We design stabilized methods based on the variational multiscale decomposition of Darcy's problem. A model for the subscales is designed by using a heuristic Fourier analysis. This model involves a characteristic length scale, that can go from the element size to the diameter of the domain, leading to stabilized methods with different stability and convergence properties. These stabilized methods mimic different possible functional settings of the continuous problem. The optimal method depends on the velocity and pressure approximation order. They also involve a subgrid projector that can be either the identity (when applied to finite element residuals) or can have an image orthogonal to the finite element space. In particular, we have designed a new stabilized method that allows the use of piecewise constant pressures. We consider a general setting in which velocity and pressure can be approximated by either continuous or discontinuous approximations. All these methods have been analyzed, proving stability and convergence results. In some cases, duality arguments have been used to obtain error bounds in the $L^{2}-norm$.

B. Trinh, K. Hackl. Performance of mixed and enhanced finite elements for strain localization in hypoplasticity. Int. J. Numer. Anal. Meth. Geomech. 36(9) (2011) DOI 10.1002/nag.1042

T. Barrios, R. Bustinza. An a posteriori error analysis of an augmented discontinuous Galerkin formulation for Darcy flow. Numer. Math. 120(2) (2011) DOI 10.1007/s00211-011-0410-3

J. Bruchon, D. Pino Muñoz. Finite Element Approach to the Sintering Process at the Grain Scale. (2014) DOI 10.1002/9781118578759.ch5

S. Drapier. Fluid/Solid/Porous Multiphysics Couplings for Modeling Infusion-Based Processing of Polymer Composites. (2014) DOI 10.1002/9781118578759.ch8

D. Pino Muñoz, J. Bruchon, S. Drapier, F. Valdivieso. A finite element-based level set method for fluid-elastic solid interaction with surface tension. Int. J. Numer. Meth. Engng 93(9) (2012) DOI 10.1002/nme.4415

E. Hachem, S. Feghali, R. Codina, T. Coupez. Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation. Int. J. Numer. Meth. Engng 94(9) (2013) DOI 10.1002/nme.4481

R. Codina, J. Baiges. Weak imposition of essential boundary conditions in the finite element approximation of elliptic problems with non-matching meshes. Int. J. Numer. Meth. Engng 104(7) (2014) DOI 10.1002/nme.4815

E. Hachem, S. Feghali, T. Coupez, R. Codina. A three-field stabilized finite element method for fluid-structure interaction: elastic solid and rigid body limit. Int. J. Numer. Meth. Engng 104(7) (2015) DOI 10.1002/nme.4972

S. Badia, R. Codina, H. Espinoza. Stability, Convergence, and Accuracy of Stabilized Finite Element Methods for the Wave Equation in Mixed Form. SIAM J. Numer. Anal. 52(4) DOI 10.1137/130918708

M. Cervera, M. Chiumenti, R. Codina. Mesh objective modeling of cracks using continuous linear strain and displacement interpolations. Int. J. Numer. Meth. Engng. 87(10) (2011) DOI 10.1002/nme.3148

L. Abouorm, M. Blais, N. Moulin, J. Bruchon, S. Drapier. A Robust Monolithic Approach for Resin Infusion Based Process Modelling. KEM 611-612 (2014) DOI 10.4028/www.scientific.net/kem.611-612.306

A. Rauch, A. Vuong, L. Yoshihara, W. Wall. A coupled approach for fluid saturated poroelastic media and immersed solids for modeling cell-tissue interactions. Int J Numer Meth Biomed Engng 34(11) (2018) DOI 10.1002/cnm.3139

L. Abouorm, N. Moulin, J. Bruchon, S. Drapier. Monolithic Approach of Stokes-Darcy Coupling for LCM Process Modelling. KEM 554-557 (2013) DOI 10.4028/www.scientific.net/kem.554-557.447

K. Andriamananjara, L. Chevalier, N. Moulin, J. Bruchon, P. Liotier, S. Drapier. Numerical approach for modelling across scales infusion-based processing of aircraft primary structures. DOI 10.1063/1.5007998

M. Blais, N. Moulin, P. Liotier, S. Drapier. Resin infusion-based processes simulation : coupled Stokes-Darcy flows in orthotropic preforms undergoing finite strain. Int J Mater Form 10(1) (2015) DOI 10.1007/s12289-015-1259-2

K. Andriamananjara, N. Moulin, J. Bruchon, P. Liotier, S. Drapier. Numerical modeling of local capillary effects in porous media as a pressure discontinuity acting on the interface of a transient bi-fluid flow. Int J Mater Form 12(4) (2018) DOI 10.1007/s12289-018-1442-3

S. Feghali, E. Hachem, T. Coupez. Monolithic stabilized finite element method for rigid body motions in the incompressible Navier-Stokes flow. European Journal of Computational Mechanics 19(5-7) (2012) DOI 10.3166/ejcm.19.547-573

D. Pino-Muñoz, J. Bruchon, S. Drapier, F. Valdivieso. Sintering at Particle Scale: An Eulerian Computing Framework to Deal with Strong Topological and Material Discontinuities. Arch Computat Methods Eng 21(2) (2014) DOI 10.1007/s11831-014-9101-4

L. Abouorm, R. Troian, S. Drapier, J. Bruchon, N. Moulin. Stokes–Darcy coupling in severe regimes using multiscale stabilisation for mixed finite elements: monolithic approach versus decoupled approach. European Journal of Computational Mechanics 23(3-4) (2014) DOI 10.1080/17797179.2014.882140