
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2009; 80:1379–1405
Published online 19 June 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2662

Approximate imposition of boundary conditions in immersed
boundary methods

Ramon Codina∗,† and Joan Baiges

Technical University of Catalonia, Jordi Girona 1-3, Edifici C1, 08034 Barcelona, Spain

SUMMARY

We analyze several possibilities to prescribe boundary conditions in the context of immersed boundary
methods. As basic approximation technique we consider the finite element method with a mesh that does
not match the boundary of the computational domain, and therefore Dirichlet boundary conditions need
to be prescribed in an approximate way. As starting variational approach we consider Nitsche’s methods,
and we then move to two options that yield non-symmetric problems but that turned out to be robust and
efficient. The essential idea is to use the degrees of freedom of certain nodes of the finite element mesh to
minimize the difference between the exact and the approximated boundary condition. Copyright q 2009
John Wiley & Sons, Ltd.

Received 11 March 2008; Revised 15 April 2009; Accepted 29 April 2009

KEY WORDS: immersed boundaries; Nitsche’s method; approximate boundary conditions; finite element
methods

1. INTRODUCTION

The numerical approximation of boundary value problems on non-matching grids has the obvious
advantage of the freedom to generate the grid. Only a grid covering the computational domain has
to be created, leaving the imposition of boundary conditions to the numerical formulation being
used. The physical boundary is contained in the domain actually discretized, which is the reason
why these methods are called immersed boundary methods (IBM).

The price to be paid when using IBM is a lack of control on the grid close to the boundary,
which may be very important in flow problems with boundary layers, for example. However, this
difficulty may be dealt with using composite grids or Chimera-type techniques as that proposed

∗Correspondence to: Ramon Codina, Technical University of Catalonia, Jordi Girona 1-3, Edifici C1, 08034 Barcelona,
Spain.

†E-mail: ramon.codina@upc.edu

Contract/grant sponsor: Departament d’Universitats, Recerca i Societat de la Informació of the Generalitat de
Catalunya (Catalan Government)

Copyright q 2009 John Wiley & Sons, Ltd.

1380 R. CODINA AND J. BAIGES

Figure 1. Setting.

in [1]. Nevertheless, we will not touch this point here, nor the aspect that makes methods with
non-matching grids really attractive and that has been our main motivation (see [2]), which is
the modeling of flows with moving boundaries keeping the grid fixed. In this case, not only the
freedom to generate this grid is important but also the fact that re-griding as the computational
domain evolves may be avoided. This is probably the reason why the so-called fixed grid methods
have received and are currently receiving a great deal of attention in the numerical literature (see,
for example, the reviews [3–5]). Since the fixed grid used is often Cartesian, these methods can
be found under the keywords Cartesian grid methods.

Our attention will be focused to finite element methods for flow problems, but the ideas to be
presented are extendable to other numerical formulations and other physical problems. However,
some of the difficulties we shall mention are characteristic of flow problems. Likewise, we will
consider general non-structured meshes, the application to Cartesian meshes being obvious. Further-
more, the exposition will be based on 2D linear triangular meshes, although, again, extensions to
3D and other finite element interpolations are straightforward.

Let us describe the problem to be solved. Consider the situation depicted in Figure 1. A domain
�⊂R

d , d=2,3, with boundary �=�� (dark curve in Figure 1) is covered by a mesh that occupies
a domain �h =�in∪��, where �in⊂� is formed by the elements interior to � and �� is formed
by a set of elements cut by �. In turn, let us split �� =��,in∪��,out, where ��,in=�∩�� and
��,out is the interior of ��\��,in. Note that �=�in∪��,in. For simplicity, we will assume that
the intersection of � with the element domains is a piecewise polynomial curve (in 2D) or surface
(in 3D) of the same order as the finite element interpolation. This will be used in the proof of
stability presented in Section 3.2, although in fact it is not necessary to apply the method.

Suppose we want to solve a boundary value problem for the unknown u in � with the mesh of
�h already created and boundary conditions u= ū on �. The obvious choice would be:

• Obtain the nodes of � (circles in Figure 1) from the intersection with the element edges.
• Split the elements of ��,in so as to obtain a grid matching the boundary �.
• Prescribe the boundary condition uh = ū in the classical way, where uh denotes the approximate

solution.

This strategy leads to a local remeshing close to � that is involved from the computational point
of view. Obviously, the implementation of the strategy described is very simple for unstructured

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1381

simplicial meshes, but it is not so easy if one wants to use other element shapes and, definitely,
prevents from using Cartesian meshes. Moreover, if the boundary � evolves in time (a situation
not considered in the following) the number of degrees of freedom changes at each time instant,
thus modifying the structure and sparsity of the matrix of the final algebraic system. This is clearly
an inconvenience even when using unstructured simplicial meshes.

Other possibilities can be found in the literature. One of them is the widely used Immersed
Boundary Method in its original form [6], which consists in adding point-wise penalty forces in the
domain boundary so that the boundary conditions are fulfilled. The method is first-order accurate
even if second-order approximation schemes are used, although formal second-order accuracy has
been reported in [7]. The more recent Immersed Interface Method achieves higher-order accuracy
by avoiding the use of the Dirac delta distribution to define the forcing terms (see [8–10]).

Another approach is the use of Lagrange multipliers to enforce the boundary conditions.
However, the finite element subspaces for the bulk and Lagrange multiplier fields must satisfy
the classical inf–sup condition proposed by Babuška [11], which usually leads to the need for
stabilization (see [12–14]). Moreover, additional degrees of freedom must be added to the problem.
The use of Lagrange multipliers is the basis of the fictitious domain method [15, 16] (see also
Chapter VIII in [17]).

Recently, hybrid Cartesian/IBM have been developed for Cartesian grids, which use the grid
nodes closest to the boundary to enforce boundary conditions [18–20]. The method is second-order
accurate, but it does not guarantee that the distance between uh and ū in � is minimized.

A discontinuous-Galerkin-based IBM is proposed in [21], which consists in switching elements
intersected by the boundary to a discontinuous-Galerkin approximation and impose the Dirichlet
boundary conditions strongly. Although optimal-order accuracy is achieved, the method requires
additional degrees of freedom.

The target we pose is therefore to impose the Dirichlet boundary conditions (in an approximate
way) without adding new degrees of freedom except from those of the original mesh in �h , in such
a way that the distance between uh and ū in � is minimized in a certain norm. In the following
section we describe Nitsche’s method as a first approach to achieve this.

In Section 3 we introduce a first modification of Nitsche’s method, the main advantage being
that there are no parameters to choose and there is no ill-conditioning of the final algebraic
system due to large factors enforcing the boundary condition. This is crucial for general flow
problems in which there is no rule to choose the parameter appearing in Nitsche’s method. The
essential idea is to use the degrees of freedom associated with ��,out to prescribe approximately
the boundary conditions, while the discrete version of the differential operator is only imposed
for nodes in �in. The drawback is that the problem obtained is not symmetric even for symmetric
problems, although the problems we are interested in are non-symmetric. In particular, we
have applied the methods to be described to transient incompressible flow problems in moving
domains in [2].

The formulation of Section 3 turns out to be accurate, but depending on the way the physical
boundary � cuts the elements in �h may lead to ill-conditioned matrices and difficulties in the
convergence of iterative schemes for non-linear problems. We present a modification in Section 4.
In this case, the idea is to solve the problem only in the domain formed by the elements inside �,
and prescribe the boundary conditions using the degrees of freedom associated with the first layer
of nodes inside �, that is to say, on ��in.

Numerical examples showing the performance of the different methods described are presented
in Section 5, and some concluding remarks close the paper in Section 6.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

1382 R. CODINA AND J. BAIGES

2. NITSCHE’S METHOD REVISITED

Our intention is to consider flow problems and, in particular, the scalar convection–diffusion–
reaction equation and the incompressible Navier–Stokes equations. However, for the exposition it
is enough to consider the former, leaving the latter for the numerical examples.

Let us consider the problem

Lu :=−k�u+a ·∇u+su = f in � (1)

u = ū on �=�� (2)

where k>0, a is the advection velocity, s�0, f is a given forcing function and ū is the given
Dirichlet boundary condition. We assume that the subdomain � is polyhedral, and covered by the
domain �h , as explained in Section 1.

Let Ph ={K } be a finite element partition of �h from which we construct the finite element
space Vh ⊂H1(�h) (we will consider Vh made of continuous functions). On Vh×Vh we define
the bilinear form

B(uh,vh)=k(∇uh,∇vh)+(a ·∇uh,vh)+s(uh,vh) (3)

where (·, ·) is the L2-inner product in �, not in �h . In general, the integral of two functions f1
and f2 in a region � will be denoted by 〈 f1, f2〉�. The norm in a space X will be indicated as
‖·‖X , except when X = L2(�), case in which the subscript will be omitted.

Nitsche’s method applied to problem (1) and (2) reads: find uh ∈Vh such that

B(uh,vh)−k〈�nuh,vh〉�−k〈uh,�nvh〉�+ �k∗

h
〈uh,vh〉�

=〈 f,vh〉�−k〈ū,�nvh〉�+ �k∗

h
〈ū,vh〉�, ∀vh ∈Vh (4)

where �>0 is a numerical parameter, k∗ a parameter with the same dimensions as k (here introduced
with the only purpose of making the equations dimensionally consistent) and h is the element
size, that is to say, h=maxK hK , with hK =diamK , K ∈Ph . For simplicity, we will consider
quasi-uniform partitions Ph .

It is observed that, apart from the way to impose the boundary conditions, (4) is based on
the standard Galerkin method to solve the convection–diffusion–reaction equation. This method
is stable only for high values of the diffusion coefficient k. Even though in the examples we
will consider convection dominated flows solved using a stabilized formulation, for the sake of
conciseness the exposition will be developed in the diffusion dominated case. Likewise, we will
consider a constant, for simplicity.

In the following we will try to ‘rederive’ method (4). This will allow us to introduce the
modification we propose. Let us consider the splitting Vh =Vh,0⊕Vh,�, where Vh,0 is the subspace
of Vh of functions vanishing at the nodes outside �̄in and Vh,� the complement, that is, the subspace
of functions that are zero at the nodes of �̄in (including layer L0 in Figure 1). According to this
splitting, we may split the unknown as uh =uh,0+uh,� and the test functions as vh =vh,0+vh,�.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1383

Nitsche’s method (4) can be obtained from the following set of equations:

B(uh,0,vh,0)−k〈�nuh,0,vh,0〉�+B(uh,�,vh,0)−k〈�nuh,�,vh,0〉� = 〈 f,vh,0〉� (5)

B(uh,0,vh,�)−k〈�nuh,0,vh,�〉�+B(uh,�,vh,�)−k〈�nuh,�,vh,�〉� = 〈 f,vh,�〉� (6)

−k〈�nvh,0,uh,0〉�−k〈�nvh,0,uh,�〉� = −k〈�nvh,0, ū〉� (7)

−k〈�nvh,�,uh,0〉�−k〈�nvh,�,uh,�〉� = −k〈�nvh,�, ū〉� (8)

�k∗

h
〈uh,0,vh,0〉�+ �k∗

h
〈uh,�,vh,0〉� = �k∗

h
〈ū,vh,0〉� (9)

�k∗

h
〈uh,0,vh,�〉�+ �k∗

h
〈uh,�,vh,�〉� = �k∗

h
〈ū,vh,�〉� (10)

The first two Equations (5) and (6) are obtained by multiplying the differential equation by vh,0
and vh,� and integrating by parts. Note that no boundary conditions are imposed, and thus the
solution of (5) and (6) is not unique. Equations (7) and (8) can be understood as a weak form
of the boundary condition uh = ū, weighting this equation by −k�nvh,0 and −k�nvh,�. These two
equations are needed to keep the symmetry of the problem when B(uh,vh)= B(vh,uh), that is to
say, when a=0 (see (3)). Finally, Equations (9) and (10) are also obtained as a weak form of the
boundary condition uh = ū, weighting now this equation by vh,0 and vh,�.

Obviously, Equations (5)–(10) are all consistent, in the sense that if uh is replaced by the exact
solution u of problems (1) and (2) they hold exactly, provided this solution is regular enough.
However, system (5)–(10) as a whole is overdetermined, and there are several possibilities to
extract a system of algebraic equations with a unique solution from it. In particular, Nitsche’s
method (4) is obtained by adding together all the equations. The method to be proposed in the
following section can be understood as the method obtained keeping only (5) and (10). In fact, for
stability reasons described later it turns out to be convenient to subtract (7) from (5).

Before describing an alternative to Nitsche’s method, let us comment on the role played
by the factor (�k∗/h). Suppose that a=0, so that B is symmetric, and define the functionals
J1(uh,0,uh,�)= 1

2 B(uh,0+uh,�,uh,0+uh,�)−k〈�n(uh,0+uh,�), (uh,0+uh,�)〉�−〈 f,uh,0+uh,�〉�−
k〈ū,�n(uh,0+uh,�)〉� and J2(uh,0,uh,�)=(�k∗/h)‖uh,0+uh,�− ū‖2

L2(�)
. If �(vh,0,vh,�) denotes

the weak (Gâteaux) derivative of a functional in the direction of vh =(vh,0,vh,�) we may write
problem (4) as

�(vh,0,vh,�)(J1(uh,0,uh,�)+ J2(uh,0,uh,�))=0 (11)

From this expression it follows that satisfying the Dirichlet boundary condition must compete
with satisfying the differential equation, �k∗/h being the weight of the former. Moreover, since
the norm h−1/2‖·‖L2(�) is equivalent to the norm of ‖·‖H1/2(�) in Vh (see [22, 23]), the relevant
weighting is in fact the parameter �. The higher the value of �, the better the approximation to the
boundary condition at the expense of a poorer approximation to the differential equation. However,
for any value of � it is possible to show that the method is stable and optimally convergent (in fact,
stability is even easier to show than for the method to be presented in the following section). See [24]
for a proof, including more general boundary conditions than used here (although for Poisson’s
problem). The good performance of Nitsche’s method has been exploited also in other contexts,
such as the imposition of boundary conditions for discontinuous finite element approximations (see

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

1384 R. CODINA AND J. BAIGES

the original work in [25] and the extension in [26], for example), the imposition of transmission
conditions in domain decomposition with non-matching grids (as in [27, 28], among many others)
or also in some stabilized finite element methods for which this method fits nicely [29].

Finally, let us remark that the volume integrals in (5) and (6) are performed over �=�in∪��,in.
Integrals over �in are easily computed, but in order to compute integrals over ��,in some care is
needed. The simplest approach is to split the elements of ��,in so as to obtain a grid matching the
boundary �, and then proceed to compute the integrals over the resulting subelements (see [30]).
Note that this splitting does not affect the degrees of freedom of the problem.

3. A FIRST MODIFICATION: USING EXTERNAL DEGREES OF FREEDOM

3.1. The first method proposed

The essential idea of the method we propose first is to use only equations (5) and (10) above. As it
has been mentioned in the previous section, it is also convenient, mainly for the stability analysis,
to subtract (7) from (5). Thus, the problem to be solved is: find uh,0∈Vh,0 and uh,� ∈Vh,� such
that

B(uh,0,vh,0)+B(uh,�,vh,0)−k〈�nuh,0,vh,0〉�−k〈�nuh,�,vh,0〉�
+k〈�nvh,0,uh,0〉�+k〈�nvh,0,uh,�〉� =〈 f,vh,0〉�+k〈�nvh,0, ū〉� (12)

�k∗

h
〈uh,0,vh,�〉�+ �k∗

h
〈uh,�,vh,�〉� = �k∗

h
〈ū,vh,�〉� (13)

for all vh,0∈Vh,0 and vh,� ∈Vh,�.
Equation (13) can be equivalently written as

�(0,vh,�) J2(uh,0,uh,�)=0 (14)

From this equation it is clear that the component uh,� of the unknown is determined from the
condition that the distance between uh,0+uh,� and ū is minimized in the norm of L2(�). Comparing
this equation with (11), it is also seen that now this minimization does not compete with the
satisfaction of the differential equation (in weak sense). Obviously, the parameter (�k∗/h) is here
unnecessary, and it has been introduced only to compare the resulting method with (4).

Let us enumerate four major differences of (12) and (13) with respect to (4):

1. When � coincides with ��h , the boundary condition is imposed exactly (provided ū is a
finite element function).

2. There are no parameters to be tuned ((�k∗/h) can be canceled out in (13)).
3. The method is non-symmetric, even if B is symmetric.
4. The method is not well defined when � coincides with ��in.

The first two points are improvements with respect to Nitsche’s method. In particular, they
explain why the approximation of boundary conditions is in general better with our approach, as
we have experimented from numerical tests. The third point is a drawback from the implementation
point of view only for symmetric problems, and not for the flow problems we are interested in.
The important issue is point 4. Clearly, when �=��in (13) yields 0=0. In this case, elements
outside �in could be eliminated and the case reduced to the first one. However, this situation may

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1385

be encountered if �in is a domain moving in time inside �h . In general, when � is close to ��in
we may expect instability problems. Small variations in ū may yield large variations in uh,�. This
fact will be used to motivate the method proposed in Section 4. It is worth to mention that this type
of instabilities are also encountered in other methods for which modifications are also required
(see [19, 31]). We will come back to this point in Section 4.

Precise conditions under which the method is stable are discussed in the following subsection.

3.2. Stability

In this subsection we prove the following result: if � is kept away from ��in the formulation given
by (12) and (13) is stable. As a consequence, the discrete problem admits a unique solution.

Proving this fact requires some analytical technicalities that will make us depart from the line
of formulating new methods rather than analyzing them. However, we believe this conclusion is
important and deserves this parenthesis in the main syllabus of the paper.

3.2.1. Preliminary result. We will make use of a general result applicable to coupled systems of
variational equations of the form

a11(u1,v1)+a12(u2,v1) = l1(v1) (15)

a21(u1,v2)+a22(u2,v2) = l2(v2) (16)

where u1,v1∈V1, u2,v2∈V2, ai j is a bilinear form defined on Vj ×Vi and li a linear form on Vi ,
a Banach space with norm ‖·‖i , i, j =1,2. We assume that all the forms ai j are continuous and
aii are coercive. Let Ci j be the constants defined by the inequalities

a11(v1,v1) �C11‖v1‖21, a22(v2,v2)�C22‖v2‖22
a12(v2,v1) �C12‖v1‖1 ‖v2‖2, a21(v1,v2)�C21‖v1‖1 ‖v2‖2

We will now prove that if

C12C21<C11C22 (17)

then there exists a constant C>0 such that for all (u1,u2)∈V1×V2 there exists (v1,v2)∈V1×V2
such that

B((u1,u2), (v1,v2)) := a11(u1,v1)+a12(u2,v1)+a21(u1,v2)+a22(u2,v2)

� C(‖u1‖1+‖u2‖2)(‖v1‖1+‖v2‖2)
that is to say, problem (15)–(16) is stable.

In the following, C will denote a generic positive constant, not necessarily the same at different
appearances. In the case in which (15) and (16) comes from a finite element approximation, the
constant C will be independent of h and inequality (17) will be assumed to hold uniformly in h.

Let us start noting that using Young’s inequality we have

B((u1,u2), (u1,0)) �C11‖u1‖21−C12

(
�1
2

‖u1‖21+ 1

2�1
‖u2‖22

)

B((u1,u2), (0,u2)) �C22‖u2‖22−C21

(
�2
2

‖u2‖22+ 1

2�2
‖u1‖21

)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

1386 R. CODINA AND J. BAIGES

where �1 and �2 are positive constants to be determined. Thus, for any �>0 we have

B((u1,u2), (u1,�u2)) �
(
C11−C12

�1
2

−C21
1

2�2

)
‖u1‖21

+
(
C22�−C21

�2
2

�2−C12
1

2�1

)
‖u2‖22

The constants C12 and C21 must be such that there exists �1, �2 and � for which

C11−C12
�1
2

−C21
1

2�2
> 0 (18)

C22�−C21
�2
2

�2−C12
1

2�1
> 0 (19)

Condition (18) holds if

�1<
2C11�1
C12

,
1

�2
<
2C11�2
C21

, �1+�2=1

Condition (19) requires then that

�>A�2+B, A := C2
21

4C11C22�2
, B := C2

12

4C11C22�1

a condition that is possible to fulfill if

AB< 1
4 ⇐⇒ C12C21<2C11C22

√
�1�2

Since �1+�2=1, the maximum of
√

�1�2 is 1
2 , from where the result follows.

3.2.2. Some useful relationships. The next step is to prove some inequalities that will be used
later on. These inequalities make use of the inverse estimates (see [22, 23]):

‖vh‖2L∞(�) � C

hd
‖vh‖2L2(�)

(20)

‖∇vh‖2L2(�)
� C

h2
‖vh‖2L2(�)

(21)

where � is any patch of elements of Ph (recall that this partition is assumed to be quasi-uniform)
and vh is a finite element function. Because of the assumption on the shape of �, � can be also
formed by subdomains of the form K ∩��,in, K ∈Ph .

From these inequalities one can prove the following:

‖vh,�‖2 �C�1h‖vh,�‖2L2(�)
(22)

‖∇vh,�‖2 �C
1

�1h
‖vh,�‖2L2(�)

(23)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1387

�1

�22h
‖vh,0‖2L2(�)

�C‖∇vh,0‖2L2(��,in)
(24)

‖�nvh‖2L2(�)
� C

�1h
‖∇vh‖2L2(��,in)

(25)

where (see Figure 1)

�1= 1

h
min
x∈L0

dist(x,�), �2= 1

h
max
x∈L−1

dist(x,�)

Let us start noting that (22) is a direct consequence of the shape of ��,in and that vh,� vanishes
at the nodes in the interior of this subdomain. The distance from � to the nodes of L0 can be
bounded by C�1h, where 1�C is a constant, which will be bounded as h→0 because of the
quasi-uniformity of the partition.

The proof of (23) is as follows:

‖∇vh,�‖2 =
∫

��,in

|∇vh,�|2 (vh,� is zero elsewhere)

� C

�21h
2

∫
��,in

|vh,�|2 (by (21) and Poincaré’s inequality)

� C

�1h

∫
�

|vh,�|2 (by (22))

= C

�1h
‖vh,�‖2L2(�)

For the proof of (24), let K be an element crossed by � and E=K ∩�. We have∫
E

v2h,0 � �22h
2
∫
E

‖∇vh,0‖2L∞(K)

�C�22h
2hd−1‖∇vh,0‖2L∞(K)

�C
�22
�1

hd+1h−d‖∇vh,0‖2L2(K∩��,in)
(by (20))

from where (24) is obtained from summation over all E that form �. Finally, (25) follows again
from the shape of ��,in.

3.2.3. Application to the first method proposed. Finally, we will apply (22)–(25) to show that
condition (17) holds, and thus the method given by (12) and (13) is stable. Let us define the
bilinear forms

a0,0(uh,0,vh,0) := B(uh,0,vh,0)−k〈�nuh,0,vh,0〉�+k〈�nvh,0,uh,0〉�
a0,�(uh,�,vh,0) := B(uh,�,vh,0)−k〈�nuh,�,vh,0〉�+k〈�nvh,0,uh,�〉�

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

1388 R. CODINA AND J. BAIGES

a�,0(uh,0,vh,�) := 〈uh,0,uh,�〉�
a�,�(uh,�,vh,�) := 〈uh,�,uh,�〉�

and the norms

|||vh |||20 :=k‖∇vh‖2+s‖vh,0‖2, |||vh |||� :=‖vh‖L2(�)

As it has been mentioned in Section 2, we assume that the problem is diffusion dominated. More
precisely, if a=|a|, in what follows we assume that h is such that

k−C
ah

2

�22
�1

�Ckk, 0<Ck<1 (26)

for a constant C introduced next.
We have to check (17), and therefore we need to estimate the coercivity constants of a0,0 and

a�,� and the continuity constants of a0,� and a�,�. We have

a0,0(uh,0,uh,0) = B(uh,0,uh,0)

= k‖∇uh,0‖2+s‖uh,0‖2+(a ·∇uh,0,uh,0)

= k‖∇uh,0‖2+s‖uh,0‖2+
∫

�
n·a1

2
u2h,0

� k‖∇uh,0‖2+s‖uh,0‖2− a

2
‖uh,0‖2L2(�)

� k‖∇uh,0‖2+s‖uh,0‖2−C
ah

2

�22
�1

‖∇uh,0‖2 (by (24))

�Ck |||uh,0|||20
and therefore the coercivity constant of a0,0 may be taken as

C0,0=Ck

On the other hand, we have

a�,�(uh,�,uh,�)=‖uh,�‖2L2(�)
=|||uh,�|||2�

and hence

C�,� =1

The continuity constant of a0,� is obtained from the following bounding process:

a0,�(uh,�,vh,0) = k(∇uh,�,∇vh,0)+〈a·nuh,�,vh,0〉�
−(uh,�,a ·∇vh,0)+s(uh,�,vh,0)

−k〈�nuh,�,vh,0〉�+k〈�nvh,0,uh,�〉�

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1389

� k‖∇uh,�‖‖∇vh,0‖+a‖uh,�‖L2(�)‖vh,0‖L2(�)

+a‖uh,�‖‖∇vh,0‖+s‖uh,�‖‖vh,0‖
+k‖�nuh,�‖L2(�)‖vh,0‖L2(�)+k‖�nvh,0‖L2(�)‖uh,�‖L2(�)

� k
C

�1/21 h1/2
‖uh,�‖L2(�)‖∇vh,0‖ (by (23))

+a‖uh,�‖L2(�)

Ch1/2�2

�1/21

‖∇vh,0‖ (by (24))

+aC�1/21 h1/2‖uh,�‖L2(�)‖∇vh,0‖ (by (22))

+sC�1/21 h1/2‖uh,�‖L2(�)‖vh,0‖ (by (22))

+k
C

�1h
‖uh,�‖L2(�)

�2h1/2

�1/21

‖∇vh,0‖ (by (23)–(25))

+k
C

�1/21 h1/2
‖∇vh,0‖‖uh,�‖L2(�) (by (25))

This inequality can be written as

a0,�(uh,�,vh,0)�CK (k‖∇vh‖2+s‖vh,0‖2)1/2‖uh‖L2(�) (27)

with

K := k1/2

�1/21 h1/2
+ ah�2

k1/2h1/2�1/21

+ ah�1/21

k1/2h1/2
+�1/21 h1/2s1/2+ k1/2�2

�3/21 h1/2
+ k1/2

�1/21 h1/2

Using (26) and the fact that 0<�1, �2<1, from (27) we see that we may take the continuity constant
of a0,� as

C0,� =C
k1/2

h1/2�3/21

(
1+ s1/2h

k1/2

)

The bound for a�,0 is easily obtained using (24)

a�,0(uh,0,vh,�) � ‖uh,0‖L2(�)‖vh,�‖L2(�)

� C�2h1/2

�1/21

‖vh,�‖L2(�)‖∇uh,0‖

from where

C�,0=C
�2h1/2

�1/21 k1/2

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

1390 R. CODINA AND J. BAIGES

We are now in a position to check condition (17) in our case, which reads

C0,�C�,0=C
�2

�21

(
1+ s1/2h

k1/2

)
<C0,0C�,� =Ck (28)

This inequality is satisfied provided �2 is small enough, that is to say, � is sufficiently close to ��h .
This is the result we wanted to prove, and which allows us to guarantee that problem (12)–(13) is
well posed in this situation.

In passing, condition (28) allows us to observe how stability deteriorates in terms of �1, and
also how the rate between reaction and diffusion effects, measured by sh2/k, affects stability.

3.3. Implementation aspects

The purpose of this subsection is to express in matrix form problem (12)–(13) and to discuss some
implementation aspects.

Suppose that the unknown uh is interpolated as

uh(x) =
nin∑
a=1

I ain(x)U
a
in+

nout∑
b=1

I bout(x)U
b
out

= Iin(x)Uin+Iout(x)Uout

where I ain(x) and I bout(x) are the standard interpolation functions, nin is the number of nodes in �in
(including layer L0) and nout the number of nodes in layer L−1 (see Figure 1).

The objective is to compute Uout. As it has been shown, (13) is equivalent to the minimization
problem (14), that is to say, Uout can be computed by minimizing the functional

J2(Uin,Uout)=
∫

�
(uh(x)− ū(x))2=

∫
�
(Iin(x)Uin+Iout(x)Uout− ū(x))2

Obviously, other options would be possible. In the case we consider

�J2
�Uout

=0⇒M�Uout= f�−N�Uin (29)

where

M� =
∫

�
Itout(x)Iout(x), f� =

∫
�
Itout(x)ū(x), N� =

∫
�
Itout(x)Iin(x)

Suppose the matrix form of (12) is

Kin,inUin+Kin,outUout=Fin (30)

The domain integrals in matrices Kin,in and Kin,out extend only over �in. The nodal values Uout
are merely used as degrees of freedom to interpolate uh in the subdomain �in. Inserting (29) into
(30) results in

(Kin,in−Kin,outM
−1
� N�)Uin=Fin−Kin,outM

−1
� f� (31)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1391

This would be the system to solve. However, since matrix M� is not diagonal, this option is not
feasible unless implemented in an iterative scheme, for example of the form

Kin,inUk
in = Fin−Kin,outU

k−1
out (32)

M�U
k
out = f�−N�U

k
in (33)

where k is the iteration counter.
The most natural option is to solve problem (12)–(13), whose matrix counterpart is (30) and

(29), in a coupled way: [
Kin,in Kin,out

N� M�

][
Uin

Uout

]
=
[
Fin

f�

]
(34)

It is important to note that this implementation maintains the connectivity of the mesh of �h , that
is to say, the mesh of �in extended with the nodes of �out corresponding to elements cut by �.

Even though system (34) does not offer particular implementation problems, it could be inter-
esting to consider the possibility to obtain an approximation of the form (29) for Uout but replacing
M� by a diagonal matrix. The practical reason for this need is clear. For example, in a fluid–
structure interaction problem, in order not to duplicate degrees of freedom only nodal values
interior to the fluid and the solid can be used when solving the corresponding problem.

Let xbout be a node on �out corresponding to an element cut by �. Consider the edges emanating
from xbout cut by �, and let �b

out be the path (surface in 3D) formed by the intersection of these
edges with �. These intersections are denoted by x� with a superscript. In the case of Figure 1,
we would have that

�1
out is the path formed by x1�−x2�

�2
out is the path formed by x3�−x4�

�3
out is just x5�

�4
out is the path formed by x6�−x7�

�5
out is the path formed by x8�−x9�−x10� −x11�

When the path is just a point we can compute Ub
out by imposing the boundary condition at that

point. In the rest of cases, on each path we have that

uh(x)|�b
out

= I bout(x)U
b
out+Iin(x)Uin

The idea now is to impose that

�
�Ub

out

∫
�b
out

(uh(x)− ū(x))2=0

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

1392 R. CODINA AND J. BAIGES

which yields the scalar equation

(∫
�b
out

I bout(x)I
b
out(x)

)
Ub
out=

∫
�b
out

I bout(x)ū(x)−
∫

�b
out

I bout(x)Iin(x)Uin

and we can proceed as above, now with a diagonal approximation to M�.
Considering again the situation in Figure 1, it can be seen that with the approximation described

we could easily implement (31) if the connectivities were not modified by the approximate impo-
sition of boundary conditions. In the case of paths of one or two nodes, that is the case, and
(31) could be constructed by trivial modifications of the element matrices. However, the situa-
tion becomes more involved because of the path formed by x8�−x9�−x10� −x11� . The minimization
proposed would lead to the coupling of nodes x4in, x

5
in, x

6
in and x7in in layer L0.

A possibility to avoid the complication described would be to consider only elemental paths.
In the case of Figure 1 that would mean to consider only paths of two nodes. Possible ways to
choose this path are

• The longest among the two-node subpaths.
• The closest to the geometric center of the global path.

The first option has been used in a numerical example of Section 5.

4. SECOND APPROACH: USING INTERNAL DEGREES OF FREEDOM

The method described in the previous section works very well if � is not too close to ��in. When
this happens, the method becomes unstable and remedies have to be devised. Let us mention,
however, that this instability is not particularly strong. In numerical experiments it has manifested
as a difficulty for convergence in non-linear problems (the Navier–Stokes equations in our case)
and local spurious peaks close to boundaries for the values of Uout with small influence on the
values of Uin. In the case of moving boundaries this closeness of � to ��in must be accounted for.
A possibility is to use the method described next, although a simpler option could be to change
the position of the mesh nodes in an arbitrary Lagrangian–Eulerian framework (see [2] for further
details).

4.1. Description of the method

The idea of the method described in this section is to impose the satisfaction of the differential
equation in the nodes interior to �in, and to use the nodes of ��in to prescribe the boundary
conditions on �. Let us elaborate this idea.

Let us consider again (5), which is the weak form of the differential equation to be solved tested
with vh,0. The space Vh,0 where this function belongs may be split as Vh,0=Vh,1⊕Vh,00, where
Vh,1 is the subspace of Vh,0 of functions vanishing on ��in (at nodes of layer L0 in Figure 1) and
Vh,00 the complement, that is, the subspace of functions that are zero at the interior nodes of �in.
According to this splitting, we may split the unknown as uh,0=uh,1+uh,00 and the test functions
as vh,0=vh,1+vh,00.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1393

Equation (5) can be split as

B(uh,1,vh,1)+B(uh,00,vh,1) = 〈 f,vh,1〉� (35)

B(uh,1,vh,00)+B(uh,00,vh,00)−k〈�nuh,00,vh,00〉�−k〈�nuh,�,vh,00〉� = 〈 f,vh,00〉� (36)

Recall that integrals are performed over �, although the integrals in (35) are extended only over
�in because this is the support of vh,1. The idea now is to keep (35) and to replace (36) by an
approximate prescription of the boundary conditions. In order to use only degrees of freedom of
nodes in �in, let E be the extrapolation operator of functions defined on the elements with an edge
in 2D or face in 3D on ��in to ��,in. The boundary conditions will be approximately imposed by
minimizing the functional J ′

2(uh,1,uh,00)=‖Euh,1+Euh,00− ū‖2
L2(�)

, that is, by imposing that

�(0,vh,00) J
′
2(uh,1,uh,00)=0 (37)

Equations (35) and (37) form the system of equations of the method we propose, which reads:
find uh1∈Vh,1 and uh,00∈Vh,00 such that

B(uh,1,vh,1)+B(uh,00,vh,1) = 〈 f,vh,1〉� (38)

〈Euh,1,Evh,00〉�+〈Euh,00,Evh,00〉� = 〈ū,Evh,00〉� (39)

for all vh,1∈Vh,1 and vh,00∈Vh,00, where now functions in this last space are defined only on �in
and extrapolated to ��,in.

The description of the method is complete up to the definition of the extrapolation operator. In
fact, the obvious choice is to extend the local polynomial expansion within the elements with an
edge in 2D or face in 3D on ��in to ��,in. Thus, what needs to be defined is only the domain of
the extrapolation. The option we use is described in the following subsection.

A comparison between methods (12) and (13) and (38) and (39) in a 1-D case using linear
elements is shown in Figure 2. In this case it is possible to satisfy exactly the boundary condition
uh=ū.

Figure 2. Comparison between methods (12) and (13) (top) and (38) and (39) (bottom) in a 1D case. The
dark line denotes the solution computed in both cases.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

1394 R. CODINA AND J. BAIGES

Figure 3. Domain of extrapolation in a 2D example.

Comparing the method proposed in this section with (12) and (13), some remarks need to be
made:

• No boundary integrals have to be computed in (38). This is a clear advantage over (12).
• The instability detected for the first method when � approaches ��in does not appear in this

second modification. In fact, the solution is exact when �=��in (if ū is a finite element
function).

• From the numerical experiments to be presented in Section 5 it is concluded that method (12)
and (13) is more accurate than method (38) and (39). However, they have the same order of
convergence (two when using linear elements).

4.2. Implementation aspects

The first point to consider is the extrapolation region of the operator E . There are several possibil-
ities, but the one we have found most accurate is the following. Let K be an element with an edge
(in 2D) or face (in 3D) F on ��in. Let K� be the cylinder obtained from projecting F onto � in
an orthogonal way. Then, E is defined as the extension from functions defined on K to functions
defined on K ∪K�. The extrapolation regions obtained this way in 2D using triangular elements
are shown in Figure 3.

Suppose now that in �in the unknown uh is interpolated as

uh(x) =
n1∑
a=1

I a1 (x)Ua
1 +

n00∑
b=1

I b00(x)U
b
00

= I1(x)U1+I00(x)U00

where I a1 (x) and I b00(x) are the standard interpolation functions, n1 is the number of nodes interior
to �in (up to layer L1) and n00 the number of nodes in layer L0 (see Figure 3).

The objective is to compute U00. Equation (39) is equivalent to the minimization problem (37),
that is to say, U00 can be computed by minimizing the functional

J ′
2(U1,U00)=

∫
�
(Euh(x)− ū(x))2=

∫
�
(EI1(x)U1+EI00(x)U00− ū(x))2

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1395

which leads to

�J ′
2

�U00
=0⇒M00U00= f00−N00U1 (40)

where

M00=
∫

�
EIt00(x)EI00(x), f00=

∫
�
EIt00(x)ū(x), N00=

∫
�
EIt00(x)EI1(x)

Suppose the matrix form of (38) is

K1,1U1+K1,00U00=F1

Combining this with (40) it turns out that the final system to be solved is[
K1,1 K1,00

N00 M00

][
U1

U00

]
=
[
F1

f00

]
(41)

4.3. Blending

Let us write problem (34) of the previous section as⎡
⎢⎣
K1,1 K1,00 0

K00,1 K00,00 K00,out

0 N�,00 M�

⎤
⎥⎦
⎡
⎢⎣

U1

U00

Uout

⎤
⎥⎦=

⎡
⎢⎣
F1

F00

f�

⎤
⎥⎦ (42)

where the splitting of the matrices corresponds to the splitting of Uin into U1 and U00.
Problem (41) is obtained by considering the degrees of freedom of all nodes in layer L0 as

parameters to prescribe the boundary conditions, but of course the last equation in (42) can be
kept, in which case the system to be solved is⎡

⎢⎣
K1,1 K1,00 0

N00 M00 0

0 N�,00 M�

⎤
⎥⎦
⎡
⎢⎣

U1

U00

Uout

⎤
⎥⎦=

⎡
⎢⎣
F1

f00

f�

⎤
⎥⎦ (43)

Clearly, Uout depends on U00, but not the other way around. If � is very close to ��in, the
coefficients in M� can be very small, but this does not affect the unknowns in the interior of the
computational domain and, in fact, M� can be replaced by any matrix without altering U1 and
U00.

As it has been mentioned and as it will be shown in Section 5, method (42) is more accurate than
method (43). In order to use (42) in all situations except when instability problems may appear,
we have implemented a blending of methods (42) and (43). The idea is simple. When a node in
layer L0 is detected to be very close to �, its degree of freedom is used to prescribe the boundary
conditions, that is to say, the row in the equation for U00 in (42) is replaced by the corresponding
row in (43). This strategy has proved robust and effective. Since usually only a few equations need
to be changed (in our case those for which the distance of a node in L0 to � is less than 0.1h),
the overall accuracy obtained is very close to that of method (42).

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

1396 R. CODINA AND J. BAIGES

5. NUMERICAL EXAMPLES

In this section we present the numerical results obtained with the two approximations of the
Dirichlet boundary conditions proposed. As it has been mentioned, we are interested in flow
problems, and in particular in situations in which the Galerkin formulation used heretofore may
be unstable. This is why we start this section presenting the stabilized formulation used in the
numerical examples.

5.1. Stabilized convection–diffusion–reaction and incompressible Navier–Stokes equations

It is well known that when the diffusion coefficient k in (1) is small, the Galerkin method fails
and stabilized finite element methods need to be used. It is not our purpose here to explain the
roots of the particular method we use (see for example [32]), but only to state it. The bottomline
is to replace the bilinear form B(uh,vh) and the linear form 〈 f,vh〉� in (4) by Bstab(uh,vh) and
〈 f,vh〉stab, respectively, given by

Bstab(uh,vh) = B(uh,vh)+∑
K

�K 〈−L∗vh,Luh〉K

= k(∇uh,∇vh)+(a ·∇uh,vh)+s(uh,vh)

+∑
K

�K 〈k�vh+a ·∇vh−svh,−k�uh+a ·∇uh+suh〉K

and

〈 f,vh〉stab = 〈 f,vh〉�+∑
K

�K 〈−L∗vh, f 〉K

= 〈 f,vh〉�+∑
K

�K 〈k�vh+a ·∇vh−svh, f 〉K

where the so-called stabilization parameter �K is given by

�K =
(
c1

k

h2
+c2

a

h
+s

)−1

In the numerical experiments presented below we have taken c1=4, c2=2. The relationship
between �K and the stabilization parameter of other formulations can be found in [33].

The other problem for which a numerical example is presented below is the incompressible
Navier–Stokes equations, which consist in finding a velocity field u and a pressure p such that

�tu+u·∇u−��u+∇ p = f

∇ ·u= 0

in � and for t>0, where f is the vector of body forces and � the kinematic viscosity. Appropriate
initial and boundary conditions have to be appended to this problem. They are described for the
particular example of the flow over a cylinder shown later.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1397

Except for the treatment of the Dirichlet boundary conditions for the velocity, which is similar to
the one described in detail for the scalar convection–diffusion–reaction equation, the space-discrete
problem we solve is

(�tuh,vh)+〈uh ·∇uh,vh〉�+�(∇uh,∇vh)−(ph,∇ ·uh)+(qh,∇ ·vh)
+∑

K
�K 〈��vh+uh ·∇vh+∇qh,�tuh−��uh+uh ·∇uh+∇ ph〉K

−〈f,vh〉�−∑
K

�K 〈��vh+uh ·∇vh+∇qh, f〉K =0

where vh is the velocity test function, qh the pressure test function and now the stabilization
parameter is computed as

�K =
(
c1

�

h2
+c2

|uh |K
h

)−1

where |uh |K is the mean velocity modulus in element K . Any finite difference scheme can be used
to approximate the time derivative �tuh . In particular, the second-order Crank–Nicolson scheme
has been used in the example of Section 5.3.

Details for the motivation of the formulation described and stability and convergence properties
can be found in [34]. The most salient property of the formulation is that equal velocity–pressure
interpolations can be used. In particular, linear velocities and linear pressures have been used
in the numerical example of Section 5.3 Note, however, that the pressure interpolation does not
affect the approximate imposition of Dirichlet boundary conditions, since these affect only the
velocity. Likewise, instabilities of the Galerkin method arising in convection-dominated flows are
prevented using the stabilized formulation presented. Let us note, however, that since the use of this
formulation changes consistently the forms involved in the problem, the methodology we propose
to impose boundary conditions is not affected. In the case of the convection–diffusion–reaction
equation, for example, (12) would change, but (13) would remain unaltered.

5.2. Results for the scalar convection–diffusion–reaction equation

In this subsection we illustrate the behavior of the proposed methods for the scalar convection-
diffusion–reaction equation. The Poisson, diffusion–reaction and convection–diffusion equations
are solved in a domain � enclosed in a circle of radius R<1. We choose the hold-all domain
B=(−1,1)×(−1,1), where a system of Cartesian coordinates (x, y) with its origin at the center
of the circle has been adopted. A structured mesh of right-angled linear triangular elements is
constructed in B, h being the length of the edges corresponding to the cathetus (see Figure 4).

5.2.1. The Poisson equation. Let us start solving the Poisson equation with k=1, a=0, s=0,
f =1 to check the performance and convergence of the proposed methods. Results are shown in
Figure 5 (top and bottom left). No significative difference between the fields uh obtained with the
different methods can be appreciated, even for the coarsest meshes.

The analytical solution for this case is known to be

u(x, y)= 1
4 (R

2−x2− y2)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

1398 R. CODINA AND J. BAIGES

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

x

y

Figure 4. Structured mesh and domains �in (light) and �� (dark).

0
0.5

1
0

0.5
1
0

0.05

0.1

0.15

0.2

0.25

0
0.5

1
0

0.5
1
0

0.05

0.1

0.15

0.2

0.25

0 0.5 1

0

0.05

0.1

0.15

0.2

0.25

0.3

x

u

M1
M1’

10 10 10
10

10

10

10

10

h

||e
||

M1
M1’
M2

M2

1

2

Figure 5. Comparison between the proposed methods. Top left: elevation uh for the Poisson equation
for M1. Top right: same for M2. Bottom left: cut along y=0 for the coarsest mesh used, with h= 2

25 .
Bottom right: convergence plot in L2(�) for methods M1, M1′ and M2.

Figure 5 (bottom right) shows the errors ‖u−uh‖L2(�) versus the element size h. As it can be
seen, both the first method described in Section 3 (labeled M1 in the following), and the second
one described in Section 4 (labeled M2) show quadratic convergence, although the error turns

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1399

10–6 10–6

10–5

10–5

10–4

10–4

10–3

10–3

10–3

10–2

10–2 10–1 10–3 10–2 10–1

h

||e
||

Nit. alpha = 1e2

Nit. alpha = 1e4

Nit. alpha = 1

M1

h

||e
||

M1

M2

Nit. alpha = 100

Figure 6. Comparison between M1, M2 and Nitsche’s method. Left: convergence plot in L2(�) for method
M1 and Nitsche’s method with different values of the parameter �. Right: convergence plot in L2(��)

for methods M1, M2 and Nitsche’s method with �=100.

Figure 7. Reaction-dominated case, exact integration. Elevation uh for M1 (top left) and M2 (top right).
Cut along y=0 for the coarsest used mesh (h= 2

25) (bottom).

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

1400 R. CODINA AND J. BAIGES

0
0.5

1
0

0.5
1
0

0.5

1

1.5

0
0.5

1
0

0.5

1
0

0.5

1

1.5

0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

x

u

M1
M2

Figure 8. Reaction-dominated case, nodal integration. Elevation uh for M1 (top left) and M2 (top right).
Cut along y=0 for the coarsest used mesh (h= 2

25) (bottom).

out to be smaller for the former. The modified version of M1 (referred to as M1′), which uses a
diagonal approximation of matrix M� computed by considering only the longest elemental paths
(see Section 3.3), shows no significative error increment with respect to M1.

In order to compare the performance of the methods proposed with Nitsche’s method, in Figure 6
(left) we have also plotted the convergence obtained using this method with three different choices
of the parameter � in (4) (taking k∗ =k), namely, �=100, which is approximately the optimal value
found from numerical experiments, �=1 and �=10000. It can be observed that the performance
of method M1 is superior to Nitsche’s method, even for its optimal case, and that this method is
sensitive to the choice of the parameter �. This is aggravated in problems with convection and/or
reaction, for which k∗ (or, alternatively, �) must be chosen in terms of the advection velocity and
the reaction coefficient. In Figure 6 (right) we have plotted convergence in L2(��), and therefore
the error is due only to the imposition of the boundary conditions. Nitsche’s method displays a
non-monotone behavior due to the way the elements cut the boundary of the domain for different
meshes. Again, methods M1 and M2 show a similar behavior when only the errors on the boundary
are taken into account.

5.2.2. Reaction–diffusion. When the reactive term s dominates over the diffusive one it is well
known that oscillations in the finite element approximated solution uh appear near the boundary

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1401

0

1

00.51
0

1

2

3

4

5

0
0.5

1

0
0.51

0

0.5

1

1.5

2

0
1

00.51
0

0.5

1

1.5

2

2.5

3

0 0.5 1

0

0.5

1

1.5

2

2.5

x

u

M1
M2
CD

Figure 9. Convection-dominated case. Elevation uh for M1 (top left), M2 (top right) and CD (bottom left).
Cut along y=0 for the coarsest used mesh (h= 2

25) (bottom right).

layer. It is thus convenient to check how do the proposed methods behave in the presence of this
Gibb’s phenomenon. Figure 7 shows uh for M1, M2 and the local remeshing strategy described
in Section 1, labeled CD in Figure 7. These results correspond to the reaction dominated case,
where k=10−5, a=0, s=1, f =1.

Although oscillations remain bounded close to the exact solution u both for M1 and M2, they
happen to be greater in the former than in the latter. Nevertheless, when compared with results
obtained with CD, oscillations in M1 are practically of the same magnitude as those obtained
for the classical method, while the solution for M2 clearly shows a reduction in the amount of
oscillation.

If nodal integration is used to compute the contribution of the reactive term to the resulting
system of equations, oscillations can be avoided, since the resulting matrix is of non-negative type,
and thus the discrete minimum principle is satisfied, that is to say, for f �0 the minimum of the
solution is attained at boundary nodes (this principle holds if and only if the discrete maximum
principle does, see e.g. [35]). In this case none of the two methods shows any oscillation (see
Figure 8), and the only difference between them is due to the fact that M2 uses only the degrees
of freedom corresponding to the nodes in the �in domain, while M1 incorporates also the nodes
corresponding to the �out domain (this is also the reason why M1 leads to a better approximation
to uh than M2).

5.2.3. Convection–diffusion. Figure 9 shows the behavior of methods M1 and M2 in the
convection-dominated case, where k=10−6, a=(1,0), s=0, f =1. The stabilized formulation

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

1402 R. CODINA AND J. BAIGES

Figure 10. Incompressible Navier–Stokes equations. Solution at t=200. Left: method M1, Right: method
M2. From the top to the bottom: velocity module, contours of velocity x-component, contours of velocity

y-component, pressure contours.

described in Subsection 5.1 has been used. Both methods M1 and M2 perform well, although again
oscillations are greater for M1. This time, however, oscillations for M1 are substantially greater
than those which appear when applying Dirichlet conditions in boundary fitting meshes CD,
with the local remeshing strategy described in Section 1. Again also, M2 shows less oscillations
than CD.

Despite the different behavior that both methods show in the boundary layer, the difference
between the two methods in the �in domain is practically negligible.

The local oscillations appearing in M1, altogether with the fact that the splitting of elements
in the �in domain can lead to an ill-conditioning of the resulting system of equations when �
is too close to ��in, can prevent convergence in non-linear problems. This is what motivates the
blending strategy proposed in Section 4.3.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1403

0 50 100 150 200 250
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

t

v y

M1

M2

Figure 11. Incompressible Navier–Stokes equations. Evolution of the y-velocity component
at point (10,4) for methods M1 and M2.

5.3. Results for the incompressible Navier–Stokes equations

In this subsection we analyze a numerical example involving the flow past a cylinder. Again the
formulation described in Section 5.1 has been used.

The hold-all domain is the rectangle B=[0,16]×[0,8], from which a cylinder of diameter
D=1 and centered at (4,4) is extracted. The velocity at x=0 is prescribed to (10,0), whereas
at y=0 and y=8 the y-velocity component is prescribed to 0 and the x-component is left free.
The outflow (where both the x- and y-components are free) is x=16. The Reynolds number is
100, based on the cylinder diameter and the prescribed inflow velocity. The finite element mesh
employed consists of 10 000 linear triangles. The Crank–Nicolson scheme has been used for the
time integration, with a time step size �t=1.

Velocity contours and pressure contours at t=200 obtained using methods M1 andM2 are shown
in Figure 10. The important issue is to observe that boundary conditions are well approximated
both using M1 and M2. The evolution of the y-velocity component at point (10,4) is shown in
Figure 11. It can be observed that both methods yield a similar amplitude, the frequency obtained
with method M2 being slightly smaller. The dimensionless period of the oscillations is found to
be T =6.11 for method M1 and T =6.5 with method M2. Consistently with the results for the
convection–diffusion–reaction equation, method M2 seems to behave always as more dissipative
than method M1.

6. CONCLUSIONS

In this paper we have proposed a way to prescribe approximately Dirichlet boundary conditions
for IBM. The main idea is to use as degrees of freedom for this imposition those associated to

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

1404 R. CODINA AND J. BAIGES

the nodes adjacent to the boundary of the computational domain. In a first approach, these nodes
are taken in the exterior of the domain, but this may yield instabilities (mild and unusual) that can
be overcome by using interior nodes and extrapolation. In any case, the degrees of freedom are
computed by minimizing the distance of the unknown to the boundary datum in the L2 norm of
the boundary.

The method proposed turns out to be accurate (second order for linear elements) and robust.
We have checked its numerical performance in a variety of situations in flow problems, paying
particular attention to problems that require stabilization.

From the implementation point of view, the method satisfies the main design condition of using
only the degrees of freedom of the mesh of �h . This is particularly important in the case of domains
with moving boundaries in which a single fixed mesh is used during the whole calculation, which
in fact is the motivation that led us to formulate the method proposed in this paper.

ACKNOWLEDGEMENTS

J. Baiges would like to acknowledge the support received from the Departament d’Universitats, Recerca
i Societat de la Informació of the Generalitat de Catalunya (Catalan Government).

REFERENCES

1. Houzeaux G, Codina R. A Chimera method based on a Dirichlet/Neumann (Robin) coupling for the Navier–Stokes
equations. Computer Methods in Applied Mechanics and Engineering 2003; 192:3343–3377.

2. Codina R, Houzeaux J, Coppola-Owen H, Baiges J. The fixed-mesh ALE approach for the numerical approximation
of flows in moving domains. Journal of Computational Physics 2009; 8:1591–1611.

3. Tezduyar TE. Finite element methods for flow problems with moving boundaries and interfaces. Archives of
Computational Methods in Engineering 2001; 8(2):83–130.

4. Mittal R, Iaccarino G. Immersed boundary methods. Annual Review of Fluid Mechanics 2005; 37:239–261.
5. Löhner R, Cebral JR, Camelli FF, Baum JD, Mestreau EL. Adaptive embedded/immersed unstructured grid

techniques. Archives of Computational Methods in Engineering 2007; 14:279–301.
6. Peskin CS. Flow patterns around heart valves: a numerical method. Journal of Computational Physics 1972;

10:252–271.
7. Lai M-C, Peskin CS. An immersed boundary method with formal second-order accuracy and reduced numerical

viscosity. Journal of Computational Physics 2000; 160:705–719.
8. LeVeque RJ, Li Z. The immersed interface method for elliptic equations with discontinuous coefficients and

singular sources. SIAM Journal on Numerical Analysis 1994; 31(4):1019–1044.
9. LeVeque RJ, Li Z. Immersed interface method for incompressible Navier–Stokes equations. SIAM Journal on

Scientific and Statistical Computing 1997; 18(3):709–735.
10. Xu S, Wang ZJ. An immersed interface method for simulating the interaction of a fluid with moving boundaries.

Journal of Computational Physics 2006; 216:454–493.
11. Babuska I. Error bounds for finite element method. Numerische Mathematik 1971; 16:322–333.
12. Dolbow J, Mourad HM, Harari I. A bubble-stabilized finite element method for Dirichlet constraints on embedded

interfaces. International Journal for Numerical Methods in Engineering 2007; 69:772–793.
13. Barbosa HJC, Hughes TJR. The finite element method with Lagrangian multipliers on the boundary: circumventing

the Babuška–Brezzi condition. Computer Methods in Applied Mechanics and Engineering 1991; 85:109–128.
14. Ji H, Dolbow JE. On strategies for enforcing interfacial constraints and evaluating jump conditions with the

extended finite element method. International Journal for Numerical Methods in Engineering 2004; 61:2508–2535.
15. Glowinski R, Pan TW, Périaux J. A fictitious domain method for Dirichlet problems and applications. Computer

Methods in Applied Mechanics and Engineering 1994; 111:203–303.
16. Glowinski R, Pan TW, Hesla TI, Joseph DD, Périaux J. A distributed Lagrange multiplier/fictitious domain

method for flows around moving rigid bodies: application to particulate flow. International Journal for Numerical
Methods in Fluids 1999; 30:1043–1066.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

APPROXIMATE IMPOSITION OF BCS IN IB METHODS 1405

17. Glowinski R. Finite element methods for incompressible viscous flows. Numerical Methods for Fluids (Part 3),
Handbook of Numerical Analysis, vol. 9. Elsevier: Amsterdam, 2003.

18. Gilmanov A, Sotiropoulos F. A hybrid Cartesian/immersed boundary method for simulating flows with 3D,
geometrically complex, moving bodies. Journal of Computational Physics 2005; 207:457–492.

19. Ferziger JH, Tseng YH. A ghost-cell immersed boundary method for flow in complex geometry. Journal of
Computational Physics 2003; 192:593–623.

20. Mohd-Yusof J. Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries.
CTR Annual Research Briefs, Stanford University, NASA Ames, 1997.

21. Lew AJ, Buscaglia GC. A discontinuous-Galerkin-based immersed boundary method. submitted for publication.
22. Brenner SC, Scott LR. The Mathematical Theory of Finite Element Methods. Springer: Berlin, 1994.
23. Ern A, Guermond J-L. Theory and Practice of Finite Elements. Springer: Berlin, 2004.
24. Juntunen M, Stenberg R. Nitsche’s method for general boundary conditions. Research Reports A530, Helsinki

University of Technology, Institute of Mathematics, 2007.
25. Arnold DN. An interior penalty finite element method with discontinuous elements. SIAM Journal on Numerical

Analysis 1982; 19:742–760.
26. Hansbo P, Larson MG. Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity

by Nitsche’s method. Computer Methods in Applied Mechanics and Engineering 2002; 191:1895–1908.
27. Becker R, Hansbo P, Stenberg R. A finite element method for domain decomposition with non-matching grids.

Mathematical Modelling and Numerical Analysis 2003; 37:209–225.
28. Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsche’s method, for elliptic interface

problems. Computer Methods in Applied Mechanics and Engineering 2002; 191:5537–5552.
29. Burman E, Fernández MA, Hansbo P. Continuous interior penalty finite element method for Oseen’s equations.

SIAM Journal on Numerical Analysis 2006; 44:1248–1274.
30. Coppola-Owen H, Codina R. A finite element model for free surface flows on fixed meshes. International Journal

for Numerical Methods in Fluids 2007; 54:1151–1171.
31. Durbin P, Majumdar S, Iaccarino G. RANS solvers with adaptive structured boundary non-conforming grids.

Annual Research Briefs, NASA Ames Research Center/Stanford University Center for Turbulence Research,
Stanford, CA, 2001; 353–366.

32. Codina R. Comparison of some finite element methods for solving the diffusion–convection–reaction equation.
Computer Methods in Applied Mechanics and Engineering 1998; 156:185–210.

33. Codina R, Zienkiewicz OC. CBS versus GLS stabilization of the incompressible Navier–Stokes equations and
the role of the time step as stabilization parameter. Communications in Numerical Methods in Engineering 2002;
18:99–112.

34. Codina R. A stabilized finite element method for generalized stationary incompressible flows. Computer Methods
in Applied Mechanics and Engineering 2001; 190:2681–2706.

35. Codina R. A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection–
diffusion equation. Computer Methods in Applied Mechanics and Engineering 1993; 110:325–342.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1379–1405
DOI: 10.1002/nme

