m (Move page script moved page Review 927023093309 to Lopez Alavez 2021a) |
|||
(11 intermediate revisions by 2 users not shown) | |||
Line 15: | Line 15: | ||
''Palabras clave:'' Células endoteliales, TAF, fibronectina, problema mixto homogéneo, formulación variacional. | ''Palabras clave:'' Células endoteliales, TAF, fibronectina, problema mixto homogéneo, formulación variacional. | ||
− | == | + | ==1 Introducción== |
El cáncer no es una enfermedad nueva. Papiros egipcios que datan de aproximadamente el año <math display="inline">1600</math> a. C. ya la describían <span id='citeF-1'></span>[[#cite-1|[1]]]. Sin embargo, fue hasta la invención del microcospio en el siglo XIX que comenzó el estudio patológico moderno de cáncer <span id='citeF-2'></span>[[#cite-2|[2]]]. El cáncer se ha vuelto un problema global de salud pública. Según estimaciones de la Organización Mundial de la Salud (OMS) en <math display="inline">2015</math>, el cáncer es la primera o la segunda causa de muerte antes de los <math display="inline">70</math> años en <math display="inline">91</math> de <math display="inline">172</math> países, y ocupa el tercer o cuarto lugar en <math display="inline">22</math> países adicionales <span id='citeF-3'></span>[[#cite-3|[3]]]. Algunos factores de riesgo de cáncer se pueden vincular estrechamente con la herencia, los productos químicos, las radiaciones ionizantes, las infecciones o virus y los traumas. Los investigadores estudian cómo estos diferentes factores pueden interactuar de una manera multifactorial y secuencial para producir tumores malignos <span id='citeF-2'></span>[[#cite-2|[2]]]. Los tumores pueden ser benignos o malignos. La células de los tumores malignos presentan dos características que la distinguen de las normales: se reproducen de manera descontrolada, y son capaces de invadir y colonizar tejidos y órganos distantes, en lugares donde normalmente no pueden crecer <span id='citeF-4'></span>[[#cite-4|[4]]]. La combinación desafortunada de estas características es la que hace tan peligrosa y mortal a la mayoría de las formas del cáncer. Afortunadamente, existen muchos modelos matemáticos que permiten describir, bajo ciertas condiciones, la evolución de las células cancerígenas y el efecto que sobre ellas produce una terapia elegida con la intención de eliminar o, al menos, contener el crecimiento de un tumor <span id='citeF-5'></span>[[#cite-5|[5]]]. | El cáncer no es una enfermedad nueva. Papiros egipcios que datan de aproximadamente el año <math display="inline">1600</math> a. C. ya la describían <span id='citeF-1'></span>[[#cite-1|[1]]]. Sin embargo, fue hasta la invención del microcospio en el siglo XIX que comenzó el estudio patológico moderno de cáncer <span id='citeF-2'></span>[[#cite-2|[2]]]. El cáncer se ha vuelto un problema global de salud pública. Según estimaciones de la Organización Mundial de la Salud (OMS) en <math display="inline">2015</math>, el cáncer es la primera o la segunda causa de muerte antes de los <math display="inline">70</math> años en <math display="inline">91</math> de <math display="inline">172</math> países, y ocupa el tercer o cuarto lugar en <math display="inline">22</math> países adicionales <span id='citeF-3'></span>[[#cite-3|[3]]]. Algunos factores de riesgo de cáncer se pueden vincular estrechamente con la herencia, los productos químicos, las radiaciones ionizantes, las infecciones o virus y los traumas. Los investigadores estudian cómo estos diferentes factores pueden interactuar de una manera multifactorial y secuencial para producir tumores malignos <span id='citeF-2'></span>[[#cite-2|[2]]]. Los tumores pueden ser benignos o malignos. La células de los tumores malignos presentan dos características que la distinguen de las normales: se reproducen de manera descontrolada, y son capaces de invadir y colonizar tejidos y órganos distantes, en lugares donde normalmente no pueden crecer <span id='citeF-4'></span>[[#cite-4|[4]]]. La combinación desafortunada de estas características es la que hace tan peligrosa y mortal a la mayoría de las formas del cáncer. Afortunadamente, existen muchos modelos matemáticos que permiten describir, bajo ciertas condiciones, la evolución de las células cancerígenas y el efecto que sobre ellas produce una terapia elegida con la intención de eliminar o, al menos, contener el crecimiento de un tumor <span id='citeF-5'></span>[[#cite-5|[5]]]. | ||
Line 25: | Line 25: | ||
En cuanto al contenido de este artículo, en la sección [[#3 Modelo matemático|3]], retomamos el modelo continuo dado por Anderson y Chaplain (<math display="inline">1998</math>) <span id='citeF-8'></span>[[#cite-8|[8]]], el cual consiste en un sistema de ecuaciones diferenciales que describen la respuesta migratoria inicial de las células endoteliales al TAF y la fibronectina. En la sección [[#4 Discretización en el tiempo y formulación variacional del modelo adimensionalizado|4]], realizamos la discretización en el tiempo mediante el método de diferencias finitas, que nos permite transformar el problema continuo formado por tres ecuaciones diferenciales parciales en un problema discreto en el que en cada tiempo se debe resolver una sola ecuación diferencial parcial de segundo orden de tipo elíptico, a la cual le aplicamos el método variacional al problema de contorno mixto homogéneo, que surge del modelo, para demostrar la existencia, unicidad y dependencia continua respecto de los datos iniciales de su solución débil. | En cuanto al contenido de este artículo, en la sección [[#3 Modelo matemático|3]], retomamos el modelo continuo dado por Anderson y Chaplain (<math display="inline">1998</math>) <span id='citeF-8'></span>[[#cite-8|[8]]], el cual consiste en un sistema de ecuaciones diferenciales que describen la respuesta migratoria inicial de las células endoteliales al TAF y la fibronectina. En la sección [[#4 Discretización en el tiempo y formulación variacional del modelo adimensionalizado|4]], realizamos la discretización en el tiempo mediante el método de diferencias finitas, que nos permite transformar el problema continuo formado por tres ecuaciones diferenciales parciales en un problema discreto en el que en cada tiempo se debe resolver una sola ecuación diferencial parcial de segundo orden de tipo elíptico, a la cual le aplicamos el método variacional al problema de contorno mixto homogéneo, que surge del modelo, para demostrar la existencia, unicidad y dependencia continua respecto de los datos iniciales de su solución débil. | ||
− | == | + | ==2 Modelo matemático== |
Partimos del modelo matemático de Anderson y Chaplain (1998) <span id='citeF-8'></span>[[#cite-8|[8]]]. Este modelo describe cómo las células endoteliales que emergen de un vaso padre, responden y migran a través de la motilidad aleatoria, de la quimiotaxis a través de gradientes del factor angiogénico tumoral (TAF) liberado por el tumor, y de la haptotaxis a través de gradientes de fibronectina en la matriz extracelular. En este modelo, la densidad de las células endoteliales (en o cerca de una punta de brote capilar) por unidad de área se denota por <math display="inline">n</math>, que está influenciada por la motilidad aleatoria, la quimiotaxis y la haptotaxis. La concentración de TAF y la concentración de fibronectina están representadas por <math display="inline">c</math> y <math display="inline">f</math>, respectivamente. La quimiotaxis está en respuesta a los gradientes de TAF y la haptotaxis está en respuesta a los gradientes de fibronectina. El sistema de ecuaciones diferenciales parciales en el modelo está dado por | Partimos del modelo matemático de Anderson y Chaplain (1998) <span id='citeF-8'></span>[[#cite-8|[8]]]. Este modelo describe cómo las células endoteliales que emergen de un vaso padre, responden y migran a través de la motilidad aleatoria, de la quimiotaxis a través de gradientes del factor angiogénico tumoral (TAF) liberado por el tumor, y de la haptotaxis a través de gradientes de fibronectina en la matriz extracelular. En este modelo, la densidad de las células endoteliales (en o cerca de una punta de brote capilar) por unidad de área se denota por <math display="inline">n</math>, que está influenciada por la motilidad aleatoria, la quimiotaxis y la haptotaxis. La concentración de TAF y la concentración de fibronectina están representadas por <math display="inline">c</math> y <math display="inline">f</math>, respectivamente. La quimiotaxis está en respuesta a los gradientes de TAF y la haptotaxis está en respuesta a los gradientes de fibronectina. El sistema de ecuaciones diferenciales parciales en el modelo está dado por | ||
Line 78: | Line 78: | ||
donde <math display="inline">D=D_{n}/D_{c}</math>, <math display="inline">\chi =\chi _{0}c^{0}/D_{c}</math>, <math display="inline">\alpha =c^{0}/k_{1}</math>, <math display="inline">\rho =\rho _{0}f^{0}/D_{c}</math>, <math display="inline">\beta =\omega L^{2}n^{0}/f^{0}D_{c}</math>, <math display="inline">\gamma =\mu L^{2}n^{0}/D_{c}</math> y <math display="inline">\eta =\lambda L^{2}n^{0}/D_{c}</math>. El modelo adimensionalizado [[#eq-3|(3)]] con condiciones iniciales, parámetros y condiciones de contorno apropiadas, es el que usan Anderson y Chaplain <span id='citeF-8'></span>[[#cite-8|[8]]] para simular la migración (evolución) de las células endoteliales hacia la fuente de la señal tumoral. Es muy importante notar que solamente la primera ecuación del sistema [[#eq-3|(3)]], es la que contiene derivadas parciales espaciales, mientras que la segunda y tercera ecuación solo contienen la primera derivada en el tiempo. Así que al discretizar estas dos últimas ecuaciones con respecto al tiempo <math display="inline">t</math>, darán lugar a ecuaciones algebraicas. Por otro lado, el dominio espacial del modelo adimensionalizado [[#eq-3|(3)]] es el conjunto <math display="inline">\Omega = \left\{(x,y)\in \mathbb{R}^{2}:0 < x < 1,\; 0 < y < 1\right\}</math> y <math display="inline">\Gamma = \partial \Omega = \cup _{m=1}^{4}\Gamma _{m}</math>, donde <math display="inline">\Gamma _{1}=\{ (x,y)\in \Gamma : 0\leq x<1,\; y=0\} </math>, <math display="inline">\Gamma _{2}=\{ (x,y)\in \Gamma : x=1,\; 0\leq y<1\} </math>, <math display="inline">\Gamma _{3}=\{ (x,y)\in \Gamma : 0<x\leq 1,\; y=1\} </math> y <math display="inline"> \Gamma _{4}=\{ (x,y)\in \Gamma : x=0,\; 0<y\leq 1\} </math>. | donde <math display="inline">D=D_{n}/D_{c}</math>, <math display="inline">\chi =\chi _{0}c^{0}/D_{c}</math>, <math display="inline">\alpha =c^{0}/k_{1}</math>, <math display="inline">\rho =\rho _{0}f^{0}/D_{c}</math>, <math display="inline">\beta =\omega L^{2}n^{0}/f^{0}D_{c}</math>, <math display="inline">\gamma =\mu L^{2}n^{0}/D_{c}</math> y <math display="inline">\eta =\lambda L^{2}n^{0}/D_{c}</math>. El modelo adimensionalizado [[#eq-3|(3)]] con condiciones iniciales, parámetros y condiciones de contorno apropiadas, es el que usan Anderson y Chaplain <span id='citeF-8'></span>[[#cite-8|[8]]] para simular la migración (evolución) de las células endoteliales hacia la fuente de la señal tumoral. Es muy importante notar que solamente la primera ecuación del sistema [[#eq-3|(3)]], es la que contiene derivadas parciales espaciales, mientras que la segunda y tercera ecuación solo contienen la primera derivada en el tiempo. Así que al discretizar estas dos últimas ecuaciones con respecto al tiempo <math display="inline">t</math>, darán lugar a ecuaciones algebraicas. Por otro lado, el dominio espacial del modelo adimensionalizado [[#eq-3|(3)]] es el conjunto <math display="inline">\Omega = \left\{(x,y)\in \mathbb{R}^{2}:0 < x < 1,\; 0 < y < 1\right\}</math> y <math display="inline">\Gamma = \partial \Omega = \cup _{m=1}^{4}\Gamma _{m}</math>, donde <math display="inline">\Gamma _{1}=\{ (x,y)\in \Gamma : 0\leq x<1,\; y=0\} </math>, <math display="inline">\Gamma _{2}=\{ (x,y)\in \Gamma : x=1,\; 0\leq y<1\} </math>, <math display="inline">\Gamma _{3}=\{ (x,y)\in \Gamma : 0<x\leq 1,\; y=1\} </math> y <math display="inline"> \Gamma _{4}=\{ (x,y)\in \Gamma : x=0,\; 0<y\leq 1\} </math>. | ||
− | == | + | ==3 Discretización en el tiempo y formulación variacional del modelo adimensionalizado== |
Discretizamos las derivadas parciales que aparecen en el lado izquierdo del sistema [[#eq-3|(3)]], usando un esquema progresivo para aproximar las derivadas parciales con respecto al tiempo <math display="inline">t</math>. Para simplificar notaciones, escribiremos <math display="inline">n</math>, <math display="inline">f</math> y <math display="inline">c</math> en lugar de <math display="inline">\tilde{n}</math>, <math display="inline">\tilde{f}</math> y <math display="inline">\tilde{c}</math>, respectivamente, teniendo siempre en cuenta las relaciones dadas en [[#eq-2|(2)]]. Así tenemos por ejemplo, <math display="inline">\frac{n(x,y,t+\Delta t)-n(x,y,t)}{\Delta t} \cong \frac{\partial n(x,y,t)}{\partial t}</math>, <math display="inline">\Delta t\neq 0</math>. Consideramos un intervalo de tiempo <math display="inline">[0, T]</math>, <math display="inline">N</math> entero positivo, <math display="inline">\Delta t=T/N</math> y puntos <math display="inline">t_k=k\Delta t</math>, <math display="inline">k=0,1,\ldots , N</math>, <span id='citeF-11'></span><span id='citeF-12'></span>[[#cite-11|[11,12]]]; y denotemos por <math display="inline">n^k=n(x,y,t_k)</math>, la primera ecuación del sistema [[#eq-3|(3)]] se discretiza en el tiempo como | Discretizamos las derivadas parciales que aparecen en el lado izquierdo del sistema [[#eq-3|(3)]], usando un esquema progresivo para aproximar las derivadas parciales con respecto al tiempo <math display="inline">t</math>. Para simplificar notaciones, escribiremos <math display="inline">n</math>, <math display="inline">f</math> y <math display="inline">c</math> en lugar de <math display="inline">\tilde{n}</math>, <math display="inline">\tilde{f}</math> y <math display="inline">\tilde{c}</math>, respectivamente, teniendo siempre en cuenta las relaciones dadas en [[#eq-2|(2)]]. Así tenemos por ejemplo, <math display="inline">\frac{n(x,y,t+\Delta t)-n(x,y,t)}{\Delta t} \cong \frac{\partial n(x,y,t)}{\partial t}</math>, <math display="inline">\Delta t\neq 0</math>. Consideramos un intervalo de tiempo <math display="inline">[0, T]</math>, <math display="inline">N</math> entero positivo, <math display="inline">\Delta t=T/N</math> y puntos <math display="inline">t_k=k\Delta t</math>, <math display="inline">k=0,1,\ldots , N</math>, <span id='citeF-11'></span><span id='citeF-12'></span>[[#cite-11|[11,12]]]; y denotemos por <math display="inline">n^k=n(x,y,t_k)</math>, la primera ecuación del sistema [[#eq-3|(3)]] se discretiza en el tiempo como | ||
Line 131: | Line 131: | ||
Si hacemos <math display="inline">r=\Delta tD>0</math> y <math display="inline">u=n^k</math>, la ecuación [[#eq-4|(4)]] toma la forma <math display="inline">-r\nabla ^{2}u + u = F</math>, que es una ecuación diferencial parcial de segundo orden de tipo elíptico. | Si hacemos <math display="inline">r=\Delta tD>0</math> y <math display="inline">u=n^k</math>, la ecuación [[#eq-4|(4)]] toma la forma <math display="inline">-r\nabla ^{2}u + u = F</math>, que es una ecuación diferencial parcial de segundo orden de tipo elíptico. | ||
− | === | + | ===3.1 Formulación variacional del problema mixto=== |
Como observamos antes, Orme y Chaplain (1997) <span id='citeF-13'></span>[[#cite-13|[13]]] sugieren estudiar un problema mixto. Para ello, dividimos la frontera <math display="inline">\Gamma </math> de <math display="inline">\Omega </math> en dos partes disjuntas, es decir, <math display="inline">\Gamma = \Gamma _D \cup \Gamma _N</math> con <math display="inline">\Gamma _D \cap \Gamma _N=\emptyset </math>. El problema mixto lo formulamos como sigue: | Como observamos antes, Orme y Chaplain (1997) <span id='citeF-13'></span>[[#cite-13|[13]]] sugieren estudiar un problema mixto. Para ello, dividimos la frontera <math display="inline">\Gamma </math> de <math display="inline">\Omega </math> en dos partes disjuntas, es decir, <math display="inline">\Gamma = \Gamma _D \cup \Gamma _N</math> con <math display="inline">\Gamma _D \cap \Gamma _N=\emptyset </math>. El problema mixto lo formulamos como sigue: | ||
Line 150: | Line 150: | ||
donde <math display="inline">\mathbf{n}</math> es el vector normal exterior unitario sobre la frontera <math display="inline">\Gamma _N</math>. | donde <math display="inline">\mathbf{n}</math> es el vector normal exterior unitario sobre la frontera <math display="inline">\Gamma _N</math>. | ||
− | Una forma de estudiar el problema mixto no homogéneo [[#eq-5|(5)]] es transformándolo en un problema equivalente que sea de tipo Dirichlet homogéneo sobre <math display="inline">\Gamma _D</math>, mediante un cambio de variable apropiado <span id='citeF-15'></span><span id='citeF-12'></span>[[#cite-15|[15,12]]]. Para ello, notemos que si <math display="inline">u\in H^1(\Omega )</math>, el teorema de la traza [[#theorem-teotraza| | + | Una forma de estudiar el problema mixto no homogéneo [[#eq-5|(5)]] es transformándolo en un problema equivalente que sea de tipo Dirichlet homogéneo sobre <math display="inline">\Gamma _D</math>, mediante un cambio de variable apropiado <span id='citeF-15'></span><span id='citeF-12'></span>[[#cite-15|[15,12]]]. Para ello, notemos que si <math display="inline">u\in H^1(\Omega )</math>, el teorema de la traza [[#theorem-teotraza|A.1]] garantiza que existe un mapeo <math display="inline">\gamma _0:H^1(\Omega )\rightarrow L^2(\Omega )</math> tal que <math display="inline">\gamma _0(u)=u\vert _{\Gamma _D}</math>. Más explícitamente, el rango de <math display="inline">\gamma _0</math> es el espacio <math display="inline">H^{1/2}(\Gamma _D)</math>. Así, podemos suponer que <math display="inline">g\in H^{1/2}(\Gamma _D)</math>. Así que de nuevo por el teorema de la traza [[#theorem-teotraza|A.1]], existe <math display="inline">\widehat{g}\in H^1(\Omega )</math> tal que <math display="inline">\widehat{g}\vert _{\Gamma _D} = \gamma _0\left(\widehat{g}\right)=g</math>. Proponemos el cambio de variable |
<span id="eq-6"></span> | <span id="eq-6"></span> | ||
Line 226: | Line 226: | ||
|} | |} | ||
− | Para realizar la formulación variacional del problema mixto homogéneo [[#eq-9|(9)]], las condiciones de frontera sugieren de manera natural buscar soluciones débiles en el espacio de Sobolev <math display="inline">V = H_{0,\Gamma _D}^1(\Omega ) = \left\{v \in H^{1}(\Omega ) : v=0 \;\;\hbox{sobre}\;\;\Gamma _{D}\right\}</math>. Puesto que se satisface la desigualdad de Poincaré (teorema [[#theorem-teip2|A]]) en <math display="inline">V</math>, <math display="inline">V</math> es un espacio de Hilbert con la norma | + | Para realizar la formulación variacional del problema mixto homogéneo [[#eq-9|(9)]], las condiciones de frontera sugieren de manera natural buscar soluciones débiles en el espacio de Sobolev <math display="inline">V = H_{0,\Gamma _D}^1(\Omega ) = \left\{v \in H^{1}(\Omega ) : v=0 \;\;\hbox{sobre}\;\;\Gamma _{D}\right\}</math>. Puesto que se satisface la desigualdad de Poincaré (teorema [[#theorem-teip2|A.3]]) en <math display="inline">V</math>, <math display="inline">V</math> es un espacio de Hilbert con la norma |
{| class="formulaSCP" style="width: 100%; text-align: left;" | {| class="formulaSCP" style="width: 100%; text-align: left;" | ||
Line 263: | Line 263: | ||
|} | |} | ||
− | Entonces, bajo el supuesto que <math display="inline">\Omega </math> satisface las hipótesis del teorema de Green [[#theorem-teip|A]], se sigue que | + | Entonces, bajo el supuesto que <math display="inline">\Omega </math> satisface las hipótesis del teorema de Green [[#theorem-teip|A.2]], se sigue que |
{| class="formulaSCP" style="width: 100%; text-align: left;" | {| class="formulaSCP" style="width: 100%; text-align: left;" | ||
Line 354: | Line 354: | ||
|} | |} | ||
− | La existencia, unicidad y dependencia continua de la solución con respecto a los datos y parámetros del problema variacional mixto homogéneo [[#eq-15|(15)]], lo damos en el siguiente teorema vía el teorema de Lax-Milgram [[#theorem-teoremaLM| | + | La existencia, unicidad y dependencia continua de la solución con respecto a los datos y parámetros del problema variacional mixto homogéneo [[#eq-15|(15)]], lo damos en el siguiente teorema vía el teorema de Lax-Milgram [[#theorem-teoremaLM|B.1]]. |
− | <span id='theorem-teudcsp'></span>Teorema 1: Sea <math display="inline">\Omega </math> un conjunto abierto y acotado de clase <math display="inline">C^2</math> en <math display="inline">\mathbb{R}^2</math> con frontera <math display="inline">\Gamma =\Gamma _D\cup \Gamma _N</math>, <math display="inline">\Gamma _D\cap \Gamma _N=\emptyset </math>. Si <math display="inline">\widehat{F}\in L^2(\Omega )</math>, <math display="inline">\widehat{h}\in L^2(\Gamma _N)</math> y <math display="inline">r>0</math>, entonces el problema variacional mixto homogéneo [[#eq-15|(15)]] tiene una única solución <math display="inline">w\in V</math>. Además, existe una constante <math display="inline">C>0</math> tal que | + | <span id='theorem-teudcsp'></span>'''Teorema 1''' (Existencia y unicidad): Sea <math display="inline">\Omega </math> un conjunto abierto y acotado de clase <math display="inline">C^2</math> en <math display="inline">\mathbb{R}^2</math> con frontera <math display="inline">\Gamma =\Gamma _D\cup \Gamma _N</math>, <math display="inline">\Gamma _D\cap \Gamma _N=\emptyset </math>. Si <math display="inline">\widehat{F}\in L^2(\Omega )</math>, <math display="inline">\widehat{h}\in L^2(\Gamma _N)</math> y <math display="inline">r>0</math>, entonces el problema variacional mixto homogéneo [[#eq-15|(15)]] tiene una única solución <math display="inline">w\in V</math>. Además, existe una constante <math display="inline">C>0</math> tal que |
<span id="eq-16"></span> | <span id="eq-16"></span> | ||
Line 384: | Line 384: | ||
alcanza su mínimo en <math display="inline">w</math>. | alcanza su mínimo en <math display="inline">w</math>. | ||
− | Con el propósito de aplicar el teorema de Lax-Milgram [[#theorem-teoremaLM| | + | ''Demostración.'' Con el propósito de aplicar el teorema de Lax-Milgram [[#theorem-teoremaLM|B.1]], definimos: <math display="inline">B(w,v) = r\int _{\Omega }\nabla w\cdot \nabla v + \int _{\Omega }wv</math>, <math display="inline">(w,v)\in V\times V</math> y <math display="inline">\langle \mathcal{F},v\rangle = r\int _{\Gamma _N}\widehat{h}v + \int _{\Omega }\widehat{F}v</math>, <math display="inline">v\in V</math>. El objetivo es determinar <math display="inline">w\in V</math> tal que <math display="inline">B(w,v) = \langle \mathcal{F},v\rangle </math>, para todo <math display="inline">v\in V</math>. En efecto. a) Es claro que <math display="inline">\mathcal{F}</math> es una funcional lineal en <math display="inline">V</math>. |
− | b) Veamos que <math display="inline">\mathcal{F}</math> es continua en <math display="inline">V</math>. Aplicando primero la desigualdad de Schwarz para integrales (véase página 63 de <span id='citeF-16'></span>[[#cite-16|[16]]]), luego el teorema de la traza [[#theorem-teotraza| | + | b) Veamos que <math display="inline">\mathcal{F}</math> es continua en <math display="inline">V</math>. Aplicando primero la desigualdad de Schwarz para integrales (véase página 63 de <span id='citeF-16'></span>[[#cite-16|[16]]]), luego el teorema de la traza [[#theorem-teotraza|A.1]] y finalmente la desigualdad de Poincaré [[#theorem-teip2|A.3]], obtenemos: |
{| class="formulaSCP" style="width: 100%; text-align: left;" | {| class="formulaSCP" style="width: 100%; text-align: left;" | ||
Line 414: | Line 414: | ||
|} | |} | ||
− | La desigualdad de Poincaré [[#theorem-teip2|A]], garantiza que la norma <math display="inline">\Vert v\Vert _{*}=\sum _{i=1}^2\Vert \frac{\partial v}{\partial x_i}\Vert _{L^2(\Omega )}</math> es equivalente a la norma <math display="inline">\Vert \cdot \Vert _{H^1(\Omega )}</math> en <math display="inline">V</math>. Así, existe <math display="inline">\alpha{>0}</math> tal que <math display="inline">\Vert v\Vert _{*} \leq \alpha \Vert v\Vert _{H^1(\Omega )}</math> para todo <math display="inline">v\in V</math>. Por otro lado, la misma desigualdad de Poincaré [[#theorem-teip2|A]], nos dice que las normas <math display="inline">\Vert \cdot \Vert _{V}</math> y <math display="inline">\Vert \cdot \Vert _{H^1(\Omega )}</math> son equivalentes, por lo que también existe <math display="inline">\beta{>0}</math> tal que <math display="inline">\Vert v\Vert _{H^1(\Omega )} \leq \beta \Vert v\Vert _V</math> para todo <math display="inline">v\in V</math>. Concluimos de [[#eq-18|(18)]] que | + | La desigualdad de Poincaré [[#theorem-teip2|A.3]], garantiza que la norma <math display="inline">\Vert v\Vert _{*}=\sum _{i=1}^2\Vert \frac{\partial v}{\partial x_i}\Vert _{L^2(\Omega )}</math> es equivalente a la norma <math display="inline">\Vert \cdot \Vert _{H^1(\Omega )}</math> en <math display="inline">V</math>. Así, existe <math display="inline">\alpha{>0}</math> tal que <math display="inline">\Vert v\Vert _{*} \leq \alpha \Vert v\Vert _{H^1(\Omega )}</math> para todo <math display="inline">v\in V</math>. Por otro lado, la misma desigualdad de Poincaré [[#theorem-teip2|A.3]], nos dice que las normas <math display="inline">\Vert \cdot \Vert _{V}</math> y <math display="inline">\Vert \cdot \Vert _{H^1(\Omega )}</math> son equivalentes, por lo que también existe <math display="inline">\beta{>0}</math> tal que <math display="inline">\Vert v\Vert _{H^1(\Omega )} \leq \beta \Vert v\Vert _V</math> para todo <math display="inline">v\in V</math>. Concluimos de [[#eq-18|(18)]] que |
<span id="eq-19"></span> | <span id="eq-19"></span> | ||
Line 472: | Line 472: | ||
|} | |} | ||
− | Aplicando de nuevo la desigualdad de Schwarz para integrales y luego la desigualdad de Poincaré [[#theorem-teip2|A]], a la segunda integral de [[#eq-20|(20)]], resulta: | + | Aplicando de nuevo la desigualdad de Schwarz para integrales y luego la desigualdad de Poincaré [[#theorem-teip2|A.3]], a la segunda integral de [[#eq-20|(20)]], resulta: |
<span id="eq-22"></span> | <span id="eq-22"></span> | ||
Line 498: | Line 498: | ||
|} | |} | ||
− | Como se satisfacen todas la hipótesis del teorema de Lax-Milgram (teorema [[#theorem-teoremaLM| | + | Como se satisfacen todas la hipótesis del teorema de Lax-Milgram (teorema [[#theorem-teoremaLM|B.1]]), concluimos que el problema variacional mixto homogéneo [[#eq-15|(15)]], tiene una única solución <math display="inline">w\in V</math>. |
− | f) Notemos que la constante de coercividad es <math display="inline">r>0</math>, por lo que se sigue también del teorema de Lax-Milgram [[#theorem-teoremaLM| | + | f) Notemos que la constante de coercividad es <math display="inline">r>0</math>, por lo que se sigue también del teorema de Lax-Milgram [[#theorem-teoremaLM|B.1]] y [[#eq-19|(19)]] que |
{| class="formulaSCP" style="width: 100%; text-align: left;" | {| class="formulaSCP" style="width: 100%; text-align: left;" | ||
Line 517: | Line 517: | ||
donde <math display="inline">C=\beta \,\hbox{max}\,\left\{C_T, \alpha C_P\right\}>0</math>. Esto muestra la dependencia continua de la solución <math display="inline">w</math> con respecto a los datos <math display="inline">\widehat{F}</math>, <math display="inline">\widehat{h}</math> y <math display="inline">r</math> del problema. También con esto se prueba la desigualdad [[#eq-16|(16)]]. | donde <math display="inline">C=\beta \,\hbox{max}\,\left\{C_T, \alpha C_P\right\}>0</math>. Esto muestra la dependencia continua de la solución <math display="inline">w</math> con respecto a los datos <math display="inline">\widehat{F}</math>, <math display="inline">\widehat{h}</math> y <math display="inline">r</math> del problema. También con esto se prueba la desigualdad [[#eq-16|(16)]]. | ||
− | g) Finalmente, como <math display="inline">B</math> es simétrica en <math display="inline">V\times V</math>, se sigue una vez más del teorema de Lax-Milgram [[#theorem-teoremaLM| | + | g) Finalmente, como <math display="inline">B</math> es simétrica en <math display="inline">V\times V</math>, se sigue una vez más del teorema de Lax-Milgram [[#theorem-teoremaLM|B.1]] que la funcional <math display="inline">J:V\rightarrow \mathbb{R}</math> por [[#eq-17|(17)]] alcanza su mínimo en <math display="inline">w</math>. |
− | == | + | ==4 Conclusiones== |
La aportación más relevante del trabajo consistió en aplicar el método variacional para demostrar, en el teorema [[#theorem-teudcsp|1]], la existencia, unicidad y dependencia continua de la solución débil del problema mixto homogéneo [[#eq-9|(9)]] con respecto a los datos y parámetros del problema. Como consecuencia, también se garantizó la existencia de la solución débil del problema no homogéneo [[#eq-5|(5)]]. | La aportación más relevante del trabajo consistió en aplicar el método variacional para demostrar, en el teorema [[#theorem-teudcsp|1]], la existencia, unicidad y dependencia continua de la solución débil del problema mixto homogéneo [[#eq-9|(9)]] con respecto a los datos y parámetros del problema. Como consecuencia, también se garantizó la existencia de la solución débil del problema no homogéneo [[#eq-5|(5)]]. | ||
Line 529: | Line 529: | ||
==A Espacios de Sobolev y desigualdad de Poincaré== | ==A Espacios de Sobolev y desigualdad de Poincaré== | ||
− | Definición A: Sea <math display="inline">L^{p}(\Omega )</math>, <math display="inline">1\leq p<\infty </math>, el espacio de las clases de todas las funciones <math display="inline">\varphi :\Omega \rightarrow \mathbb{R}</math> medibles y tales que <math display="inline">\vert \varphi \vert ^{p}</math> es integrable sobre <math display="inline">\Omega </math>. Si <math display="inline">\varphi \in L ^{p}(\Omega )</math>, se define la norma de <math display="inline">\varphi </math> como <math display="inline">\Vert \varphi \Vert _{L^p(\Omega )} = \left(\int _{\Omega } \vert \varphi \vert ^{p} d\boldsymbol{x}\right)^{1/p}, 1 \leq p < \infty </math>. <math display="inline">L^{\infty }(\Omega )</math> es el espacio de todas las clases de funciones <math display="inline">\varphi :\Omega \rightarrow \mathbb{R}</math> medibles y esencialmente acotadas sobre <math display="inline">\Omega </math>, véase <span id='citeF-18'></span>[[#cite-18|[18]]]. Si <math display="inline">\varphi \in L ^{\infty }(\Omega )</math> se define la norma de <math display="inline">\varphi </math> como <math display="inline">\Vert \varphi \Vert _{L^{\infty }(\Omega )} =\hbox{sup}^0\{ \vert \varphi (\boldsymbol{x})\vert :\boldsymbol{x}\in \Omega \} </math>, donde <math display="inline">\hbox{sup}^0</math> denota el supremo esencial de <math display="inline">\varphi </math> sobre <math display="inline">\Omega </math>. | + | '''Definición A.1:''' Sea <math display="inline">L^{p}(\Omega )</math>, <math display="inline">1\leq p<\infty </math>, el espacio de las clases de todas las funciones <math display="inline">\varphi :\Omega \rightarrow \mathbb{R}</math> medibles y tales que <math display="inline">\vert \varphi \vert ^{p}</math> es integrable sobre <math display="inline">\Omega </math>. Si <math display="inline">\varphi \in L ^{p}(\Omega )</math>, se define la norma de <math display="inline">\varphi </math> como <math display="inline">\Vert \varphi \Vert _{L^p(\Omega )} = \left(\int _{\Omega } \vert \varphi \vert ^{p} d\boldsymbol{x}\right)^{1/p}, 1 \leq p < \infty </math>. <math display="inline">L^{\infty }(\Omega )</math> es el espacio de todas las clases de funciones <math display="inline">\varphi :\Omega \rightarrow \mathbb{R}</math> medibles y esencialmente acotadas sobre <math display="inline">\Omega </math>, véase <span id='citeF-18'></span>[[#cite-18|[18]]]. Si <math display="inline">\varphi \in L ^{\infty }(\Omega )</math> se define la norma de <math display="inline">\varphi </math> como <math display="inline">\Vert \varphi \Vert _{L^{\infty }(\Omega )} =\hbox{sup}^0\{ \vert \varphi (\boldsymbol{x})\vert :\boldsymbol{x}\in \Omega \} </math>, donde <math display="inline">\hbox{sup}^0</math> denota el supremo esencial de <math display="inline">\varphi </math> sobre <math display="inline">\Omega </math>. |
<math display="inline">L^{2}(\Omega )</math> es un espacio de Hilbert con el producto interno <math display="inline">\langle \varphi , \psi \rangle _{L^{2}(\Omega )} = \int _{\Omega }\varphi \psi \; d\boldsymbol{x}</math> para todo <math display="inline">\varphi , \psi \in L^{2}(\Omega )</math>. | <math display="inline">L^{2}(\Omega )</math> es un espacio de Hilbert con el producto interno <math display="inline">\langle \varphi , \psi \rangle _{L^{2}(\Omega )} = \int _{\Omega }\varphi \psi \; d\boldsymbol{x}</math> para todo <math display="inline">\varphi , \psi \in L^{2}(\Omega )</math>. | ||
− | Definición A: Se llama espacio de Sobolev <math display="inline">H^{1}(\Omega )</math> al espacio de las funciones <math display="inline">u\in L^{2}(\Omega )</math> cuyas derivadas parciales (en el sentido de las distribuciones) pertenecen a <math display="inline">L^{2} (\Omega )</math>, esto es, <math display="inline">H^{1}(\Omega )=\left\{u \in L^{2}(\Omega ):\frac{\partial u}{\partial x_{i}} \in L^{2}(\Omega ),\; 1\leq i\leq n \right\}</math>. | + | '''Definición A.2:''' Se llama espacio de Sobolev <math display="inline">H^{1}(\Omega )</math> al espacio de las funciones <math display="inline">u\in L^{2}(\Omega )</math> cuyas derivadas parciales (en el sentido de las distribuciones) pertenecen a <math display="inline">L^{2} (\Omega )</math>, esto es, <math display="inline">H^{1}(\Omega )=\left\{u \in L^{2}(\Omega ):\frac{\partial u}{\partial x_{i}} \in L^{2}(\Omega ),\; 1\leq i\leq n \right\}</math>. |
El espacio <math display="inline">H^1(\Omega )</math> dotado del producto interno | El espacio <math display="inline">H^1(\Omega )</math> dotado del producto interno | ||
Line 561: | Line 561: | ||
Si denotamos por <math display="inline">\mathcal{D}(\Omega )</math> al conjunto de todas las funciones de prueba sobre <math display="inline">\Omega </math>, es decir, funciones de clase <math display="inline">C^{\infty }(\Omega )</math> y de soporte compacto contenido en <math display="inline">\Omega </math>, entonces <math display="inline">\mathcal{D}(\Omega ) \subset H^{1}(\Omega )</math>. Es especialmente útil el espacio <math display="inline">H_{0}^{1}(\Omega )=\overline{\mathcal{D}(\Omega )}</math>, es decir, la adherencia respecto de la norma de <math display="inline">H^{1}(\Omega )</math>, del espacio de las funciones de prueba <math display="inline">\mathcal{D}(\Omega )</math>. <math display="inline">H_{0}^{1}(\Omega )</math> con la norma que hereda de <math display="inline">H^{1}(\Omega )</math> es también un espacio de Hilbert. Dicho de un modo un tanto impreciso, el espacio <math display="inline">H_{0}^{1}(\Omega )</math> es el formado por las funciones de <math display="inline">H^{1}(\Omega )</math> que se anulan sobre la frontera de <math display="inline">\Omega </math>. Decimos de un modo un tanto impreciso dado que la frontera de <math display="inline">\Omega </math> tiene medida nula, y dos funciones de <math display="inline">L^{2}(\Omega )</math> que son iguales salvo en un conjunto de medida cero son, como funciones de <math display="inline">L^{2}(\Omega )</math>, iguales. Para eliminar esta ambigüedad se introduce el concepto de traza de una función de <math display="inline">H^{1}(\Omega )</math>, véase por ejemplo <span id='citeF-15'></span>[[#cite-15|[15]]]. Extendemos la definición del espacio de Sobolev para funciones en <math display="inline">L^p(\Omega )</math>, <math display="inline">p\geq 1</math>, como sigue: | Si denotamos por <math display="inline">\mathcal{D}(\Omega )</math> al conjunto de todas las funciones de prueba sobre <math display="inline">\Omega </math>, es decir, funciones de clase <math display="inline">C^{\infty }(\Omega )</math> y de soporte compacto contenido en <math display="inline">\Omega </math>, entonces <math display="inline">\mathcal{D}(\Omega ) \subset H^{1}(\Omega )</math>. Es especialmente útil el espacio <math display="inline">H_{0}^{1}(\Omega )=\overline{\mathcal{D}(\Omega )}</math>, es decir, la adherencia respecto de la norma de <math display="inline">H^{1}(\Omega )</math>, del espacio de las funciones de prueba <math display="inline">\mathcal{D}(\Omega )</math>. <math display="inline">H_{0}^{1}(\Omega )</math> con la norma que hereda de <math display="inline">H^{1}(\Omega )</math> es también un espacio de Hilbert. Dicho de un modo un tanto impreciso, el espacio <math display="inline">H_{0}^{1}(\Omega )</math> es el formado por las funciones de <math display="inline">H^{1}(\Omega )</math> que se anulan sobre la frontera de <math display="inline">\Omega </math>. Decimos de un modo un tanto impreciso dado que la frontera de <math display="inline">\Omega </math> tiene medida nula, y dos funciones de <math display="inline">L^{2}(\Omega )</math> que son iguales salvo en un conjunto de medida cero son, como funciones de <math display="inline">L^{2}(\Omega )</math>, iguales. Para eliminar esta ambigüedad se introduce el concepto de traza de una función de <math display="inline">H^{1}(\Omega )</math>, véase por ejemplo <span id='citeF-15'></span>[[#cite-15|[15]]]. Extendemos la definición del espacio de Sobolev para funciones en <math display="inline">L^p(\Omega )</math>, <math display="inline">p\geq 1</math>, como sigue: | ||
− | Definición A: Sea <math display="inline">m\geq 1</math> entero y <math display="inline">1\leq p\leq \infty </math>. El espacio de Sobolev <math display="inline">W^{m,p}(\Omega )</math> se define como <math display="inline">W^{m,p}(\Omega )=\left\{u\in L^p(\Omega ):\partial ^{\alpha }u\in L^p(\Omega )\;\;\forall \;\vert \alpha \vert \leq m,\;\alpha \in \mathbb{N}^n\right\}</math> dotada de la norma | + | '''Definición A.3:''' Sea <math display="inline">m\geq 1</math> entero y <math display="inline">1\leq p\leq \infty </math>. El espacio de Sobolev <math display="inline">W^{m,p}(\Omega )</math> se define como <math display="inline">W^{m,p}(\Omega )=\left\{u\in L^p(\Omega ):\partial ^{\alpha }u\in L^p(\Omega )\;\;\forall \;\vert \alpha \vert \leq m,\;\alpha \in \mathbb{N}^n\right\}</math> dotada de la norma |
{| class="formulaSCP" style="width: 100%; text-align: left;" | {| class="formulaSCP" style="width: 100%; text-align: left;" | ||
Line 609: | Line 609: | ||
que induce la norma [[#eq-W|(W)]], por lo que <math display="inline">H^m(\Omega )</math> es un espacio de Hilbert. Como antes, introducimos un importante subespacio de <math display="inline">W^{m,p}(\Omega )</math>. Si <math display="inline">1\leq p<\infty </math>, entonces <math display="inline">\mathcal{D}(\Omega )</math> es denso en <math display="inline">L^p(\Omega )</math>. También, si <math display="inline">\varphi \in \mathcal{D}(\Omega )</math>, entonces <math display="inline">\partial ^{\alpha }\varphi \in \mathcal{D}(\Omega )</math> para todo <math display="inline">\alpha \in \mathbb{N}^n</math>, por lo que <math display="inline">\mathcal{D}(\Omega )\subset W^{m,p}(\Omega )</math> para cualquier <math display="inline">m</math> y <math display="inline">p</math>. Si <math display="inline">1\leq p<\infty </math>, se define el espacio <math display="inline">W_0^{m,p}(\Omega )</math> como la adherencia de <math display="inline">\mathcal{D}(\Omega )</math> en <math display="inline">W^{m,p}(\Omega )</math>. Así <math display="inline">W_0^{m,p}(\Omega )</math> es un subespacio cerrado de <math display="inline">W^{m,p}(\Omega )</math> y sus elementos pueden ser aproximados en la norma de <math display="inline">W^{m,p}(\Omega )</math> por funciones de clase <math display="inline">C^{\infty }</math> con soporte compacto contenido en <math display="inline">\Omega </math>. Cuando <math display="inline">p=2</math>, los espacios <math display="inline">W_0^{m,p}(\Omega )</math> se denotan como <math display="inline">H_0^{m}(\Omega )</math>. En general, <math display="inline">W_0^{m,p}(\Omega )</math> es un subespacio estricto de <math display="inline">W^{m,p}(\Omega )</math>, salvo cuando <math display="inline">\Omega =\mathbb{R}^n</math> (véase <span id='citeF-15'></span>[[#cite-15|[15]]]). | que induce la norma [[#eq-W|(W)]], por lo que <math display="inline">H^m(\Omega )</math> es un espacio de Hilbert. Como antes, introducimos un importante subespacio de <math display="inline">W^{m,p}(\Omega )</math>. Si <math display="inline">1\leq p<\infty </math>, entonces <math display="inline">\mathcal{D}(\Omega )</math> es denso en <math display="inline">L^p(\Omega )</math>. También, si <math display="inline">\varphi \in \mathcal{D}(\Omega )</math>, entonces <math display="inline">\partial ^{\alpha }\varphi \in \mathcal{D}(\Omega )</math> para todo <math display="inline">\alpha \in \mathbb{N}^n</math>, por lo que <math display="inline">\mathcal{D}(\Omega )\subset W^{m,p}(\Omega )</math> para cualquier <math display="inline">m</math> y <math display="inline">p</math>. Si <math display="inline">1\leq p<\infty </math>, se define el espacio <math display="inline">W_0^{m,p}(\Omega )</math> como la adherencia de <math display="inline">\mathcal{D}(\Omega )</math> en <math display="inline">W^{m,p}(\Omega )</math>. Así <math display="inline">W_0^{m,p}(\Omega )</math> es un subespacio cerrado de <math display="inline">W^{m,p}(\Omega )</math> y sus elementos pueden ser aproximados en la norma de <math display="inline">W^{m,p}(\Omega )</math> por funciones de clase <math display="inline">C^{\infty }</math> con soporte compacto contenido en <math display="inline">\Omega </math>. Cuando <math display="inline">p=2</math>, los espacios <math display="inline">W_0^{m,p}(\Omega )</math> se denotan como <math display="inline">H_0^{m}(\Omega )</math>. En general, <math display="inline">W_0^{m,p}(\Omega )</math> es un subespacio estricto de <math display="inline">W^{m,p}(\Omega )</math>, salvo cuando <math display="inline">\Omega =\mathbb{R}^n</math> (véase <span id='citeF-15'></span>[[#cite-15|[15]]]). | ||
− | <span id='theorem-teotraza'></span>Teorema | + | <span id='theorem-teotraza'></span>'''Teorema A.1''' (de la traza, Kesavan (1989) <span id='citeF-15'></span>[[#cite-15|[15]]]): Sea <math display="inline">\Omega \subset \mathbb{R}^n</math> un conjunto abierto y acotado de clase <math display="inline">C^{m+1}</math> con frontera <math display="inline">\Gamma </math>. Entonces existe un mapeo traza <math display="inline">\gamma =(\gamma _0,\gamma _1,\ldots ,\gamma _{m-1})</math> de <math display="inline">H^m(\Omega )</math> en <math display="inline">(L^2(\Omega ))^m</math> tal que |
<ol style='list-style-type:lower-alpha;'> | <ol style='list-style-type:lower-alpha;'> | ||
Line 620: | Line 620: | ||
</ol> | </ol> | ||
− | <span id='theorem-teip'></span>Teorema A: Sea <math display="inline">\Omega \subset \mathbb{R}^n</math> un conjunto abierto y acotado de clase <math display="inline">C^{1}</math> que yace sobre el mismo lado de su frontera <math display="inline">\Gamma </math>. Sean <math display="inline">u,v\in H^1(\Omega )</math>. Entonces para <math display="inline">1\leq i\leq n</math>, <math display="inline"> \int _{\Omega }u\,\frac{\partial v}{\partial x_i} = \int _{\Gamma }u\vert _{\Gamma }\, v\vert _{\Gamma }\, n_i - \int _{\Omega }\frac{\partial u}{\partial x_i}\,v</math>, donde <math display="inline">\mathbf{n}(\boldsymbol{x})=(n_1(\boldsymbol{x}),n_2(\boldsymbol{x}),\ldots ,n_n(\boldsymbol{x}))</math> es el vector normal exterior unitario sobre la frontera <math display="inline">\Gamma </math>. | + | <span id='theorem-teip'></span>'''Teorema A.2''' (de Green, Kesavan (1989) <span id='citeF-15'></span>[[#cite-15|[15]]]): Sea <math display="inline">\Omega \subset \mathbb{R}^n</math> un conjunto abierto y acotado de clase <math display="inline">C^{1}</math> que yace sobre el mismo lado de su frontera <math display="inline">\Gamma </math>. Sean <math display="inline">u,v\in H^1(\Omega )</math>. Entonces para <math display="inline">1\leq i\leq n</math>, <math display="inline"> \int _{\Omega }u\,\frac{\partial v}{\partial x_i} = \int _{\Gamma }u\vert _{\Gamma }\, v\vert _{\Gamma }\, n_i - \int _{\Omega }\frac{\partial u}{\partial x_i}\,v</math>, donde <math display="inline">\mathbf{n}(\boldsymbol{x})=(n_1(\boldsymbol{x}),n_2(\boldsymbol{x}),\ldots ,n_n(\boldsymbol{x}))</math> es el vector normal exterior unitario sobre la frontera <math display="inline">\Gamma </math>. |
− | <span id='theorem-teip2'></span>Teorema A: Sea <math display="inline">\Omega </math> un conjunto abierto y acotado en <math display="inline">\mathbb{R}^n</math>. Entonces existe una constante positiva <math display="inline">C=C(\Omega ,p)</math> tal que <math display="inline">\Vert u\Vert _{L^p(\Omega )} \leq C\sum _{i=1}^n\left\Vert \frac{\partial u}{\partial x_i}\right\Vert _{L^p(\Omega )}</math>, <math display="inline">u\in W_0^{1,p}(\Omega )</math>. En particular, <math display="inline">u\mapsto \sum _{i=1}^n\left\Vert \frac{\partial u}{\partial x_i}\right\Vert _{L^p(\Omega )}</math> define una norma sobre <math display="inline">W_0^{1,p}(\Omega )</math>, la cual es equivalente a la norma <math display="inline">\Vert \cdot \Vert _{1,p,\Omega }</math>. Sobre <math display="inline">H_0^1(\Omega )</math>, la forma bilineal <math display="inline">\langle u,v\rangle = \int _{\Omega }\sum _{i=1}^n\frac{\partial u}{\partial x_i}\frac{\partial v}{\partial x_i}</math> define un producto interno que induce una norma equivalente a la norma <math display="inline">\Vert \cdot \Vert _{1,\Omega }</math>. | + | <span id='theorem-teip2'></span>'''Teorema A.3''' (Desigualdad de Poincaré, Kesavan (1989) <span id='citeF-15'></span>[[#cite-15|[15]]]): Sea <math display="inline">\Omega </math> un conjunto abierto y acotado en <math display="inline">\mathbb{R}^n</math>. Entonces existe una constante positiva <math display="inline">C=C(\Omega ,p)</math> tal que <math display="inline">\Vert u\Vert _{L^p(\Omega )} \leq C\sum _{i=1}^n\left\Vert \frac{\partial u}{\partial x_i}\right\Vert _{L^p(\Omega )}</math>, <math display="inline">u\in W_0^{1,p}(\Omega )</math>. En particular, <math display="inline">u\mapsto \sum _{i=1}^n\left\Vert \frac{\partial u}{\partial x_i}\right\Vert _{L^p(\Omega )}</math> define una norma sobre <math display="inline">W_0^{1,p}(\Omega )</math>, la cual es equivalente a la norma <math display="inline">\Vert \cdot \Vert _{1,p,\Omega }</math>. Sobre <math display="inline">H_0^1(\Omega )</math>, la forma bilineal <math display="inline">\langle u,v\rangle = \int _{\Omega }\sum _{i=1}^n\frac{\partial u}{\partial x_i}\frac{\partial v}{\partial x_i}</math> define un producto interno que induce una norma equivalente a la norma <math display="inline">\Vert \cdot \Vert _{1,\Omega }</math>. |
==B Formulación variacional abstracta y el teorema de Lax-Milgram== | ==B Formulación variacional abstracta y el teorema de Lax-Milgram== | ||
Line 628: | Line 628: | ||
Una función <math display="inline">f\in L^{2}(\Omega )</math> vista como una distribución sobre <math display="inline">\mathcal{D}(\Omega )</math>, se extiende a una forma lineal y continua sobre <math display="inline">H_{0}^{1}(\Omega )</math>, por medio de la aplicación <math display="inline">f:H_{0}^{1}(\Omega )\rightarrow \mathbb{R}</math> por <math display="inline"> \langle f,u \rangle = \int _{\Omega } f(\boldsymbol{x})u(\boldsymbol{x})d\boldsymbol{x}</math>, para todo <math display="inline">u \in H_{0}^{1}(\Omega )</math>. | Una función <math display="inline">f\in L^{2}(\Omega )</math> vista como una distribución sobre <math display="inline">\mathcal{D}(\Omega )</math>, se extiende a una forma lineal y continua sobre <math display="inline">H_{0}^{1}(\Omega )</math>, por medio de la aplicación <math display="inline">f:H_{0}^{1}(\Omega )\rightarrow \mathbb{R}</math> por <math display="inline"> \langle f,u \rangle = \int _{\Omega } f(\boldsymbol{x})u(\boldsymbol{x})d\boldsymbol{x}</math>, para todo <math display="inline">u \in H_{0}^{1}(\Omega )</math>. | ||
− | <span id='theorem-VP'></span>Definición | + | <span id='theorem-VP'></span>'''Definición B.1''' (Problema variacional): Sea <math display="inline">(H,\Vert \cdot \Vert )</math> un espacio de Hilbert, <math display="inline">f:H\rightarrow \mathbb{R}</math> una forma lineal y continua y <math display="inline">B:H\times H\rightarrow \mathbb{R}</math> una forma bilineal. Por problema variacional entendemos el problema de determinar <math display="inline">u\in H</math> tal que |
{| class="formulaSCP" style="width: 100%; text-align: left;" | {| class="formulaSCP" style="width: 100%; text-align: left;" | ||
Line 642: | Line 642: | ||
La existencia, unicidad y dependencia continua respecto de los datos iniciales de la solución de [[#theorem-VP|(A)]], se obtiene a través del teorema de Lax-Milgram. | La existencia, unicidad y dependencia continua respecto de los datos iniciales de la solución de [[#theorem-VP|(A)]], se obtiene a través del teorema de Lax-Milgram. | ||
− | Definición | + | '''Definición B.2:''' Sea <math display="inline">B</math> una forma bilineal sobre un espacio normado <math display="inline">(H,\Vert \cdot \Vert )</math>. <math display="inline">B</math> es continua si existe <math display="inline">M>0</math> tal que <math display="inline">|B(u,v)|\leq M\Vert u\Vert \Vert v \Vert </math> para todo <math display="inline">u, v \in H</math>, y es coerciva o <math display="inline">H</math>-elíptica si existe <math display="inline">m>0</math> tal que <math display="inline">|B(u,u)|\geq m\Vert u\Vert ^2</math> para todo <math display="inline">u\in H</math>. <math display="inline">B</math> es simétrica si <math display="inline">B(u,v)=B(v,u)</math> para todo <math display="inline">u,v\in H</math>. |
− | <span id='theorem-teoremaLM'></span>Teorema | + | <span id='theorem-teoremaLM'></span>'''Teorema B.1''' (de Lax-Milgram, Kesavan (1989) <span id='citeF-15'></span>[[#cite-15|[15]]]): Sea <math display="inline">(H,\Vert \cdot \Vert )</math> un espacio de Hilbert, <math display="inline">f:H\rightarrow \mathbb{R}</math> una forma lineal y continua, y <math display="inline">B:H\times H\rightarrow \mathbb{R}</math> una forma bilineal continua y coerciva, entonces el problema variacional [[#theorem-VP|(A)]] tiene una única solución <math display="inline">u</math> en <math display="inline">H</math>. Además, <math display="inline">\Vert u\Vert \leq \frac{1}{m}\Vert f\Vert _{*}</math>, donde <math display="inline">\Vert f\Vert _{*}=\hbox{sup}\left\lbrace |\langle f,v\rangle |:\; v \in H \;\hbox{y}\;\Vert v\Vert \leq 1 \right\rbrace </math>. Si <math display="inline">B</math> es también simétrica, entonces la funcional <math display="inline">J:H\rightarrow \mathbb{R}</math> por <math display="inline"> J(v)=\frac{1}{2}B(v,v)-\langle f,v\rangle </math> para todo <math display="inline">v\in H</math> alcanza su mínimo en <math display="inline">u</math>. |
===BIBLIOGRAFÍA=== | ===BIBLIOGRAFÍA=== | ||
<div id="cite-1"></div> | <div id="cite-1"></div> | ||
− | '''[[#citeF-1|[1]]]''' Graña, A. (2015) "Breve evolución histórica del cáncer" | + | '''[[#citeF-1|[1]]]''' Graña, A. (2015) "Breve evolución histórica del cáncer". Carcinos 5(1):26-31. |
<div id="cite-2"></div> | <div id="cite-2"></div> | ||
− | '''[[#citeF-2|[2]]]''' Aibar, S., Celano, C., Chambi, M.C., Estrada, S., Gandur, N., Gange, P., González, C., González, O., Grance, G., Junin, M., Kohen, N., Molina, J., Núñez, M.G., Sáenz, M., Troncoso, M., Vallejos, A. (2008) "Manual de Enfermería Oncológica". Instituto Nacional de Cáncer | + | '''[[#citeF-2|[2]]]''' Aibar, S., Celano, C., Chambi, M.C., Estrada, S., Gandur, N., Gange, P., González, C., González, O., Grance, G., Junin, M., Kohen, N., Molina, J., Núñez, M.G., Sáenz, M., Troncoso, M., Vallejos, A. (2008) "Manual de Enfermería Oncológica". Instituto Nacional de Cáncer. Argentina. |
<div id="cite-3"></div> | <div id="cite-3"></div> | ||
− | '''[[#citeF-3|[3]]]''' Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) "Global cancer statistics 2018: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries" | + | '''[[#citeF-3|[3]]]''' Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) "Global cancer statistics 2018: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries". CA: A Cancer Journal for Clinicians 68(6):394-424. |
<div id="cite-4"></div> | <div id="cite-4"></div> | ||
− | '''[[#citeF-4|[4]]]''' Jiménez García, L.F., Merchant Larios, H. (2003) "Biología celular y molecular". México: Pearson Educación. | + | '''[[#citeF-4|[4]]]''' Jiménez García, L.F., Merchant Larios, H. (2003) "Biología celular y molecular". México: Pearson Educación. |
<div id="cite-5"></div> | <div id="cite-5"></div> | ||
− | '''[[#citeF-5|[5]]]''' Zapata Peña, J., Ortiz, A.C. (2010) "Uso de modelos matemáticos para la descripción del crecimiento de tumores cancerosos" | + | '''[[#citeF-5|[5]]]''' Zapata Peña, J., Ortiz, A.C. (2010) "Uso de modelos matemáticos para la descripción del crecimiento de tumores cancerosos". NOVA-Publicación Científica en Ciencias Biomédicas 8(14):140-147. |
<div id="cite-6"></div> | <div id="cite-6"></div> | ||
− | '''[[#citeF-6|[6]]]''' Folkman, J. (1971) "Tumor angiogenesis: therapeutic implications" | + | '''[[#citeF-6|[6]]]''' Folkman, J. (1971) "Tumor angiogenesis: therapeutic implications". The New England Journal of Medicine 20:1182-1186. |
<div id="cite-7"></div> | <div id="cite-7"></div> | ||
− | '''[[#citeF-7|[7]]]''' Martínez-Ezquerro, J.D., Herrera, L.A. (2006) "Angiogénesis: VEGF/VEGFRs como blancos terapéuticos en el tratamiento contra el cáncer" | + | '''[[#citeF-7|[7]]]''' Martínez-Ezquerro, J.D., Herrera, L.A. (2006) "Angiogénesis: VEGF/VEGFRs como blancos terapéuticos en el tratamiento contra el cáncer". Cancerología 1:83-96. |
<div id="cite-8"></div> | <div id="cite-8"></div> | ||
− | '''[[#citeF-8|[8]]]''' Anderson, A.R.A. and Chaplain, M.A.J. (1998) "Continuous and discrete mathematical models of tumor-induced angiogenesis" | + | '''[[#citeF-8|[8]]]''' Anderson, A.R.A. and Chaplain, M.A.J. (1998) "Continuous and discrete mathematical models of tumor-induced angiogenesis". Bulletin of Mathematical Biology 60:857-900. |
<div id="cite-9"></div> | <div id="cite-9"></div> | ||
− | '''[[#citeF-9|[9]]]''' Theocharis, A.D., Skandalis, S.S., Gialeli, Ch. and Karamanos, N.K. (2015) "Extracellular Matrix Structure". Advanced Drug Delivery Reviews 1 | + | '''[[#citeF-9|[9]]]''' Theocharis, A.D., Skandalis, S.S., Gialeli, Ch. and Karamanos, N.K. (2015) "Extracellular Matrix Structure". Advanced Drug Delivery Reviews 1-76. |
<div id="cite-10"></div> | <div id="cite-10"></div> | ||
− | '''[[#citeF-10|[10]]]''' Kornblihtt, A.R., Pesce, C.G., Alonso, C.R., Cramer, P., Srebrow, A., Werbajh, S. and Muro, A.F. (1996) "The fibronectin gene as a model for splicing and transcription studies" | + | '''[[#citeF-10|[10]]]''' Kornblihtt, A.R., Pesce, C.G., Alonso, C.R., Cramer, P., Srebrow, A., Werbajh, S. and Muro, A.F. (1996) "The fibronectin gene as a model for splicing and transcription studies". The FASEB Journal 10(2):248-257. |
<div id="cite-11"></div> | <div id="cite-11"></div> | ||
− | '''[[#citeF-11|[11]]]''' Glowinski, R. (2003) "Numerical Methods for Fluids (Part 3): Finite Element Methods for Incompressible Viscous Flow". Elsevier Science. | + | '''[[#citeF-11|[11]]]''' Glowinski, R. (2003) "Numerical Methods for Fluids (Part 3): Finite Element Methods for Incompressible Viscous Flow". Elsevier Science. |
<div id="cite-12"></div> | <div id="cite-12"></div> | ||
− | '''[[#citeF-12|[12]]]''' Reddy, J.N. (1986) "Applied functional analysis and variational methods in engineering". USA: McGraw-Hill. | + | '''[[#citeF-12|[12]]]''' Reddy, J.N. (1986) "Applied functional analysis and variational methods in engineering". USA: McGraw-Hill. |
<div id="cite-13"></div> | <div id="cite-13"></div> | ||
− | '''[[#citeF-13|[13]]]''' Orme, M.E. and Chaplain, M.A.J. (1997) "Two-dimesnional models of tumor angiogenesis and anti-angiogenesis strategies" | + | '''[[#citeF-13|[13]]]''' Orme, M.E. and Chaplain, M.A.J. (1997) "Two-dimesnional models of tumor angiogenesis and anti-angiogenesis strategies". IMA Journal of Mathematics Applied in Medicine and Biology 14:189-205. |
<div id="cite-14"></div> | <div id="cite-14"></div> | ||
− | '''[[#citeF-14|[14]]]''' Paweletz, N. and Knierim, M. (1989) "Tumor-related angiogenesis" | + | '''[[#citeF-14|[14]]]''' Paweletz, N. and Knierim, M. (1989) "Tumor-related angiogenesis". Critical Reviews in Oncology Hematology 9(3):197-242. |
<div id="cite-15"></div> | <div id="cite-15"></div> | ||
− | '''[[#citeF-15|[15]]]''' Kesavan, S. (1989) "Topics in functional analysis and applications". India: Wiley. | + | '''[[#citeF-15|[15]]]''' Kesavan, S. (1989) "Topics in functional analysis and applications". India: Wiley. |
<div id="cite-16"></div> | <div id="cite-16"></div> | ||
− | '''[[#citeF-16|[16]]]''' Rudin, W. (1987) "Real and complex analysis". USA: McGraw-Hill. | + | '''[[#citeF-16|[16]]]''' Rudin, W. (1987) "Real and complex analysis", 3rd. Edition. USA: McGraw-Hill. |
<div id="cite-17"></div> | <div id="cite-17"></div> | ||
− | '''[[#citeF-17|[17]]]''' Rudin, W. (1980) "Principios de Análisis Matemático". México: McGraw-Hill. | + | '''[[#citeF-17|[17]]]''' Rudin, W. (1980) "Principios de Análisis Matemático", 3a. Edición. México: McGraw-Hill. |
<div id="cite-18"></div> | <div id="cite-18"></div> | ||
− | '''[[#citeF-18|[18]]]''' Taylor, A.E. and Lay, D.C. (1980) "Introduction to functional analysis". USA: John Wiley. | + | '''[[#citeF-18|[18]]]''' Taylor, A.E. and Lay, D.C. (1980) "Introduction to functional analysis", 2nd. Edition. USA: John Wiley. |
Ana Kristhel Esteban López, Justino Alavez-Ramírez
División Académica de Ciencias Básicas, UJAT
Autor por correspondencia: justino.alavez@ujat.mx
En este trabajo retomamos el modelo matemático de Anderson y Chaplain (1998) formado por tres ecuaciones diferenciales, que describe la respuesta migratoria inicial de las células endoteliales al factor angiogénico tumoral (TAF) y a la fibronectina. Aplicamos el método variacional a los problemas de contorno mixto homogéneo y no homogéneo, que surgen del modelo antes citado, para demostrar la existencia, unicidad y dependencia continua respecto de los datos de la solución débil de dichos problemas.
Palabras clave: Células endoteliales, TAF, fibronectina, problema mixto homogéneo, formulación variacional.
El cáncer no es una enfermedad nueva. Papiros egipcios que datan de aproximadamente el año a. C. ya la describían [1]. Sin embargo, fue hasta la invención del microcospio en el siglo XIX que comenzó el estudio patológico moderno de cáncer [2]. El cáncer se ha vuelto un problema global de salud pública. Según estimaciones de la Organización Mundial de la Salud (OMS) en , el cáncer es la primera o la segunda causa de muerte antes de los años en de países, y ocupa el tercer o cuarto lugar en países adicionales [3]. Algunos factores de riesgo de cáncer se pueden vincular estrechamente con la herencia, los productos químicos, las radiaciones ionizantes, las infecciones o virus y los traumas. Los investigadores estudian cómo estos diferentes factores pueden interactuar de una manera multifactorial y secuencial para producir tumores malignos [2]. Los tumores pueden ser benignos o malignos. La células de los tumores malignos presentan dos características que la distinguen de las normales: se reproducen de manera descontrolada, y son capaces de invadir y colonizar tejidos y órganos distantes, en lugares donde normalmente no pueden crecer [4]. La combinación desafortunada de estas características es la que hace tan peligrosa y mortal a la mayoría de las formas del cáncer. Afortunadamente, existen muchos modelos matemáticos que permiten describir, bajo ciertas condiciones, la evolución de las células cancerígenas y el efecto que sobre ellas produce una terapia elegida con la intención de eliminar o, al menos, contener el crecimiento de un tumor [5].
La hipótesis de que el crecimiento tumoral depende de la angiogénesis fue introducida por primera vez en [6]. El término angiogénesis significa literalmente formación de nuevos vasos sanguíneos a partir de una vasculatura existente. En donde las células endoteliales (CEs) migran y proliferan, organizándose hasta formar estructuras tubulares que eventualmente se unirán, para finalmente madurar en vasos sanguíneos estables [7]. Anderson y Chaplain () [8], presentaron un modelo matemático continuo que describe la formación de la red de brotes capilares en respuesta a estímulos químicos (factores angiogénicos tumorales, TAF) suministrados por un tumor sólido. El modelo también tiene en cuenta las interacciones esenciales entre las células endoteliales y la matriz extracelular mediante la inclusión de la macromolécula de la matriz fibronectina.
Todos los tejidos y órganos contienen una mezcla de células y componentes no celulares, que forman redes bien organizadas llamadas matrices extracelulares (MEC). Las MEC proporcionan no sólo estructuras físicas en las que se incrustan las células, sino que también regulan muchos procesos celulares, como el crecimiento, la migración, la diferenciación, la supervivencia, la homeostasis y la morfogénesis [9]. La MEC está conformada por una gran variedad de moléculas, las cuales interaccionan entre sí, generando una estructura tridimensional a la cual las células se adhieren ya sea por receptores específicos o ligandos. Las macromoléculas que constituyen la MEC incluyen, entre otras, a la familia de las colágenas, que son las responsables de la resistencia mecánica de los tejidos conjuntivos, la elastina que le confiere cualidades de flexibilidad y elasticidad, proteínas de adhesión como fibronectinas y lamininas y los proteoglicanos que son esenciales para la adhesividad [4]. Las fibronectinas constituyen una familia de glucoproteínas multifuncionales, que se pueden encontrar tanto en forma insoluble, formando parte de la MEC, como en forma soluble circulando en el plasma [4]. Las células pueden ensamblar fibronectina soluble derivado de fibronectina en plasma en fibras. Alternativamente, las células pueden producir su propia fibronectina que es secretada y formada en fibras [9]. La fibronectina desempeña un papel fisiológico importante no sólo en la formación de la matriz extracelular, sino además en la adhesión y migración celular, en la coagulación de la sangre y en la cicatrización de las heridas, entre otras [10].
En cuanto al contenido de este artículo, en la sección 3, retomamos el modelo continuo dado por Anderson y Chaplain () [8], el cual consiste en un sistema de ecuaciones diferenciales que describen la respuesta migratoria inicial de las células endoteliales al TAF y la fibronectina. En la sección 4, realizamos la discretización en el tiempo mediante el método de diferencias finitas, que nos permite transformar el problema continuo formado por tres ecuaciones diferenciales parciales en un problema discreto en el que en cada tiempo se debe resolver una sola ecuación diferencial parcial de segundo orden de tipo elíptico, a la cual le aplicamos el método variacional al problema de contorno mixto homogéneo, que surge del modelo, para demostrar la existencia, unicidad y dependencia continua respecto de los datos iniciales de su solución débil.
Partimos del modelo matemático de Anderson y Chaplain (1998) [8]. Este modelo describe cómo las células endoteliales que emergen de un vaso padre, responden y migran a través de la motilidad aleatoria, de la quimiotaxis a través de gradientes del factor angiogénico tumoral (TAF) liberado por el tumor, y de la haptotaxis a través de gradientes de fibronectina en la matriz extracelular. En este modelo, la densidad de las células endoteliales (en o cerca de una punta de brote capilar) por unidad de área se denota por , que está influenciada por la motilidad aleatoria, la quimiotaxis y la haptotaxis. La concentración de TAF y la concentración de fibronectina están representadas por y , respectivamente. La quimiotaxis está en respuesta a los gradientes de TAF y la haptotaxis está en respuesta a los gradientes de fibronectina. El sistema de ecuaciones diferenciales parciales en el modelo está dado por
|
(1) |
donde, como se dijo antes, es la densidad de las células endoteliales, es la concentración de TAF y es la concentración de fibronetina. es el coeficiente de motilidad aleatoria de la célula, es el coeficiente quimiotáctico, es el coeficiente haptotáctico, , , y son constantes positivas.
Considerando una geometría bidimensional en la que las ecuaciones del modelo están definidas en el dominio espacial cuadrado de lado (un cuadrado de tejido corneal), , se reescala la distancia del vaso parental al tumor con y , con lo cual el vaso parental permanece en y el tumor en . Adimensionalizando el tiempo con , donde es el coeficiente de difusión del TAF; la densidad inicial de células endoteliales con y las concentraciones iniciales del TAF y fibronectina con y , respectivamente. Haciendo el cambio de variables:
|
(2) |
se obtiene el siguiente sistema adimensionalizado:
|
(3) |
donde , , , , , y . El modelo adimensionalizado (3) con condiciones iniciales, parámetros y condiciones de contorno apropiadas, es el que usan Anderson y Chaplain [8] para simular la migración (evolución) de las células endoteliales hacia la fuente de la señal tumoral. Es muy importante notar que solamente la primera ecuación del sistema (3), es la que contiene derivadas parciales espaciales, mientras que la segunda y tercera ecuación solo contienen la primera derivada en el tiempo. Así que al discretizar estas dos últimas ecuaciones con respecto al tiempo , darán lugar a ecuaciones algebraicas. Por otro lado, el dominio espacial del modelo adimensionalizado (3) es el conjunto y , donde , , y .
Discretizamos las derivadas parciales que aparecen en el lado izquierdo del sistema (3), usando un esquema progresivo para aproximar las derivadas parciales con respecto al tiempo . Para simplificar notaciones, escribiremos , y en lugar de , y , respectivamente, teniendo siempre en cuenta las relaciones dadas en (2). Así tenemos por ejemplo, , . Consideramos un intervalo de tiempo , entero positivo, y puntos , , [11,12]; y denotemos por , la primera ecuación del sistema (3) se discretiza en el tiempo como
|
(4) |
para y dado. Similarmente, para la segunda y tercera ecuación de (3), de donde resulta el esquema discreto:
|
o bien si utilizamos un esquema de discretizacion en el tiempo hacia adelante, resulta el esquema:
|
para , y , , dados, donde .
Condiciones iniciales. El primer evento de angiogénesis inducida por tumor es la secreción de TAF por las células tumorales, que se difunde en la matriz extracelular y se establece un gradiente de concentración entre el tumor y el vaso progenitor. Anderson y Chaplain (1998) [8] consideran un campo de concentración inicial de TAF de la forma , , . Una vez que el TAF ha alcanzado el vaso sanguíneo principal, las células endoteliales dentro del vaso se forman en grupos que finalmente se convierten en brotes. Los autores antes citados suponen que inicialmente se forman tres grupos a lo largo del eje () en , con el tumor localizado en y el vaso progenitor de las células endoteliales también en el eje (, ). El grupo inicial de células endoteliales se genera con si y en otro caso; . Una vez que las células endoteliales han sido activadas por el TAF, degradan la lámina basal del vaso principal. Este daño inicial resulta en una mayor capacidad de permeabilidad del vaso que permite que la fibronectina plasmática de la sangre se escape del vaso parental y se difunda en el tejido corneal. Posteriormente, esta fibronectina plasmática se une a la matriz extracelular del tejido corneal, creando una alta concentración inicial de fibronectina en y alrededor del buque matriz. Los autores antes citados toman el perfil de concentración inicial de fibronectina como , , y .
Condiciones de contorno. Veamos ahora las condiciones de contorno que se deben satisfacer en la frontera de , para que se pueda plantear el problema de existencia, unicidad y dependencia continua de los datos del problema de la solución del sistema (3). Anderson y Chaplain (1998) [8] proponen una condición de no flujo en la frontera de la forma , donde es el vector normal unitario exterior a la frontera . Orme y Chaplain (1997) [13], consideran condiciones de frontera mixta. Por ejemplo, una vez que el proceso de angiogénesis ha comenzado, es decir, la membrana basal del vaso parental se rompe para formar brotes, y como se concentra la atención exclusivamente en las células endoteliales que están cerca del brote, ya que éstas son las que emigran hacia el tumor, entonces se puede suponer que la densidad inicial de las células endoteliales es en y condiciones de flujo cero en las demás fronteras, es decir, en , en y en , ya que como lo indican Paweletz y Knierim (1989) [14], las células endoteliales no cruzan la membrana basal en ninguna otra parte. Por otro lado, ya que el TAF está siendo secretado por el tumor, su concentración permanece constante en ese punto y decae en cero en el vaso parental, por lo tanto, se consideran las condiciones de frontera: en , en , en y en . Análogamente, para la concentración de fibronectina, ya que las células endoteliales liberan fibronectina, por lo que las condiciones de frontera para este caso serán: en , en , en y en .
Si hacemos y , la ecuación (4) toma la forma , que es una ecuación diferencial parcial de segundo orden de tipo elíptico.
Como observamos antes, Orme y Chaplain (1997) [13] sugieren estudiar un problema mixto. Para ello, dividimos la frontera de en dos partes disjuntas, es decir, con . El problema mixto lo formulamos como sigue:
Problema mixto no homogéneo. Sean , y continuas y , determinar y continua en tal que
|
(5) |
donde es el vector normal exterior unitario sobre la frontera .
Una forma de estudiar el problema mixto no homogéneo (5) es transformándolo en un problema equivalente que sea de tipo Dirichlet homogéneo sobre , mediante un cambio de variable apropiado [15,12]. Para ello, notemos que si , el teorema de la traza A.1 garantiza que existe un mapeo tal que . Más explícitamente, el rango de es el espacio . Así, podemos suponer que . Así que de nuevo por el teorema de la traza A.1, existe tal que . Proponemos el cambio de variable
|
(6) |
Transformemos ahora la primera y tercera ecuación de (5) en términos de :
|
de donde
|
(7) |
Y
|
de donde
|
(8) |
Así, bajo el cambio de variable (6) y teniendo en cuenta (7) y (8), el problema mixto no homogéneo (5) es equivalente al problema:
Problema mixto homogéneo. Sean y continuas y , determinar y continua en tal que
|
(9) |
Para realizar la formulación variacional del problema mixto homogéneo (9), las condiciones de frontera sugieren de manera natural buscar soluciones débiles en el espacio de Sobolev . Puesto que se satisface la desigualdad de Poincaré (teorema A.3) en , es un espacio de Hilbert con la norma
|
Multiplicando ambos lados de la primera ecuación de (9) por una función de prueba e integrando sobre tenemos:
|
(10) |
Puesto que
|
(11) |
Entonces, bajo el supuesto que satisface las hipótesis del teorema de Green A.2, se sigue que
|
de donde,
|
(12) |
Similarmente,
|
(13) |
Tomando que es el vector normal exterior unitario a la frontera e integrando (11) sobre , y teniendo en cuenta (12) y (13), obtenemos
|
de donde
|
(14) |
Sustituyendo (14) en (10) y agrupando términos, resulta
|
Por lo tanto, la formulación variacional o débil del problema mixto homogéneo (9) se formula como sigue:
Problema variacional mixto homogéneo. Sean , y , determinar tal que
|
(15) |
La existencia, unicidad y dependencia continua de la solución con respecto a los datos y parámetros del problema variacional mixto homogéneo (15), lo damos en el siguiente teorema vía el teorema de Lax-Milgram B.1.
Teorema 1 (Existencia y unicidad): Sea un conjunto abierto y acotado de clase en con frontera , . Si , y , entonces el problema variacional mixto homogéneo (15) tiene una única solución . Además, existe una constante tal que
|
(16) |
Más aún, la funcional
|
(17) |
alcanza su mínimo en .
Demostración. Con el propósito de aplicar el teorema de Lax-Milgram B.1, definimos: , y , . El objetivo es determinar tal que , para todo . En efecto. a) Es claro que es una funcional lineal en .
b) Veamos que es continua en . Aplicando primero la desigualdad de Schwarz para integrales (véase página 63 de [16]), luego el teorema de la traza A.1 y finalmente la desigualdad de Poincaré A.3, obtenemos:
|
de donde,
|
(18) |
La desigualdad de Poincaré A.3, garantiza que la norma es equivalente a la norma en . Así, existe tal que para todo . Por otro lado, la misma desigualdad de Poincaré A.3, nos dice que las normas y son equivalentes, por lo que también existe tal que para todo . Concluimos de (18) que
|
(19) |
donde , es la constante de la traza y es la constante de Poincaré. Por consiguiente, es continua en .
c) También es directo verificar que es una forma bilineal y simétrica sobre .
d) Veamos que es continua. Notemos primero que
|
(20) |
Trabajemos con la primera integral. Aplicamos la desigualdad de Schwarz para integrales (véase página 63 de [16]), luego la desigualdad de Schwarz para pares de números reales o complejos (véase pág. 16 de [17]), tenemos:
|
de donde
|
(21) |
Aplicando de nuevo la desigualdad de Schwarz para integrales y luego la desigualdad de Poincaré A.3, a la segunda integral de (20), resulta:
|
(22) |
donde , , y , son como en (19). Sustituyendo (22) y (21) en (20), se sigue que , para todo , lo que prueba que es continua.
e) La forma bilineal es coerciva ya que
|
Como se satisfacen todas la hipótesis del teorema de Lax-Milgram (teorema B.1), concluimos que el problema variacional mixto homogéneo (15), tiene una única solución .
f) Notemos que la constante de coercividad es , por lo que se sigue también del teorema de Lax-Milgram B.1 y (19) que
|
donde . Esto muestra la dependencia continua de la solución con respecto a los datos , y del problema. También con esto se prueba la desigualdad (16).
g) Finalmente, como es simétrica en , se sigue una vez más del teorema de Lax-Milgram B.1 que la funcional por (17) alcanza su mínimo en .
La aportación más relevante del trabajo consistió en aplicar el método variacional para demostrar, en el teorema 1, la existencia, unicidad y dependencia continua de la solución débil del problema mixto homogéneo (9) con respecto a los datos y parámetros del problema. Como consecuencia, también se garantizó la existencia de la solución débil del problema no homogéneo (5).
Agradecimientos. A los árbitros por todas las sugerencias y recomendaciones para mejorar el manuscrito. A CONACYT por la beca de manutención que otorgó al primer autor durante el desarrollo del proyecto.
Definición A.1: Sea , , el espacio de las clases de todas las funciones medibles y tales que es integrable sobre . Si , se define la norma de como . es el espacio de todas las clases de funciones medibles y esencialmente acotadas sobre , véase [18]. Si se define la norma de como , donde denota el supremo esencial de sobre .
es un espacio de Hilbert con el producto interno para todo .
Definición A.2: Se llama espacio de Sobolev al espacio de las funciones cuyas derivadas parciales (en el sentido de las distribuciones) pertenecen a , esto es, .
El espacio dotado del producto interno
|
el cual induce la norma
|
es un espacio de Hilbert.
Si denotamos por al conjunto de todas las funciones de prueba sobre , es decir, funciones de clase y de soporte compacto contenido en , entonces . Es especialmente útil el espacio , es decir, la adherencia respecto de la norma de , del espacio de las funciones de prueba . con la norma que hereda de es también un espacio de Hilbert. Dicho de un modo un tanto impreciso, el espacio es el formado por las funciones de que se anulan sobre la frontera de . Decimos de un modo un tanto impreciso dado que la frontera de tiene medida nula, y dos funciones de que son iguales salvo en un conjunto de medida cero son, como funciones de , iguales. Para eliminar esta ambigüedad se introduce el concepto de traza de una función de , véase por ejemplo [15]. Extendemos la definición del espacio de Sobolev para funciones en , , como sigue:
Definición A.3: Sea entero y . El espacio de Sobolev se define como dotada de la norma
|
o equivalentemente, para , de la norma
|
Un caso de especial importancia ocurre cuando , donde se obtiene el espacio dotada de la norma
|
(W) |
El espacio posee un producto interno natural definido por
|
que induce la norma (W), por lo que es un espacio de Hilbert. Como antes, introducimos un importante subespacio de . Si , entonces es denso en . También, si , entonces para todo , por lo que para cualquier y . Si , se define el espacio como la adherencia de en . Así es un subespacio cerrado de y sus elementos pueden ser aproximados en la norma de por funciones de clase con soporte compacto contenido en . Cuando , los espacios se denotan como . En general, es un subespacio estricto de , salvo cuando (véase [15]).
Teorema A.1 (de la traza, Kesavan (1989) [15]): Sea un conjunto abierto y acotado de clase con frontera . Entonces existe un mapeo traza de en tal que
Teorema A.2 (de Green, Kesavan (1989) [15]): Sea un conjunto abierto y acotado de clase que yace sobre el mismo lado de su frontera . Sean . Entonces para , , donde es el vector normal exterior unitario sobre la frontera .
Teorema A.3 (Desigualdad de Poincaré, Kesavan (1989) [15]): Sea un conjunto abierto y acotado en . Entonces existe una constante positiva tal que , . En particular, define una norma sobre , la cual es equivalente a la norma . Sobre , la forma bilineal define un producto interno que induce una norma equivalente a la norma .
Una función vista como una distribución sobre , se extiende a una forma lineal y continua sobre , por medio de la aplicación por , para todo .
Definición B.1 (Problema variacional): Sea un espacio de Hilbert, una forma lineal y continua y una forma bilineal. Por problema variacional entendemos el problema de determinar tal que
|
(X) |
La existencia, unicidad y dependencia continua respecto de los datos iniciales de la solución de (A), se obtiene a través del teorema de Lax-Milgram.
Definición B.2: Sea una forma bilineal sobre un espacio normado . es continua si existe tal que para todo , y es coerciva o -elíptica si existe tal que para todo . es simétrica si para todo .
Teorema B.1 (de Lax-Milgram, Kesavan (1989) [15]): Sea un espacio de Hilbert, una forma lineal y continua, y una forma bilineal continua y coerciva, entonces el problema variacional (A) tiene una única solución en . Además, , donde . Si es también simétrica, entonces la funcional por para todo alcanza su mínimo en .
[1] Graña, A. (2015) "Breve evolución histórica del cáncer". Carcinos 5(1):26-31.
[2] Aibar, S., Celano, C., Chambi, M.C., Estrada, S., Gandur, N., Gange, P., González, C., González, O., Grance, G., Junin, M., Kohen, N., Molina, J., Núñez, M.G., Sáenz, M., Troncoso, M., Vallejos, A. (2008) "Manual de Enfermería Oncológica". Instituto Nacional de Cáncer. Argentina.
[3] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) "Global cancer statistics 2018: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries". CA: A Cancer Journal for Clinicians 68(6):394-424.
[4] Jiménez García, L.F., Merchant Larios, H. (2003) "Biología celular y molecular". México: Pearson Educación.
[5] Zapata Peña, J., Ortiz, A.C. (2010) "Uso de modelos matemáticos para la descripción del crecimiento de tumores cancerosos". NOVA-Publicación Científica en Ciencias Biomédicas 8(14):140-147.
[6] Folkman, J. (1971) "Tumor angiogenesis: therapeutic implications". The New England Journal of Medicine 20:1182-1186.
[7] Martínez-Ezquerro, J.D., Herrera, L.A. (2006) "Angiogénesis: VEGF/VEGFRs como blancos terapéuticos en el tratamiento contra el cáncer". Cancerología 1:83-96.
[8] Anderson, A.R.A. and Chaplain, M.A.J. (1998) "Continuous and discrete mathematical models of tumor-induced angiogenesis". Bulletin of Mathematical Biology 60:857-900.
[9] Theocharis, A.D., Skandalis, S.S., Gialeli, Ch. and Karamanos, N.K. (2015) "Extracellular Matrix Structure". Advanced Drug Delivery Reviews 1-76.
[10] Kornblihtt, A.R., Pesce, C.G., Alonso, C.R., Cramer, P., Srebrow, A., Werbajh, S. and Muro, A.F. (1996) "The fibronectin gene as a model for splicing and transcription studies". The FASEB Journal 10(2):248-257.
[11] Glowinski, R. (2003) "Numerical Methods for Fluids (Part 3): Finite Element Methods for Incompressible Viscous Flow". Elsevier Science.
[12] Reddy, J.N. (1986) "Applied functional analysis and variational methods in engineering". USA: McGraw-Hill.
[13] Orme, M.E. and Chaplain, M.A.J. (1997) "Two-dimesnional models of tumor angiogenesis and anti-angiogenesis strategies". IMA Journal of Mathematics Applied in Medicine and Biology 14:189-205.
[14] Paweletz, N. and Knierim, M. (1989) "Tumor-related angiogenesis". Critical Reviews in Oncology Hematology 9(3):197-242.
[15] Kesavan, S. (1989) "Topics in functional analysis and applications". India: Wiley.
[16] Rudin, W. (1987) "Real and complex analysis", 3rd. Edition. USA: McGraw-Hill.
[17] Rudin, W. (1980) "Principios de Análisis Matemático", 3a. Edición. México: McGraw-Hill.
[18] Taylor, A.E. and Lay, D.C. (1980) "Introduction to functional analysis", 2nd. Edition. USA: John Wiley.
Published on 20/12/20
Submitted on 10/12/20
Licence: CC BY-NC-SA license