The nature and distribution of residual stresses are invariably critical for fatigue life with dissimilar material joints often inducing high tensile residual stresses. A fatigue-resistant concept of weld cladding process pipelines, producing compressive residual stresses, is under investigation to examine how these stresses may be influenced. Simplified weld cladding simulations have successfully illustrated the development and distribution of residual stresses through the joint. The study has highlighted the importance of accurate material data for clad and substrate materials with current analysis assumptions in a simple thick-walled pipe discussed. Experimental validation, using ICHD, measured residual stresses with depth on weld clad specimens, resulting in good correlation between simulation and experiment for a nickel-chromium-based superalloy clad on low alloy carbon steel as discussed. Future work, including a full 3D representation of the cladding process and a comparison of residual stress measurement methods, are also discussed.

Document type: Part of book or chapter of book

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

Back to Top

Document information

Published on 01/01/2013

Volume 2013, 2013
DOI: 10.1201/b15963-113
Licence: CC BY-NC-SA license

Document Score


Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?