We consider a hybrid approach for the approximation of the solution to parametric partial differential equations based on finite elements and deep neural networks. Finite element simulations with adaptive mesh refinement are used to generate input data for the training of a neural network. A deep feedforward neural network is then used to approximate the solution of the partial differential equation. We aim at balancing the numerical errors introduced by the finite element method and the neural network approximation respectively. Numerical results are presented for the transport equation.

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 24/05/23
Submitted on 24/05/23

Licence: CC BY-NC-SA license

Document Score


Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?