Open Access Repository of the FIBRESHIP project (2020). 10
Abstract
In the marine industry, Fibre-reinforced polymers (FRP) are currently dominating the manufacture of vessels up to 50m in length, with liquid resin infusion (LRI) being the most frequently used manufacturing technique, of which vacuum-assisted liquid resin infusion is the most widely adopted LRI variant. However, current regulations restrict the use of composite materials in vessels over 50m in length. FIBRESHIP is a Horizon 2020 funded EU project that aims to further the use of FRPs in vessels over 50m in length by addressing the regulatory restrictions and the numerous other challenges associated with manufacturing long-length FRP composite ships. The mechanical performance of new commercially available composite material constituents as potential candidates for selection in composite ship construction is central to this work. This paper provides an overview of selected work performed as part of the FIBRESHIP project in terms of evaluating various mechanical properties of selected laminates under dry and wet conditions. The laminates were immersed in seawater at 35°C for durations of one to three months. Three-point bend and interlaminar shear strength tests were undertaken in order to investigate the change in the mechanical properties of composite laminates subject to immersion. Finally, tested specimens were observed using micro-computed tomography (μCT) to evaluate the failure morphology.
Abstract In the marine industry, Fibre-reinforced polymers (FRP) are currently dominating the manufacture of vessels up to 50m in length, with liquid resin infusion (LRI) being the [...]