Summary

High-accuracy simulations of internal combustion engines (ICE) allow deep insight into the physical processes of the different phases of the engine cycle: gas exchange, mixture formation, compression, combustion and emission formation. The commercial solvers for ICE simulations provide a full package which covers these areas. However, the user of such software is unable to look into the source code, making it impossible to implement new models or investigate possible implementation errors in the code, and costs arise due to licensing requirements for commercial solvers. Although the open source framework OpenFOAM already includes multiple classes and two solvers dedicated to internal combustion engine simulations, there is no way to move engine valves and piston simultaneously with its standard tools. Thus, this paper presents a new engine library for ICE simulations written for OpenFOAM. The new framework is capable of simulating a complete fired engine cycle. The piston and the valves are moved simultaneously. To address large deformations in the mesh, a methodology to avoid insufficient mesh quality was developed. Ignition and combustion is modeled with standard tools from OpenFOAM. To validate the method, the simulation results for the averaged in-cylinder quantities pressure, temperature and mass are compared with experimental data.

Abstract

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Computational Fluid Dynamics, 2022
DOI: 10.23967/eccomas.2022.089
Licence: CC BY-NC-SA license

Document Score

0

Views 5
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?