Abstract

t the core of every system for the efficient control of the network steady-state operation is the AC-power-flow problem solver. For local distribution networks to continue to operate effectively, it is necessary to use the most powerful and numerically stable AC-power-flow problem solvers within the software that controls the power flows in these networks. This communication presents the results of analyses of the computational performance and stability of three methods for solving the AC-power-flow problem. Specifically, this communication compares the robustness and speed of execution of the Gauss–Seidel (G–S), Newton–Raphson (N–R), and Newton–Raphson method with Iwamoto multipliers (N–R–I), which were tested in open-source pandapower software using a meshed electrical network model of various topologies. The test results show that the pandapower implementations of the N–R method and the N–R–I method are significantly more robust and faster than the G–S method, regardless of the network topology. In addition, a generalized Python interface between the pandapower and the SciPy package was implemented and tested, and results show that the hybrid Powell, Levenberg–Marquardt, and Krylov methods, a quasilinearization algorithm, and the continuous Newton method can sometimes achieve better results than the classical N–R method.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 01/01/2022

DOI: 10.3390/su14042002
Licence: CC BY-NC-SA license

Document Score

0

Views 6
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?