NASA researchers are extending a large-scale distributed simulation to assess the feasibility, benefits, and scalability of Distributed Air/Ground Traffic Management (DAG-TM) concepts. This paper describes applications of software agents to support these efforts. This paper identifies applications ranging from assistants to replacements for human confederate participants and support personnel. The applications span air traffic control positions, flight simulators, pseudoaircraft control stations, and simulation support functions. The paper first provides an overview of the DAG-TM simulation, including the Multi Aircraft Control System (MACS), and describes the responsibilities of various participants. It then discusses agent applications that address problems and leverage capabilities demonstrated in previous research. Of particular interest are agents that can control air traffic and pilot aircraft, implemented within the MACS framework. Agents provide a means for focusing required subject training, reducing variability and problems attributable to human confederates, supporting partially staffed and part-task studies within the full simulation environment, and enabling fast-time simulations to investigate DAG-TM concept scalability. The paper concludes with a discussion that emphasizes the importance of interplay between complementary human-in-the-loop and agent-based simulations. This research constitutes one facet of the Distributed Air/Ground Traffic Management element of the NASA Aviation System Capacity Program Advanced Air Transportation Technologies project.

Original document

The different versions of the original document can be found in:

Back to Top

Document information

Published on 01/01/2003

Volume 2003, 2003
DOI: 10.2514/6.2003-5371
Licence: CC BY-NC-SA license

Document Score


Views 0
Recommendations 0

Share this document


claim authorship

Are you one of the authors of this document?