Students in complex visual domains must acquire visual problem solving strategies that allow them to make fast decisions and come up with good solutions to real-time problems. In this study, 31 air traffic controllers at different levels of expertise (novice, intermediate, expert) were confronted with 9 problem situations depicted on a radar screen. Participants were asked to provide the optimal order of arrival of all depicted aircrafts. Eye-movements, time-on-task, perceived mental effort, and task performance were recorded. Eye-tracking data revealed that novices use inefficient means-end visual problem solving strategies in which they primarily focus on the destination of aircraft. Higher levels of expertise yield visual problem solving strategies characterized by more efficient retrieval of relevant information and more efficient scan paths. Furthermore, experts’ solutions were more similar than intermediates’ solutions and intermediates’ solutions were more similar than novices’ solutions. Performance measures showed that experts and intermediates reached better solutions than novices, and that experts were faster and invested less mental effort than intermediates and novices. These findings may help creating eye-movement modeling examples for the teaching of visual problem solving strategies in complex visual domains.

Original document

The different versions of the original document can be found in:

Back to Top

Document information

Published on 01/01/2014

Volume 2014, 2014
DOI: 10.1016/j.learninstruc.2014.01.004
Licence: CC BY-NC-SA license

Document Score


Views 4
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?