We analyze several possibilities to prescribe boundary conditions in the context of immersed boundary methods. As basic approximation technique we consider the finite element method with a mesh that does not match the boundary of the computational domain, and therefore Dirichlet boundary conditions need to be prescribed in an approximate way. As starting variational approach we consider Nitsche's methods, and we then move to two options that yield non‐symmetric problems but that turned out to be robust and efficient. The essential idea is to use the degrees of freedom of certain nodes of the finite element mesh to minimize the difference between the exact and the approximated boundary condition.

J. Baiges, R. Codina, H. Coppola-Owen. The Fixed-Mesh ALE approach for the numerical simulation of floating solids. Int. J. Numer. Meth. Fluids 67(8) (2010) DOI 10.1002/fld.2403

R. Rangarajan, A. Lew. Universal meshes: A method for triangulating planar curved domains immersed in nonconforming meshes. Int. J. Numer. Meth. Engng 98(4) (2014) DOI 10.1002/nme.4624

M. Tur, J. Albelda, E. Nadal, J. Ródenas. Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. Int. J. Numer. Meth. Engng 98(6) (2014) DOI 10.1002/nme.4629

R. Codina, J. Baiges. Weak imposition of essential boundary conditions in the finite element approximation of elliptic problems with non-matching meshes. Int. J. Numer. Meth. Engng 104(7) (2014) DOI 10.1002/nme.4815

S. Kollmannsberger, A. Özcan, J. Baiges, M. Ruess, E. Rank, A. Reali. Parameter-free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non-conforming patches. Int. J. Numer. Meth. Engng 101(9) (2014) DOI 10.1002/nme.4817

J. Baiges, R. Codina. The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems. Int. J. Numer. Meth. Engng DOI 10.1002/nme.2740

Z. Tan, D. Wang, Y. Wang. A Jacobian-free-based IIM for incompressible flows involving moving interfaces with Dirichlet boundary conditions. Int. J. Numer. Meth. Engng DOI 10.1002/nme.2843

M. Hautefeuille, C. Annavarapu, J. Dolbow. Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int. J. Numer. Meth. Engng 90(1) (2011) DOI 10.1002/nme.3306

J. Baiges, R. Codina, F. Henke, S. Shahmiri, W. Wall. A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes. Int. J. Numer. Meth. Engng 90(5) (2012) DOI 10.1002/nme.3339

E. Burman, P. Zunino. Numerical Approximation of Large Contrast Problems with the Unfitted Nitsche Method. (2011) DOI 10.1007/978-3-642-23914-4_4

A. Lew, M. Negri. Optimal convergence of a discontinuous-Galerkin-based immersed boundary method. ESAIM: M2AN 45(4) (2010) DOI 10.1051/m2an/2010069

E. Burman. Projection stabilization of Lagrange multipliers for the imposition of constraints on interfaces and boundaries. Numer. Methods Partial Differential Eq. 30(2) (2013) DOI 10.1002/num.21829

D. Baumgärtner, J. Wolf, R. Rossi, P. Dadvand, R. Wüchner. A robust algorithm for implicit description of immersed geometries within a background mesh. Adv. Model. and Simul. in Eng. Sci. 5(1) (2018) DOI 10.1186/s40323-018-0113-8

M. Tur, J. Albelda, J. Navarro-Jimenez, J. Rodenas. A modified perturbed Lagrangian formulation for contact problems. Comput Mech 55(4) (2015) DOI 10.1007/s00466-015-1133-6