Published in Computational Mechanics Vol. 15 (6), pp. 572-593, 1995
doi: 10.1007/BF00350269

Abstract

In this paper the general non symmetric parametric form of the incremental secant stiffness matrix for non linear analysis of solids using the finite element metod is derived. A convenient symmetric expression for a particular value of the parameters is obtained. The geometrically non linear formulation is based on a Generalized Lagrangian approach. Detailed expressions of all the relevant matrices involved in the analysis of 3D solids are obtained. The possibilities of application of the secant stiffness matrix for non linear structural problems including stability, bifurcation and limit load analysis are also discussed. Examples of application are given for the non linear analysis of pin joined frames.

S. Jayachandran, S. Gopalakrishnan, R. Narayanan. Improved Secant Matrices for the Postbuckling Analysis of Thin Composite Plates. Int. J. Str. Stab. Dyn. 03(03) (2011) DOI 10.1142/s0219455403000938

S. JAYACHANDRAN, V. KALYANARAMAN, R. NARAYANAN. A CO-ROTATION BASED SECANT MATRIX PROCEDURE FOR ELASTIC POSTBUCKLING ANALYSIS OF TRUSS STRUCTURES. Int. J. Str. Stab. Dyn. 04(01) (2011) DOI 10.1142/s0219455404001124

S. Arul Jayachandran, V. Kalyanaraman, R. Narayanan. Marguerre shell type secant matrices for the postbuckling analysis of thin, shallow composite shells. Structural Engineering and Mechanics 18(1) DOI 10.12989/sem.2004.18.1.041

N. Pedersen, P. Pedersen. Buckling load optimization for 2D continuum models, with alternative formulation for buckling load estimation. Struct Multidisc Optim 58(5) (2018) DOI 10.1007/s00158-018-2030-3

E. Oñate, H. Tschöpe, P. Wriggers. Combination of the critical displacement method with a damage model for structural instability analysis. Engineering Computations 18(3/4) DOI 10.1108/02644400110387190

H. Tschöpe, P. Wriggers, E. Oñate. Direct computation of instability points with inequality constraints using the FEM. Engineering Computations 20(5/6) DOI 10.1108/02644400310488781

A. Pagani, E. Carrera. Unified formulation of geometrically nonlinear refined beam theories. Mechanics of Advanced Materials and Structures 25(1) (2016) DOI 10.1080/15376494.2016.1232458

A. Morán, E. Oñate, J. Miquel. A general procedure for deriving symmetric expressions for the secant and tangent stiffness matrices in finite element analysis. Int. J. Numer. Meth. Engng. 42(2) DOI 10.1002/(sici)1097-0207(19980530)42:2<219::aid-nme355>3.0.co;2-e

S. Jayachandran, S. Seetharaman, S. Abraham. Simple Formulation for the Flexure of Plates on Nonlinear Foundation. J. Eng. Mech. 134(1) DOI 10.1061/(asce)0733-9399(2008)134:1(110)

L. Demasi, E. Livne. Structural Ritz-Based Simple-Polynomial Nonlinear Equivalent Plate Approach: An Assessment. Journal of Aircraft 43(6) DOI 10.2514/1.17466

J. Leemans, C. Kim, W. van de Sande, J. Herder. Unified Stiffness Characterization of Nonlinear Compliant Shell Mechanisms. 11(1) (2018) DOI 10.1115/1.4041785

L. Demasi, E. Livne. Structural Ritz-Based Simple-Polynomial Nonlinear Equivalent Plate Approach - An Assessment. (2012) DOI 10.2514/6.2005-2093