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This paper aims to optimize high-speed railroad timetables for a corridor. We propose an integer programming model using
a time-space network-based approach to consider passenger service demands, train scheduling, and station service demands
simultaneously. A modified branch-and-price algorithm is used for the computation. This algorithm solves the linear relaxation
of all nodes in a branch-and-bound tree using a column generation algorithm to derive a lower-bound value (LB) and derive an
upper-bound value (UB) using a rapid branching strategy. The optimal solution is derived by iteratively updating the upper- and
lower-bound values.Three acceleration strategies, namely, initial solution iteration, delayed constraints, and column removal, were
designed to accelerate the computation. The effectiveness and efficiency of the proposed model and algorithm were tested using
Wuhan-Guangzhou high-speed railroad data. The results show that the proposed model and algorithm can quickly reduce the
defined cost function by 38.2% and improve the average travel speed by 10.7 km/h, which indicates that our proposed model and
algorithm can effectively improve the quality of a constructed train timetable and the travel efficiency for passengers.

1. Introduction

A train timetable is a technical document that describes
the operation of trains on certain railroad sections and
the trains’ departure and arrival times or passing times at
stations. With the rapid development of high-speed railroads
in China and various other countries during the last decade,
the train timetabling problem (TTP) for high-speed railroads
has become a new challenge for railway operators. The TTP
for high-speed railroads differs from the traditional TTP in
several ways:
(1) The mismatch between transportation demand and

capacity causes the full use of the transportation capacity of
railroads and the minimization of travel times of trains to be
themain goals for the traditional TTP. In general, the TTP for
high-speed railroads focuses on the maximal satisfaction of
passenger travel demands and the improvement in customer
service quality. Due to the high speed and high density of
the high-speed railroad, passengers may have more choices
of when to travel. Thus, the passenger flow of high-speed

railroads shows distinct volatility in different periods. To
satisfy the volatility characteristics of high-speed railroad
passengers, we set a feasible departure time range for each
train at its starting station according to the train service plan,
as mentioned in Section 2.3.
(2) Passenger trains and freight trains run on traditional

railroads, where the passenger trains have higher priority
than freight trains. Thus, passenger trains may overtake
freight trains at some stations. Medium- and high-speed pas-
senger trains run on high-speed railroads, where medium-
speed trains and high-speed trains have the same priority.
Thus, the number of times overtaking occurs on high-speed
railroads may be less than that of traditional railroads. We
propose a punishment coefficient to control the number of
occurrences on high-speed railroads in Section 3.1.
(3)The maintenance window for high-speed railroads is

generally set at night, and maintenance requires a consider-
able length of time. The skylight for traditional railroads is
more flexible and requires a shorter length of time.
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The TTP has received considerable attention in recent
decades as a fundamental aspect of railroad transportation
management. Many researchers have explored train schedul-
ing. Frank [1] was one of the earliest researchers to conduct
a mathematical analysis of train timetables. He began to
explore train scheduling for two-way railroad operations
on a single track in 1966. Szpigel [2] converted the single-
track TTP into a job scheduling problem and proposed a
mixed-integer programmingmodel, inwhichminimizing the
total travel time was defined as the goal, which was subject
to interval time constraints related to train overtaking or
crossing. A branch-and-bound algorithm was employed for
the computation of this model; however, it could be applied
to only small-scale computations. Serafini and Ukovich [3]
proposed the periodic event scheduling problem (PESP) in
1989, after which Schrijver and Steenbeek [4] applied the
PESP to solve the TTP and pioneered research on periodic
timetable optimization problems [5–11]. Periodic timetables
help passengers memorize accurate departure times and
effectively reduce the scale of the computation. Currently,
periodic timetabling is the preferred choice of many railroad
enterprises. Brännlund et al. [12] proposed a 0-1 integer
programming model based on the discretization of time, the
goal of maximizing the benefits for all trains, and the need
to satisfy track capacity constraints. The Lagrange relaxation
algorithm was employed for the computation of this model.
Caprara et al. [13] explored periodic timetables based on
graph theory and constructed an integer programmingmodel
for which the Lagrange relaxation algorithm was also used
for computation. This model can be effectively applied to
large-scale computations. Zhou and Zhong [14] explored the
single-track TTP for conditions of limited track resources
with the goal of minimizing the total travel time with
safety headway constraints. Cacchiani et al. [15] proposed a
time-space network-based optimization model for the TTP
using a full timetable for a train as a variable. A column
generation algorithm was utilized for the computation of this
model. He et al. [16] explored the high-speed railroad TTP
based on a time-space network model and the branch-and-
price algorithm. They implemented a punishment value to
reduce the deviations of train start times and the number
of occurrences of train overtaking. They also implemented
a strategy of increasing the amount of stopping at stations
to increase the possibility of train overtaking but they did
not consider the strategy of reducing the amount of stopping
at stations to shorten passenger waiting times. These studies
have yielded useful methods for the optimization of the TTP.
However, due to the hierarchical optimization of traditional
transportation management processes, passenger demands
were not directly considered in these studies.

Another subset of previous studies has focused on
passenger demands. Ceder [17] proposed an optimization
framework for constructing bus timetables using passenger
loading data. This framework can be used to synchronize
the departure times of vehicles under dynamic passenger
demands. Peeters and Kroon [18] employed the branch-and-
price algorithm to solve the rolling stock scheduling problem
for a given train timetable and passenger seat demands.
Zhou et al. [19] constructed a bilevel programming model to

optimize a passenger train operation plan and diagram with
the goal of maximizing the profits of the railroad enterprise.
Passengers can determine whether to travel by train and
can select their transfer schemes based on ticket prices,
departure and arrival times, switching times, and conges-
tion charges. The railroad enterprise can improve its train
operation plan and diagram based on passenger demands.
Kaspi and Raviv [20] proposed a model for comprehensively
optimizing a train operation plan and diagram with the goal
of minimizing the train operation costs and passenger travel
times based on time-varying passenger demands.This model
did not have any train capacity constraints; this assumption
reduced the computational complexity but yielded results
that were inconsistent with the actual situation. Canca et
al. [21] proposed a nonlinear integer programming model
with the goal of minimizing passenger waiting times and the
operational costs for the railroad enterprise. In this model,
the departure and arrival times were determined based on
dynamic passenger demands. Wang et al. [22] proposed an
event-driven model that included departure events, arrival
events, and events that correspond to changes in passenger
arrival rates.They also constructed a nonlinear programming
model with the multiple goals of minimizing the total pas-
senger travel time and optimizing the energy consumption
based on passenger transfer behavior in a railroad network.
High-speed railroad operations enable highly dense train
schedules with the ability to satisfy time-varying passenger
demands. Niu et al. [23] proposed a nonlinear mixed-
integer programming model based on time-varying origin-
destination (OD) passenger demand matrices and explored
the high-speed railroad TTP with the goal of minimizing
passenger waiting times. Yue et al. [24] proposed a mathe-
matical model for optimizing high-speed railroad timetables
to simultaneously consider both passenger service demands
and train scheduling. Lagrangian relaxation and a column
generation algorithm were employed for computation. They
verified the effectiveness of their model and algorithm via a
case study of the Beijing-Shanghai high-speed railroad.

Stations are important nodes in a high-speed railroad
transportation network; they are the locations of events, such
as passenger boarding, alighting, and transfer. Therefore,
some researchers have studied the simultaneous optimization
of passenger and station service demands with the main goal
of optimizing the train stop schedule plan. Suh et al. [25]
implemented a skip-stop strategy for subway service planning
based on ODmatrix information, distances between stations,
headways, and maximum link speeds. Deng et al. [26] pro-
posed a bilevel programming model for train stop schedule
planning based on the passenger transfer demands, the level
of stations at which trains stop, the operational capacities of
the train stations, and other factors. The objective function
of the upper programming model included the generalized
minimum travel cost and the number of train stops, whereas
the lower programming model was a passenger flow assign-
ment model with multiclass user equilibrium based on the
train stop schedule. Zheng et al. [27] constructed a 0-1 integer
programmingmodel that considered skip-stop patterns, with
the goal of minimizing the total passenger travel time. The
tabu search algorithm was employed for computation. Li et
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Wuhan Wulongquan East 48 48 12 2 3 13 2 3
Wulongquan East Xianning North 37 37 8 2 3 10 2 2
Xianning North Chibi North 42 42 9 2 3 11 2 2
Chibi North Yueyang East 82 82 17 2 3 21 2 2
Yueyang East Miluo East 70 70 15 2 3 18 2 2
Miluo East Changsha South 68 68 14 2 3 17 2 2
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Figure 1: Overview of the proposed high-speed railroad train timetable optimization method.

al. [28] analyzed problems encountered with conventional
train stop schedules and proposed a high-speed railroad stop
schedule optimization model, in which the main constraints
were related to the node service frequency, the interstation
service accessibility, and the number of one-train stops, and
the goal of optimization was to minimize the total number of
stops at stations. They also quantitatively analyzed the effects
of various factors on the construction of train stop schedule
plans. Current research is primarily focused on the station

stop schedules and does not consider the simultaneous
optimization of train timetables.

We propose a new high-speed railroad train timetable
optimization method using a time-space network-based
approach and a modified branch-and-price algorithm to
simultaneously consider passenger service demands, train
scheduling, and station service demands. Figure 1 presents an
overview of the method.The input data include the timetable
parameters, passenger service data, and station service data.
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First, the timetable parameters, such as the section travel
times and dwell times at stations, are acquired from the exist-
ing diagram. Second, the service frequency of each station
OD pair is inferred from the average daily passenger flow
data provided by the passenger ticketing department. Last,
the number of sidetracks at each station is determined based
on the station graph. The stations are divided into nodes
of different grades in accordance with the size, geographic
location, and passenger flow data of each station. The service
frequency of each station is determined according to its node
grade. We propose a new integer programming model with
constraints related to OD service frequency, station service
frequency, and various operation time standards, with the
goal of minimizing the deviation from the predefined train
start times, the total number of train stops, and the dwell
time at stations. The details regarding the modified branch-
and-price algorithm and the three acceleration strategies
developed for this algorithm are discussed in Section 4 of this
paper. The output is a near-global-optimal train timetable.

The four main contributions of our study can be summa-
rized as follows:
(1) We propose a new time-space network method to

represent a train stop schedule plan and the comprehensive
optimization of the train timetable. We use an associated
labeling method to address the corresponding challenge of
unconnected arc segments.
(2) We propose a new integer programming model that

simultaneously considers passenger service demands, train
scheduling, and station service demands.
(3) To calculate the pricing problem (PP), we employ

a new method based on the A-star (A∗) algorithm and
the Shortest-Path Faster Algorithm (SPFA) to search for the
shortest path in the unconnected and dynamic time-space
network.
(4) We propose a modified branch-and-price algorithm

and design three acceleration strategies for this algorithm:
initial solution iteration, delayed constraints, and column
removal. These algorithms and strategies can be used to
quickly solve a very-large-scale TTP.

The remainder of this paper is organized as follows:
In Section 2, we elaborate on the research problem and
introduce the construction of the time-space network. In
Section 3, we describe the new integer programming model.
In Section 4, we discuss the extended branch-and-price
algorithm and the three acceleration strategies. Section 5
presents a verification of the effectiveness of the proposed
algorithmandmodel using data from theWuhan-Guangzhou
high-speed railroad. In Section 6, we discuss our conclusions
and offer suggestions for future studies.

2. Problem Statement

This paper considers the high-speed TTP along one train
direction of a two-direction railroad line under passenger
demands, where the stations are sequentially numbered as
1, 2, ⋅ ⋅ ⋅ , 𝑛𝑆. Let 𝑆 = {1, 2, ⋅ ⋅ ⋅ , 𝑛𝑆} be the set of stations. The
set𝑁 = {1, 2, ⋅ ⋅ ⋅ , 𝑛𝑁} of trains travel along the line from the
predetermined starting stations to the predetermined ending
stations according to the train service plan. Let 𝑡 ∈ 𝑇 be the

index of times, where 𝑇 = {0, 1, ⋅ ⋅ ⋅ , 𝑛𝑇} is the planning time
horizon with equal one-minute intervals.

2.1. OD Service Frequency. The OD service frequency, which
is denoted by 𝑂𝐷𝑖,𝑖󸀠 , is the minimum number of direct trains
that serve passengers who travel between the stations of an
OD pair. The relationship between the OD service frequency
and the passenger flow data can be expressed by the following
equation:

𝑂𝐷𝑖,𝑖󸀠 =
𝑄𝑖,𝑖󸀠

𝜓𝑗 ⋅ 𝜔𝑖,𝑖󸀠
, (1)

where𝑄𝑖,𝑖󸀠 represents the average number of passengers who
arrive at station 𝑖 ∈ 𝑆 to travel to station 𝑖󸀠 ∈ 𝑆 : 𝑖󸀠 ̸= 𝑖 daily
on the line, according to the passenger ticketing department;
𝜓𝑗 is the capacity of train 𝑗 ∈ 𝑁, i.e., the maximum number
of passengers accommodated by train 𝑗; and 𝜔𝑖,𝑖󸀠 is the train
seat occupation rate between station 𝑖 and station 𝑖󸀠.

Figure 2 lists the OD service frequencies of a line.
Light red shading indicates OD sections with lower service
frequencies. These sections have poor travel access, and
passengers have few travel options. Yellow shading indicates
OD sections with zero service frequency. Passengers on these
OD sections must switch stations. As shown in Figure 2,
the OD service frequencies related to station K are low; this
situation is attributed to the low grade of the station and
its low passenger traffic. A low OD service frequency also
causes low attractiveness to passengers from sections related
to station K, which inhibits an increase in passenger traffic.
Therefore, a reasonable OD service frequency is an important
condition for guaranteeing accessible services among stations
and the satisfaction of passenger travel demands.

2.2. Station Service Frequency. Station service frequency is
the number of trains that stop at and start from a station
during a certain period [28]. In actual calculations, the grade
of a station is determined based on various factors, such
as political, economic, and cultural factors of the city in
which the station is located and its attractiveness to passenger
traffic, infrastructure, and operational capability. The service
frequency of a station is determined in accordance with its
grade.

2.3. Predefined Start Times. In theory, the start time of a train
can have any value within a possible start time range. In
practice, reasonable start time ranges can ensure that the train
timetable exhibits reasonable performance in terms of the
evenness of the train distribution and the satisfaction of the
time-varying passenger demands. Suitable start time ranges
can also tighten the feasible space of the resulting optimiza-
tion models and reduce the search time. The start time range
for a train can be determined based on the experience of the
planners or acquired from existing timetables [23].

2.4. Description of a Train Timetable in the Form of a Time-
Space Network. A description of a train timetable in the
form of a time-space network can accurately reflect various
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A B C D E F G H I J K L M
A - 26 46 9 7 10 10 25 6 13 2 4 26
B 10 - 58 8 12 10 11 30 6 11 2 6 32
C 33 46 - 25 31 18 24 64 14 29 3 11 69
D 10 6 28 - 12 11 15 33 7 18 1 3 26
E 6 9 29 11 - 7 13 29 6 14 0 4 26
F 6 10 21 8 7 - 9 20 4 9 3 2 17
G 10 13 30 12 13 7 - 26 6 13 1 5 22
H 16 24 65 34 29 18 29 - 18 35 5 14 69
I 6 8 20 8 8 8 8 20 - 11 3 4 16
J 7 11 31 20 15 4 14 39 10 - 3 6 25
K 3 0 7 3 5 1 3 10 2 5 - 4 6
L 4 6 17 8 7 6 6 19 6 6 5 - 17
M 16 24 70 28 21 19 24 68 20 27 10 23 -

Figure 2: OD service frequencies of a train line.

A

Virtual connection arc
Section connection arc

Station dwell arc

Station additional waiting arc

B

C

D

St
at

io
n

Time

Station passing arc

t + 1 t + 2t t + 3 t + 5t + 4 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12 t + 13 t + 14 t + 15 t + 16 t + 17 t + 18 t + 19





Figure 3: Illustration of a time-space network.

events and their occurrence times during train operations
[16]. A time-space network is the combination of the physical
network and the time horizon.

We use Figure 3 to demonstrate the time-space network
formulation, in which the physical route of train 𝑗 consists of
four nodes/stations and three links/sections. The horizontal
axis corresponds to discrete time, where the time horizon
is represented as [𝑡, 𝑡 + 19] with equal one-minute intervals.
The vertical axis corresponds to space and represents stations
and sections. The time-space vertex represents the arrival or

departure state of train 𝑗 at a physical node at the current time,
and the time-space arc represents the movement of train 𝑗 in
stations or sections with the entering and leaving times.

The time-space network starts from the virtual departure
node 𝜎. Different virtual departure arcs are generated based
on the feasible start time range. We define the section
connection arcs to imply the section travel times of train 𝑗.
When train 𝑗 passes by a station, we define the station passing
arcs to imply it. When train 𝑗 stops at a station, additional
starting and stopping times and dwell times are incurred.
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Additional starting and stopping times are calculated in
accordancewith the stop statuses of train 𝑗 at the two adjacent
stations and added to the section connection arcs. The dwell
times at stations are required to satisfy certain maximum and
minimum dwell time requirements. The purpose of imposing
a maximum dwell time is to tighten the feasible space of
the optimization model and produce a more reasonable
train timetable. The minimum dwell time is the minimum
time required for passenger boarding, alighting, transfer, and
other operations. We define the station dwell arcs to imply the
minimum dwell times of train 𝑗 at stations. Any additional
dwell time beyond the minimum dwell time is represented
by one or more additional waiting arcs. The time duration
of each additional waiting arc is fixed to one minute in this
paper. The network ends at the virtual arrival node 𝜏. Thus,
the path from 𝜎 to 𝜏 in the time-space network corresponds
to a feasible timetable for train 𝑗. Each train 𝑗 has multiple
paths that constitute the path set 𝑃𝑗 ⊂ 𝑃, where 𝑃 is the set of
all paths.

For example, the path 𝑝 ∈ 𝑃𝑗, as shown by the black
solid lines in Figure 3, starts from station A at time 𝑡 + 2.
Traveling with the section connection arc, which is subject
to the section pure travel time and additional starting and
stopping times, train 𝑗 arrives at station B at time 𝑡 + 5. After
dwelling for one time interval, train 𝑗 departs from station B
at time 𝑡 + 6. Train 𝑗 passes by station C at time 𝑡 + 9 after
traveling with the section connection arc between station B
and station C, which is subject to the section pure travel time
and additional starting times. Likewise, train 𝑗 reaches the
destination at time 𝑡+11. In this manner, the train scheduling
problem can be transformed into a routing problem in the
time-space network.

We redesign the train stop schedule planwhenoptimizing
the train timetable, unlike in the traditional TTP, inwhich the
train stop pattern is predetermined. Thus, both station pass-
ing arcs and station dwell arcs are generated for the train path
at every station. During the optimization process, the train
can choose to either stop at or pass by a station, depending on
demand. For stations at which trains must stop for technical
reasons, only station dwell arcs and additional waiting arcs are
generated. The existence of additional starting and stopping
times and the variable stop pattern produce unconnected
arcs in the time-space network. To address this issue, we add
an associated label (𝛽𝑠𝑡𝑜𝛼 , 𝛽𝑝𝑠𝑡𝛼 ) to each arc 𝛼 ∈ 𝐴, where
𝐴 is the set of arcs. When 𝛼 is a section arc, 𝛽𝑠𝑡𝑜𝛼 indicates
whether 𝛼 stops at the ending station of this section, where
a value of 1 represents yes and a value of 0 represents no,
and 𝛽𝑝𝑠𝑡𝛼 indicates whether 𝛼 stops at the starting station of
that section. When 𝛼 is a station arc, 𝛽𝑠𝑡𝑜𝛼 indicates whether 𝛼
stops at this station, and 𝛽𝑝𝑠𝑡𝛼 indicates whether 𝛼 stops at the
preceding adjacent station.

As shown in Figure 4, neither C nor D is a must-stop
station. The red path passes by station C. If the red path
chooses to pass by station D (as on path 𝑝), the section
operation arc is calculated based on the pure section travel
time. The associated label is (0,0). If the red path chooses
to stop at station D (as on path 𝑝󸀠), the section operation
arc is calculated using the pure section travel time and the

additional stopping time at station D. The associated label is
(1,0).The blue path stops at station C. If the blue path chooses
to pass by station D (as on path 𝑞), the section operation
arc is calculated using the pure section travel time and the
additional starting time at station C. The associated label is
(0,1). If the blue path chooses to stop at station D (as on
path 𝑞󸀠), the section operation arc is calculated using the pure
section travel time, the additional starting time at station C,
and the additional stopping time at station D.The associated
label is (1,1).When selecting a time-space path, we choose the
next arc from the subsequent connected arcs for which the
𝛽𝑝𝑠𝑡𝛼 label is equal to the 𝛽𝑠𝑡𝑜𝛼 label of the current arc.

3. Model Construction

3.1. Objective Function. We transfer the costs of the time-
space nodes to the adjacent arcs.Thus, the cost of a time-space
path is equal to the total cost of the included arcs. We define
the objective function with the goal of minimizing this cost.

Let 𝑡𝑑𝑗 be the predefined preferred departure time of
train 𝑗 from its starting station. 𝑡𝑑𝑟𝑝 is the actual departure
time from the starting station on path 𝑝 . 𝛿 is the half-
width of the permitted departure time range at the starting
station. 𝑡𝑑𝐸𝑗 and 𝑡𝑑𝐿𝑗 are the earliest departure time and latest
departure time of train 𝑗 from its starting station. As noted
in Section 2.3, the preferred start times of the trains are
predefined. The permitted variations of the departure time
fall in the range [𝑡𝑑𝑗−𝛿, 𝑡𝑑𝑗+𝛿].The cost of a virtual departure
arc in this range is zero. Paths that lie outside this range are
allowed but the punishment coefficient, 𝑐𝑝𝑒𝑛1 /min, is added to
achieve maximum control of the deviation of the departure
time. The cost of the deviation is calculated and added to
the cost of the virtual departure arc. In the example shown
in Figure 5, the actual departure time of path 𝑝 ∈ 𝑃𝑗 falls
outside the allowed fluctuation range, and the cost of the
corresponding virtual departure arc is (𝑡𝑑𝑟𝑝 − 𝑡𝑑𝑗 − 𝛿) ⋅ 𝑐𝑝𝑒𝑛1 .

The stopping of a train at a station will cause an increase
in the passenger travel time because it generates a dwell
time and additional starting and stopping times. Our goal
is to reduce the number of stops and the dwell time. The
number of stops is associated with the punishment coefficient
𝑐𝑝𝑒𝑛2 /𝑛𝑢𝑚. The punishment coefficient for the dwell time
𝑐𝑝𝑒𝑛3 /min includes the punishment for both the station dwell
arc and any corresponding additional waiting arcs.

A punishment of 𝑐𝑝𝑒𝑛4 /min is applied for additional
waiting arcs to reduce but not preclude the occurrence of train
overtaking.

The costs of section arcs, station passing arcs, and virtual
arrival arcs are 0.

The cost 𝑐𝜎 of a virtual departure arc is

𝑐𝜎 =
{
{
{

(󵄨󵄨󵄨󵄨󵄨𝑡𝑑𝑟𝑝 − 𝑡𝑑𝑗
󵄨󵄨󵄨󵄨󵄨 − 𝛿) ⋅ 𝑐

𝑝𝑒𝑛
1

󵄨󵄨󵄨󵄨󵄨𝑡𝑑𝑟𝑝 − 𝑡𝑑𝑗
󵄨󵄨󵄨󵄨󵄨 > 𝛿

0 𝑒𝑙𝑠𝑒

∀𝑗, 𝑝 ∈ 𝑃𝑗.

(2)
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Figure 4: Illustration of unconnected arcs.
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Figure 5: Illustration of the cost calculation for virtual departure arcs.

𝐴𝑠𝑡𝑜 is the station dwell arc set. The cost 𝑐𝑠𝑡𝑜𝛼 of a station
dwell arc 𝛼(∀𝛼 ∈ 𝐴𝑠𝑡𝑜) is

𝑐𝑠𝑡𝑜𝛼 = 𝑐𝑝𝑒𝑛2 + (𝑡𝑒𝑛𝑑𝛼 − 𝑡𝑏𝑒𝑔𝛼 ) ⋅ 𝑐
𝑝𝑒𝑛
3 , (3)

where 𝑡𝑏𝑒𝑔𝛼 and 𝑡𝑒𝑛𝑑𝛼 are the start time and end time of arc 𝛼.
𝐴𝑤𝑎𝑖 is the station additional waiting arc set. The cost 𝑐𝑤𝑎𝑖𝛼

of an additional waiting arc 𝛼(∀𝛼 ∈ 𝐴𝑤𝑎𝑖) is

𝑐𝑤𝑎𝑖𝛼 = (𝑡𝑒𝑛𝑑𝛼 − 𝑡𝑏𝑒𝑔𝛼 ) ⋅ (𝑐𝑝𝑒𝑛3 + 𝑐𝑝𝑒𝑛4 ) . (4)

The cost 𝑐𝑝 of a time-space path 𝑝 is

𝑐𝑝 = 𝑐𝜎 + ∑
𝛼∈𝐴𝑠𝑡𝑜𝑝

𝑐𝑠𝑡𝑜𝛼 + ∑
𝛼∈𝐴𝑤𝑎𝑖𝑝

𝑐𝑤𝑎𝑖𝛼 . (5)

The objective function is represented as

min ∑
𝑗∈𝑁

∑
𝑝∈𝑃𝑗

𝑐𝑝𝑥𝑝, (6)

where the decision variable 𝑥𝑝 indicates whether a certain
path 𝑝 appears in the optimal solution. It is equal to 1 if and
only if path 𝑝 is selected in the optimal solution and is equal
to 0 otherwise.

3.2. Constraints. The network flow constraint,

∑
𝑝∈𝑃𝑗

𝑥𝑝 = 1 ∀𝑗, (7)

represents the selection of only one path by each train.
The arrival safety headway constraint,

∑
𝑝:𝛽
𝑝
𝛼=1

𝑥𝑝 + ∑
𝑝󸀠 :𝛽
𝑝󸀠

𝛼󸀠
=1

𝑥𝑝󸀠 ≤ 1

∀𝑒, ∀𝛼, 𝛼󸀠 ∈ 𝐴sec
𝑒 : 0 ≤ 𝑡𝑒𝑛𝑑𝛼󸀠 − 𝑡𝑒𝑛𝑑𝛼 < 𝑡𝑎𝑟𝑟𝑑(𝑒),

(8)

represents a constraint on the safety headway for consecutive
arrivals of trains that travel in the same direction. 𝑒 ∈ 𝐸 is
the index of sections, where 𝐸 is the set of sections. 𝛼󸀠 ∈ 𝐴sec

𝑒
is the index of arcs, where 𝐴sec

𝑒 is the section arc set. 𝑜(𝑒) and
𝑑(𝑒) are the starting station and ending station of section 𝑒. 𝛽𝑝𝛼
is the binary parameter, which is equal to 1 if arc 𝛼 belongs to
path 𝑝 and is equal to 0 otherwise. 𝑡𝑎𝑟𝑟𝑑(𝑒) is the safety headway
for trains that arrive at station 𝑑(𝑒).

The departure safety headway constraint,

∑
𝑝:𝛽
𝑝
𝛼=1

𝑥𝑝 + ∑
𝑝󸀠 :𝛽
𝑝󸀠

𝛼󸀠
=1

𝑥𝑝󸀠 ≤ 1

∀𝑒, ∀𝛼, 𝛼󸀠 ∈ 𝐴sec
𝑒 : 0 ≤ 𝑡𝑏𝑒𝑔

𝛼󸀠
− 𝑡𝑏𝑒𝑔𝛼 < 𝑡𝑑𝑒𝑝

𝑜(𝑒)
,
(9)
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Figure 6: Illustration of the calculation of additional starting and stopping times.

represents a constraint on the safety headway for consecutive
departures of trains that travel in the same direction. 𝑡𝑑𝑒𝑝

𝑜(𝑒)
is

the safety headway for trains that depart from station 𝑜(𝑒).
The overtaking constraint,

∑
𝑝:𝛽
𝑝
𝛼=1

𝑥𝑝 + ∑
𝑝󸀠:𝛽
𝑝󸀠

𝛼󸀠
=1

𝑥𝑝󸀠 ≤ 1

∀𝑒, ∀𝛼, 𝛼󸀠 ∈ 𝐴sec
𝑒 : (𝑡𝑏𝑒𝑔

𝛼󸀠
− 𝑡𝑏𝑒𝑔𝛼 ) ⋅ (𝑡𝑒𝑛𝑑𝛼󸀠 − 𝑡𝑒𝑛𝑑𝛼 ) ≤ 0,

(10)

represents the constraint that trains are not allowed to
overtake other trains that travel in the same direction on a
section.

The station capacity constraint is

∑
𝛼∈𝐴𝑑𝑢𝑚𝑖 :𝑡

𝑏𝑒𝑔
𝛼 ≤𝑡,𝑡𝑒𝑛𝑑𝛼 ≥𝑡

∑
𝑝:𝛽
𝑝
𝛼=1

𝑥𝑝 ≤ 𝑛𝑢𝑚𝑖 ∀𝑖, 𝑡, (11)

where 𝑛𝑢𝑚𝑖 is the number of sidetracks at station 𝑖 and 𝐴𝑑𝑢𝑚
𝑖

is a set of virtual station arcs, including station passing arcs,
station dwell arcs, and additional waiting arcs. 𝐴𝑑𝑢𝑚

𝑖 is used
to represent all possible operations of a train with respect to
station 𝑖.The start time of an arc is the time at which the train
enters the station from the previous section, and the end time
of the arc is the time at which the train leaves the station and
enters the next section.

The OD service frequency constraint,

∑
𝑝:𝜏𝑖,𝑖
󸀠

𝑝 =1

𝑥𝑝 ≥ 𝑂𝐷𝑖,𝑖󸀠 ∀𝑖, 𝑖󸀠,
(12)

represents the constraint that the number of trains that serve
a given station OD pair should satisfy the passenger service
demand of this pair. 𝜏𝑖,𝑖󸀠𝑝 is the coupled-stop index, which is
equal to 1 if path 𝑝 stops at both station 𝑖 and station 𝑖󸀠 and is
equal to 0 otherwise.

The station service frequency constraint,

∑
𝑝:𝜇𝑖𝑝=1

𝑥𝑝 ≥ 𝑆𝐹𝑖 ∀𝑖, (13)

represents the constraint that the number of trains that stop
and start at a given station during a certain period should
satisfy the service frequency requirement of the node to

which this station belongs. 𝑆𝐹𝑖 is the station service frequency
of station 𝑖, which corresponds to the station grade, and 𝜇𝑖𝑝 is
the stop index, which is equal to 1 if path 𝑝 stops at station 𝑖
and is equal to 0 otherwise.

The departure time constraint is

𝑡𝑑𝐸𝑗 ≤ 𝑡𝑑𝑟𝑝 ≤ 𝑡𝑑𝐿𝑗 ∀𝑗, 𝑝 ∈ 𝑃𝑗. (14)

The station dwell time constraint is

𝑡min
𝑖 ≤ 𝑡𝑠𝑡𝑜𝑖 ≤ 𝑡max

𝑖 ∀𝑖, 𝑝 : 𝜇𝑖𝑝 = 1, (15)

where 𝑡max
𝑖 and 𝑡min

𝑖 are the maximum dwell time and
minimum dwell time of trains at station 𝑖, and 𝑡𝑠𝑡𝑜𝑖 is the dwell
time at station 𝑖 on path 𝑝.

The section travel time constraint is

𝑡𝑒𝑛𝑑𝛼 = 𝑡𝑏𝑒𝑔𝛼 + 𝑡sec𝑒 + 𝜇𝑜(𝑒)
𝑝:𝛽
𝑝
𝛼=1
𝑡𝑡𝑟𝑎𝑒 + 𝜇𝑑(𝑒)

𝑝:𝛽
𝑝
𝛼=1
𝑡𝑏𝑟𝑎𝑒

∀𝑒, ∀𝛼 ∈ 𝐴sec
𝑒 ,

(16)

where 𝑡sec𝑒 is the pure section travel time of section 𝑒, and 𝑡𝑡𝑟𝑎𝑒

and 𝑡𝑏𝑟𝑎𝑒 are the additional starting time and stopping time of
section 𝑒.

As shown in Figure 6, during the generation of the section
arcs, the additional starting time and stopping time depend
on the stopping statuses of the train at the two adjacent
stations. These times are determined based on the results of
the traction calculations.

The station travel time constraint is

𝑡𝑒𝑛𝑑𝛼 = {{
{

𝑡𝑏𝑒𝑔𝛼 + 𝑡𝑠𝑡𝑜𝑖 𝜇𝑖𝑝 = 1
𝑡𝑏𝑒𝑔𝛼 𝜇𝑖𝑝 = 0

∀𝑖, 𝑝. (17)

In the time-space network, the start time and end time
of a station passing arc are equivalent. The end time of a
station dwell arc is the sumof the start time and theminimum
dwell time at this station. Any additional dwell time beyond
the minimum dwell time is represented by one or more
additional waiting arcs.

The decision variables are

𝑥𝑝 = {0, 1} ∀𝑝. (18)



Journal of Advanced Transportation 9

Model M1 (a generic model with passenger service
demands and station service demands) consists of the objec-
tive function (6), which is subject to constraints (7)-(18).
Constraints (14)-(17) are used to construct the time-space
network. By limiting the departure time range at the starting
station [(14)] and the maximum and minimum station dwell
times [(15)], redundant time-space nodes and arcs can be
effectively reduced. By defining the station dwell arcs and
additional waiting arcs to imply the station dwell times
[(17)], the number of station arcs can be effectively reduced.
Thus, the complexity of the model and the scale of the
time-space network are manageable. Model M1 is an integer
programming model with a linear objective function and
linear constraints. We apply an extended branch-and-price
algorithm to solve this model.

4. Extended Branch-and-Price Algorithm

As the numbers of stations and trains increase, the computa-
tional scale ofmodelM1 also increases.The problem becomes
an integer linear programming problem on an extremely
large scale. The number of generated feasible train paths,
i.e., the number of decision variables, exceeds the number of
constraints. Therefore, we propose a modified branch-and-
price algorithm to solve this problem.

The branch-and-price algorithm employs a column gen-
eration algorithm to solve the linear relaxation of the nodes in
the entire branch-and-bound tree, derives a reasonable lower-
bound value for the original problem, and uses the branch-
and-bound algorithm to solve the integer programming
problem. The underlying idea of the column generation
algorithm is to reduce the enumeration of all columns to only
one set of feasible paths for the original problem in terms
of a large-scale linear problem whose scale is considerably
smaller than that of the original problem. A restricted master
problem (RMP) is generated. Dual variables are derived by
solving the RMP. Better paths are generated based on the PP
and are added to the RMP.The algorithm iteratively alternates
between the PP and the RMP until the best solution to the
linear programming problem has been derived.

4.1. Restricted Master Problem. Model M1 is an integer linear
programming model. In particular, (14)-(17) are used to
construct the time-space network and are not applied to the
RMP. The integer decision variables in (18) are relaxed to
continuous variables, and the subset 𝑃0 is selected from the
path set 𝑃.

0 ≤ 𝑥𝑝 ≤ 1 ∀𝑝 ∈ 𝑃0 ⊂ 𝑃 (19)

The RMP is defined as follows:

RMP: Equations (6) - (13) and (19) . (20)

4.2. Pricing Problem. Solving the PP is a key step of the
branch-and-price algorithm. The purpose is to seek the
feasible solution that can reduce the objective function, by
adding the columnwith the negative reduced cost to theRMP.
The reduced cost of any column can be regarded as the price
of this column.

𝛾𝑗, 𝜋𝑒,𝑜,𝛼, 𝛽𝑒,𝑑,𝛼, 𝜉𝑒,𝛼, 𝜆𝑖,𝑡, 𝜂𝑖,𝑖󸀠 , and 𝜃𝑖 are dual variables
that correspond to (7), (8), (9), (10), (11), (12), and (13),
respectively. They represent shadow prices that are associated
with time-space nodes, arcs, and other resources. For a
certain train path 𝑝 ∈ 𝑃𝑗, the reduced cost is

𝜑𝑝 = 𝑐𝑝 − 𝛾𝑗 −∑
𝑒

∑
𝛼∈𝐴sec
𝑒

𝜋𝑒,𝑜,𝛼 −∑
𝑒

∑
𝛼∈𝐴sec
𝑒

𝛽𝑒,𝑑,𝛼

−∑
𝑒

∑
𝛼∈𝐴sec
𝑒

𝜉𝑒,𝛼 −∑
𝑖

∑
𝑡

𝜆𝑖,𝑡 −∑
𝑖

∑
𝑖󸀠

𝜂𝑖,𝑖󸀠 −∑
𝑖

𝜃𝑖.
(21)

If𝜑𝑝 ≥ 0, then all train paths optimally satisfy the original
problem, and the optimal solution to the linear programming
problem is derived. If 𝜑𝑝 < 0, further optimization is
required. Considering the characteristics of the time-space
network, the PP can be transformed into a shortest-path
problem. The reduced cost of an entire time-space path can
be calculated based on the costs and weights of the arcs that
belong to this path. The weights of the arcs are updated using
the dual variables derived from the RMP. The path with the
negative reduced cost constitutes a new column to be added
to the RMP [16]. As shown in (21), the weights of arcs can
be negative; in general, the problem can be solved using the
Bellman-Ford algorithm or the SPFA.

4.3. Calculation of the Shortest Path. In general, once the
weights of all time-space arcs have been determined, the PP
can be solved using a shortest-path algorithm. Due to (12), a
conventional shortest-path algorithm is not applicable in this
case. Equation (12) is an OD service frequency constraint that
is related to any pair of different stop stations on a train path.
Dual variables cannot be directly employed to update the arc
weights; instead, we identify the stopping statuses along the
entire path and then update the weights of the path using the
dual variables that correspond to each pair of different stop
stations. Due to the large scale of the time-space network, a
search of all paths would be excessively time consuming and
significantly affect the efficiency of the algorithm. Therefore,
we propose a newmethod based on the A∗ algorithm and the
reversed SPFA.

The A∗ algorithm can be regarded as a heuristic algo-
rithm in which the estimation function 𝑓∗(𝑚) = 𝑔(𝑚) +
ℎ∗(𝑚) is used to conduct a network search. This algorithm
has been widely applied in searches for an optimal path. In
the time-space network, 𝑓∗(𝑚) is the estimated cost of a path
that starts from the virtual departure node 𝜎, passes through
the node 𝑚, and arrives at the virtual arrival node 𝜏. 𝑔(𝑚) is
the actual cost of the path from 𝜎 to𝑚. ℎ∗(𝑚) is the estimated
cost of the best path from𝑚 to 𝜏. ℎ(𝑚) is the actual cost of the
best path from𝑚 to 𝜏.The key to the A∗ algorithm is to select
an appropriate estimation function. Since 𝑔(𝑚) is the actual
cost of the path from the virtual departure node to the node
𝑚 along the selected path, the problem involves the selection
of an appropriate heuristic function ℎ∗(𝑚) to achieve a quick
and exhaustive search.

If the estimation function satisfies the admissibility con-
dition [i.e., if the number of nodes subsequent to each node
in the network is limited and ℎ∗(𝑚) ≤ ℎ(𝑚) is satisfied for
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each node𝑚], then the best path for the original problem can
be derived via the A∗ algorithm [29]. Therefore, we reverse
the original time-space network. Then, ℎ∗(𝑚) can be derived
as the cost of the shortest path from the virtual arrival node
𝜏 to a random node 𝑚, as calculated via the SPFA. If (12) is
not considered, then ℎ∗(𝑚) = ℎ(𝑚), and the search for the
best path will be conducted exactly along the shortest path.
All trains are assumed to stop at all stations after node𝑚. We
construct pairs from each station 𝑖󸀠 after node 𝑚 and from
each stop station 𝑖 before node𝑚 and add the corresponding
dual variables 𝜂𝑖,𝑖󸀠 toℎ∗(𝑚).Theℎ∗(𝑚) derived in thismanner
must satisfy ℎ∗(𝑚) ≤ ℎ(𝑚). As noted in Section 2.4, the
number of nodes subsequent to each node in the time-space
network is limited, and, thus, the admissibility condition is
satisfied. Therefore, the A∗ algorithm can be used to derive
the shortest path for the original problem.

The main procedure for solving the PP is as follows:

Step 1. The weights of the time-space arcs are updated using
the dual variables derived from the RMP. The set 𝐺min is
used to store the calculated shortest path for each train. 𝐺𝑗

represents the set of time-space paths for train 𝑗. A status
priority queue {(𝑚, 𝑔(𝑚), 𝑓∗(𝑚))} is constructed. 𝑐𝑛𝑡(𝑚)
denotes the number of times node 𝑚 leaves the queue. 𝑆(𝑚)
denotes the set of stop stations prior to node 𝑚. 𝐺min = ⌀
and 𝑗 = 1.

Step 2. 𝐺𝑗
󸀠 is derived through a reversal of𝐺𝑗; in other words,

all time-space arcs in 𝐺𝑗 are reversed. In addition, 𝜎󸀠 = 𝜏 and
𝜏󸀠 = 𝜎. The shortest path from node 𝜎󸀠 in 𝐺𝑗

󸀠 to any node
𝑚󸀠 = 𝑚 is calculated using the SPFA. The result can also be
regarded as the cost of the shortest path from node 𝑚 in 𝐺𝑗

to 𝜏. This cost is recorded as ℎ󸀠(𝑚). The calculation proceeds
to Step 3.

Step 3. All items are cleared from the status priority queue.
𝑐𝑛𝑡(𝜎) = 0, 𝑐𝑛𝑡(𝜏) = 0, 𝑆(𝜎) = ⌀, and 𝑆(𝜏) = ⌀. The initial
status (𝜎, 0, ℎ∗(𝜎)) is added to the queue.

Step 4. The status priority queue is sorted in increasing order
of the estimated cost𝑓∗ (𝑚).The lowest status (𝑢, 𝑔(𝑢), 𝑓∗(𝑢))
is removed from the queue. 𝑐𝑛𝑡(𝑢) = 𝑐𝑛𝑡(𝑢)+1. If the node𝑢 is
equal to 𝜏 and 𝑐𝑛𝑡(𝑢) = 1, then the shortest path for train 𝑗 is
the output, and the calculation proceeds to Step 6; otherwise,
it proceeds to Step 5.

Step 5. The statuses of all nodes subsequent to node 𝑢 are
calculated using a status transfer function and are added
to the status priority queue. V represents an adjacent node
subsequent to node 𝑢 . 𝑤[𝑢][V] represents the weights of the
arcs of the adjacent nodes (𝑢, V). The status transfer function
is

(𝑢, 𝑔 (𝑢) , 𝑓 ∗ (𝑢))

󳨀→ (V, 𝑔 (𝑢) + 𝑤 [𝑢] [V] + 𝑔󸀠 (V) , 𝑔 (𝑢) + 𝑤 [𝑢] [V]

+ 𝑔󸀠 (V) + ℎ∗ (V)) .

(22)

𝑔󸀠(V) is derived from the set 𝑆(𝑢) and the stop status of the
current arc (𝑢, V). If the current arc is a section arc and the
associated train stops at the ending station of the section, then
we select each station 𝑘 from 𝑆(𝑢) to form an OD pair with
V. The corresponding dual variable 𝜂𝑘,V is added to 𝑔󸀠(V), and
𝑆(V) = 𝑆(𝑢)+V; otherwise,𝑔󸀠(V) = 0 and 𝑆(V) = 𝑆(𝑢).The train
is assumed to stop at all stations after node V. Each station 𝑖
from the set 𝑆(V) and each station 𝑖󸀠 from the stations after
node V form an OD pair, and the dual variable 𝜂𝑖,𝑖󸀠 , which
corresponds to this pair, is added to the ℎ󸀠(V) calculated in
Step 2. The result [ℎ∗(V)] is the estimated cost of the shortest
path.

If 𝑐𝑛𝑡(V) > 1, then the calculated status is not added to the
status priority queue. The calculation proceeds to Step 4.

Step 6. The shortest path for train 𝑗 is added to 𝐺min. 𝑗 =
𝑗 + 1. If 𝑗 > 𝑛, the calculation proceeds to Step 7; otherwise,
it proceeds to Step 2.

Step 7. All train paths in 𝐺min are ordered according to their
costs. The path with the lowest cost is added to the RMP.The
calculation ends.

4.4. Rapid Branching Strategy. We use a rapid branching
strategy, in which only one branch is taken.The selected path,
which is represented by a fractional variable, will directly
appear in the next iteration. The corresponding train will
choose and is allowed only to choose this path. The beam
search algorithm is used for branching.Thederived fractional
variables are ordered from greatest to least according to their
corresponding coefficients in the objective function. At each
branching, only a certain number of promising variables are
selected; this number is referred to as the beam width. This
method has been demonstrated to be effective for a similar
integer programming problem [30].

Figure 7 illustrates the workflow of the extended
branch-and-price algorithm, where 𝜀 is the termination
parameter.

4.5. Acceleration Strategies

4.5.1. Initial Solution Iteration. In the branch-and-price algo-
rithm, new columns generated by solving the PP are itera-
tively added to the path set considered in the RMP to improve
the objective value and to achieve the optimal result. As the
iterations proceed, the scale of the path set considered in
the RMP increases. An excessively large problem scale will
affect the efficiency of the algorithm. Thus, strategies are
necessary to limit the increase in the scale of the path set. In
general, a reasonable initial feasible solution facilitates rapid
convergence of the algorithm.

For these reasons, we designed an initial solution iteration
strategy. As shown by the dotted box in Figure 7, once
an integer solution is derived in the calculation process
and the numerical difference between the corresponding
objective function value and the current UB exceeds a certain
threshold, the integer solution will be used as a new initial
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Select the lowest-cost path and add it to the RMP.
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Figure 7: Workflow of the extended branch-and-price algorithm.

feasible solution to restart the execution of the entire branch-
and-price algorithm.Thepurpose of specifying this threshold
is to avoid consuming excessive time when frequently solving
the linear relaxation of the root node. This initial solution
iteration strategy improves the calculation efficiency and
effectively reduces the processing scale.

4.5.2. Delayed Constraints. The delayed constraint strategy is
specifically related to (8)-(11). In (8), as shown in Figure 8,
(𝛼, 𝑝) represents the section arc 𝑎 and its corresponding path
𝑝. If path 𝑝 exists in the current path set of the RMP, the
time intervals between arriving at station C on path 𝑝 and
all adjacent paths must be greater than or equal to 𝑡𝑎𝑟𝑟𝐶 . The
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dual variable of path 𝑝 related to (8) is 𝜋𝑒,𝑜,𝛼 = 0. However,
the weight of another arc (such as 𝛼󸀠) at station C in the time
range [𝑡𝑎𝑟𝑟𝛼 , 𝑡𝑎𝑟𝑟𝛼 + 𝑡𝑎𝑟𝑟𝐶 ) is not affected by path 𝑝. If path 𝑝󸀠 is
the shortest path selected by solving the PP and is added to
the RMP, then path 𝑝 and path 𝑝󸀠 must satisfy the constraint
𝑥𝑝 + 𝑥𝑝󸀠 ≤ 1 according to (8), and the dual variable of path 𝑝
related to (8) may not be zero. In the calculation, the value of
path 𝑝󸀠 may be less than 1 or even 0. In this case, the added
path does not serve its ideal function in reducing the value of
the objective function. Similarly, a time-space arc at station C
in the time range (𝑡𝑎𝑟𝑟𝛼 − 𝑡𝑎𝑟𝑟𝐶 , 𝑡𝑎𝑟𝑟𝛼 ] that is selected in the next
iteration can conflictwith path𝑝.This constraint is referred to
as a delayed constraint; the effect of a constraint in the current
iteration can be shifted to the next iteration. To address these
delayed constraints, we add a delay weight to each time-space
arc. The value of the delay weight is determined based on the
average value of the paths over several recent iterations (e.g.,
seven iterations) in the RMP. When the time-space network
is updated using dual variables, the delay weight attributes of
the paths are added to all selected arcs at station C in the time
range (𝑡𝑎𝑟𝑟𝛼 − 𝑡𝑎𝑟𝑟𝐶 , 𝑡𝑎𝑟𝑟𝛼 + 𝑡𝑎𝑟𝑟𝐶 ). Delayed constraints related to
(9)-(11) are handled in a manner similar to that applied for
(8).

Applying the delayed constraint strategy to (8)-(11) effec-
tively improves the efficiency of the branch-and-price algo-
rithm in solving the linear relaxation of the nodes.

4.5.3. Column Removal. Due to the rapid branching strategy,
in which a selected branching path is treated as a constraint
that is added to the model, the train associated with a selected
branching path must select only this path. All other paths
related to this train in the current path set can be deleted.
Any paths in the path set that have operational conflicts with
the branching path [(8)-(11)] can be deleted.This train can be
skipped in the calculation of the PP. When the arc weights
are updated, the weights of all arcs that conflict with the
branching path are set to +∞.Thus, these conflicting arcs are
avoided in the calculation of the shortest path. This column
removal strategy can effectively control the processing scale
and improve the efficiency of the algorithm.

5. Case Study

The effectiveness of the proposed model and algorithm was
demonstrated using train data from the Wuhan-Guangzhou
railroad. The algorithm was implemented using aWindows 7
computer with an Intel Xeon E3 3.30-GHz CPU and 8 GB of
RAM. The programming tools were Microsoft Visual Studio
2010 with the C# language and ILOG CPLEX 12.7.1.0.

The Wuhan-Guangzhou high-speed railroad is an
abbreviated name for the Wuhan-Guangzhou section of
the Beijing-Guangzhou-Shenzhen-Hong Kong high-speed
railroad. The length of the railroad is 968 km (601 miles),
and the route has a total of 18 stations. The Wulongquan
East station is an overtaking station that does not provide
passenger transportation. The Lechang East station officially
opened in May 2017 and was treated as a “passed-by” station
in this experiment. All trains that run on this route are
classified as Grade G and operate at a speed of 300 km/h.
The operation of Grade D trains, with a speed of 250 km/h,
was officially suspended on January 10, 2016. Due to the time
designated for maintenance and testing, the actual passenger
service time ranges from 6:30 AM to 0:00 AM. Additional
infrastructure information is available on the website:
https://en.wikipedia.org/wiki/Wuhan-Guangzhou high-speed
railway.

Table 1 lists the station names and the number of tracks at
each station on the Wuhan-Guangzhou railroad. Table 2 lists
the section lengths, pure section travel times, and additional
starting and stopping times.

To explicitly show the train timetabling results, the
calculation was performed using trains that travel in the
downward direction as an example.

Table 3 lists the predefined earliest and latest departure
times for the trains at their starting stations. Table 4 lists
the OD service frequencies inferred from the daily average
passenger traffic data provided by the ticketing department.
The grades of the station nodes and the corresponding service
frequencies determined based on the station size, properties,
infrastructure, railroad hub position, city population, eco-
nomic data, and traffic data are shown in Table 5. All data are
provided by the State Key Laboratory of Rail Traffic Control

https://en.wikipedia.org/wiki/Wuhan-Guangzhou_high-speed_railway
https://en.wikipedia.org/wiki/Wuhan-Guangzhou_high-speed_railway
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Table 1: Station names and number of tracks.

Station Name Station ID Number of Tracks
Downward direction Upward direction All

Wuhan 1 15 15 20
Wulongquan East 2 2 4 4
Xianning North 3 3 6 6
Chibi North 4 2 4 4
Yueyang East 5 7 7 7
Miluo East 6 2 4 4
Changsha South 7 16 12 16
ZhuzhouWest 8 4 7 7
Hengshan West 9 2 4 4
Hengyang East 10 8 9 11
Leiyang West 11 2 4 4
ChenzhouWest 12 6 6 6
Lechang East 13 4 2 4
Shaoguan 14 6 6 6
Yingde West 15 2 4 4
Qingyuan 16 2 4 4
Guangzhou North 17 4 4 4
Guangzhou South 18 22 22 28

Table 2: Section lengths and section travel times.

Adjacent Station Pair Distance (km) Section Travel Time (min)
Running Time Additional Starting Time Additional Stopping Time

1-2 48 12 2 3
2-3 37 8 2 3
3-4 42 9 2 3
4-5 82 17 2 3
5-6 70 15 2 3
6-7 68 14 2 3
7-8 40 10 2 3
8-9 68 14 2 3
9-10 41 9 2 3
10-11 56 12 2 3
11-12 76 17 2 3
12-13 83 18 2 3
13-14 47 10 2 3
14-15 68 15 2 3
15-16 59 12 2 3
16-17 37 8 2 3
17-18 46 13 2 3

and Safety (Beijing Jiaotong University, Beijing, China). The
values of the parameters 𝑛𝑆, 𝑛𝑁, 𝑛𝑇, 𝛿, 𝜀, 𝑐𝑝𝑒𝑛1 , 𝑐𝑝𝑒𝑛2 , 𝑐𝑝𝑒𝑛3 , and
𝑐𝑝𝑒𝑛4 were set to 18, 107, 1440, 12 min, 0.055, 1.5, 1.5, 1.2, and 0.5,
respectively. The values of 𝑡min

𝑖 , 𝑡max
𝑖 , 𝑡𝑑𝑒𝑝𝑖 , and 𝑡𝑎𝑟𝑟𝑖 for trains

at all stations were set to 2 min, 7 min, 2 min, and 3 min,
respectively.

Based on these data and parameters, calculations were
performed using model M1 and the extended branch-and-
price algorithm. To achieve a balance between efficiency

and accuracy, we applied a termination rule in the form of
(23). When the difference between the UB and the LB was
within the allowable range, the calculation was terminated.
An approximately globally optimal solutionwas achieved.We
performed 30 sets of experiments, and the average compu-
tation time of the extended branch-and-price algorithm was
199 s.

(𝑈𝐵 − 𝐿𝐵)
𝑈𝐵 ≤ 𝜀. (23)
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Table 4: OD service frequencies of sections that operate in the downward direction.

Stations 1 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18
1 — 14 11 18 9 36 14 7 17 8 21 20 5 6 10 32
3 — 4 7 4 14 7 2 9 3 10 9 3 3 4 12
4 — 4 5 11 6 2 7 4 7 7 2 3 4 10
5 — 4 18 7 5 9 4 13 11 5 5 6 16
6 — 8 3 3 3 3 7 7 2 2 3 9
7 — 16 14 21 13 28 28 7 9 14 43
8 — 2 9 8 11 13 4 5 7 16
9 — 3 7 9 12 4 5 3 14
10 — 5 16 12 7 7 8 21
11 — 4 12 4 4 5 13
12 — 16 7 8 10 28
14 — 4 6 7 28
15 — 2 2 7
16 — 2 9
17 — 14
18 —

Table 5: Classification of node grades and corresponding station service frequencies.

Level Station ID Service Frequency
1 7 18 1 12 60
2 14 10 5 3 8 30
3 9 11 4 6 16 15 17 2 13 14
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Figure 9: Variation in the objective function value of the root node
over time.

As shown in Figure 9, during the process of solving
the linear relaxation of the root node using the column
generation algorithm, the value of the objective function
initially decreases rapidly and then gradually tends toward
stability as the calculation time increases.

As Figure 10 similarly illustrates, as the calculation time
increases, both the average number of stops and the average
dwell time decrease and gradually tend toward stability.

Figure 11 shows a comparison of the predefined and
actual numbers of train departures during different hour-
long periods. As shown in the figure, a reasonable selection
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Figure 10: Variation in the parameters of the root node over time.

of values for the parameters 𝛿 and 𝑐𝑝𝑒𝑛1 can ensure that the
majority of trains depart within the predefined departure
time ranges.

Table 6 presents a comparison between the real train
timetable and the optimized train timetable in terms of
the average travel speed, the average number of stops at
stations, and the average station dwell time. The real case
is the real train timetable for the Wuhan-Guangzhou high-
speed railroad in February 2016 (refer to Dataset S1 in the
Supplementary Materials), which was also employed as the
initial solution for the optimal case. The timetable specified
the operations of 107 downward-direction trains (from 6:30
AM to 0:00 AM). The minimum station dwell time was 2
min, and the maximum dwell time was 28 min. The average
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Table 6: Comparison between the real train timetable and the optimized train timetable.

Parameters Real Case Optimal Case Change Percent Change (%)
Number of trains 107 107 0 0
Average travel speed (km/h) 223.4 234.1 10.7 4.8
Average number of stops 4.4 3.5 -0.9 -20.3
Average dwell time (min) 12.5 7.1 -5 -43.2
Overtaking 40 0 -40 -100.0
Max dwell time (min) 28 6 -22 -78.6
Total cost of trains 5902.5 3645.7 -2257 -38.2
Average cost of trains 55.2 34.1 -21 -38.2
UB — 3645.7 — —
LB — 3576 — —
Computation time (s) — 199.0 — —
Gap — 1.9% — —

travel speed was 223.4 km/h.The optimal case corresponds to
the optimized train timetable, in which the number of trains,
train types, and paths are the same as those in the real case.
The gap value was calculated as follows:

Gap = (𝑈𝐵 − 𝐿𝐵)𝑈𝐵 × 100%. (24)

As shown in Table 6, the average number of stops at
stations and the average dwell time are reduced by 20.3%
and 43.2%, respectively, in the optimized train timetable.
The average travel speed is also significantly increased, and
the total defined cost function of the trains is reduced by
38.2%. These results indicate that our proposed model and
algorithm can effectively improve the quality of a constructed
train timetable and the travel efficiency for passengers. Due
to the more reasonable design of the train stop schedule
plan, the number of occurrences of overtaking is reduced
from 40 to 0, and the maximum dwell time is reduced by
78.6%. These improvements effectively reduce the workload
for station operations and improve the operational capability
of the station infrastructure. The total computation time of

the optimal case was 199 s, and the gap value was 1.9%. The
results demonstrate the efficiency of the proposed algorithm.
We also tested the efficiency of the algorithm without the
three acceleration strategies. In this case, the gap value
was 50% when the calculation ran for 6 min. This result
demonstrates that the three proposed acceleration strategies
are effective in accelerating the algorithm. Figure 12 shows
the train timetable from 6:30 AM to 0:00 AM based on the
optimal case.

6. Conclusions

In this study, we developed a high-speed railroad train
timetable optimization model based on a time-space network
representation. The goal of the model is to minimize the
deviations of the train start times, the total number of train
stops, and the dwell time at stations, which are subject to
the constraints related to the OD service frequency, train
scheduling, and station service frequency. The train stop
schedule plan is redesigned during the process of optimizing
the train timetable. An experiment using data from the
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Figure 12: Optimized train timetable for the optimal case.

Wuhan-Guangzhou high-speed railroad demonstrated that
the proposed model and algorithm can effectively reduce the
number of stops at stations and the station dwell time to
improve the quality of the constructed train timetables and
the travel efficiency for passengers. First, we discussed the
construction of a time-space network to represent a high-
speed railroad environment. We used an associated labeling
method to handle unconnected arcs. Second, we employed
an extended branch-and-price algorithm to calculate the
model. We also proposed a new method based on the A∗
algorithm and the SPFA to search for the shortest path in the
unconnected and dynamic time-space network when solving
the PP. Last, we designed three acceleration strategies: initial
solution iteration, delayed constraints, and column removal.
Our experiment demonstrated that these three strategies are
effective in accelerating the algorithm.

Our future study will pursue three research directions.
First, only constraints concerning the limited number of
sidetracks at a station were considered when optimizing the
train timetable; constraints related to routing schedules and
track use at stations were not considered. Thus, addition
work is needed to achieve the simultaneous optimization
of the high-speed railroad train timetable and the station
operation plan. Second, we plan to explore the impact of the
OD/station service frequency on passenger demands. Last,
we will perform sensitivity analyses to assess the effects of the
punishment coefficients on the objective function.

Data Availability

The data used to support the findings of this study are
included within the article and the Supplementary Materials.
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