De-icing of general aviation aircraft is usually realized by chemical or thermal processes. These lead to an increase in fuel consumption or usage of electrical energy. Mechanical de-icing is a way to significantly reduce this consumption. In mechanical de-icing, a surface is deformed so that the required failure mechanisms are induced in the ice, causing it to detach. In this paper, the release behavior of ice on a CFRP layer is investigated. The CFRP layer consists of two plies, each 0.3 mm thick. A numerical calculation is performed to determine the natural frequency and the required amplitudes of the vibration. In addition, the relationship between the various failure mechanisms of ice and the ice layer thickness, as well as the control values are determined. Tests are also being conducted to demonstrate the feasibility of mechanical de-icing. For this purpose, the surface of a CFRP layer is iced with water in a climate chamber at -20°C. A modal shaker is connected to the CFRP and generates the required displacements at desired frequencies to observe the detachment of the ice.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 11/03/21
Submitted on 11/03/21

Volume 2300 - STS - Aeronautics - Design, Methods and Tools, 2021
DOI: 10.23967/wccm-eccomas.2020.225
Licence: CC BY-NC-SA license

Document Score


Views 9
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?