The spatial discretization of the unsteady incompressible Navier-Stokes equations is stated as system of Differential Algebraic Equations (DAEs), corresponding to the conservation of momentum equation plus the constraint due to the incompressibility condition. Asymptotic stability of Runge-Kutta methods applied to the solution of the resulting index-2DAE system in analyzed, allowing a critical comparison of semi-implicit and fully implicit Runge-Kutta methods, in terms of order of convergence and stability. Numerical examples, considering a Discontinuous Galerkin formulation with piecewise solenoidal approximation, demonstrate the applicability of the approach, and compare its performance with classical methods for incompressible flows.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/11
Accepted on 26/05/17
Submitted on 26/05/17

Volume 27, Issue 1, 2011
Licence: CC BY-NC-SA license

Document Score


Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?