Abstract

This paper aims to optimize high-speed railroad timetables for a corridor. We propose an integer programming model using a time-space network-based approach to consider passenger service demands, train scheduling, and station service demands simultaneously. A modified branch-and-price algorithm is used for the computation. This algorithm solves the linear relaxation of all nodes in a branch-and-bound tree using a column generation algorithm to derive a lower-bound value (LB) and derive an upper-bound value (UB) using a rapid branching strategy. The optimal solution is derived by iteratively updating the upper- and lower-bound values. Three acceleration strategies, namely, initial solution iteration, delayed constraints, and column removal, were designed to accelerate the computation. The effectiveness and efficiency of the proposed model and algorithm were tested using Wuhan-Guangzhou high-speed railroad data. The results show that the proposed model and algorithm can quickly reduce the defined cost function by 38.2% and improve the average travel speed by 10.7 km/h, which indicates that our proposed model and algorithm can effectively improve the quality of a constructed train timetable and the travel efficiency for passengers.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://downloads.hindawi.com/journals/jat/2018/4530787.xml,
http://dx.doi.org/10.1155/2018/4530787 under the license http://creativecommons.org/licenses/by/4.0
https://doaj.org/toc/0197-6729,
https://doaj.org/toc/2042-3195 under the license http://creativecommons.org/licenses/by/4.0/
http://downloads.hindawi.com/journals/jat/2018/4530787.pdf,
https://academic.microsoft.com/#/detail/2893693072
Back to Top

Document information

Published on 01/01/2018

Volume 2018, 2018
DOI: 10.1155/2018/4530787
Licence: Other

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?