Abstract

Objective: In this article we study the approximation to thermal turbulence from a strictly numerical point of view, without the use of any physical model. The main goal is to analyze the behavior of our numerical method in the large eddy simulation (LES) of thermally coupled turbulent [...]

Abstract

In this work, we aim to shed light to the following research question: can we find a nonlinear tensorial subgrid-scale (SGS) heat flux model with good physical and numerical properties, such that we can obtain satisfactory predictions for buoyancy-driven turbulent flows?This is motivated [...]

Abstract

The incompressible Navier-Stokes equations stand as the best mathematical model for turbulent flows. However, direct numerical simulations at high Reynolds numbers are not yet feasible because the convective term produces far too many relevant scales of motion, thus remaining limited [...]

Abstract

In the present work, we investigate the stability of turbulence closure predictions from neural network models and highlight the role of model-data-inconsistency during inference. We quantify this inconsistency by applying the Mahalanobis distance and demonstrate that the instability [...]