This paper presents a comprehensive overview of the characteristic‐based methods and Characteristic‐Based Split (CBS) scheme. The practical difficulties of employing the original characteristic schemes are discussed. The important features of the CBS scheme are brought out by studying several problems of compressible and incompressible flows. All special consideration necessary for solving these problems are thoroughly discussed. The CBS scheme is presented in such a way that any interested researcher should be able to develop a code using the information provided. Several invicid and viscous flow examples are also provided to demonstrate the unified CBS approach. For sample two‐dimensional codes, input files and instructions, the readers are referred to ‘www.nithiarasu.co.uk’

Back to Top

Published on 01/01/2006

DOI: 10.1002/nme.1698

Licence: CC BY-NC-SA license

Web of Science Core Collection® Times cited: 75

Crossref Cited-by Times cited: 72

OpenCitations.net Times cited: 45

- Q. Wang, S. Danilov, J. Schröter. Finite element ocean circulation model based on triangular prismatic elements, with application in studying the effect of topography representation. J. Geophys. Res. 113(C5) (2008) DOI 10.1029/2007jc004482
- C. Liu, P. Nithiarasu. The characteristic-based split (CBS) scheme for viscoelastic flow past a circular cylinder. Int. J. Numer. Meth. Fluids 57(2) (2008) DOI 10.1002/fld.1625
- C. Thomas, P. Nithiarasu, R. Bevan. The locally conservative Galerkin (LCG) method for solving the incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids 57(12) DOI 10.1002/fld.1683
- P. Nithiarasu, O. Hassan, K. Morgan, N. Weatherill, C. Fielder, H. Whittet, P. Ebden, K. Lewis. Steady flow through a realistic human upper airway geometry. Int. J. Numer. Meth. Fluids 57(5) (2008) DOI 10.1002/fld.1805
- C. Liu, P. Nithiarasu. An artificial‐dissipation‐based fractional step scheme for upper‐convected Maxwell (UCM) fluid flow past a circular cylinder. Int. J. Numer. Meth. Fluids 57(9) DOI 10.1002/fld.1807
- Y. Bao, D. Zhou, Y. Zhao. A two-step Taylor-characteristic-based Galerkin method for incompressible flows and its application to flow over triangular cylinder with different incidence angles. Int. J. Numer. Meth. Fluids DOI 10.1002/fld.2054
- X. Zhang, J. Ouyang, L. Zhang. The characteristic-based split (CBS) meshfree method for free surface flow problems in ALE formulation. Int. J. Numer. Meth. Fluids 65(7) (2011) DOI 10.1002/fld.2213
- C. Jog. A finite element method for compressible viscous fluid flows. Int. J. Numer. Meth. Fluids 66(7) (2010) DOI 10.1002/fld.2287
- R. Bevan, P. Nithiarasu, R. Van Loon, I. Sazonov, H. Luckraz, A. Garnham. Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient-specific carotid bifurcation. Int. J. Numer. Meth. Fluids 64(10-12) (2010) DOI 10.1002/fld.2313
- A. Firoozjaee, M. Afshar. Steady-state solution of incompressible Navier-Stokes equations using discrete least-squares meshless method. Int. J. Numer. Meth. Fluids 67(3) (2010) DOI 10.1002/fld.2370
- C. Jiang, Z. Zhang, X. Han, G. Liu, T. Lin. A cell-based smoothed finite element method with semi-implicit CBS procedures for incompressible laminar viscous flows. Int J Numer Meth Fluids 86(1) (2017) DOI 10.1002/fld.4406
- T. He, J. Yang, C. Baniotopoulos. Improving the CBS-based partitioned semi-implicit coupling algorithm for fluid-structure interaction. Int J Numer Meth Fluids 87(9) (2018) DOI 10.1002/fld.4501
- S. Liao, Y. Zhang, D. Chen. A Galerkin finite element algorithm based on third‐order Runge‐Kutta temporal discretization along the uniform streamline for unsteady incompressible flows. Int J Numer Meth Fluids 90(7) (2019) DOI 10.1002/fld.4722
- T. Laurila, A. Carlson, M. Do-Quang, T. Ala-Nissila, G. Amberg. Thermohydrodynamics of boiling in a van der Waals fluid. Phys. Rev. E 85(2) (2012) DOI 10.1103/physreve.85.026320
- S. Fang, X. Yuan, R. Qian, S. Jiang. Finite Element Solution in Fluid Mechanics Using Exponential Function Based Interpolation. AMM 580-583 (2014) DOI 10.4028/www.scientific.net/amm.580-583.3051
- 云. 魏. The Operator Splitting Finite Element Method for Two-Dimensional Burgers Equation. AAM 06(02) DOI 10.12677/aam.2017.62020
- C. Thomas, P. Nithiarasu. An element-wise, locally conservative Galerkin (LCG) method for solving diffusion and convection–diffusion problems. Int. J. Numer. Meth. Engng 73(5) (2008) DOI 10.1002/nme.2095
- P. Saksono, P. Nithiarasu, I. Sazonov, S. Yeo. Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity. Int. J. Numer. Meth. Engng. 87(1-5) (2010) DOI 10.1002/nme.2986
- R. Bevan, P. Nithiarasu, I. Sazonov, R. van Loon, H. Luckraz, M. Collins, A. Garnham. Influences of domain extensions to a moderately stenosed patient‐specific carotid bifurcation. Int Jnl of Num Meth for HFF 21(8) DOI 10.1108/09615531111177741
- R. Bevan, R. Lewis, P. Nithiarasu. Forced convection heat transfer within a moderately‐stenosed, patient‐specific carotid bifurcation. Int Jnl of Num Meth for HFF 22(8) DOI 10.1108/09615531211271907
- J. Mynard, P. Nithiarasu. A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Commun. Numer. Meth. Engng. 24(5) (2008) DOI 10.1002/cnm.1117
- K. Chitra, S. Vengadesan, T. Sundararajan, P. Nithiarasu. An investigation of pulsatile flow in a model cavo-pulmonary vascular system. Commun. Numer. Meth. Engng. 25(11) DOI 10.1002/cnm.1205
- R. Bevan, I. Sazonov, P. Saksono, P. Nithiarasu, R. van Loon, H. Luckraz, S. Ashraf. Patient-specific blood flow simulation through an aneurysmal thoracic aorta with a folded proximal neck. Int. J. Numer. Meth. Biomed. Engng. 27(8) (2010) DOI 10.1002/cnm.1425
- R. Herbin, W. Kheriji, J. Latché. On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations. ESAIM: M2AN 48(6) (2014) DOI 10.1051/m2an/2014021
- T. Gallouët, L. Gastaldo, R. Herbin, J. Latché. An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations. ESAIM: M2AN 42(2) (2008) DOI 10.1051/m2an:2008005
- R. Linn, A. Awruch. Edge-based anisotropic mesh adaptation of unstructured meshes with applications to compressible flows. Engineering with Computers 33(4) (2017) DOI 10.1007/s00366-017-0513-2
- R. Bevan, P. Nithiarasu. A dual time stepping approach to eliminate first order error in fractional step methods for incompressible flows. Int Jnl of Num Meth for HFF 26(2) DOI 10.1108/hff-03-2015-0090
- R. Bevan, E. Boileau, R. van Loon, R. Lewis, P. Nithiarasu. A comparative study of fractional step method in its quasi-implicit, semi-implicit and fully-explicit forms for incompressible flows. Int Jnl of Num Meth for HFF 26(3/4) DOI 10.1108/hff-06-2015-0233
- Y. Hu, D. Wang, J. Yin, Y. Wang. Numerical analysis of single pad of thrust bearing with the energy equation solved by the characteristic-based split method. Advances in Mechanical Engineering 7(9) (2015) DOI 10.1177/1687814015606282
- S. Phongthanapanich, P. Dechaumphai. An explicit characteristic finite volume element method for non-divergence free convection–diffusion-reaction equation. Int J Adv Eng Sci Appl Math 4(3) (2012) DOI 10.1007/s12572-012-0071-1
- F. Shi, G. Liang, Y. Zhao, J. Zou. New Splitting Methods for Convection-Dominated Diffusion Problems and Navier-Stokes Equations. Commun. comput. phys. 16(5) (2015) DOI 10.4208/cicp.031013.030614a
- W. Kang, J. Zhang, P. Feng. Aerodynamic Analysis of a Localized Flexible Airfoil at Low Reynolds Numbers. Commun. comput. phys. 11(4) (2015) DOI 10.4208/cicp.070510.150511s
- L. Könözsy, D. Drikakis. A Unified Fractional-Step, Artificial Compressibility and Pressure-Projection Formulation for Solving the Incompressible Navier-Stokes Equations. Commun. comput. phys. 16(5) (2015) DOI 10.4208/cicp.240713.080514a
- T. He, K. Zhang, T. Wang. AC-CBS-Based Partitioned Semi-Implicit Coupling Algorithm for Fluid-Structure Interaction Using Stabilized Second-Order Pressure Scheme. Commun. Comput. Phys. 21(5) (2017) DOI 10.4208/cicp.oa-2016-0106
- H. Shokouhmand, S. Ghaffari. Investigation of Cooling Process of a High-Temperature Hollow Cylinder in Moving Induction Heat Treatment. 4(1) (2012) DOI 10.1115/1.4005602
- N. Nozari, S. Razavi, S. Tabatabaei. Improved Characteristic-based Solutions of the Euler Equations in Transonic Regimes. Flow Turbulence Combust 94(3) (2015) DOI 10.1007/s10494-014-9593-x
- A. Arnold, P. Nithiarasu, P. Eng. Electro-osmotic flow in microchannels. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222(5) (2008) DOI 10.1243/09544062jmes784
- M. Nickaeen, A. Ashrafizadeh, S. Turek. An Alternative Strategy for the Solution of Heat and Incompressible Fluid Flow Problems via the Finite Volume Method. Numerical Heat Transfer, Part A: Applications 62(5) DOI 10.1080/10407782.2012.703465
- P. Eng, P. Nithiarasu. Numerical Investigation of an Electroosmotic Flow (EOF)–Based Microcooling System. Numerical Heat Transfer, Part B: Fundamentals 56(4) DOI 10.1080/10407790903388407
- T. He, T. Wang. A three-field smoothed formulation for partitioned fluid–structure interaction via nonlinear block-Gauss–Seidel procedure. Numerical Heat Transfer, Part B: Fundamentals 75(3) (2019) DOI 10.1080/10407790.2019.1615786
- S. Lee, H. Cho, H. Kim, S. Shin. Expedited Aeroelastic Analysis Using Proper Orthogonal Decomposition and Reduced Order Modelling. (2019) DOI 10.2514/6.2019-1024
- T. He, K. Zhang. An Overview of the Combined Interface Boundary Condition Method for Fluid–Structure Interaction. Arch Computat Methods Eng 24(4) (2016) DOI 10.1007/s11831-016-9193-0
- P. Nithiarasu, R. Bevan, K. Murali. An artificial compressibility based fractional step method for solving time dependent incompressible flow equations. Temporal accuracy and similarity with a monolithic method. Comput Mech 51(3) (2012) DOI 10.1007/s00466-012-0719-5
- R. Bevan, P. Nithiarasu. Accelerating incompressible flow calculations using a quasi-implicit scheme: local and dual time stepping approaches. Comput Mech 50(6) (2012) DOI 10.1007/s00466-012-0767-x
- T. He, H. Zhang, K. Zhang. A smoothed finite element approach for computational fluid dynamics: applications to incompressible flows and fluid–structure interaction. Comput Mech 62(5) (2018) DOI 10.1007/s00466-018-1549-x

Are you one of the authors of this document?