In this paper we analyze a stabilized finite element method to approximate the convection‐diffusion equation on moving domains using an arbitrary Lagrangian Eulerian (ALE) framework. As basic numerical strategy, we discretize the equation in time using first and second order backward differencing (BDF) schemes, whereas space is discretized using a stabilized finite element method (the orthogonal subgrid scale formulation) to deal with convection dominated flows. The semidiscrete problem (continuous in space) is first analyzed. In this situation it is easy to identify the error introduced by the ALE approach. After that, the fully discrete method is considered. We obtain optimal error estimates in both space and time in a mesh dependent norm. The analysis reveals that the ALE approach introduces an upper bound for the time step size for the results to hold. The results obtained for the fully discretized second order scheme (in time) are associated to a weaker norm than the one used for the first order method. Nevertheless, optimal convergence results have been proved. For fixed domains, we recover stability and convergence results with the strong norm for the second order scheme, stressing the aspects that make the analysis of this method much more involved.

J. Baiges, R. Codina, H. Coppola-Owen. The Fixed-Mesh ALE approach for the numerical simulation of floating solids. Int. J. Numer. Meth. Fluids 67(8) (2010) DOI 10.1002/fld.2403

E. Hachem, T. Kloczko, H. Digonnet, T. Coupez. Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method. Int. J. Numer. Meth. Fluids 68(1) (2010) DOI 10.1002/fld.2498

J. Sari, F. Cremonesi, M. Khalloufi, F. Cauneau, P. Meliga, Y. Mesri, E. Hachem. Anisotropic adaptive stabilized finite element solver for RANS models. Int J Numer Meth Fluids 86(11) (2017) DOI 10.1002/fld.4475

A. Bonito, I. Kyza, R. Nochetto. Time-discrete higher order ALE formulations: a priori error analysis. Numer. Math. 125(2) (2013) DOI 10.1007/s00211-013-0539-3

A. Bonito, I. Kyza, R. Nochetto. A dG Approach to Higher Order ALE Formulations in Time. (2013) DOI 10.1007/978-3-319-01818-8_10

P. Bochev, K. Peterson. A parameter-free stabilized finite element method for scalar advection-diffusion problems. 11(8) DOI 10.2478/s11533-013-0250-8

Q. Wang, S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang, T. Jung, J. Schröter. The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model. Geosci. Model Dev. 7(2) (2014) DOI 10.5194/gmd-7-663-2014

G. Zhang, J. Yang, C. Bi. Second order unconditionally convergent and energy stable linearized scheme for MHD equations. Adv Comput Math 44(2) (2017) DOI 10.1007/s10444-017-9552-x

A. Bonito, I. Kyza, R. Nochetto. Time-Discrete Higher-Order ALE Formulations: Stability. SIAM J. Numer. Anal. 51(1) DOI 10.1137/120862715

S. Badia, R. Codina, H. Espinoza. Stability, Convergence, and Accuracy of Stabilized Finite Element Methods for the Wave Equation in Mixed Form. SIAM J. Numer. Anal. 52(4) DOI 10.1137/130918708

H. Chen, J. Li, W. Qiu. Robusta posteriorierror estimates for HDG method for convection–diffusion equations. IMA J Numer Anal (2015) DOI 10.1093/imanum/drv009

S. Badia, R. Codina. On some fluid–structure iterative algorithms using pressure segregation methods. Application to aeroelasticity. Int. J. Numer. Meth. Engng 72(1) (2007) DOI 10.1002/nme.1998

E. Hachem, H. Digonnet, E. Massoni, T. Coupez. Immersed volume method for solving natural convection, conduction and radiation of a hat‐shaped disk inside a 3D enclosure. Int Jnl of Num Meth for HFF 22(6) DOI 10.1108/09615531211244871

M. Balázsová, M. Feistauer, M. Vlasák. Stability of the ale space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains. ESAIM: M2AN 52(6) (2019) DOI 10.1051/m2an/2018062

H. Lee. Numerical approximation of Quasi-Newtonian flows by ALE-FEM. Numer. Methods Partial Differential Eq. 28(5) (2011) DOI 10.1002/num.20698

R. Codina. Finite Element Approximation of the Convection-Diffusion Equation: Subgrid-Scale Spaces, Local Instabilities and Anisotropic Space-Time Discretizations. (2011) DOI 10.1007/978-3-642-19665-2_10