This work explores the use of an embedded computational fluid dynamics method to study the type B aortic dissection. The use of the proposed technique makes it possible to easily test different intimal flap configurations without any need of remeshing. To validate the presented methodology, we take as reference test case an in vitro experiment present in the literature. This experiment, which considers several intimal flap tear configurations (number, size and location), mimics the blood flow in a real type B aortic dissection. We prove the correctness and suitability of the presented approach by comparing the pressure values and waveform. The obtained results exhibit a remarkable similarity with the experimental reference data. Complementary, we present a feasible surgical application of the presented computer method. The aim is to help the clinicians in the decision making before the type B aortic dissection surgical fenestration. The capabilities of the proposed technique are exploited to efficiently create artificial reentry tear configurations. We highlight that only the radius and center of the reentry tear need to be specified by the clinicians, without any need to modify neither the model geometry nor the mesh. The obtained computational surgical fenestration results are in line with the medical observations in similar clinical studies.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2020

DOI: 10.1007/s10237-020-01291-x
Licence: CC BY-NC-SA license

Document Score


Views 10
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?