m (Move page script moved page Kristoffersen et al 1970a to Kristoffersen et al 2022a)
 
(3 intermediate revisions by one other user not shown)
Line 3: Line 3:
  
 
A 3D fluid-structure interaction (FSI) code is under development. The fluid domain (Navier-Stokes) solver will employ a sharp interface ghost node immersed boundary method (IBM) to apply the boundary conditions at fluid-solid interfaces. The Navier-Stokes (N-S) solver has been verified using a classic Poiseuille channel flow. The current version of the immersed boundary method is being tested by solving a heat conduction problem. The order of accuracy of the IBM was shown to be just above second order.
 
A 3D fluid-structure interaction (FSI) code is under development. The fluid domain (Navier-Stokes) solver will employ a sharp interface ghost node immersed boundary method (IBM) to apply the boundary conditions at fluid-solid interfaces. The Navier-Stokes (N-S) solver has been verified using a classic Poiseuille channel flow. The current version of the immersed boundary method is being tested by solving a heat conduction problem. The order of accuracy of the IBM was shown to be just above second order.
 +
 +
== Abstract ==
 +
<pdf>Media:Draft_Sanchez Pinedo_363010084538_abstract.pdf</pdf>
 +
 +
== Full Paper ==
 +
<pdf>Media:Draft_Sanchez Pinedo_363010084538_paper.pdf</pdf>

Latest revision as of 17:06, 25 November 2022

Summary

A 3D fluid-structure interaction (FSI) code is under development. The fluid domain (Navier-Stokes) solver will employ a sharp interface ghost node immersed boundary method (IBM) to apply the boundary conditions at fluid-solid interfaces. The Navier-Stokes (N-S) solver has been verified using a classic Poiseuille channel flow. The current version of the immersed boundary method is being tested by solving a heat conduction problem. The order of accuracy of the IBM was shown to be just above second order.

Abstract

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Computational Fluid Dynamics, 2022
DOI: 10.23967/eccomas.2022.199
Licence: CC BY-NC-SA license

Document Score

0

Views 12
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?