align: center; font-size: 75%;"
1007
| colspan="1" | '''Figure 3:''' Inflation of sphere of Mooney-Rivlin material. (a)-(c) EBST meshes used in the analysis (d)Radius as a function of the internal pressure
1008
|}
1009
1010
===5.2 Inflation of a Square Airbag Against a Spherical Object===
1011
1012
The next example is the inflation of a square airbag supporting a spherical object. The lower surface part of the airbag is limited by a rigid plane and on the upper part a spherical dummy object is set to study the interaction between the airbag and the object. The material properties are given in <span id='citeF-21'></span><span id='citeF-22'></span><span id='citeF-30'></span>[[#cite-21|[21]], [[#cite-22|22]], [[#cite-30|30]]].
1013
1014
The airbag geometry is initially square with an undeformed side length of <math display="inline">0.643</math>. Only one quarter of the geometry has been modelled due to symmetry.  The thickness considered is <math display="inline">h=0.00075</math> and the inflation pressure is <math display="inline">250000</math>. Using a density <math display="inline">\delta=1000</math>, pressure is linearly increased from 0 to the final value in <math display="inline">t=0.15</math>. The spherical object has a radius <math display="inline">r=0.08</math> and a mass of <math display="inline">4.8</math> (one quarter), and is subjected to gravity load during all the process.
1015
1016
<div id='img-4'></div>
1017
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1018
|-
1019
|[[File:Draft_Samper_330523237_6771_5.JPG]]
1020
|- style="text-align: center; font-size: 75%;"
1021
| colspan="1" | '''Figure 4:''' Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution
1022
|}
1023
1024
The mesh has 8192 EBST elements and 4225 nodes on the  surface of the airbag. Figure&nbsp;[[#img-4|4]] shows the deformed configurations for three different times. The sequence on the left figure corresponds to an analysis including full bending effects and the sequence on the right is the result of a pure membrane analysis. Note that the membrane solution presents artificial (numerical) wrinkles which dissappear when using the full bending formulation presented in this paper.
1025
1026
===5.3 Inflation/Deflation of a Closed Tube===
1027
1028
This  problem studies the inflating and de-inflating of a tube with a semi-spherical end cap.  The tube diameter is <math display="inline">D=2</math>, its total length is <math display="inline">L=6</math> and the thickness <math display="inline">h=5\times 10^{-4}</math>.  The material has the following properties <math display="inline">E=4\times 10^{8}</math>, <math display="inline">\nu =0.35 </math>, <math display="inline">\varrho =2\times 10^{3}</math>.  The tube is inflated fast until a pressure of <math display="inline">10^4</math> and when pressure is released the tube de-inflates and falls under self weight.  The analysis is performed with a mesh of 16704 EBST elements and 8501 nodes modelling a quarter of the geometry.  A rigid frictionless base is assumed.  Self contact is also included to avoid penetrations.  The evolution of the tube walls during the de-inflating process are shown in Fig.&nbsp;[[#img-5|5]].  For this very thin shell, the differences between a full bending solution and a pure membrane solution are less marked.
1029
1030
<div id='img-5'></div>
1031
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1032
|-
1033
|[[File:Draft_Samper_330523237_5138_6.JPG]]
1034
|- style="text-align: center; font-size: 75%;"
1035
| colspan="1" | '''Figure 5:''' Inflation and deflation of a closed tube. <math>L=6</math>, <math>D=2</math>, <math>h=5\times  10^{-4}</math>. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution
1036
|}
1037
1038
===5.4 Inflation of a Tubular Arch===
1039
1040
The next example is the analysis of a tubular arch. This kind of archs are joined together to form large inflatable structures for a wide range of applications as shown in the following examples. The  tubular arch has a internal diameter of <math display="inline">0.9</math>; is total length is <math display="inline">11.0</math> and the heigth is <math display="inline">4.5</math>. The tube thickness is <math display="inline">3 \times  10^{-4}</math>, the constitutive material is polyamid with  Young modulus <math display="inline">E=2.45\times 10^8</math> and Poisson ratio <math display="inline">\nu=0.35</math>. Due to geometric symmetrys one quarter of the tube was discretized with 33600 triangular elements (17061 nodes). The simulation includes two stages. First the tube is left fall down under gravity action. Second an internal pressure of <math display="inline">p=883</math> is applied in a short time and kept constant afterwards until the full inflation of the tube is reached.
1041
1042
Figure [[#img-6|6]] shows deformed configurations for different instants of the process.
1043
1044
<div id='img-6'></div>
1045
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1046
|-
1047
|[[File:Draft_Samper_330523237_4060_7.JPG]]
1048
|- style="text-align: center; font-size: 75%;"
1049
| colspan="1" | '''Figure 6:''' Inflation of a tubular arch. (a) Deflated tube. (b),(c) Deformed   configurations during the inflation process. (d) Final inflated   configuration
1050
|}
1051
1052
===5.5 Impact of Rigid Spheres on an Inflated Pavilion===
1053
1054
Figure [[#img-7|7]] shows the impact of two rigid spheres on an inflatable structure ressembling a mushroom. The surface has been discretized with a relative coarse mesh of EBST elements. This example simulates the effect of children  jumping or walking on an inflatable structure. Frictional contact conditions and elastic material properties are assumed. The  pavilion structure is inflated to a low pressure. The sphere on the top of the pavilion is linked to the structure. The bouncing sphere was shot to the structure.  The results observed agree very well with the expected behaviour.
1055
1056
A numerical experiment was performed next for reproducing the inflating and deflating process of the mushroom shape pavilion. Figure [[#img-8|8]] represents the inflating process.
1057
1058
<div id='img-7'></div>
1059
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1060
|-
1061
|[[File:Draft_Samper_330523237_2857_8.JPG]]
1062
|- style="text-align: center; font-size: 75%;"
1063
| colspan="1" | '''Figure 7:''' Impact of two spheres on a inflatable structure. Deformed shape at   different times
1064
|}
1065
1066
<div id='img-8'></div>
1067
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1068
|-
1069
|[[File:Draft_Samper_330523237_6197_9.JPG]]
1070
|- style="text-align: center; font-size: 75%;"
1071
| colspan="1" | '''Figure 8:''' Inflation of a membrane structure. Geometry at different times during the inflating process
1072
|}
1073
1074
===5.6 Deployment of a Spinnaker Sail===
1075
1076
Figure [[#img-9|9]] shows the simulation of the deployment of a spinnaker sail under the wind action. An elastic material (Naylon) is used with a coarse mesh of 730 EBST elements. The material properties used are <math display="inline">E= 5000</math>, <math display="inline">\nu  = 0.3</math>, <math display="inline">t = 5\times  10^{-4}</math>. The wind pressure force  is obtained using the Tdyn CFD code  <span id='citeF-1'></span> [[#cite-33|[33]]]. The apparent wind velocity used is 4. The sail deployment process agrees very well to the real behaviour. The objective was to determine the stress level on the sail.
1077
1078
===5.7 Examples of Practical Constructions of Membrane Structures with Low Pressure Inflatable Tubes===
1079
1080
Figure Figure [[#img-10|10]] presents a pavilion of 150 m<math display="inline">^2</math> for a telecommunication company in Spain. The pavilion is made by assembling some 70 low pressure tubes like the one showed in Figure Figure [[#img-6|6]]. The tubes are joined together to create the pavilion space. The complexity of the shape required extensive aerodynamic analysis to guarantee the stability of the structure. This pavilion visited some 15 cities in Spain during 2005.
1081
1082
<div id='img-9'></div>
1083
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1084
|-
1085
|[[File:Draft_Samper_330523237_9989_11.JPG]]
1086
|- style="text-align: center; font-size: 75%;"
1087
| colspan="2" | '''Figure 9:''' Spinnaker sail.  Sequence of deployment
1088
|}
1089
1090
<div id='img-10'></div>
1091
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1092
|-
1093
|[[File:Draft_Samper_330523237_5185_10.JPG]]
1094
|- style="text-align: center; font-size: 75%;"
1095
| colspan="1" | '''Figure 10:''' Inflated pavilion for a telecommunication exhibition built by   assembly of low pressure inflatable tubes. Triangular mesh on the pavilion   surface and results of   the aerodynamic analysis
1096
|}
1097
1098
<div id='img-11'></div>
1099
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1100
|-
1101
|[[Image:Draft_Samper_330523237-Diapo27.png|500px|]]
1102
|-
1103
|[[Image:Draft_Samper_330523237-Cadillac_stand.png|450px|Cadillac style exhibition pavilion built by assembly of low pressure analysis   tubes. Geometry and results of the aerodynamic analysis]]
1104
|- style="text-align: center; font-size: 75%;"
1105
| colspan="2" | '''Figure 11:''' Cadillac style exhibition pavilion built by assembly of low pressure analysis   tubes. Geometry and results of the aerodynamic analysis
1106
|}
1107
1108
<div id='img-12'></div>
1109
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1110
|-
1111
|[[File:Draft_Samper_330523237_4184_12.JPG]]
1112
|- style="text-align: center; font-size: 75%;"
1113
| colspan="1" | '''Figure 12:''' Exhibition hall in Barcelona built by assembly of low pressure   inflatable tubes. Images of the design project
1114
|}
1115
1116
<div id='img-13'></div>
1117
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1118
|-
1119
|[[File:Draft_Samper_330523237_8284_13.JPG]]
1120
|- style="text-align: center; font-size: 75%;"
1121
| colspan="1" | '''Figure 13:''' Inflatable exhibition hall in Barcelona harbour. Images of the   construction of the different modules, transport, lay-out and   inflating operations
1122
|}
1123
1124
<div id='img-14'></div>
1125
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1126
|-
1127
|[[Image:Draft_Samper_330523237-Fig_interior.png|500px|Inflatable exhibition hall in Barcelona harbour. Images of  outside and inside   spaces. Lower frame shows the first and third authors of the paper (from   right to left)]]
1128
|- style="text-align: center; font-size: 75%;"
1129
| colspan="1" | '''Figure 14:''' Inflatable exhibition hall in Barcelona harbour. Images of  outside and inside   spaces. Lower frame shows the first and third authors of the paper (from   right to left)
1130
|}
1131
1132
Figure [[#img-11|11]] shows an inflated pavilion of some 200 m<math display="inline">^2</math> simulating and old cadillac automotive for and itinerant exhibition in Spain (2005). The flat geometry of the ceiling was a challenge for the designers. Extensive structural and aerodynamic analysis were performed using the Tdyn code <span id='citeF-33'></span> [[#cite-33|[33]]] to guarantee the integrity of the structure.
1133
1134
Figure [[#img-12|12]] shows the design shape of a relative large inflatable exhibition hall (1600m<math display="inline">^2</math>) built in the harbour area of the city of Barcelona on December 2004. Figure [[#img-13|13]] shows some stages of the construction of the different inflatable modules of the pavilion and images of the transport, lay-out and inflating operations. Note the simplicity of the transport logistics, compared with the dimensions of the structure, involving a few bags easily carried in a mid-size vehicle. Figure [[#img-14|14]] shows images of the outside and inside spaces of the pavilion containing a display of innovative concepts and products in modern art, fashion and information technologies.
1135
1136
Figure [[#img-15|15]] shows images of a mid-size inflatable pavilion (250m<math display="inline">^2</math>) built for an itinerant exhibition on Gaudi. The exhibition visited some 20 cities in Spain in 2002. Some images of the outside and inside of the pavilion are shown in Fig [[#img-16|16]]. More details are given in <span id='citeF-25'></span> [[#cite-25|[25]]].
1137
1138
Figure [[#img-17|17]] shows images of an inflatable pavilion of <math display="inline">\approx 1000\hbox{m}^2</math> formed by assembling of 6 cylindrical halls. The pavilion was built in an old train station in Barcelona in December 2004 for an exhibition on the history of Civil Engineering in Catalonia. Some views of the pavilion entrance and the inside are shown in Fig.18. For more details of this inflatable pavilion see <span id='citeF-25'></span> [[#cite-25|[25]]].
1139
1140
Figures [[#img-19|19]] and [[#img-20|20]] finally show images of designs of innovative inflatable pavilions and halls formed by low pressure inflatable tubes. The versatility of the tube assembly process allows the design and construction of quite complex shapes of artistic and architectural value in a simple and economical manner.
1141
1142
<div id='img-15'></div>
1143
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1144
|-
1145
|[[Image:Draft_Samper_330523237-Diapo6.png|500px|]]
1146
|-
1147
|[[Image:Draft_Samper_330523237-Diapo8.png|500px|Pavilion for an itinerant Gaudi Exhibition in Spain. Geometry and lay-out of the inflation process]]
1148
|- style="text-align: center; font-size: 75%;"
1149
| colspan="2" | '''Figure 15:''' Pavilion for an itinerant Gaudi Exhibition in Spain. Geometry and lay-out of the inflation process
1150
|}
1151
1152
<div id='img-16'></div>
1153
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1154
|-
1155
|[[File:Draft_Samper_330523237_9430_14.JPG]]
1156
|-
1157
|[[Image:Draft_Samper_330523237-Diapo10.png|600px|Inflatable   pavilion for Gaudi Exhibition. Images of outside and inside spaces]]
1158
|- style="text-align: center; font-size: 75%;"
1159
| colspan="2" | '''Figure 16:''' Inflatable   pavilion for Gaudi Exhibition. Images of outside and inside spaces
1160
|}
1161
1162
<div id='img-17'></div>
1163
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1164
|-
1165
|[[File:Draft_Samper_330523237_5139_15.JPG]]
1166
|-
1167
|[[Image:Draft_Samper_330523237-Diapo13.png|300px|]]
1168
|[[Image:Draft_Samper_330523237-Diapo17.png|300px|]]
1169
|-
1170
|[[Image:Draft_Samper_330523237-Diapo21.png|700px|Inflatable exhibition hall in Barcelona. Original design. Results of   the aerodynamic analysis. Sewing of membrane patterns and final construction]]
1171
|- style="text-align: center; font-size: 75%;"
1172
| colspan="2" | '''Figure 17:''' Inflatable exhibition hall in Barcelona. Original design. Results of   the aerodynamic analysis. Sewing of membrane patterns and final construction
1173
|}
1174
1175
<div id='img-18'></div>
1176
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1177
|-
1178
|[[Image:Draft_Samper_330523237-Diapo22.png|500px|]]
1179
|-
1180
|[[Image:Draft_Samper_330523237-Diapo23.png|500px|Images of inflatable exhibition hall in Barcelona]]
1181
|- style="text-align: center; font-size: 75%;"
1182
| colspan="2" | '''Figure 18:''' Images of inflatable exhibition hall in Barcelona
1183
|}
1184
1185
<div id='img-19'></div>
1186
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1187
|-
1188
|[[Image:Draft_Samper_330523237-Diapo32.png|450px|]]
1189
|-
1190
|[[Image:Draft_Samper_330523237-Diapo33.png|400px|Projects of low pressure inflatable pavilions. Above: pavilion  for an international swimming competition. Below: mobile opera theatre]]
1191
|- style="text-align: center; font-size: 75%;"
1192
| colspan="2" | '''Figure 19:''' Projects of low pressure inflatable pavilions. Above: pavilion  for an international swimming competition. Below: mobile opera theatre
1193
|}
1194
1195
==6 Concluding Remarks ==
1196
1197
We have presented in the paper the formulation of a rotation-free enhanced basic shell triangle (EBST) for analysis of thin membranes and inflatable structures. The element is based on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of four elements and an assumed linear membrane strain field for the in-plane behaviour. A simple and economic version of the element using a single integration point has been presented. The  element has proven to be an excellent candidate for solving practical problems in the design and analysis of low pressure inflatable structures under different loading conditions as demonstrated in the examples of application shown.
1198
1199
A large variety of membrane structures built by assembly of low pressure inflatable tubes has been presented showing the versalitiy and potential of this type of constructions in practice.
1200
1201
==Acknowledgments==
1202
1203
The second author is a member of the scientific staff of the Science Research Council of Argentina (CONICET). The financial support of CIMNE, CONICET and Agencia Córdoba Ciencia S.E. and the support of the companies QUANTECH ATZ SA (<code>http://www.quantech.es/</code>) and COMPASS Ingeniería y Sistemas SA (<code>http://www.compassis.com/</code>) providing the codes STAMPACK <span id='citeF-31'></span> [[#cite-31|[31]]] and Tdyn <span id='citeF-33'></span> [[#cite-31|[33]]] are gratefully acknowledged. Thanks are also given to BuildAir Ingeniería y Arquitectura SA (<code>http://www.buildair.com/</code>) for providing photographs of practical constructions of inflatable structures.
1204
1205
<div id='img-20'></div>
1206
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1207
|-
1208
|[[Image:Draft_Samper_330523237-Diapo34.png|600px|Projects of pavilions formed by low pressure inflatable tubes]]
1209
|- style="text-align: center; font-size: 75%;"
1210
| colspan="1" | '''Figure 20:''' Projects of pavilions formed by low pressure inflatable tubes
1211
|}
1212
1213
===BIBLIOGRAPHY===
1214
1215
<div id="cite-1"></div>
1216
[[#citeF-1|[1]]]  Inflatable structures for engineering and architecture applications. BuildAir Ingeniería y Arquitectura SA, www.buildair.com, 2007
1217
1218
<div id="cite-2"></div>
1219
[[#citeF-2|[2]]]   Plant RH, Liapis S,  Telionis DP (1996) Flood Protection using Inflatable Dams. Natural Disaster Reduction Conference. Washington December 3-5:264-265
1220
1221
<div id="cite-3"></div>
1222
[[#citeF-3|[3]]]   Rehmet M, Bauder C, Schäfer, I  Kröplin BH (1994) Solar Powered Airship Project. International Conference Remotely Piloted Vehicles, Bristol
1223
1224
<div id="cite-4"></div>
1225
[[#citeF-4|[4]]]   Beukers A,  Molder OV,  Vermeeren CAJR (2001) Inflatable Structures in Space Engineering. Journal of the IASS
1226
1227
<div id="cite-5"></div>
1228
[[#citeF-5|[5]]]    ILC Dover, World leader in innovative flexible solutions (2000). http://www.ilcdover.com
1229
1230
<div id="cite-6"></div>
1231
[[#citeF-6|[6]]]    New Methodologies for Design and Manufacturing of Inflated Structures (INFLAST) (Brite-Euram Contract NAº BRPR-CT97-0448). Consortium: CIMNE: BAZAN, S.A., CASA, S.A., NOVURANIA, S.p.A., IRD a/s, Universitat Stutt-gart, Airship Technologies, GmbH. Project finished on May 2000
1232
1233
<div id="cite-7"></div>
1234
[[#citeF-7|[7]]] Sadeh WZ,  Criswell ME A generic inflatable structure for a lunar/martian base. Proceeding of the Ebgineering, Construction and Operations in Space IV 1146-1156
1235
1236
<div id="cite-8"></div>
1237
[[#citeF-8|[8]]]  Nowak PS,  Sadeh WZ,  Morroni LA (1992), Geometric modeling of inflatable structures for lunar base. Journal of Aerospace Engineering 5(3):311-322
1238
1239
<div id="cite-9"></div>
1240
[[#citeF-9|[9]]]  Oñate E, Kröplin B (Eds.) (2003) Proceedings of the     1st. International Conference on Textile Composites and     Inflatable Structures I, CIMNE, Barcelona
1241
1242
<div id="cite-10"></div>
1243
[[#citeF-10|[10]]]  Oñate E, Kröplin B (Eds.) (2005) Textile Composites and     Inflatable Structures I, Springer, Netherlands
1244
1245
<div id="cite-11"></div>
1246
[[#citeF-11|[11]]]  Oñate E, Kröplin B (Eds.) (2005) Proceedings of the     2nd. International Conference on Textile Composites and     Inflatable Structures II, CIMNE, Barcelona
1247
1248
<div id="cite-12"></div>
1249
[[#citeF-12|[12]]]  Taylor RL (2001) ''Finite element analysis of membrane structures''. Publication 203, CIMNE, Barcelona
1250
1251
<div id="cite-13"></div>
1252
[[#citeF-13|[13]]]   Oñate E (1994) ''A review of some finite element families for thick and thin plate and shell analysis''. Publication 53, CIMNE, Barcelona
1253
1254
<div id="cite-14"></div>
1255
[[#citeF-14|[14]]]  Hampshire JK, Topping BHV, Chan HC (1992) Three node triangular elements with one degree of freedom per node. Engng. Comput. 9:49&#8211;62,
1256
1257
<div id="cite-15"></div>
1258
[[#citeF-15|[15]]]  Phaal R,  Calladine CR (1992) A simple class of finite elements for plate and shell problems. II: An element for thin shells with only translational degrees of freedom. Int. J. Num. Meth. Engng. 35:979&#8211;996
1259
1260
<div id="cite-16"></div>
1261
[[#citeF-16|[16]]]  Oñate E, Cervera M (1993) Derivation of thin plate bending elements with one degree of freedom per node. Engineering Computations 10:553&#8211;561
1262
1263
<div id="cite-17"></div>
1264
[[#citeF-17|[17]]]  Oñate E, Zárate F (2000) Rotation-free plate and shell triangles. Num. Meth. Engng. 47:557&#8211;603
1265
1266
<div id="cite-18"></div>
1267
[[#citeF-18|[18]]]  Cirak F, Ortiz M  (2000) Subdivision surfaces: A new paradigm for thin-shell finite element analysis. Int. J Num. Meths. Engng. 47:2039&#8211;2072
1268
1269
<div id="cite-19"></div>
1270
[[#citeF-19|[19]]]  Flores FG, Oñate E  (2001) A basic thin shell triangle with only translational DOFs for large strain plasticity. Int. J. Num. Meths. Engng. 51:57&#8211;83.
1271
1272
<div id="cite-20"></div>
1273
[[#citeF-20|[20]]]  Cirak F,  Ortiz M (2001) Fully <math>C^{1}</math>-conforming subdivision elements for finite deformations thin-shell analysis. Num. Meths. Engng. 51:813&#8211;833
1274
1275
<div id="cite-21"></div>
1276
[[#citeF-21|[21]]]   Flores FG, Oñate E (2005) Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach. Comput. Meth. Appl. Mech. Engng. 194(6&#8211;8):907&#8211;932
1277
1278
<div id="cite-22"></div>
1279
[[#citeF-22|[22]]]  Oñate E, Flores FG (2005)  Advances in the formulation of the rotation-free basic shell triangle. Comput. Meth. Appl. Mech. Engng. 194(21-24):2406-2443
1280
1281
<div id="cite-23"></div>
1282
[[#citeF-23|[23]]]  Zienkiewicz OC, Taylor RL (2005) The finite element method. Vol II: Solid Mechanics, Oxford, Elsevier
1283
1284
<div id="cite-24"></div>
1285
[[#citeF-24|[24]]]  Ogden RW  (1972)  Large deformation isotropic elasticity: on the correlation of theory and experiments for incompressible rubberlike solids. Proc. Royal Society London A. 326:565&#8211;584
1286
1287
<div id="cite-25"></div>
1288
[[#citeF-25|[25]]]  Marcipar J, Oñate E, Miquel J (2005) Experiences in     the design analysis and construction of low pressure inflatable     structures. Textile Composites and Inflatable Structures I, E.  Oñate     and B. Kröplin (Eds.), Springer
1289
1290
<div id="cite-26"></div>
1291
[[#citeF-26|[26]]]  Flores F, Oñate E (2005) Applications of a rotation-free     triangular element for finite strain analysis of thin shells and     membranes. Textile Composites and Inflatable Structures I, E.  Oñate     and B. Kröplin (Eds.), Springer
1292
1293
<div id="cite-27"></div>
1294
[[#citeF-27|[27]]]  Pons J,  Oñate E, Flores F, García J, Ribó R,   Marcipar J (2005) Numerical and experimental values comparison for an   inflatable structure. Textile Composites and Inflatable Structures II, E.   Oñate and B. Kröplin (Eds.), CIMNE, Barcelona
1295
1296
<div id="cite-28"></div>
1297
[[#citeF-28|[28]]]  GiD. The personal pre/postprocessor (2007), CIMNE, Barcelona,
1298
1299
www.gidhome.com
1300
1301
<div id="cite-29"></div>
1302
[[#citeF-29|[29]]]  Needleman A (1977) Inflation of spherical rubber ballons. Solids and Structures 13:409&#8211;421
1303
1304
<div id="cite-30"></div>
1305
[[#citeF-30|[30]]]  Marklund PO,  Nilsson L (2002) Simulation of airbag inflation processes using a coupled fluid structure approach. Computational Mechanics 29:289&#8211;297
1306
1307
<div id="cite-31"></div>
1308
[[#citeF-31|[31]]]  STAMPACK (2007) An explicit dynamic code for sheet stamping   analysis. Quantech ATZ SA (www.quantech.es)
1309
1310
<div id="cite-32"></div>
1311
[[#citeF-32|[32]]]  A communication library for fluid-structure interaction   analysis (2007). Compass Ingeniería y Sistemas SA, www.compassis.com
1312
1313
<div id="cite-33"></div>
1314
[[#citeF-33|[33]]]  Tdyn (2007) Finite element code for fluid dynamics and     thermal analysis. Compass Ingeniería y Sistemas SA, www.compassis.com
1315

Return to Onate et al 2008b.

Back to Top

Document information

Published on 01/01/2008

DOI: 10.1007/978-1-4020-6856-0_10
Licence: CC BY-NC-SA license

Document Score

0

Views 1417
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?