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Abstract. A 3D fluid-structure interaction (FSI) code is under development. The fluid domain
(Navier-Stokes) solver will employ a sharp interface ghost node immersed boundary method
(IBM) to apply the boundary conditions at fluid-solid interfaces. The Navier-Stokes (N-S) solver
has been verified using a classic Poiseuille channel flow. The current version of the immersed
boundary method is being tested by solving a heat conduction problem. The order of accuracy
of the IBM was shown to be just above second order.

1 INTRODUCTION

Obstructive sleep apnea (OSA) is a sleep related breathing disorder which involves collapses of
the pharyngeal airways that can partially or fully obstruct breathing during sleep [1]. For many
OSA patients the treatment involves surgery, of which the outcome has proven hard to predict.
Computational fluid mechanics (CFD) has been proposed [2, 3] as a tool to aid in predicting
whether an OSA patient will benefit from surgery. The human respiratory flow is generally
bounded by deformable soft tissue. Thus, this flow problem should be solved as a fluid-structure
interaction (FSI) [4, 5, 6].

FSI solvers are often categorized as monolithic or partitioned. A partitioned approach utilizes
separate solvers for the domains. These need to communicate throughout the simulation. An
advantage of the partitioned approach is that we can use established solvers and numerical
methods.
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We can also distinguish between FSI solvers that employ body-fitted grids and those with
non-conforming grids. Non-conforming grid methods do not require re-meshing, which is a
costly process in terms of CPU time. Furthermore, the grid can be structured and Cartesian.
However, these methods need more sophisticated methods to apply BCs at boundaries that do
not coincide with the grid points or faces. Examples of non-conforming grid methods are cut-cell
methods and immersed boundary methods (IBM) [7, 8].

The first IBMs developed [9] have later been categorized as diffuse interface IBMs. Another
more recent approach is the sharp interface model [10, 11]. With this model, grid nodes that
lie in the solid domain, but close enough to the interface to be included by numerical stencils in
the fluid solver, are marked as ghost nodes.

This paper will focus on the fluid solver of a 3D FSI code that is currently under develop-
ment, and utilizes a ghost point IBM. First, the governing equations are outlined, including the
non-dimensionalizing and perturbation form. In Section 3, we give the spatial and temporal
discretizations. Additionally, the treatment of immersed boundary conditions will be explained
in Section 3.3. Next, two test cases will be introduced, namely 1) channel flow, which is one
of the cases that were used to verify the N-S solver, and 2) a heat conduction problem that
gives verification for the IBM without the complexity of fluid flow. The verification results are
presented and discussed in Section 5.

2 NAVIER-STOKES EQUATIONS FOR COMPRESSIBLE FLOW

The fluid domain of the FSI framework is governed by the Navier-Stokes equations for com-
pressible flow:

∂

∂t

 ρ
ρu
ρE

+∇ ·

 ρu
ρu⊗ u
ρHu

+ p

0
I
0

 = ∇ ·

 0
τ

τu + κ∇T
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where t is time, ρ is the mass density, ~u is the velocity, H = E + p
ρ is the total enthalpy, E is

the specific total energy, p is pressure, I is the identity matrix, ∇ is the nabla operator, κ is the
thermal conductivity, T is temperature and

τij = µ

[
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− 2

3
δij
∂uk
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]
(2)

are the components of the viscous stress tensor τ for a Newtonian fluid. Here, µ is the dynamic
viscosity and δij is the Kronecker delta.

The equations of state for perfect gas yield:

p = (γ − 1)
(
ρE − ρ

2
|~u|2
)

, (3)

where γ is the ratio of specific heats.
The transport properties µ and κ are modeled as functions of the temperature T only. The

viscosity is given by Sutherland’s law:

µ

µ0
=

(
T

T0

)1.5 1 + S
T
T0

+ S
, (4)
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where S is the Sutherland’s constant and µ0 and T0 are reference states for µ and T , respectively.
Assuming constant Prandtl number Pr, the thermal conductivity is given by

κ =
cp
Pr

µ . (5)

where cp is the specific heat capacity at constant pressure.
The compressible flow approach gives the possibility of investigating acoustic and thermal

effects.
The governing equations are non-dimensionalized as follows, where superscript ∗ denotes

non-dimensional values and subscript 0 denotes reference state:

t∗ = tc0
L , x∗ = x

L , y∗ = y
L , z∗ = z

L
ρ∗ = ρ

ρ0
, u∗ = u

c0
, v∗ = v

c0
, w∗ = w

c0

T ∗ = T
T0

, p∗ = p
ρ0c20

, E∗ = E
c20

, (ρE)∗ = ρE
ρ0c20

µ∗ = 1
Re0

µ
µ0

, κ∗ = 1
(γ−1)Pr0Re0

κ
κ0

,

(6)

where x, y and z are the spatial coordinates, u, v and w are the velocity components in the x, y
and z directions respectively. L is a length scale, Re0 = ρ0c0L/µ0 and c0 are the Reynolds
number and speed of sound of the reference state. Choosing these formulations, the non-
dimensionalized governing equations will get the same form as the dimensional ones. Thus,
the super-index ∗ is dropped from here on.

The Mach number is defined as Ma = |u|/c0. To minimize cancellation errors for low
Mach number flow, the perturbation formulation [12] is adopted. This means that we use the
flow variables’ perturbations around a reference state instead of the variables themselves. We
decompose the flow variables as

φ = φ0 + φ′ , (7)

where φ is any flow variable, φ0 denotes reference state and φ′ is the perturbation. This is
done for conserved variables and primitive variables, but not transport properties. Setting the
reference state of the velocity to zero, the governing equations retain their forms, except for the
convective flux in the energy equations, which is changed from ρH~u to ((ρH)0 + (ρH)′) ~u′.

3 NUMERICAL MODEL

3.1 Discretization in Space

The spatial discretization of the fluid domain is done by second order central difference operators.
Thus, first derivatives, e.g. in the continuity equation are approximated as

∂(ρu)

∂x
≈ (ρu)i+1 − (ρu)i−1

2∆x
. (8)

Mixed derivatives, as found in the viscous terms of the Navier-Stokes equation, are discretized
by applying the second order operator twice,

∂

∂y

[
µ
∂u

∂x

]
≈ 1

4∆x∆y
[µi,j+1(ui+1,j+1 − ui−1,j+1)− µi,j−1(ui+1,j−1 − ui−1,j−1)] . (9)
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In the case of repeated derivatives, applying the operator twice would result in a wider stencil.
Instead, the compact second derivative scheme is used, where the viscosity at the adjacent
midpoints are computed as averages,

∂

∂x

[
µ
∂u

∂x

]
≈ 1

2∆x2
[(µi+1 + µi)(ui+1 − ui)− (µi + µi−1)(ui − ui−1)] . (10)

The compact stencil Eq.(10) is also used for the thermal diffusion terms in the energy equation
and the heat equation. Besides being compact this discretization has the added benefit of better
damping of high wave number oscillations.

3.2 Discretization in Time

The spatial discretization of the Navier-Stokes equations for compressible flow Eq.(1) and of the
heat equation Eq.(25) in the interior of the domain leads to the system of ordinary differential
equations

dφnijk
dt

= R({φijk}n, t) . (11)

The temporal discretization is done using the fourth order explicit classical Runge-Kutta method
(RK4).

φn+1
ijk = φnijk +

∆tn

6

(
kn1,ijk + 2kn2,ijk + 2kn3,ijk + kn4,ijk

)
, (12)

where

kn1,ijk = R({φijk}n, tn) , (13)

kn2,ijk = R({φijk + ∆tn
k1,ijk

2
}n, tn +

∆tn

2
) , (14)

kn3,ijk = R({φijk + ∆tn
k2,ijk

2
}n, tn +

∆tn

2
) , (15)

kn4,ijk = R({φijk + ∆tn · k3,ijk}n, tn + ∆tn) . (16)

The time-step size ∆t is chosen as large as possible, without exceeding the stability criteria for
the heat conduction and channel flow cases (cf. Section 4), respectively:

∆theat eq. ≤
∆x2

6α
, ∆tN−S ≤ min{∆tCFL,∆tvisc} , (17)

∆tCFL = CCFL

(
|u|+ c

∆x
+
|v|+ c

∆y
+
|w|+ c

∆z

)−1
, (18)

∆tvisc =
CRK4

µ
ρmax{

4
3 ,

γ
Pr}

(
1

∆x2
+

1

∆y2
+

1

∆z2

)−1
, (19)

where α is thermal diffusivity and CCFL and CRK4 are constants.
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Figure 1: Sketch of ghost points (GP), body intercept (BI) points and image points (IP).

3.3 Boundary Conditions at Immersed Boundaries

Figure 1 shows how we classify the nodes and points close to an immersed boundary. The
term ghost node here refers to a node that is outside the fluid domain, but still included by the
numerical stencil in at least one fluid node. The procedure of approximating the flow variables
in the ghost nodes is as follows. A normal probe is extended from each ghost node to the
closest point on the interface, which we call the body intercept point. The same normal probe
is extended into the fluid domain to give the position of an image point. We can compute
flow variables at the image points by trilinear interpolation of surrounding fluid nodes. As the
figure shows, it is also possible to use values from the BC at the body intercept point in the
interpolation. The values in the ghost nodes can then be found based on the BC in the body
intercept points and the values in the image points.

For Dirichlet conditions, we use linear extrapolation from the image point to the ghost node,
meaning that the value at the body intercept point will be the average:

φBI =
φGP + φIP

2
⇐⇒ φGP = 2φBI − φIP . (20)

For Neumann conditions the slope will be the prescribed normal gradient:

φGP = φIP − 2|~n| · ∂φ
∂~n

, (21)

where ~n is the normal vector from a ghost point to the body intercept point, as seen in Figure 1,
and ∂φ

∂~n is the normal gradient in the direction of ~n.

4 TEST CASES

4.1 Poiseuille Channel Flow

The 3D Navier-Stokes solver was verified using a Poiseuille channel flow, illustrated in Figure 2.
The flow is bounded by two z-normal adiabatic walls, two y-normal artificial boundaries with
periodic BCs, and the inlet and outlet planes are normal to the x-axis. For incompressible flow,
this type of flow has a steady state 1D analytic solution,

5



Frederik Kristoffersen, Martin Larsson, Sverre Gullikstad Johnsen, Wolfgang Schröder and Bernhard
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Figure 2: Schematic diagram of the Poiseuille channel flow case.

u(z) =
1

2µ
· dp
dx

(z2 − Lzz) , (22)

which has the extremal value

umax = −L
2
z

8µ
· dp
dx

, (23)

where Lz is the domain size in the z direction, i.e. the channel height.
We used this analytic solution as reference, for low Mach number simulations. Additionally,

at the inlet boundary we give this parabola Eq.(22) as BC for the the velocity component u.
The other velocity components, v and w, and the temperature perturbation T were set to zero at
this boundary, i.e., the temperature at the inlet was set equal to the reference temperature. The
pressure perturbation p was linearly extrapolated from the interior. At the outlet the pressure
perturbation is kept at zero while mass density and the components of momentum density
ρu, ρv, ρw are linearly extrapolated from the interior. For the adiabatic walls, we apply no-slip
for the velocities and zero gradients for temperature and pressure. For periodic boundaries,
boundary nodes take the values from the boundary adjacent node at the opposite side of the
domain.

The initial condition (IC) is stagnation, with all flow variable perturbations at zero, except
for the transport properties. To get compatibility with the inlet BC, the parabolic profile for u
is ramped up linearly, from zero at t = 0 to the analytic solution Eq.(22) at t ≥ 5.

The Mach number in this case is defined with respect to the maximum velocity umax (23),
cf. Figure 2. With the non-dimensionalizing given in Eq.(6) we get simply Ma = umax. If we
non-dimensionalize Equation (23), we get

dp

dx
= −8Ma

Re0
, (24)

which is a practical expression for comparing the pressure variation to the analytic solution.

4.2 Heat Conduction Between Concentric Cylinders

The 3D IBM to be used with the Navier-Stokes solver has been verified by solving the 3D heat
equation,
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Figure 3: Schematic diagram of the heat conduction test case.

∂T

∂t
= α∇2T , (25)

until steady state, where α is the thermal diffusivity. In this test case the active domain is the
annular space between two concentric cylinder faces, as seen in Figure 3. The sketch shows that
the computational x-normal and y-normal domain boundaries are not in contact with the active
domain. At the z-normal boundaries we apply periodic BCs to model infinitely long cylinders.
Dirichlet conditions are prescribed at the cylinder shells, with constant temperatures Tinner and
Touter.

The steady state analytical solution is given by

T = A · ln(r) +B , (26)

B =
Touter · ln(rinner)− Tinner · ln(router)

ln( rinner
router

)
, (27)

A =
Tinner −B
ln(rinner)

, (28)

where r is the distance from the cylinder centroid, and rinner and router are the radii of the
cylinder shells.

5 RESULTS

5.1 Channel Flow Case

Results will be presented from three different simulations of the channel flow case. The changing
parameter is the Mach number, which was set to 0.01, 0.05 and 0.4. The remaining parameters
are listed in Table 1.

Figure 4 shows the velocity profiles at the inlet and outlet, using the different Mach numbers.
We can see that the velocity increases downstream. If the flow were incompressible, the velocity
would only depend on z, but in this compressible flow the negative pressure gradient dp/dx
causes a negative gradient for the mass density. With a lower density, the velocity at the outlet
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Table 1: Input parameters for the simulations of the channel flow case. L{x,y,z} are the non-
dimensional domain sizes. N{x,y,z} denote number of grid nodes in each direction.

γ Pr Re0 T0 Lx Ly Lz Nx Ny Nz

1.4 0.72 100 300 5 0.05 1 41 3 41

(a) Ma = 0.01 (b) Ma = 0.05 (c) Ma = 0.4

Figure 4: Velocity profiles as functions of z. The blue curves show the values at the inlet x = 0,
which is the analytic solution. The red curves are the profiles at the outlet x = Lx. There is no
variation in the y direction, y = Ly/2 for all the profiles.

needs to be larger to respect mass conservation. It is seen that the difference between the outlet
and inlet velocity profiles increases wit the Mach number, as expected. With the lowest Mach
number Ma = 0.01 (Figure 4a), the difference in the maximum velocity umax is only 0.6%.

In Figure 5 the pressure variation in the x direction is plotted. With the lower Mach numbers,
in figures 5a and 5b, the variation is linear, while Figure 5c displays a small negative curvature.
By using the analytic expression Eq.(24) we can find the theoretical pressures at the inlet to be

p(x=0; Ma=0.01) = 0.004
p(x=0; Ma=0.05) = 0.02
p(x=0; Ma=0.4) = 0.16

. (29)

For Ma = 0.01 (Figure 5a), the inlet pressure is only 0.3% higher than the analytic value.
To ensure that the numerical solution is converging, we check that the time derivatives of the

conserved variables are going towards zero. In the numerical model this is done by monitoring
the 2-norm of the difference between the two latest time levels:

‖φn+1 − φn‖2 =

√
∆x∆y∆z

∑
i,j,k

(φn+1
ijk − φnijk)2 . (30)

Figure 6 shows the development of these norms throughout the simulation with Ma = 0.05.
All the plots show the same trend: Oscillations while the flow is developing from the IC, and
then log-linear decrease until the simulation is stopped. As an additional measure to test for
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(a) Ma = 0.01 (b) Ma = 0.05 (c) Ma = 0.4

Figure 5: Pressure plotted over x. Values at y = Ly/2 and z = Lz/2. There is no variation in
y, and z variation is negligible.

Figure 6: Convergence plot for the channel flow with Ma = 0.05. Development of 2-norm of
change in conserved variables between time levels. Normalized by the norm of change from the
first time step. y momentum omitted, as it is constant zero.

convergence, the difference in mass flux between inlet and outlet was checked. Their relative
difference with respect to the inlet mass flux is only about 10−8.

5.2 Heat Conduction Case

The heat conduction test case was simulated six times, with increasing grid resolutions, Nx =
Ny ∈ {6, 11, 21, 41, 81, 161}, to check the rate of convergence for the method. Figure 7 shows
how much the error decreases as the mesh is refined. Apart from the coarsest mesh, with 6x6x3
nodes, the red curve indicates that the order of accuracy is a little above 2.

Figure 8a shows the numerical solution from the simulation with the finest mesh, which looks
exactly as expected, considering the analytical solution Eq.(26). The error distribution, shown
in Figure 8b, reveals an interesting phenomenon. At the inner boundary we see four regions
in the cardinal directions where the error is higher than the rest of the domain. Upon closer
inspection we observe that the error is highest around the nodes that lie closest to the immersed
boundary.

To investigate if the phenomenon is an artifact of the method or stems from the present
solver, the exact same test case was simulated using another solver code. The second code
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Figure 7: Rate of convergence plot. The error is the 2-norm of the difference between the
numerical and the analytical solution. N is the number of grid nodes in the x and y directions.

Table 2: Input parameters for the heat conduction case.

Tinner Touter rinner router κ

1 2 0.1999 0.4499 10−6

utilizes the same ghost point IBM, but solves the stationary heat equation directly [13]. The
solutions and error distributions are identical, with the largest appearing differences around
10−8, four orders of magnitude lower than the largest error values. The differences are caused
by the tolerance of the stopping criterion in the time stepping method to steady state. When
the stopping criterion is tightened, the differences get smaller. We therefore conclude that the
phenomenon is an artifact of the method.

Other authors have reported similar error hotspots near boundaries, but there has not been
much discussion about this in relation to ghost point IBMs. A possible explanation for the
artifact could be that when a fluid node is very close to the immersed boundary, the adjacent
ghost point will be relatively far away from the boundary. This also increases the distance
between the ghost point and image point, which in turn could introduce higher errors. However,
this does not explain why the errors are larger at the inner boundary than at the outer. Adjusting
the centroid and radii of the cylinders proved to have an effect on which of the error hotspots
that show up. Also, if the centroid is not located on a grid node, the symmetries in the error
distribution that we see in Figure 8b are naturally lost.

To ensure that the solution is converging, the 2-norm of the changes between time levels were
monitored and used as the stopping criterion for this test case. Figure 9 shows the development
of the norm through the simulation. It is clear that after an initial development we get log-linear
convergence until the simulation is stopped.

6 CONCLUSIONS

The Navier-Stokes solver for compressible flow using 2nd order central difference operators for
the spatial discretization and the classical explicit 4th order Runge-Kutta method in time was
verified for Poiseuille channel flow. The results agree very well with the incompressible analytical
solution, for low Mach numbers.

The 3D IBM was verified for heat conduction between two concentric cylinders. The numer-
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(a) Tnum, including ghost nodes. (b) Absolute error, excluding ghost nodes.

Figure 8: Numerical solution and error distribution for the simulation with 161x161x3 nodes.

Figure 9: Convergence plot for the heat conduction case with N = 161. Development of 2-norm
of solution change between time levels.

ical solution was shown to agree very well with the analytical solution. The order of accuracy
for the method was indicated to be slightly above second order. Additionally, an interesting
artifact of the ghost point IBM was observed in the error distribution, in the form of hotspots
close to the inner immersed boundary. A more in-depth analysis is required to find the origin
of this phenomenon.

The 3D IBM will be developed for the compressible Navier-Stokes equations and will be
coupled to a structure solver to allow FSI simulations of flow in flexible geometries with soft
boundaries. The verification results give confidence that the present Navier-Stokes solver and
IBM will be a sound basis to tackle complex FSI problems.
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