Abstract

Infrastructures and buildings must have sufficient protection for design level earthquake excitations while minimizing major damage to comply with existing seismic design criteria. This paper explores the computational modeling of a tensegrity based brace, which helps dissipate energy while preventing inter-story drifts. The proposed brace integrates a D-bar tensegrity structure, shaped like a rhombus, with Shape-Memory Alloy (SMA) cables or tendons. These tendons grow austenitic-martensiticaustenetic (solid to solid) transformations, which make them more susceptible to mechanical stress when taking strain, and amplifying the stress into broad superelastic hysteresis, even after repeated mechanical cycles that require strains of up to 6% 8%. In addition in this article two special classes of the tensegrities are discussed namely 2D and 3D braces. 3D braces have been proven more efficient because of an enhaced capacity of energy dissipation, and also due to their improved safety against buckling. The effectiveness of the planned bracing paves the way to the development of innovative systems of seismic energy dissipation that combine tensegrity concepts with superelasticity.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 10/03/21
Submitted on 10/03/21

Volume 100 - Fracture, Damage and Failure Mechanics, 2021
DOI: 10.23967/wccm-eccomas.2020.098
Licence: CC BY-NC-SA license

Document Score

0

Views 38
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?