Recent years have seen a proliferation of complex Advanced Driver Assistance Systems (ADAS), in particular, for use in autonomous cars. These systems consist of sensors and cameras as well as image processing and decision support software components. They are meant to help drivers by providing proper warnings or by preventing dangerous situations. In this paper, we focus on the problem of design time testing of ADAS in a simulated environment. We provide a testing approach for ADAS by combining multi- objective search with surrogate models developed based on neural networks. We use multi-objective search to guide testing towards the most critical behaviors of ADAS. Surrogate modeling enables our testing approach to explore a larger part of the input search space within limited computational resources. We characterize the condition under which the multi-objective search algorithm behaves the same with and without surrogate modeling, thus showing the accuracy of our approach. We evaluate our approach by applying it to an industrial ADAS system. Our experiment shows that our approach automatically identifies test cases indicating critical ADAS behaviors. Further, we show that combining our search algorithm with surrogate modeling improves the quality of the generated test cases, especially under tight and realistic computational resources.

Original document

The different versions of the original document can be found in:

http://doi.acm.org/10.1145/2970276.2970311 under the license cc-by-nc-sa
under the license http://www.acm.org/publications/policies/copyright_policy#Background
Back to Top

Document information

Published on 01/01/2016

Volume 2016, 2016
DOI: 10.1145/2970276.2970311
Licence: Other

Document Score


Views 1
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?