You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
Published in ''Comput. Methods Appl. Mech. Engrg''. Vol. 213–216, pp. 362–382, 2012<br />
2
doi: 10.1016/j.cma.2011.11.023
3
4
==Abstract==
5
6
In this work we present a new simple linear two-noded beam element adequate for the analysis of composite laminated and sandwich beams based on the combination of classical Timoshenko beam theory and the refined zigzag kinematics  proposed by Tessler ''et al.'' <span id='citeF-22'></span>[[#cite-22|[22]]]. The element has just four kinematic variables per node. Shear locking is eliminated by reduced integration. The accuracy of the new beam element is tested in a number  of applications to the analysis of composite laminated beams with simple supported and clamped ends under point loads and uniformly distributed loads. An example showing the capability of the new element for accurately reproducing delamination effects is also presented.
7
8
'''Keywords''': Two-noded beam element, zigzag kinematics, Timoshenko theory, composite, sandwich beams
9
10
11
==1 INTRODUCTION==
12
13
It is well known that both the classical Euler-Bernouilli beam theory <span id='citeF-1'></span>[[#cite-1|[1]]] and the more advanced Timoshenko theory  <span id='citeF-2'></span>[[#cite-2|[2]]] produce inadequate predictions when applied to relatively thick composite laminated  beams with material layers that have highly dissimilar stiffness characteristics. Even with a judiciously chosen shear correction factor, Timoshenko theory tends to underestimate the axial stress at the top and bottom outer fibers of a beam. Also, along the layer interfaces of a laminated beam the transverse shear stresses predicted exhibit erroneous discontinuities. These difficulties are due to the higher complexity of the “true” variation of the axial displacement field across a highly heterogeneous beam cross-section.
14
15
Indeed to achieve accurate computational results, 3D finite element analyses are often preferred over beam models. For composite laminates with hundred of layers, however, 3D modelling becomes prohibitely expensive, specially for non linear and progressive failure analyses.
16
17
Improvements to the classical beam theories have been obtained by the so called equivalent single layer (ESL) theories that assume a priori the behaviour of the displacement and/or the stress through the laminate thickness <span id='citeF-3'></span>[[#cite-3|[3,4]]]. Despite of being computational efficient, ESL theories often produce innacurate distributions for the stresses and strains (in particular the transverse shear stress) across the thickness.
18
19
The need for composite laminated beam theories with better predictive capabilities has led to the development of the so-called ''higher order'' theories. In  these theories higher-order kinematic terms with respect to the beam depth  are added to the expression for the axial displacement and, in some cases, to the expressions for the deflection. A review of these theories can be found in <span id='citeF-3'></span>[[#cite-3|[3,4]]].
20
21
Accurate predictions of the correct shear and axial stresses for thick and highly heterogenous composite laminated and sandwich beams can be obtained by using ''layer-wise'' theory. In this theory the thickness coordinate is split into a number of ''analysis layers'' that may or not coincide with the number of laminate plies. The kinematics are independently described within each layer and certain physical continuity requirements are enforced <span id='citeF-3'></span><span id='citeF-4'></span>[[#cite-3|[3,4]]].
22
23
A drawback of layer-wise theory is that the number of kinematic variables depends on the number of analysis layers. The layer displacements  can be condensed at each section in terms of the axial displacement for the top layer during the equation solution process <span id='citeF-5'></span><span id='citeF-6'></span>[[#cite-5|[5,6]]]. The displacement condensation processes can be however expensive for problems involving many analysis layers.
24
25
Discrete layer theories in which the number of unknowns in the model does not depend on the number of layers in the laminate are described in <span id='citeF-7'></span>[[#cite-7|[7,8,9]]]. In this class of discrete layerwise theories (called zigzag theories) a piewise linear in-plane displacement function (the zigzag function) is superimposed over a linear displacement field <span id='citeF-7'></span>[[#cite-7|[7,8]]], a quadratic displacement field <span id='citeF-10'></span>[[#cite-7|[10,11]]] or a cubic displacement field <span id='citeF-12'></span>[[#cite-12|[12,13,14]]] through the thickness of the laminate.
26
27
Many zigzag theories  require <math display="inline">C^1</math> continuity for the deflection field, which is a drawback versus simpler <math display="inline">C^\circ </math> continuous FEM approximations. Also many zigzag theories run into theoretical difficulties to satisfy equilibrium of forces at a clamped support.
28
29
Averill et al. <span id='citeF-9'></span><span id='citeF-10'></span><span id='citeF-16'></span><span id='citeF-17'></span>[[#cite-9|[9,10,16,17]]] developed linear, quadratic and cubic zigzag beam theories that overcame the need for <math display="inline">C^1</math> continuity. The shear strain angle is introduced as a kinematic variable together with the deflection, the rotation and the zigzag function. A <math display="inline">C^\circ </math> interpolation can be used for all these variables. The relationship between the shear angle, the deflection and the rotation of each layer is introduced as a constraint via a penalty method. This also ensures the continuity of the transverse shear stress across the laminate depth and the satisfaction of the shear traction boundary conditions. However, Averill theories have difficulties to model correctly clamped boundary conditions. For this reason, analytical and numerical (FEM) studies based on Averill theory have mainly focused on simple supported beams <span id='citeF-16'></span><span id='citeF-17'></span>[[#cite-16|[16,17]]].
30
31
A 2-noded beam element based on Euler-Bernouilli beam theory and an extension of Averill's zigzag theory including a cubic in-plane displacement field within each layer has been recently proposed by Alam and Upadhyay <span id='citeF-18'></span>[[#cite-18|[18]]]. Good results are reported for cantilever and clamped composite and sandwich beams.
32
33
An assessment of different zigzag theories for beam is reported in <span id='citeF-19'></span><span id='citeF-20'></span>[[#cite-19|[19,20]]]. A review of zigzag theory for plate analysis can be found in <span id='citeF-21'></span>[[#cite-21|[21]]].
34
35
Tessler ''et al.'' <span id='citeF-22'></span>[[#cite-22|[22,23]]] have developed a refined zigzag (RZ) theory  starting from the standard Timoshenko kinematic assumptions. This allows one using <math display="inline">C^\circ </math> continuous interpolation for all the kinematic variables. Timoshenko beam theory also introduces naturally shear deformation effect for the homogeneous material case, which is advantageous for many problems. The zigzag functions chosen have the property of vanishing on the top and bottom surfaces of a laminate. A particular feature of this zigzag theory is that the transverse shear stresses are not required to be continuous at the layer interfaces. This results in simple piewice-constant functions that approximate the true shear stress distribution. An accurate continuous thickness distribution of the transverse shear stress can be obtained “a posteriori” in terms of the axial stress by integrating the equilibrium equations. This theory also provides good results for clamped supports.
36
37
Gherlone et al. <span id='citeF-24'></span>[[#cite-24|[24]]] have  developed two and three-noded <math display="inline">C^\circ </math> beam elements based on the RZ theory for analysis of multilayered composite and sandwich beams. Locking-free elements are obtained by using  ''anisoparametric'' interpolations that are adapted to approximate the four independent kinematic variables  that model the beam deformation. A family of beam elements is achieved by imposing different constraints  on the original displacement approximation. The constraint conditions requiring a constant variation of the transverse shear force provide an accurate 2-noded beam element <span id='citeF-24'></span>[[#cite-24|[24]]].
38
39
Quite simultaneously to the above work, Oñate et al. <span id='citeF-25'></span>[[#cite-25|[25]]] proposed a simple 2-noded beam element for composite laminated beams based on the RZ theory. A standard linear displacement field is used to model the four variables of the so called LRZ element. Shear locking is avoided by using reduced integration on selected terms of the shear stiffness matrix.
40
41
In this paper we present in detail the formulation of the LRZ beam element originally reported in  <span id='citeF-25'></span>[[#cite-25|[25]]] and explore the capabilities of the new element for multilayered beams and delamination analysis. A study of the locking-free behaviour of the LRZ element for slender beams is presented. The good performance of the element is demonstrated for simply supported and clamped composite laminated beams with different layers under point load and uniformly distributed loads.
42
43
Finally, an example showing the capability of the LRZ element to model delamination effects is presented.
44
45
==2 GENERAL CONCEPTS OF ZIGZAG BEAM THEORY==
46
47
The kinematic field in zigzag beam theory is generally written as
48
49
{| class="formulaSCP" style="width: 100%; text-align: left;" 
50
|-
51
| 
52
{| style="text-align: left; margin:auto;width: 100%;" 
53
|-
54
| style="text-align: center;" | <math>u^k (x,z)  = u_0 (x) - z\theta (x) + \bar u^k (x,z)</math>
55
|-
56
| style="text-align: center;" | <math> w(x,z)  =w_0(x) </math>
57
|}
58
| style="width: 5px;text-align: right;white-space: nowrap;" | (1.a)
59
|}
60
61
where
62
63
{| class="formulaSCP" style="width: 100%; text-align: left;" 
64
|-
65
| 
66
{| style="text-align: left; margin:auto;width: 100%;" 
67
|-
68
| style="text-align: center;" | <math>\bar u^k = \phi ^k (z)\Psi (x) \quad ,\quad k = 1, N </math>
69
|}
70
| style="width: 5px;text-align: right;white-space: nowrap;" | (1.b)
71
|}
72
73
is the ''zigzag displacement function'' (Figure [[#img-1|1]]).
74
75
In Eqs.(1) <math display="inline">N</math> is the number of layers, superscript <math display="inline">k</math> indicates quantities within the <math display="inline">k</math>th layer with <math display="inline">z_k \le z\le z_{k+1}</math> and <math display="inline">z_k</math> is the vertical coordinate of the <math display="inline">k</math>th interface. In Eq.(1a) the uniform axial displacement <math display="inline">u_0(x)</math>, the rotation <math display="inline">\theta (x)</math> and the transverse deflection <math display="inline">w_0(x)</math> are the primary kinematic  variables of the underlying equivalent single-layer Timoshenko beam theory. In Eq.(1b) function <math display="inline">\phi ^k (z)</math> denotes ''a piecewise linear zigzag function'', yet to be established, and <math display="inline">\Psi (x)</math> is a primary kinematic variable that defines the ''amplitude of the zigzag function'' along the beam. Collectively, the interfacial axial displacement field has a zigzag distribution, as shown in Figure [[#img-1|1]]c.
76
77
<div id='img-1'></div>
78
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
79
|-
80
|[[Image:Draft_Samper_624436055-test-Fig1.png|600px|Thickness distribution of the the zigzag function ϕ<sup>k</sup> (a), the zigzag displacement function ̄u<sup>k</sup> (b),  and the axial displacement (c) in refined zigzag beam theory]]
81
|- style="text-align: center; font-size: 75%;"
82
| colspan="1" | '''Figure 1:''' Thickness distribution of the the zigzag function <math>\phi ^k</math> (a), the zigzag displacement function <math>\bar u^k</math> (b),  and the axial displacement (c) in refined zigzag beam theory
83
|}
84
85
The  strain-displacement relations are derived by substituting Eq.(1a) into the expressions of classical Timoshenko beam theory, i.e.
86
87
{| class="formulaSCP" style="width: 100%; text-align: left;" 
88
|-
89
| 
90
{| style="text-align: left; margin:auto;width: 100%;" 
91
|-
92
| style="text-align: center;" | <math>\varepsilon _x^k = \frac{\partial u^k}{\partial x} = \frac{\partial u_0}{\partial x} - z \frac{\partial \theta }{\partial x}+ \phi ^k \frac{\partial \Psi }{\partial x} = [1,-z,\phi ^k]\left\{\begin{matrix}\displaystyle \frac{\partial u_0}{\partial x}\\[.3cm]\displaystyle \frac{\partial \theta }{\partial x} \\[.3cm]\displaystyle \frac{\partial \Psi }{\partial x} \end{matrix} \right\}= {\boldsymbol S}_p \hat {\boldsymbol \varepsilon }_p </math>
93
|}
94
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.a)
95
|}
96
97
{| class="formulaSCP" style="width: 100%; text-align: left;" 
98
|-
99
| 
100
{| style="text-align: left; margin:auto;width: 100%;" 
101
|-
102
| style="text-align: center;" | <math>\gamma _{xz}^k = \frac{\partial u^k}{\partial z}+ \frac{\partial w}{\partial x} = \frac{\partial w_0}{\partial x}-\theta + \frac{\partial \phi ^k}{\partial z}\Psi = \gamma +\beta ^k \Psi = [1,\beta ^k] \left\{\begin{matrix}\gamma \\ \Psi  \end{matrix} \right\}= {\boldsymbol S}_t \hat {\boldsymbol \varepsilon }_t </math>
103
|}
104
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.b)
105
|}
106
107
In Eq.s (2a) and (2b)
108
109
{| class="formulaSCP" style="width: 100%; text-align: left;" 
110
|-
111
| 
112
{| style="text-align: left; margin:auto;width: 100%;" 
113
|-
114
| style="text-align: center;" | <math>\begin{array}{ll}{\boldsymbol S}_p =[1,-z,\phi ^k]\quad ,  &  \hat {\boldsymbol \varepsilon }_p = \displaystyle \left[\frac{\partial u_0}{\partial x} ,  \frac{\partial \theta }{\partial x},\frac{\partial \Psi }{\partial x}\right]^T\\ {\boldsymbol S}_t =[1,\beta ^k]\quad ,  & \hat{\boldsymbol \varepsilon }_t = \left[\gamma ,\Psi \right]^T \end{array} </math>
115
|}
116
| style="width: 5px;text-align: right;white-space: nowrap;" | (2.c)
117
|}
118
119
where <math display="inline">\hat {\boldsymbol \varepsilon }_p</math> and <math display="inline">\hat{\boldsymbol \varepsilon }_t</math> are the generalized in-plane and transverse shear strain vectors, respectively. Vector <math display="inline">\hat {\boldsymbol \varepsilon }_p</math> contains the axial elongation <math display="inline">\left(\frac{\partial u_0}{\partial x}\right)</math>, the pseudo-curvature <math display="inline">\left(\frac{\partial \theta }{\partial x}  \right)</math> and the derivatives of the amplitude of the zigzag function <math display="inline">\left(\frac{\partial \Psi }{\partial x} \right)</math>. In <math display="inline">\hat{\boldsymbol \varepsilon }_t</math>, <math display="inline">\gamma = \frac{\partial w_0}{\partial x} -\theta </math> is the average transverse shear strain of Timoshenko beam theory and <math display="inline">\beta ^k = \frac{\partial \phi ^k}{\partial z}</math>. Note that since <math display="inline">\phi ^k (z)</math> is piecewise linear, <math display="inline">\beta ^k </math> is constant across each layer.
120
121
For major principal material axes that are coincident with the beam <math display="inline">x</math> axis, Hooke stress-strain relations for the <math display="inline">k</math>th orthotropic layer have the standard form
122
123
{| class="formulaSCP" style="width: 100%; text-align: left;" 
124
|-
125
| 
126
{| style="text-align: left; margin:auto;width: 100%;" 
127
|-
128
| style="text-align: center;" | <math>\sigma _x^k = E^k \varepsilon _x^k = E^k  {\boldsymbol S}_p\hat {\boldsymbol \varepsilon }_p</math>
129
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.a)
130
|-
131
| style="text-align: center;" | <math> \tau _{xz}^k  = G^k \gamma _{xz}^k = G^k {\boldsymbol S}_t \hat{\boldsymbol \varepsilon }_t </math>
132
| style="width: 5px;text-align: right;white-space: nowrap;" | (3.b)
133
|}
134
|}
135
136
where <math display="inline">E^k</math> and <math display="inline">G^k</math> are the axial and shear moduli for the <math display="inline">k</math>th layer, respectively.
137
138
In the above equations we have distinguished all variables within a layer with superscript <math display="inline">k</math>.
139
140
==3 REFINED ZIGZAG THEORY==
141
142
===3.1 Zigzag kinematics===
143
144
The key attributes of the refined zigzag (RZ) theory  proposed by Tessler ''et al.'' [22] are, first, ''the zigzag function'' ''vanishes at the top and bottom surfaces'' ''of the beam'' section and does not require full shear-stress continuity across the laminated-beam depth. Second, all boundary conditions can be modelled adequately. And third, <math display="inline">C^\circ </math> continuity is only required for the FEM approximation of the kinematic variables.
145
146
Within each layer the zigzag function is expressed as
147
148
{| class="formulaSCP" style="width: 100%; text-align: left;" 
149
|-
150
| 
151
{| style="text-align: left; margin:auto;width: 100%;" 
152
|-
153
| style="text-align: center;" | <math>\phi ^k = \frac{1}{2} (1-\zeta ^k ) \bar \phi ^{k-1} + \frac{1}{2} (1+\zeta ^k ) \bar \phi ^k = \frac{\bar \phi ^k + \bar \phi ^{k-1}}{2}+ \frac{\bar \phi ^k - \bar \phi ^{k-1}}{2} \zeta ^k </math>
154
|}
155
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
156
|}
157
158
where <math display="inline">\bar \phi ^k</math> and <math display="inline">\bar \phi ^{k-1}</math> are the zigzag function values of the <math display="inline">k</math> and <math display="inline">k-1</math> interface, respectively with <math display="inline">\bar \phi ^0 = \bar \phi ^N =0</math> and <math display="inline">\zeta ^k = \frac{2(z - z^{k-1})}{h^k}-1</math>.
159
160
Collectively, function <math display="inline">\phi ^k</math> has the zigzag distribution shown in Figure [[#img-1|1]]a. Due to the dependence between the zigzag displacement function <math display="inline">\bar u^k</math> and <math display="inline">\bar \phi ^k</math> (see Eq.(1b)), <math display="inline">\bar u^k</math> also vanishes at the top and bottom layers. The axial displacement field is plotted in Figure [[#img-1|1]]c.
161
162
The above form of <math display="inline">\phi ^k</math> gives the constant value of <math display="inline">\beta ^k</math> for each layer as
163
164
{| class="formulaSCP" style="width: 100%; text-align: left;" 
165
|-
166
| 
167
{| style="text-align: left; margin:auto;width: 100%;" 
168
|-
169
| style="text-align: center;" | <math>\beta ^k = \frac{\partial \phi ^k}{\partial z} = \frac{\bar \phi ^k - \bar \phi ^{k-1}}{h^k} </math>
170
|}
171
| style="width: 5px;text-align: right;white-space: nowrap;" | (5.a)
172
|}
173
174
and
175
176
{| class="formulaSCP" style="width: 100%; text-align: left;" 
177
|-
178
| 
179
{| style="text-align: left; margin:auto;width: 100%;" 
180
|-
181
| style="text-align: center;" | <math>\iint _A \beta ^k dA =0 </math>
182
|}
183
| style="width: 5px;text-align: right;white-space: nowrap;" | (5.b)
184
|}
185
186
The <math display="inline">\beta ^k</math> parameter is useful for computing the zigzag function as explained in the next section.
187
188
===3.2 Computation of the zigzag function===
189
190
Integrating Eq.(2b) over the cross section and using Eq.(5b) and the fact that <math display="inline">\Psi </math> is independent of <math display="inline">z</math> yields
191
192
{| class="formulaSCP" style="width: 100%; text-align: left;" 
193
|-
194
| 
195
{| style="text-align: left; margin:auto;width: 100%;" 
196
|-
197
| style="text-align: center;" | <math>\gamma = \frac{1}{A} \iint _A \gamma _{xz}^k dA </math>
198
|}
199
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
200
|}
201
202
i.e. <math display="inline">\gamma </math> represents the average shear strain of the cross section, as expected.
203
204
The shear strain-shear stress relationship of Eq.(3b) is written as
205
206
{| class="formulaSCP" style="width: 100%; text-align: left;" 
207
|-
208
| 
209
{| style="text-align: left; margin:auto;width: 100%;" 
210
|-
211
| style="text-align: center;" | <math>\tau _{xz}^k =G^k \eta + G^k (1+\beta ^k) \Psi  </math>
212
|}
213
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
214
|}
215
216
where <math display="inline">\eta =\gamma - \Psi </math> is a difference function.
217
218
'''Remark 1'''. Function <math display="inline">\Psi </math>  can be interpreted as a weighted-average shear strain angle <span id='citeF-22'></span>[[#cite-22|[22]]]. The value of <math display="inline">\Psi </math> should be prescribed to zero at a clamped edge and left unprescribed  at free and simply supported edges.
219
220
Eq.(7) shows that the distribution of <math display="inline">\tau _{xz}^k</math> within each layer is constant, as <math display="inline">\eta </math> is independent of the zigzag function and <math display="inline">\beta ^k </math> is constant.
221
222
The distribution of <math display="inline">\tau _{xz}^k</math> is now ''enforced to be independent of the zigzag function''. This can be achieved by constraining the term multiplying <math display="inline">\Psi </math> in Eq.(7) to be constant, i.e.
223
224
{| class="formulaSCP" style="width: 100%; text-align: left;" 
225
|-
226
| 
227
{| style="text-align: left; margin:auto;width: 100%;" 
228
|-
229
| style="text-align: center;" | <math>G^k (1+\beta ^k) = G^{k+1} (1+\beta ^{k+1})=G, \quad \hbox{constant} </math>
230
|}
231
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
232
|}
233
234
This is equivalent to enforcing the interfacial continuity of the second term in the r.h.s. of Eq.(7).
235
236
'''Remark 2.''' We emphasize that this zigzag theory  does not enforce the continuity of the transverse shear stresses across the section. This is consistent with the kinematic freedom inherent in the lower order kinematic approximation of the underlying beam theory. An accurate continuous distribution of the transverse shear stress across the thickness of the laminate can be obtained “a posteriori” in terms of axial stresses by integrating the equilibrium equations as explained in Section 7.3.
237
238
From Eq.(8) we deduce
239
240
{| class="formulaSCP" style="width: 100%; text-align: left;" 
241
|-
242
| 
243
{| style="text-align: left; margin:auto;width: 100%;" 
244
|-
245
| style="text-align: center;" | <math>\beta ^k = \frac{G}{G^k} -1 </math>
246
|}
247
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
248
|}
249
250
Substituting <math display="inline">\beta ^k</math> in the integral of Eq.(5b) gives
251
252
{| class="formulaSCP" style="width: 100%; text-align: left;" 
253
|-
254
| 
255
{| style="text-align: left; margin:auto;width: 100%;" 
256
|-
257
| style="text-align: center;" | <math>G = \left[\frac{1}{A}\iint _A \frac{dA}{G^k} \right]^{-1}  =  \left[h \sum \limits _{k=1}^N \frac{h^k}{G^k}   \right]^{-1} </math>
258
|}
259
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
260
|}
261
262
where <math display="inline">h</math> is the section depth. Substituting Eq.(9) into Eq.(5a) gives the following recursion relation for the zigzag displacement function values at the layer interfaces
263
264
{| class="formulaSCP" style="width: 100%; text-align: left;" 
265
|-
266
| 
267
{| style="text-align: left; margin:auto;width: 100%;" 
268
|-
269
| style="text-align: center;" | <math>\bar u_k = \sum \limits _{i=1}^k h^i \beta ^i \quad \hbox{with}\quad u^0 =u^N=0 </math>
270
|}
271
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
272
|}
273
274
Introducing Eq.(11) into (4) gives the expression for the zigzag function as
275
276
{| class="formulaSCP" style="width: 100%; text-align: left;" 
277
|-
278
| 
279
{| style="text-align: left; margin:auto;width: 100%;" 
280
|-
281
| style="text-align: center;" | <math>\phi ^k = \frac{h^k\beta ^k}{2} (\zeta ^k -1)+  \sum \limits _{i=1}^k  h^i \beta ^i </math>
282
|}
283
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
284
|}
285
286
Recall that superindex <math display="inline">k</math> denotes the number of each material layer.
287
288
'''Remark 3.''' For homogeneous material <math display="inline">G^k= G</math> and <math display="inline">\beta ^k =0</math>. Hence, the zigzag function <math display="inline">\phi ^k</math> vanishes and we recover the kinematics and constitutive expressions of the standard Timoshenko composite laminated beam theory. This is a particular feature of this zigzag theory.
289
290
'''Remark 4.''' Note that differently from standard Timoshenko beam theory, a shear correction parameter is not needed in the RZ theory.
291
292
293
===3.3 Constitutive relationship===
294
295
The in-plane bending and transverse shear resultant stresses are defined as
296
297
{| class="formulaSCP" style="width: 100%; text-align: left;" 
298
|-
299
| 
300
{| style="text-align: left; margin:auto;width: 100%;" 
301
|-
302
| style="text-align: center;" | <math>\hat{\boldsymbol \sigma }_p = \left\{\begin{array}{c}N \\                             M\\ M_\phi                            \end{array} \right\}=\iint _A {\boldsymbol S}_p^T \sigma _x^k  dA = \left(\iint _A {\boldsymbol S}_p^T {\boldsymbol S}_p E^k dA\right)\hat{\boldsymbol \varepsilon }_p =\hat {\boldsymbol D}_p \hat{\boldsymbol \varepsilon }_p</math>
303
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
304
|-
305
| style="text-align: center;" | <math> \hat{\boldsymbol \sigma }_t = \left\{\begin{array}{c}Q \\ Q_\phi                            \end{array}  \right\}= \iint _A {\boldsymbol S}_t^T \tau _{xz}^k dA = \left(\iint _A  {\boldsymbol S}_t^T {\boldsymbol S}_t G^k dA\right)\hat{\boldsymbol \varepsilon }_t= \hat {\boldsymbol D}_t \hat{\boldsymbol \varepsilon }_t  </math>
306
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
307
|}
308
|}
309
310
In vectors <math display="inline">\hat{\boldsymbol \sigma }_p</math> and <math display="inline">\hat{\boldsymbol \sigma }_t</math>, <math display="inline">N,M</math> and <math display="inline">Q</math> are respectively the axial force, the bending moment and the transverse shear force of standard beam theory, whereas <math display="inline">M_\phi </math> and <math display="inline">Q_\phi </math> are an additional bending moment and an additional shear force which are conjugate to the new generalized strains <math display="inline">{\partial \Psi  \over \partial x}</math> and <math display="inline">\Psi </math>, respectively.
311
312
The generalized constitutive matrices <math display="inline">\hat {\boldsymbol D}_p</math> and <math display="inline">\hat {\boldsymbol D}_t</math> are
313
314
{| class="formulaSCP" style="width: 100%; text-align: left;" 
315
|-
316
| 
317
{| style="text-align: left; margin:auto;width: 100%;" 
318
|-
319
| style="text-align: center;" | <math>\hat{\boldsymbol D}_p =\iint _A E^k \left[\begin{matrix}1 & -z &  \phi ^k\\ -z &z^2&-z\phi ^k\\ \phi ^k & - z\phi ^k & (\phi ^k)^2 \end{matrix}\right]dA \quad ,\quad  \hat{\boldsymbol D}_t = \left[\begin{matrix}D_s &-g\\ -g & g \end{matrix}\right] </math>
320
|}
321
| style="width: 5px;text-align: right;white-space: nowrap;" | (15.a)
322
|}
323
324
with
325
326
{| class="formulaSCP" style="width: 100%; text-align: left;" 
327
|-
328
| 
329
{| style="text-align: left; margin:auto;width: 100%;" 
330
|-
331
| style="text-align: center;" | <math>D_s =\iint _A G^k dA \quad ,\quad g = D_s - GA </math>
332
|}
333
| style="width: 5px;text-align: right;white-space: nowrap;" | (15.b)
334
|}
335
336
In the derivation of the expression for <math display="inline">\hat {\boldsymbol D}_s</math> we have used the definition of <math display="inline">\beta ^k</math> of Eq.(9).
337
338
The generalized constitutive equation can be written as
339
340
{| class="formulaSCP" style="width: 100%; text-align: left;" 
341
|-
342
| 
343
{| style="text-align: left; margin:auto;width: 100%;" 
344
|-
345
| style="text-align: center;" | <math>\hat{\boldsymbol \sigma } = \left\{\begin{array}{c}\hat{\boldsymbol \sigma }_p \\                             \hat{\boldsymbol \sigma }_t                           \end{array}  \right\}= \hat {\boldsymbol D}  \hat{\boldsymbol \varepsilon } = \hat {\boldsymbol D} \left\{\begin{array}{c}\hat{\boldsymbol \varepsilon }_p \\                             \hat{\boldsymbol \varepsilon }_t                           \end{array} \right\}\quad \quad \hbox{with } \quad \hat {\boldsymbol D}=\left[\begin{matrix}\hat{\boldsymbol D}_p & {\boldsymbol 0}\\ {\boldsymbol 0}&\hat{\boldsymbol D}_t  \end{matrix}\right] </math>
346
|}
347
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
348
|}
349
350
===3.4 Virtual work expression===
351
352
The virtual work expression for a distributed load <math display="inline">q</math> is
353
354
{| class="formulaSCP" style="width: 100%; text-align: left;" 
355
|-
356
| 
357
{| style="text-align: left; margin:auto;width: 100%;" 
358
|-
359
| style="text-align: center;" | <math>\iiint _V (\delta \varepsilon _x^k \sigma _x^k + \delta \gamma _{xz}^k \tau _{xz}^k)dV - \int _l \delta w q dA =0 </math>
360
|}
361
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
362
|}
363
364
The l.h.s. of Eq.(17) contains the internal virtual work performed by the axial and tangential stresses and the r.h.s. is the external virtual work carried out by the distributed load. <math display="inline">V</math> and <math display="inline">l</math> are the volume and length of the beam, respectively.
365
366
Substituting Eqs.(3) into the expression for the virtual internal work  and using Eqs.(13) and (14) gives
367
368
{| class="formulaSCP" style="width: 100%; text-align: left;" 
369
|-
370
| 
371
{| style="text-align: left; margin:auto;width: 100%;" 
372
|-
373
| style="text-align: center;" | <math>\iiint _V \left(\delta \varepsilon _x^k \sigma _x^k + \delta \gamma _{xz}^k \tau _{xz}^k\right)dV = \!\!\iiint _V \left(\delta  \hat{\boldsymbol \varepsilon }_p^T {\boldsymbol S}_p^T \sigma _x^k + \delta \hat{\boldsymbol \varepsilon }_t^T {\boldsymbol S}_t^T \tau _{xz}^k \right)dV =</math>
374
|-
375
| style="text-align: center;" | <math> =\!\! \int _l \left(\delta \hat{\boldsymbol \varepsilon }_p^T \hat{\boldsymbol \sigma }_p + \delta \hat{\boldsymbol \varepsilon }_t^T \hat{\boldsymbol \sigma }_t\right)dx </math>
376
|}
377
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
378
|}
379
380
The virtual work is therefore written as
381
382
{| class="formulaSCP" style="width: 100%; text-align: left;" 
383
|-
384
| 
385
{| style="text-align: left; margin:auto;width: 100%;" 
386
|-
387
| style="text-align: center;" | <math>\int _l \left(\delta \hat{\boldsymbol \varepsilon }_p^T\hat{\boldsymbol \sigma }_p + \delta \hat{\boldsymbol \varepsilon }_t^T \hat{\boldsymbol \sigma }_t\right)dx - \int _l \delta w q dx=0 </math>
388
|}
389
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
390
|}
391
392
==4 TWO-NODED LRZ BEAM ELEMENT==
393
394
The  four kinematic variables are <math display="inline">u_0,w_0, \theta </math> and <math display="inline">\Psi </math>. They can be discretized using  2-noded linear <math display="inline">C^\circ </math> beam elements of length <math display="inline">l^e</math> in the standard form as
395
396
{| class="formulaSCP" style="width: 100%; text-align: left;" 
397
|-
398
| 
399
{| style="text-align: left; margin:auto;width: 100%;" 
400
|-
401
| style="text-align: center;" | <math>{\boldsymbol u} = \left\{                     \begin{array}{c}u_0 \\                       w_0 \\                       \theta \\                      \Psi \\                     \end{array}  \right\}= \sum \limits _{i=1}^2 N_i {\boldsymbol a}_i = {\boldsymbol N} {\boldsymbol a}^e  </math>
402
|}
403
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
404
|}
405
406
with
407
408
{| class="formulaSCP" style="width: 100%; text-align: left;" 
409
|-
410
| 
411
{| style="text-align: left; margin:auto;width: 100%;" 
412
|-
413
| style="text-align: center;" | <math>{\boldsymbol N}= [N_1{\boldsymbol I}_4,N_2{\boldsymbol I}_4]~~,~~{\boldsymbol a}^e = \left\{                     \begin{array}{c}{\boldsymbol a}_1\\{\boldsymbol a}_2\end{array}  \right\}~~,~~ {\boldsymbol a}_i= \left\{                     \begin{array}{c}u_{0_i} \\                       w_{0_i} \\                       \theta _i \\                      \Psi _i \\                     \end{array}  \right\} </math>
414
|}
415
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
416
|}
417
418
where <math display="inline">N_i = \frac{1}{2} (1+\xi \xi _i)</math> with <math display="inline">\xi = 1 - \frac{2x}{l^e}</math> are the standard one-dimensional linear shape functions, <math display="inline">{\boldsymbol a}_i</math> is the vector of nodal kinematic variables and <math display="inline">{\boldsymbol I}_4</math> is the <math display="inline">4\times 4</math> unit matrix.
419
420
Substituting Eq.(20) into the generalized strain vectors in Eq.(2c) gives
421
422
{| class="formulaSCP" style="width: 100%; text-align: left;" 
423
|-
424
| 
425
{| style="text-align: left; margin:auto;width: 100%;" 
426
|-
427
| style="text-align: center;" | <math>\hat {\boldsymbol \varepsilon }_p = {\boldsymbol B}_p {\boldsymbol a}^e \quad ,\quad \hat {\boldsymbol \varepsilon }_t = {\boldsymbol B}_t {\boldsymbol a}^e </math>
428
|}
429
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
430
|}
431
432
The  generalized strain matrices <math display="inline">{\boldsymbol B}_p</math> and <math display="inline">{\boldsymbol B}_t </math> are
433
434
{| class="formulaSCP" style="width: 100%; text-align: left;" 
435
|-
436
| 
437
{| style="text-align: left; margin:auto;width: 100%;" 
438
|-
439
| style="text-align: center;" | <math>{\boldsymbol B}_p =[{\boldsymbol B}_{p_1},{\boldsymbol B}_{p_2} ]\quad ,\quad {\boldsymbol B}_t =[{\boldsymbol B}_{t_1},{\boldsymbol B}_{t_2} ] </math>
440
|}
441
| style="width: 5px;text-align: right;white-space: nowrap;" | (23.a)
442
|}
443
444
with
445
446
{| class="formulaSCP" style="width: 100%; text-align: left;" 
447
|-
448
| 
449
{| style="text-align: left; margin:auto;width: 100%;" 
450
|-
451
| style="text-align: center;" | <math>{\boldsymbol B}_{p_i} = \begin{bmatrix}\displaystyle \frac{\partial N_i}{\partial x} & 0 & 0 & 0 \\ 0 & 0 & \displaystyle \frac{\partial N_i}{\partial x} & 0 \\ 0 & 0 & 0 & \displaystyle \frac{\partial N_i}{\partial x} \end{bmatrix} </math>
452
|}
453
| style="width: 5px;text-align: right;white-space: nowrap;" | (23.b)
454
|}
455
456
{| class="formulaSCP" style="width: 100%; text-align: left;" 
457
|-
458
| 
459
{| style="text-align: left; margin:auto;width: 100%;" 
460
|-
461
| style="text-align: center;" | <math>\displaystyle {\boldsymbol B}_{t_i} = \begin{bmatrix}0&\displaystyle \frac{\partial N_i}{\partial x}&-N_i & 0\\ --&--&--&--\\ 0&0&0&N_i \end{bmatrix}= \begin{bmatrix}{\boldsymbol B}_{s_i}\\ --\\ {\boldsymbol B}_{\psi _i}   \end{bmatrix} </math>
462
|}
463
| style="width: 5px;text-align: right;white-space: nowrap;" | (23.c)
464
|}
465
466
where <math display="inline">{\boldsymbol B}_{p_i}</math> and <math display="inline">{\boldsymbol B}_{t_i}</math> are the in-plane and transverse shear strain matrices for node <math display="inline">i</math>.
467
468
The virtual displacement and generalized strain fields are expressed in terms of the virtual nodal kinematic variables as
469
470
{| class="formulaSCP" style="width: 100%; text-align: left;" 
471
|-
472
| 
473
{| style="text-align: left; margin:auto;width: 100%;" 
474
|-
475
| style="text-align: center;" | <math>\delta {\boldsymbol u} = {\boldsymbol N} \delta {\boldsymbol a}^e~~,~~ \delta \hat{\boldsymbol \varepsilon }_p={\boldsymbol B}_p \delta {\boldsymbol a}^e ~~,~~ \delta \hat{\boldsymbol \varepsilon }_t ={\boldsymbol B}_t \delta {\boldsymbol a}^e </math>
476
|}
477
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
478
|}
479
480
The discretized equilibrium equations are obtained by substituting Eqs.(13), (14), (20), (22) and (24) into the virtual work expression (19). After simplification of the virtual nodal kinematic variables, the following standard matrix equation is obtained
481
482
{| class="formulaSCP" style="width: 100%; text-align: left;" 
483
|-
484
| 
485
{| style="text-align: left; margin:auto;width: 100%;" 
486
|-
487
| style="text-align: center;" | <math>{\boldsymbol K}{\boldsymbol a}-{\boldsymbol f}=0 </math>
488
|}
489
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
490
|}
491
492
where <math display="inline">{\boldsymbol a}</math> is the vector of nodal kinematic variables for the  whole mesh.
493
494
The stiffness matrix <math display="inline">{\boldsymbol K}</math> and the equivalent nodal force vector <math display="inline">{\boldsymbol f}</math> are obtained by assembling the element contributions <math display="inline">{\boldsymbol K}^e</math> and <math display="inline">{\boldsymbol f}^e</math> given by
495
496
{| class="formulaSCP" style="width: 100%; text-align: left;" 
497
|-
498
| 
499
{| style="text-align: left; margin:auto;width: 100%;" 
500
|-
501
| style="text-align: center;" | <math>{\boldsymbol K}^e = {\boldsymbol K}^e_p + {\boldsymbol K}^e_t </math>
502
|}
503
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
504
|}
505
506
with
507
508
{| class="formulaSCP" style="width: 100%; text-align: left;" 
509
|-
510
| 
511
{| style="text-align: left; margin:auto;width: 100%;" 
512
|-
513
| style="text-align: center;" | <math>{\boldsymbol K}^e_{p_{ij}} = \int _{l^e} {\boldsymbol B}^T_{p_i} \hat {\boldsymbol D}_p {\boldsymbol B}_{p_j}dx ~~,~~ {\boldsymbol K}^e_{t_{ij}} = \int _{l^e} {\boldsymbol B}^T_{t_i} \hat {\boldsymbol D}_t {\boldsymbol B}_{t_j}dx </math>
514
|}
515
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
516
|}
517
518
and
519
520
{| class="formulaSCP" style="width: 100%; text-align: left;" 
521
|-
522
| 
523
{| style="text-align: left; margin:auto;width: 100%;" 
524
|-
525
| style="text-align: center;" | <math>{\boldsymbol f}^e_i = \int _{l^e} N_i q [1,0,0,0]^T dx </math>
526
|}
527
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
528
|}
529
530
Matrix <math display="inline">{\boldsymbol K}^e_p</math> is integrated with a one-point numerical quadrature which is exact in this case. Full integration of matrix <math display="inline">{\boldsymbol K}^e_t</math> requires a two-point Gauss quadrature. This however leads to shear locking for slender composite laminated beams (Section 5).
531
532
In order to asses the influence of the reduced integration of matrix <math display="inline">{\boldsymbol K}^e_t</math> for overcoming the  shear locking problem we split <math display="inline">{\boldsymbol K}^e_t</math> as follows
533
534
{| class="formulaSCP" style="width: 100%; text-align: left;" 
535
|-
536
| 
537
{| style="text-align: left; margin:auto;width: 100%;" 
538
|-
539
| style="text-align: center;" | <math>{\boldsymbol K}^e_t = {\boldsymbol K}^e_s +{\boldsymbol K}^e_\psi + {\boldsymbol K}^e_{s\psi } + [{\boldsymbol K}^e_{s\psi }]^T </math>
540
|}
541
| style="width: 5px;text-align: right;white-space: nowrap;" | (29.a)
542
|}
543
544
with
545
546
{| class="formulaSCP" style="width: 100%; text-align: left;" 
547
|-
548
| 
549
{| style="text-align: left; margin:auto;width: 100%;" 
550
|-
551
| style="text-align: center;" | <math>{\boldsymbol K}^e_{s_{ij}} = \int _{l^e}  D_s {\boldsymbol B}^T_{s_i} {\boldsymbol B}_{s_j}dx ~~,~~ {\boldsymbol K}^e_{\psi _{ij}} = \int _{l^e} g {\boldsymbol B}_{\psi _i}^T {\boldsymbol B}_{\psi _j}dx </math>
552
|}
553
| style="width: 5px;text-align: right;white-space: nowrap;" | (29.b)
554
|}
555
556
{| class="formulaSCP" style="width: 100%; text-align: left;" 
557
|-
558
| 
559
{| style="text-align: left; margin:auto;width: 100%;" 
560
|-
561
| style="text-align: center;" | <math> {\boldsymbol K}^e_{s\psi _{ij}}= \int _{l^e} (-g ) {\boldsymbol B}^T_{s_i}{\boldsymbol B}_{\psi _j}dx </math>
562
|}
563
|}
564
565
where <math display="inline">{\boldsymbol B}_{s_i}</math> and <math display="inline">{\boldsymbol B}_{\psi _i}</math> are defined in Eq.(23c) and <math display="inline">D_s</math> and <math display="inline">g</math> are given in Eq.(15b).
566
567
The new linear beam element based on the RZ theory is termed LRZ.
568
569
A study of the accuracy of the LRZ beam element for analysis of slender laminated beams using one and two-point quadratures for integrating matrices <math display="inline">{\boldsymbol K}^e_s</math>, <math display="inline">{\boldsymbol K}^e_\psi </math> and <math display="inline">{\boldsymbol K}^e_{s\psi }</math>  is  presented in the next section.
570
571
==5 STUDY OF SHEAR LOCKING FOR THE LRZ BEAM ELEMENT==
572
573
We study the performance of the  LRZ beam element for the analysis of a cantilever beam of length <math display="inline">L</math> under an end point load of value <math display="inline">F=1</math> (Figure [[#img-2|2]]). The beam is formed by a symmetric three-layered material whose properties are listed on Table 1. The analysis is performed for four span-to-thickness ratios: <math display="inline">\lambda = 5,10,50,100</math> (<math display="inline">\lambda = L/h</math>) using a mesh of 100 LRZ beam elements. Results for the LRZ element are labelled “ZZ” in the figures.
574
575
The same beam was analized using a mesh of 27000 four-noded plane stress  rectangles for comparison purposes (Figure [[#img-3|3]]).  Results for the plane stress analysis are labeled “PS” in the figures.
576
577
<div id='img-2'></div>
578
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
579
|-
580
|[[Image:Draft_Samper_624436055-test-Fig3.png|400px|]]
581
|- style="text-align: center; font-size: 75%;"
582
| colspan="1" | '''Figure 2:''' Cantilever beam under point  load 
583
|}
584
585
<div id='img-3'></div>
586
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
587
|-
588
|[[File:Draft_Samper_624436055_3572_Fig3-con299.png|600px|]]
589
|- style="text-align: center; font-size: 75%;"
590
| colspan="1" | '''Figure 3:''' Mesh of 27000 4-noded plane stress rectangular elements for analysis of cantilever and simple supported beams
591
|}
592
593
594
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
595
|+ style="font-size: 75%;" |<span id='table-1'></span>Table. 1 Symmetric 3-layered cantilever beam. Material properties for shear locking study
596
|- style="border-top: 2px solid;"
597
| style="text-align: left;" |   
598
| colspan='3' style="text-align: left;" | '''Composite material properties'''
599
|- style="border-top: 2px solid;"
600
| style="text-align: left;" |   
601
| Layer 1 
602
| Layer 2  
603
| Layer 3 
604
|-
605
| style="text-align: left;" | 
606
| (bottom)
607
| (core) 
608
| (top)
609
|- style="border-top: 2px solid;"
610
| style="text-align: left;" |  h [mm] 
611
| 6.6667 
612
| 6.6667 
613
| 6.6667 
614
|-
615
| style="text-align: left;" | E [MPa] 
616
| 2.19E5 
617
| 2.19E3 
618
| 2.19E5 
619
|- style="border-bottom: 2px solid;"
620
| style="text-align: left;" | G [MPa] 
621
| 0.876E5 
622
| 8.80E2 
623
| 0.876E5 
624
625
|}
626
627
Figure [[#img-4|4]] shows the ratio <math display="inline">r</math> between the end node deflection  obtained with the LRZ element (<math display="inline">w_{zz}</math>) and with the plane stress quadrilateral (<math display="inline">w_{ps}</math>) (i.e. <math display="inline">r=\frac{w_{zz}}{w_{ps}}</math>) versus the beam span-to-thickness ratio <math display="inline">d = \frac{L}{h}</math>. Results for the LRZ element have been obtained using ''exact'' two-point integration for all terms of  matrix <math display="inline">{\boldsymbol K}^e_t</math> (Eq.(27)) and  a one-point ''reduced'' integration for the following three groups of matrices: <math display="inline">{\boldsymbol K}^e_s</math>; <math display="inline">{\boldsymbol K}^e_s</math> and <math display="inline">{\boldsymbol K}^e_{s\psi }</math>; and <math display="inline">{\boldsymbol K}_s</math>, <math display="inline">{\boldsymbol K}^e_{s\psi }</math> and <math display="inline">{\boldsymbol K}^e_{\psi }</math> (Eqs.(29b)).
628
629
Labels ``all'<nowiki/>''', ``S'<nowiki/>''', ``SPsi'<nowiki/>''' and `''`''Psi'''' in Figures [[#img-4|4]]&#8211;[[#img-7|7]] refer to matrices <math display="inline">{\boldsymbol K}^e_t</math>, <math display="inline">{\boldsymbol K}^e_s</math>, <math display="inline">{\boldsymbol K}^e_{s\psi }</math> and <math display="inline">{\boldsymbol K}^e_{\psi }</math> of Eq.(29a), respectively.
630
631
Results in Figure [[#img-4|4]] clearly show that the exact integration of <math display="inline">{\boldsymbol K}^e_t</math> leads to shear locking as expected. Good (locking-free) results are obtained by one-point reduced integration of the three groups of matrices.
632
633
The influence of reduced integration   in the distribution of the transverse shear stress was studied next for the three groups of matrices. Figures [[#img-5|5]]&#8211;[[#img-7|7]] show the thickness distribution of <math display="inline">\tau _{xz}</math> in sections located at distances <math display="inline">\frac{L}{20},\frac{L}{4},\frac{L}{2}</math> and <math display="inline">\frac{3}{4}L</math> from the clamped end for span-to-thickness ratios of <math display="inline">\lambda =5 , 10</math> and 100. Results are compared with the plane stress solution and also with results obtained with a mesh of 300 standard 2-noded elements based on laminated Timoshenko beam theory (labelled TBT in the figures). All TBT results presented in the paper have been used with a simple shear correction factor of <math display="inline">\frac{5}{6}</math>. Indeed a more accurate value of the shear correction factor in TBT can be used for laminated sections <span id='citeF-28'></span>[[#cite-28|[28]]].
634
635
<div id='img-4'></div>
636
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
637
|-
638
|[[Image:Draft_Samper_624436055-test-Fig4a.png|600px|r ratio \left(r = \fracw<sub>zz</sub>wₚₛ\right) versus L/h for cantilever under point load analyzed with the LRZ element. Labels ``''all'''', S, SPsi and Psi refer to matrices K<sup>e</sup>ₜ, Kₛ<sup>e</sup>,K<sub>sψ</sub><sup>e</sup> and K<sub>ψ</sub><sup>e</sup>, respectively]]
639
|- style="text-align: center; font-size: 75%;"
640
| colspan="1" | '''Figure 4:'<nowiki/>'' <math>r</math> ratio <math>\left(r = \frac{w_{zz}}{w_{ps}}\right)</math> versus <math>L/h</math> for cantilever under point load analyzed with the LRZ element. Labels ``''all'''', <math>S</math>, <math>SPsi</math> and <math>Psi</math> refer to matrices <math>{\boldsymbol K}^e_t</math>, <math>{\boldsymbol K}_s^e,{\boldsymbol K}_{s\psi }^e</math> and <math>{\boldsymbol K}_{\psi }^e</math>, respectively
641
|}
642
643
<div id='img-5a'></div>
644
<div id='img-5b'></div>
645
<div id='img-5c'></div>
646
<div id='img-5d'></div>
647
<div id='img-5'></div>
648
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
649
|-
650
|[[Image:Draft_Samper_624436055-test-Grafico2.png|360px|τ<sub>xz</sub>,λ= 5 , L/20]]
651
|[[Image:Draft_Samper_624436055-test-Grafico3.png|360px|τ<sub>xz</sub> ,λ= 5 , L/4]]
652
|- style="text-align: center; font-size: 75%;"
653
| (a) <math>\tau _{xz},\lambda = 5 , L/20</math>
654
| (b) <math>\tau _{xz} ,\lambda = 5 , L/4</math>
655
|-
656
|[[Image:Draft_Samper_624436055-test-Grafico4.png|360px|τ<sub>xz</sub> ,λ= 5 , L/2]]
657
|[[Image:Draft_Samper_624436055-test-Grafico5.png|360px|τ<sub>xz</sub> ,λ= 5 , 3L/4]]
658
|- style="text-align: center; font-size: 75%;"
659
| (c) <math>\tau _{xz} ,\lambda = 5 , L/2</math>
660
| (d) <math>\tau _{xz} ,\lambda = 5 , 3L/4</math>
661
|- style="text-align: center; font-size: 75%;"
662
| colspan="2" | '''Figure 5:''' Symmetric 3-layered cantilever thick beam under end point load. Thickness distribution of shear stress for <math>\lambda =5</math> at different sections
663
|}
664
665
<div id='img-6a'></div>
666
<div id='img-6b'></div>
667
<div id='img-6c'></div>
668
<div id='img-6d'></div>
669
<div id='img-6'></div>
670
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
671
|-
672
|[[Image:Draft_Samper_624436055-test-Grafico6.png|360px|τ<sub>xz</sub> ,λ= 10 , L/20]]
673
|[[Image:Draft_Samper_624436055-test-Grafico7.png|360px|τ<sub>xz</sub> ,λ= 10 , L/4]]
674
|- style="text-align: center; font-size: 75%;"
675
| (a) <math>\tau _{xz} ,\lambda = 10 , L/20</math>
676
| (b) <math>\tau _{xz} ,\lambda = 10 , L/4</math>
677
|-
678
|[[Image:Draft_Samper_624436055-test-Grafico8.png|360px|τ<sub>xz</sub> ,λ= 10 , L/2]]
679
|[[Image:Draft_Samper_624436055-test-Grafico9.png|360px|τ<sub>xz</sub> ,λ= 10 , 3L/4]]
680
|- style="text-align: center; font-size: 75%;"
681
| (c) <math>\tau _{xz} ,\lambda = 10 , L/2</math>
682
| (d) <math>\tau _{xz} ,\lambda = 10 , 3L/4</math>
683
|- style="text-align: center; font-size: 75%;"
684
| colspan="2" | '''Figure 6:''' Symmetric 3-layered cantilever thick beam under end point load.  Thickness distribution of shear stress for <math>\lambda =10</math> at different sections
685
|}
686
687
<div id='img-7a'></div>
688
<div id='img-7b'></div>
689
<div id='img-7c'></div>
690
<div id='img-7d'></div>
691
<div id='img-7'></div>
692
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
693
|-
694
|[[Image:Draft_Samper_624436055-test-Grafico10.png|360px|τ<sub>xz</sub> ,λ= 100 , L/20]]
695
|[[Image:Draft_Samper_624436055-test-Grafico11.png|360px|τ<sub>xz</sub> ,λ= 100 , L/4]]
696
|- style="text-align: center; font-size: 75%;"
697
| (a) <math>\tau _{xz} ,\lambda = 100 , L/20</math>
698
| (b) <math>\tau _{xz} ,\lambda = 100 , L/4</math>
699
|-
700
|[[Image:Draft_Samper_624436055-test-Grafico12.png|360px|τ<sub>xz</sub> ,λ= 100 , L/2]]
701
|[[Image:Draft_Samper_624436055-test-Grafico13.png|360px|τ<sub>xz</sub> ,λ= 100 , 3L/4]]
702
|- style="text-align: center; font-size: 75%;"
703
| (c) <math>\tau _{xz} ,\lambda = 100 , L/2</math>
704
| (d) <math>\tau _{xz} ,\lambda = 100 , 3L/4</math>
705
|- style="text-align: center; font-size: 75%;"
706
| colspan="2" | '''Figure 7:''' Symmetric 3-layered cantilever thick beam under end point load. Thickness distribution of transverse shear stress for <math>\lambda =100</math> at different sections
707
|}
708
709
The conclusion is that for small values of <math display="inline">\lambda </math> the reduced or exact reduced integration of matrix <math display="inline">{\boldsymbol K}^e_t</math> leads to similar results. For slender beams, however, results obtained using reduced integration for <math display="inline">{\boldsymbol K}^e_s</math>; <math display="inline">{\boldsymbol K}^e_s</math> and <math display="inline">{\boldsymbol K}^e_{s\psi }</math>; and <math display="inline">{\boldsymbol K}^e_s</math>, <math display="inline">{\boldsymbol K}^e_{s\psi }</math> and <math display="inline">{\boldsymbol K}^e_{\psi }</math> are different. Slightly more accurate results are obtained with the second choice for the section at <math display="inline">x=L/4</math> and <math display="inline">\lambda =100</math> (Figure [[#img-7|7]]b).
710
711
In conclusion, we recommend using a reduced one-point integration for matrices <math display="inline">{\boldsymbol K}^e_s</math> and <math display="inline">{\boldsymbol K}^e_{s\psi }</math>, while matrix <math display="inline">{\boldsymbol K}^e_\psi </math> should be integrated with a 2-point quadrature.
712
713
==6 CONVERGENCE STUDY==
714
715
The same three-layered cantilever beam of Figure [[#img-2|2]] was studied next for three different set of thickness and material properties for the three layers as listed in Table [[#table-2|2]]. Material A is the more homogeneous one, while material C is clearly the more heterogeneous.
716
717
The problem was studied with  six meshes of LRZ elements ranging from 5 to 300 elements. Tables [[#table-3|3]]&#8211;[[#table-5|5]] show the convergence with the number of elements for the deflection and function <math display="inline">\Psi </math> at the beam end,  the maximum axial stress <math display="inline">\sigma _x</math> at the end section and the maximum shear stress <math display="inline">\tau _{xz}</math> at the mid section.
718
719
720
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
721
|+ style="font-size: 75%;" |<span id='table-2'></span>Table. 2 Non symmetric 3-layered cantilever beams. Material properties for convergence analysis
722
723
|-
724
| 
725
| 
726
| colspan='3' | '''Material properties'''
727
728
|-
729
| 
730
| 
731
| '''Layer 1'''(bottom) 
732
| '''Layer 2''' (core) 
733
| '''Layer 3''' (top) 
734
735
|- style="border-top: 2px solid;"
736
| '''Composite A''' 
737
| h [mm] 
738
| 6.66 
739
| 6.66 
740
| 6.66 
741
|-
742
|  
743
| E [MPa] 
744
| 4.40E5 
745
| 2.19E4 
746
| 2.19E5 
747
|-
748
|  
749
| G [MPa] 
750
| 2.00E5 
751
| 8.80E3 
752
| 8.76E4 
753
754
|- style="border-top: 2px solid;"
755
| '''Composite B''' 
756
| h [mm] 
757
| 6.66 
758
| 6.66 
759
| 6.66 
760
|-
761
|  
762
| E [MPa] 
763
| 2.19E5 
764
| 2.19E3 
765
| 2.19E5 
766
|-
767
|  
768
| G [MPa] 
769
| 8.76E4 
770
| 8.80E2 
771
| 8.76E4 
772
773
|- style="border-top: 2px solid;"
774
| '''Composite C''' 
775
| h [mm] 
776
| 2 
777
| 16 
778
| 2 
779
|-
780
| 
781
| E [MPa] 
782
| 7.30E5 
783
| 7.30E2 
784
| 2.19E5 
785
|- style="border-bottom: 2px solid;"
786
| 
787
| G [MPa] 
788
| 2.92E5 
789
| 2.20E2 
790
| 8.76E4  
791
792
|}
793
794
795
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
796
|+ style="font-size: 75%;" |<span id='table-3'></span>Table. 3 Non symmetric 3-layered cantilever thick beams under end point load (<math>\lambda =5</math>). Relative error for <math>w</math> at <math>x=L</math>
797
798
|- style="border-top: 2px solid;"
799
| colspan='4' | <math>e_r %  - w</math> at <math>x=L</math>
800
801
|- style="border-top: 2px solid;"
802
| '''Number of''' 
803
| colspan='3' | '''Composites'''
804
805
|-
806
| '''elements''' 
807
| '''A''' 
808
| '''B''' 
809
| '''C''' 
810
811
|- style="border-top: 2px solid;"
812
| 5 
813
| 1.800 
814
| 9.588 
815
| 42.289 
816
|-
817
| 10 
818
| 0.506 
819
| 2.901 
820
| 19.277 
821
|-
822
| 25 
823
| 0.0860 
824
| 0.499 
825
| 4.913 
826
|-
827
| 50 
828
| 0.0191 
829
| 0.123 
830
| 1.406 
831
|-
832
| 100 
833
| 0.0048 
834
| 0.031 
835
| 0.339 
836
|- style="border-bottom: 2px solid;"
837
| 300 
838
| 0.0000 
839
| 0.0000 
840
| 0.0000 
841
842
|}
843
844
845
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
846
|+ style="font-size: 75%;" |<span id='table-4'></span>Table. 4 Non symmetric 3-layered cantilever thick beams under end point load (<math>\lambda =5</math>). Convergence study. Relative error for <math>\Psi </math> at <math>x=L</math>
847
848
|- style="border-top: 2px solid;"
849
| colspan='4' | <math>e_r %  - \Psi </math> at <math>x=L</math>
850
851
|- style="border-top: 2px solid;"
852
| '''Number of''' 
853
| colspan='3' | '''Composites'''
854
855
|-
856
| '''elements''' 
857
| '''A''' 
858
| '''B''' 
859
| '''C''' 
860
861
|- style="border-top: 2px solid;"
862
| 5 
863
| 0.040 
864
| 8.563 
865
| 36.113 
866
|-
867
| 10 
868
| 0.003
869
| 1.814
870
| 8.042 
871
|-
872
| 25 
873
| 0.000
874
| 0.259 
875
| 0.328 
876
|-
877
| 50 
878
| 0.000
879
| 0.063 
880
| 0.033 
881
|-
882
| 100 
883
| 0.000 
884
| 0.016 
885
| 0.007 
886
|- style="border-bottom: 2px solid;"
887
| 300 
888
| 0.000 
889
| 0.000 
890
| 0.000 
891
892
|}
893
894
895
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
896
|+ style="font-size: 75%;" |<span id='table-5'></span>Table. 5 Non symmetric 3-layered cantilever thick beams under end  point load (<math>\lambda =5</math>). Convergence study. (a) Relative error for the maximum value of <math>\sigma _x</math> at <math>x=L</math> and (b) idem for <math>\tau _{xz}</math> at <math>x=L/2</math> 
897
|-
898
| colspan='4' | (a)
899
900
|- style="border-top: 2px solid;"
901
| colspan='4' | <math>e_r %  - (\sigma _x)_{\max }</math> at <math>x=L</math>
902
903
|- style="border-top: 2px solid;"
904
| '''Number of''' 
905
| colspan='3' | '''Composites'''
906
907
|-
908
| '''elements''' 
909
| '''A''' 
910
| '''B''' 
911
| '''C''' 
912
913
|- style="border-top: 2px solid;"
914
| 5 
915
| 0.568 
916
| 6.923 
917
| 18.239 
918
|-
919
| 10 
920
| 0.076 
921
| 2.704 
922
| 12.437 
923
|-
924
| 25 
925
| 0.013 
926
| 0.568 
927
| 4.266 
928
|-
929
| 50 
930
| 0.003 
931
| 0.131 
932
| 1.095 
933
|-
934
| 100 
935
| 0.001 
936
| 0.029 
937
| 0.250 
938
|- style="border-bottom: 2px solid;"
939
| 300 
940
| 0.000 
941
| 0.000 
942
| 0.000 
943
944
|}
945
946
947
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
948
|-
949
| colspan='4' | (b)
950
951
|- style="border-top: 2px solid;"
952
| colspan='4' | <math>e_r %  - (\tau _{xz})_{\max }</math> at <math>\frac{L}{2}</math>
953
954
|- style="border-top: 2px solid;"
955
| '''Number of''' 
956
| colspan='3' | '''Composites'''
957
958
|-
959
| '''elements''' 
960
| '''A''' 
961
| '''B''' 
962
| '''C''' 
963
964
|- style="border-top: 2px solid;"
965
| 5 
966
| 7.020 
967
| 19.283 
968
| 50.938 
969
|-
970
| 10 
971
| 0.352 
972
| 5.176 
973
| 20.602 
974
|-
975
| 25 
976
| 0.052 
977
| 0.888 
978
| 3.408 
979
|-
980
| 50 
981
| 0.010 
982
| 0.210 
983
| 0.707 
984
|-
985
| 100 
986
| 0.003 
987
| 0.049 
988
| 0.147 
989
|- style="border-bottom: 2px solid;"
990
| 300 
991
| 0.000 
992
| 0.000 
993
| 0.000 
994
995
|}
996
997
Convergence is measured by the relative error defined (in absolute value) as
998
999
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1000
|-
1001
| 
1002
{| style="text-align: left; margin:auto;width: 100%;" 
1003
|-
1004
| style="text-align: center;" | <math>e_r = \left|\frac{v_6-v_i}{v_6}\right| </math>
1005
|}
1006
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
1007
|}
1008
1009
where <math display="inline">v_6</math> and <math display="inline">v_i</math> are the values of the magnitude of interest obtained using the finest grid  (300 elements) and the <math display="inline">i</math>th mesh (<math display="inline">i=1,2,\cdots 5</math>), respectively.
1010
1011
Results clearly show that convergence is always slower for the heterogeneous material case, as expected.
1012
1013
For a mesh of 25 elements the errors for all the magnitudes considered are less than 1% for materials A and B. For material C the maximum error does not exceed 5% (Table [[#table-5|5]]). For the  50 element mesh errors of the order of 1% or less were obtained in all cases.
1014
1015
Results for a 10 element mesh are good for material A (errors less than 0.4%), relatively good for material B (errors less than around <math display="inline">5%</math>) and unacceptable for material C (errors ranging from around 8% to 20%
1016
1017
==7 EXAMPLES OF APPLICATION==
1018
1019
===7.1 Three-layered thick cantilever beam with non symmetric material properties===
1020
1021
We present results for  a laminated thick cantilever beam under an end point load. The material properties are those of Composite C in Table [[#table-2|2]]. The span-to-thickness ratio is <math display="inline">\lambda =5</math>.
1022
1023
For the laminated sandwich considered the core  is eight times thicker than the face sheets. In addition, the core is three orders of magnitude more compliant than the bottom face sheet. Moreover, the top face sheet has the same thickness as the bottom face sheet, but is about three times stiffer.   Note that this laminate does not possess material symmetry with respect to the mid-depth reference axis. The high heterogeneity of this stacking sequence is very challenging for the beam theories considered herein to model adequately.
1024
1025
As in previous section, the legend caption PS denotes  the ''reference'' solution obtained with the structured mesh  of 27000 four-noded plane stress quadrilaterals shown in  Figure [[#img-3|3]]. TBT denotes the solution obtained with a mesh of 300 2-noded beam elements based on standard laminated Timoshenko beam theory. LRZ-300, LRZ-50, LRZ-25, LRZ-10 refer to the solution obtained with the LRZ beam element using meshes of 300, 50, 25 and 10 elements, respectively.
1026
1027
Figure [[#img-8|8]] shows the deflection values along the beam length. Very good agreement with the plane stress solution is obtained already for the LRZ-50 mesh as expected from the conclusions of the previous section.
1028
1029
TBT results are considerable stiffer. The difference with the reference solution is about ''six times stiffer'' for the end deflection value.<br/>
1030
1031
Figure [[#img-9|9]] shows the distribution of the axial displacements at the upper and lower surfaces of layer 3 (top layer) along the beam length. Excellent results are again obtained with the 50 element mesh. The TBT results are far from the correct ones.
1032
1033
<div id='img-8'></div>
1034
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1035
|-
1036
|[[File:Draft_Samper_624436055_2824_Fig8.jpg|420px|]]
1037
|- style="text-align: center; font-size: 75%;"
1038
| colspan="1" | '''Figure 8:''' Non symmetric 3-layered cantilever thick beam under end point load (<math>\lambda =5</math>). Distribution of the vertical deflection <math>w</math> for different theories and meshes
1039
|}
1040
1041
<div id='img-9a'></div>
1042
<div id='img-9b'></div>
1043
<div id='img-9'></div>
1044
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1045
|-
1046
|[[Image:Draft_Samper_624436055-test-Fig9a.png|420px|]]
1047
|[[Image:Draft_Samper_624436055-test-Fig9b.png|420px|]]
1048
|- style="text-align: center; font-size: 75%;"
1049
| (a) 
1050
| (b) 
1051
|- style="text-align: center; font-size: 75%;"
1052
| colspan="2" | '''Figure 9:''' Non symmetric 3-layered cantilever thick beam under end point load (<math>\lambda =5</math>). Axial displacement <math>u</math> at the upper and lower surfaces of the top layer (layer 3)
1053
|}
1054
1055
<div id='img-10a'></div>
1056
<div id='img-10b'></div>
1057
<div id='img-10c'></div>
1058
<div id='img-10'></div>
1059
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1060
|-
1061
|[[Image:Draft_Samper_624436055-test-Fig10a.png|420px|]]
1062
|[[Image:Draft_Samper_624436055-test-Fig10b.png|420px|]]
1063
|- style="text-align: center; font-size: 75%;"
1064
| (a) 
1065
| (b) 
1066
|-
1067
| colspan="2"|[[Image:Draft_Samper_624436055-test-Fig10c.png|420px|]]
1068
|- style="text-align: center; font-size: 75%;"
1069
|  colspan="2" | (c) 
1070
|- style="text-align: center; font-size: 75%;"
1071
| colspan="2" | '''Figure 10:''' Non symmetric 3-layered cantilever thick beam under end point load (<math>\lambda =5</math>). Thickness distribution of the axial displacement <math>u</math> at <math>x=L/4</math> (a), <math>x=L/2</math> (b) and <math>x=L</math> (c)
1072
|}
1073
1074
Figure [[#img-10|10]] shows the thickness distribution for the axial displacement at sections located at distances <math display="inline">\frac{L}{4},\frac{L}{2}</math> and <math display="inline">\frac{3L}{4}</math> from the clamped end. Results for the LRZ element (LRZ-25, LRZ-50 and LRZ-300) are in good agreement  with the reference solution. The TBT results have the standard linear distribution which is far from the correct zigzag results.
1075
1076
Figure [[#img-11|11]] shows the distribution along the beam length of the axial stress <math display="inline">\sigma _x</math> at the top and bottom surfaces of the beam cross section. Very good agreement between the reference PS solution and the LRZ-50 and LRZ-300 results is obtained. Results for the LRZ-25 mesh compare reasonably well with the PS solution except in the vicinity of the clamped edge. This error is corrected for the LRZ-50 and LRZ-300 meshes. The TBT results yield a linear distribution of the axial stress along the beam, as expected. This introduces large errors in the axial stress values in the vicinity of the clamped edge, as clearly shown in  Figure [[#img-11|11]].
1077
1078
<div id='img-11a'></div>
1079
<div id='img-11b'></div>
1080
<div id='img-11'></div>
1081
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1082
|-
1083
|[[Image:Draft_Samper_624436055-test-Fig11a.png|420px|]]
1084
|[[Image:Draft_Samper_624436055-test-Fig11b.png|420px|]]
1085
|- style="text-align: center; font-size: 75%;"
1086
| (a) 
1087
| (b) 
1088
|- style="text-align: center; font-size: 75%;"
1089
| colspan="2" | '''Figure 11:''' Non symmetric 3-layered cantilever thick beam under end point load (<math>\lambda =5</math>). Axial stress <math>\sigma _x</math> at upper (a) and lower (b) surfaces of the cross section along the beam length
1090
|}
1091
1092
Figures [[#img-12|12]] and [[#img-13|13]] show the thickness distribution for the axial stress <math display="inline">\sigma _x</math> at the clamped section and at the center of the beam. LRZ results  agree quite well with those of the reference solution. TBT results have an erroneous stress distribution for the top and bottom layers at the clamped end. These differences are less important for the central section.
1093
1094
Figure [[#img-14|14]] shows the thickness distribution for the transverse shear stress <math display="inline">\tau _{xz}</math> at different sections (<math display="inline">\frac{L}{20},\frac{L}{4},\frac{L}{2}</math> and <math display="inline">\frac{3L}{4}</math>). LRZ results provide an accurate estimate of the average transverse shear stress value for each layer. The distribution of <math display="inline">\tau _{xz}</math> across the thickness can be substantially improved by using the equilibrium equations for computing <math display="inline">\tau _{xz}</math> “a posteriori” as explained in Section 7.3.
1095
1096
TBT results are acceptable for the central layer and clearly overestimate the transverse shear stress in sections far from the clamped end.
1097
1098
LRZ and TBT results for the distribution of the (constant) tangential shear stress <math display="inline">\tau _{xz}</math> for each of the three layers along the beam length are shown in Figure [[#img-15|15]]. TBT results are clearly inaccurate (except for the values at the clamped edge).
1099
1100
<div id='img-12'></div>
1101
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1102
|-
1103
|[[Image:Draft_Samper_624436055-test-Fig12.png|600px|Non symmetric 3-layered cantilever thick beam under end point load (λ=5). Thickness distribution of the axial stress σₓ at x=0]]
1104
|- style="text-align: center; font-size: 75%;"
1105
| colspan="1" | '''Figure 12:''' Non symmetric 3-layered cantilever thick beam under end point load (<math>\lambda =5</math>). Thickness distribution of the axial stress <math>\sigma _x</math> at <math>x=0</math>
1106
|}
1107
1108
<div id='img-13'></div>
1109
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1110
|-
1111
|[[Image:Draft_Samper_624436055-test-Fig13.png|600px|Non symmetric 3-layered cantilever thick beam under end point load (λ=5). Thickness distribution of the axial stress σₓ at x=L/2]]
1112
|- style="text-align: center; font-size: 75%;"
1113
| colspan="1" | '''Figure 13:''' Non symmetric 3-layered cantilever thick beam under end point load (<math>\lambda =5</math>). Thickness distribution of the axial stress <math>\sigma _x</math> at <math>x=L/2</math>
1114
|}
1115
1116
<div id='img-14a'></div>
1117
<div id='img-14b'></div>
1118
<div id='img-14c'></div>
1119
<div id='img-14d'></div>
1120
<div id='img-14'></div>
1121
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1122
|-
1123
|[[Image:Draft_Samper_624436055-test-Fig14a.png|420px|]]
1124
|[[Image:Draft_Samper_624436055-test-Fig14b.png|420px|]]
1125
|- style="text-align: center; font-size: 75%;"
1126
| (a) 
1127
| (b) 
1128
|-
1129
|[[Image:Draft_Samper_624436055-test-Fig14c.png|420px|]]
1130
|[[Image:Draft_Samper_624436055-test-Fig14d.png|420px|]]
1131
|- style="text-align: center; font-size: 75%;"
1132
| (c) 
1133
| (d) 
1134
|- style="text-align: center; font-size: 75%;"
1135
| colspan="2" | '''Figure 14:''' Non symmetric 3-layered cantilever thick beam under end point load (<math>\lambda =5</math>). Thickness distribution of transverse shear stress <math>\tau _{xz}</math> at <math>L/20</math> (a), <math>L/4</math> (b), <math>L/2</math> (c) and <math>3L/4</math> (d) 
1136
|}
1137
1138
<div id='img-15a'></div>
1139
<div id='img-15b'></div>
1140
<div id='img-15c'></div>
1141
<div id='img-15'></div>
1142
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1143
|-
1144
|[[Image:Draft_Samper_624436055-test-Fig15a.png|420px|]]
1145
|[[Image:Draft_Samper_624436055-test-Fig15b.png|420px|]]
1146
|- style="text-align: center; font-size: 75%;"
1147
| (a) 
1148
| (b) 
1149
|-
1150
| colspan="2"|[[Image:Draft_Samper_624436055-test-Fig15c.png|420px|]]
1151
|- style="text-align: center; font-size: 75%;"
1152
|  colspan="2" | (c) 
1153
|- style="text-align: center; font-size: 75%;"
1154
| colspan="2" | '''Figure 15:''' Non symmetric 3-layered cantilever thick beam under end point load (<math>\lambda =5</math>). LRZ and TBT results for the transverse shear stress <math>\tau _{xz}</math> along the beam. Layer 1 (a), layer 2 (b) and layer 3(c)
1155
|}
1156
1157
===7.2 Three-layered simple supported (SS) thick beams under uniform load===
1158
1159
The next example is the analysis of a three-layered simple supported thick beam under a uniformly distributed load of unit value (<math display="inline">q=1</math>). The material properties and the thickness for the three layers are shown in Table [[#table-6|6]]. ''The material has a non symmetric distribution'' with respect to the beam axis. An unusually low value for the shear modulus of the core layer has been taken, thus reproducing the effect of a damaged material in this zone. The span-to-thickness ratio is <math display="inline">\lambda =5</math>. Results obtained with the LRZ element  are once more compared with those obtained with a mesh of 300 2-noded TBT elements and with the mesh of 27000 4-noded plane stress (PS) rectangles shown in Figure [[#img-3|3]]. The PS solution has been obtained by fixing the vertical displacement of all nodes at the end sections and the horizontal displacement of the mid-line node at <math display="inline">x=0</math> and <math display="inline">x=L</math> to a zero value. This way of approximating a simple support condition leads to some discrepancies between the PS results and those obtained with beam theory.
1160
1161
No advantage of the symmetry of the problem for the discretization has been taken.
1162
1163
Figure [[#img-16|16]] shows the distribution of the vertical deflection for the different methods. The error in the “best” maximum central deflection value versus the “exact” PS solution is <math display="inline">\simeq </math> 12% The discrepancy is due to the difference in the way the simple support condition is modelled in beam and PS theories, as well as to the limitations of beam theory to model accurately very thick beams. TBT results are inaccurate, as expected.
1164
1165
Figure [[#img-17|17]] shows the distribution of the axial stress <math display="inline">\sigma _x</math> along the beam for the top surface of the second and third layer.
1166
1167
The accuracy of the LRZ results is remarkable with a maximum error of 10% despite of the modeling limitations mentioned above. TBT results are incorrect.
1168
1169
Figure [[#img-18|18]] shows the thickness distribution of the axial displacement at the left end section and at <math display="inline">x = \frac{L}{4}</math>. The LRZ element captures very well the zigzag shape of the axial displacement field even for a coarse mesh of 10 elements. The TBT element yields an unrealistic linear distribution.
1170
1171
Figures [[#img-19|19]] and [[#img-20|20]] show the thickness distribution of the axial stress and the transverse shear stress at the left end and mid sections. The accuracy of the LRZ results is again noticeable (even for the coarse 10 element mesh). The TBT element fails to capture the zigzag distribution of the axial stress (Figure [[#img-19|19]]) and gives a wrong value of almost zero shear stress at the core layer for the two sections chosen (Figure [[#img-20|20]]).
1172
1173
Figure [[#img-21|21]] shows  the distribution of the shear stress <math display="inline">\tau _{xz}</math> along the beam for each of the three layers obtained with the LRZ and TBT elements. TBT results are accurate for the first and third layer but are wrong for the core layer.
1174
1175
Figure [[#img-22|22]] shows a similar set of results for a moderately thick SS beam (<math display="inline">\lambda =10</math>) and the same material properties. Results shown are the distribution along the beam of the deflection and the axial stress at the top surface of layer 2. The accuracy of the LRZ element is again noticeable.
1176
1177
1178
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
1179
|+ style="font-size: 75%;" |<span id='table-6'></span>Table. 6 Thickness and material properties for 3-layered non-symmetric simple supported (SS)  beam
1180
1181
|-
1182
| 
1183
| colspan='3' | '''Thickness and material properties'''
1184
1185
|- style="border-top: 2px solid;"
1186
| 
1187
| Layer 1 (bottom) 
1188
| Layer 2 (core) 
1189
| Layer 3 (top)
1190
1191
|- style="border-top: 2px solid;"
1192
| h [mm] 
1193
| 6.6666 
1194
| 6.6666 
1195
| 6.6666 
1196
|-
1197
| E [MPa] 
1198
| 2.19E<math display="inline">^{5}</math> 
1199
| 5.30E<math display="inline">^{5}</math> 
1200
| 7.30E<math display="inline">^{5}</math> 
1201
|- style="border-bottom: 2px solid;"
1202
| G [MPa] 
1203
| 8.76E<math display="inline">^{4}</math> 
1204
| 2.90E<math display="inline">^{2}</math> 
1205
| 2.92E<math display="inline">^{5}</math> 
1206
1207
|}
1208
1209
<div id='img-16'></div>
1210
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1211
|-
1212
|[[Image:Draft_Samper_624436055-test-Fig16.png|600px|Non symmetric 3-layered SS thick beam under uniformly distributed load \left(λ=5\right). Distribution of vertical deflection w along the beam length]]
1213
|- style="text-align: center; font-size: 75%;"
1214
| colspan="1" | '''Figure 16:''' Non symmetric 3-layered SS thick beam under uniformly distributed load <math>\left(\lambda =5\right)</math>. Distribution of vertical deflection <math>w</math> along the beam length
1215
|}
1216
1217
<div id='img-17a'></div>
1218
<div id='img-17b'></div>
1219
<div id='img-17'></div>
1220
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1221
|-
1222
|[[Image:Draft_Samper_624436055-test-Fig17a.png|420px|]]
1223
|[[Image:Draft_Samper_624436055-test-Fig17b.png|420px|]]
1224
|- style="text-align: center; font-size: 75%;"
1225
| (a) 
1226
| (b) 
1227
|- style="text-align: center; font-size: 75%;"
1228
| colspan="2" | '''Figure 17:''' Non symmetric 3-layered SS thick beam under uniformly distributed load <math>(\lambda =5)</math>. Distribution of axial stress <math>\sigma _{x}</math> at upper surface of layer 2 (a) and  layer 3 (b)
1229
|}
1230
1231
<div id='img-18a'></div>
1232
<div id='img-18b'></div>
1233
<div id='img-18'></div>
1234
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1235
|-
1236
|[[Image:Draft_Samper_624436055-test-Fig18a.png|420px|x=0]]
1237
|[[Image:Draft_Samper_624436055-test-Fig18b.png|420px|x=\fracL2]]
1238
|- style="text-align: center; font-size: 75%;"
1239
| (a) <math>x=0</math>
1240
| (b) <math>x=\frac{L}{2}</math>
1241
|- style="text-align: center; font-size: 75%;"
1242
| colspan="2" | '''Figure 18:''' Non symmetric 3-layered SS thick beam under uniformly distributed load <math>(\lambda =5)</math>.  Thickness distribution of axial displacement at <math>x=0</math> (a) and at <math>x=L/2</math> (b)
1243
|}
1244
1245
<div id='img-19a'></div>
1246
<div id='img-19b'></div>
1247
<div id='img-19'></div>
1248
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1249
|-
1250
|[[Image:Draft_Samper_624436055-test-Fig19a.png|420px|]]
1251
|[[Image:Draft_Samper_624436055-test-Fig19b.png|420px|]]
1252
|- style="text-align: center; font-size: 75%;"
1253
| (a) 
1254
| (b) 
1255
|- style="text-align: center; font-size: 75%;"
1256
| colspan="2" | '''Figure 19:''' Non symmetric 3-layered SS thick beam under uniformly distributed load <math>(\lambda =5)</math>.  Thickness distribution of axial stress <math>\sigma _{x}</math> at <math>x=0</math> (a) and at <math>x=L/2</math> (b)
1257
|}
1258
1259
<div id='img-20a'></div>
1260
<div id='img-20b'></div>
1261
<div id='img-20'></div>
1262
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1263
|-
1264
|[[Image:Draft_Samper_624436055-test-Fig20a.png|420px|]]
1265
|[[Image:Draft_Samper_624436055-test-Fig20b.png|420px|]]
1266
|- style="text-align: center; font-size: 75%;"
1267
| (a) 
1268
| (b) 
1269
|- style="text-align: center; font-size: 75%;"
1270
| colspan="2" | '''Figure 20:''' Non symmetric 3-layered SS thick beam under uniformly distributed load <math>(\lambda =5)</math>.  Thickness distribution of the  shear stress at <math>x=L/20</math> (a) and at <math>x=L/4</math> (b)
1271
|}
1272
1273
<div id='img-21a'></div>
1274
<div id='img-21b'></div>
1275
<div id='img-21c'></div>
1276
<div id='img-21'></div>
1277
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1278
|-
1279
|[[Image:Draft_Samper_624436055-test-Fig21a.png|420px|]]
1280
|[[Image:Draft_Samper_624436055-test-Fig21b.png|420px|]]
1281
|- style="text-align: center; font-size: 75%;"
1282
| (a) 
1283
| (b) 
1284
|-
1285
| colspan="2"|[[Image:Draft_Samper_624436055-test-Fig21c.png|420px|]]
1286
|- style="text-align: center; font-size: 75%;"
1287
|  colspan="2" | (c) 
1288
|- style="text-align: center; font-size: 75%;"
1289
| colspan="2" | '''Figure 21:''' Non symmetric 3-layered SS thick beam under uniformly distributed load <math>(\lambda =5)</math>. LRZ and TBT results for the distribution of <math>\tau _{xz}</math> along the beam for layer 1 (a), layer 2 (b) and layer 3 (c)
1290
|}
1291
1292
<div id='img-22a'></div>
1293
<div id='img-22b'></div>
1294
<div id='img-22'></div>
1295
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1296
|-
1297
|[[Image:Draft_Samper_624436055-test-Fig22a.png|420px|]]
1298
|[[Image:Draft_Samper_624436055-test-Fig22b.png|420px|]]
1299
|- style="text-align: center; font-size: 75%;"
1300
| (a) 
1301
| (b) 
1302
|- style="text-align: center; font-size: 75%;"
1303
| colspan="2" | '''Figure 22:''' Non symmetric 3-layered SS moderately thick beam under uniformly distributed load <math>(\lambda =10)</math>. Distribution along the beam length of the vertical deflection <math>w</math> (a) and the axial stress <math>\sigma _x</math> at the upper of layer 2 (b)
1304
|}
1305
1306
===7.3 Non-symmetric ten-layered clamped slender beam under uniformly distributed loading===
1307
1308
We present results for  a ten-layered clamped slender rectangular beam (<math display="inline">L=100</math> mm, <math display="inline">h=5</math> mm, <math display="inline">b=1</math> mm, <math display="inline">\lambda =20</math>) under uniformly distributed loading (<math display="inline">q =1</math> KN/mm). The composite material has the non-symmetric distribution across the thickness shown in Table 7.
1309
1310
1311
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
1312
|+ style="font-size: 75%;" |<span id='table-7'></span>Table. 7 10-layered clamped slender rectangular beam under uniformly distributed loading. (a) Thickness and material number for each of the 10 layers. (b) Properties of each material
1313
|-
1314
| colspan='3' | (a)
1315
1316
|- style="border-top: 2px solid;"
1317
| Layer 
1318
| <math>h_i</math>
1319
| Material
1320
1321
|- style="border-top: 2px solid;"
1322
| 1 
1323
| 0.5 
1324
| IV 
1325
|-
1326
| 2 
1327
| 0.6 
1328
| I 
1329
|-
1330
| 3 
1331
| 0.5 
1332
| V 
1333
|-
1334
| 4 
1335
| 0.4 
1336
| III 
1337
|-
1338
| 5 
1339
| 0.7 
1340
| IV 
1341
|-
1342
| 6 
1343
| 0.1 
1344
| III 
1345
|-
1346
| 7 
1347
| 0.4 
1348
| II 
1349
|-
1350
| 8 
1351
| 0.5 
1352
| V 
1353
|-
1354
| 9 
1355
| 0.3 
1356
| I 
1357
|- style="border-bottom: 2px solid;"
1358
| 10 
1359
| 1 
1360
| II 
1361
1362
|}
1363
1364
1365
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
1366
|-
1367
| colspan='3' | (b)
1368
1369
|- style="border-top: 2px solid;"
1370
| Material 
1371
| E [MPa] 
1372
| G [MPa] 
1373
1374
|- style="border-top: 2px solid;"
1375
| I 
1376
| 2.19e5 
1377
| 0.876e5 
1378
|-
1379
| II 
1380
| 7.3e5 
1381
| 2.92e5 
1382
|-
1383
| III 
1384
| 0.0073e5 
1385
| 0.0029e5 
1386
|-
1387
| IV 
1388
| 5.3e5 
1389
| 2.12e5 
1390
|- style="border-bottom: 2px solid;"
1391
| V 
1392
| 0.82e5 
1393
| 0.328e5 
1394
1395
|}
1396
1397
Figure [[#img-23|23]] shows results for the deflection along the beam for LRZ meshes with 10 and 300 elements (LRZ-10 and LRZ-300). Results obtained with a mesh of 27.000 4-noded plane stress quadrilaterals  and with a mesh of 300 TBT elements are also shown for comparison. Note the accuracy of the coarse LRZ-10 mesh and the erroneous results of the TBT solution.
1398
1399
Figure [[#img-24|24]] shows the thickness distribution of the axial displacement and the axial stress (<math display="inline">\sigma _x</math>) for the section at <math display="inline">x=\frac{L}{4}</math>. The accuracy of the LRZ results is once more remarkable.
1400
1401
<div id='img-23'></div>
1402
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1403
|-
1404
|[[Image:Draft_Samper_624436055-test-Fig23.png|600px|10-layered clamped slender beam under uniform loading. Distribution of the deflection along the beam]]
1405
|- style="text-align: center; font-size: 75%;"
1406
| colspan="1" | '''Figure 23:''' 10-layered clamped slender beam under uniform loading. Distribution of the deflection along the beam
1407
|}
1408
1409
<div id='img-24a'></div>
1410
<div id='img-24b'></div>
1411
<div id='img-24'></div>
1412
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1413
|-
1414
|[[Image:Draft_Samper_624436055-test-Fig24a.png|420px|]]
1415
|[[Image:Draft_Samper_624436055-test-Fig24b.png|420px|]]
1416
|- style="text-align: center; font-size: 75%;"
1417
| (a) 
1418
| (b) 
1419
|- style="text-align: center; font-size: 75%;"
1420
| colspan="2" | '''Figure 24:''' 10-layered clamped slender beam under uniform loading. Thickness distribution of axial displacement (a) and axial stress <math>\sigma _x</math> (b) for <math>x=\frac{L}{4}</math>
1421
|}
1422
1423
Figure [[#img-25|25]] shows the thickness distribution of the transverse shear stress at <math display="inline">x=\frac{L}{4}</math>. Results in Figure [[#img-25|25]]a show the values directly obtained with the LRZ-10 and LRZ-300 meshes. These results are clearly better than those obtained with the TBT element but only coincide in an average sense with the plane stress FEM solution.
1424
1425
<div id='img-25a'></div>
1426
<div id='img-25b'></div>
1427
<div id='img-25'></div>
1428
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1429
|-
1430
|[[Image:Draft_Samper_624436055-test-Fig25a.png|420px|]]
1431
|[[Image:Draft_Samper_624436055-test-Fig25b.png|420px|]]
1432
|- style="text-align: center; font-size: 75%;"
1433
| (a) 
1434
| (b) 
1435
|- style="text-align: center; font-size: 75%;"
1436
| colspan="2" | '''Figure 25:''' 10-layered clamped slender beam under uniform loading. Thickness distribution of <math>\tau _{xz}</math> at <math>x=\frac{L}{4}</math>. (a) Comparison of LRZ-10 and LRZ-300  results with plane stress (PS) and TBT solutions. (b) PS solution and LRZ-10-<math>N_z</math> and LRZ-300-<math>N_z</math> results for <math>\tau _{xz}</math> obtained by thickness integration of the equilibrium equation  using the LRZ-10 and LRZ-300 results (Eq.(32))
1437
|}
1438
1439
LRZ results for the thickness distribution of <math display="inline">\tau _{xz}</math> can be much improved by computing <math display="inline">\tau _{xz}</math> “a posteriori” from the axial stress field using the equilibrium equation
1440
1441
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1442
|-
1443
| 
1444
{| style="text-align: left; margin:auto;width: 100%;" 
1445
|-
1446
| style="text-align: center;" | <math>\frac{\partial \sigma _x}{\partial x}+ \frac{\partial \tau _{xz}}{\partial z}=0  </math>
1447
|}
1448
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
1449
|}
1450
1451
The transverse shear stress at a point across the thickness with coordinate <math display="inline">z</math> is computed by integrating Eq.(31) as
1452
1453
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1454
|-
1455
| 
1456
{| style="text-align: left; margin:auto;width: 100%;" 
1457
|-
1458
| style="text-align: center;" | <math>\tau _{xz} (z) = - \int ^z_{-\frac{h}{2}} \frac{\partial \sigma _x}{\partial x} dz = - \frac{\partial N_z}{\partial x} </math>
1459
|}
1460
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
1461
|}
1462
1463
where
1464
1465
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1466
|-
1467
| 
1468
{| style="text-align: left; margin:auto;width: 100%;" 
1469
|-
1470
| style="text-align: center;" | <math>N_z = \int ^z_{-\frac{h}{2}} \sigma _x dz </math>
1471
|}
1472
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
1473
|}
1474
1475
is the axial force (per  unit width) resulting from the thickness integration of <math display="inline">\sigma _x</math> between the coordinates <math display="inline">-\frac{h}{2}</math> and <math display="inline">z</math>.
1476
1477
The space derivative of <math display="inline">N_z</math> in Eq.(32) is computed ''at a node'' <math display="inline">i</math> as
1478
1479
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1480
|-
1481
| 
1482
{| style="text-align: left; margin:auto;width: 100%;" 
1483
|-
1484
| style="text-align: center;" | <math>\frac{\partial N_z}{\partial x} = \frac{2}{l^e + l^{e-1}} (N_z^e- N_z^{e-1}) </math>
1485
|}
1486
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
1487
|}
1488
1489
where (<math display="inline">l^e,N_z^e</math>) and (<math display="inline">l^{e-1}, N_z^{e-1}</math>) are the element length and the value of <math display="inline">N_z</math> at elements <math display="inline">e</math> and <math display="inline">e-1</math> adjacent to node <math display="inline">i</math>, respectively. A value of <math display="inline">\tau _{xz} (-\frac{h}{2}) =0</math> is taken. It is remarkable that the method yields automatically <math display="inline">\tau _{xz} (\frac{h}{2})\simeq 0</math>.
1490
1491
Results for <math display="inline">\tau _{xz}</math> obtained with this procedure are termed LRZ-10-<math display="inline">N_z</math> and LRZ-300-<math display="inline">N_z</math> in Figure [[#img-25|25]]. We note the accuracy of the “recovered” thickness distribution for <math display="inline">\tau _{xz}</math>, even for the coarse mesh of 10 LRZ elements.
1492
1493
===7.4 Modeling of delamination with the LRZ element===
1494
1495
Prediction of delamination in composite laminated beams is a challenge for all beam models. A method for predicting delamination in beams using a Hermitian zigzag theory was presented in <span id='citeF-26'></span><span id='citeF-27'></span>[[#cite-26|[26,27]]]. A sub-laminate approach is used for which the number of kinematic unknowns  depends of the number of physical layers. This increases the number of variables but it yields the correct an accurate transverse shear stress distribution without integrating the equilibrium equations.
1496
1497
Delamination effects in composite laminated beams can be effectively reproduced with the LRZ element ''without introducing additional kinematic variables''. The delamination model simply implies ''introducing a very thin “interface layer” between adjacent material layers'' in the actual composite laminated section. Delamination is produced when the material properties of the interface layer are drastically reduced to almost a zero value in comparison with those of the adjacent layers due to interlamina failure.  This simple delamination model allows the LRZ element to take into account the reduction of the overall beam stiffness due to the failure of the interface layer leading to an increase in the deflection and rotation field. Moreover, the LRZ element can also accurately represent the jump in the axial displacement field across the interface layer and the change in the axial and tangential stress distributions over the beam sections as delamination progresses.
1498
1499
Figures [[#img-26|26]]&#8211;[[#img-30|30]] show an example of the capabilities of the LRZ beam element to model delamination. The problem represents the analysis of a cantilever thick rectangular beam (<math display="inline">\lambda = 5</math>) under an end point load. The beam section has three layers of composite material with properties  shown in Table [[#table-8|8]]. Delamination between the upper and core layers has been modelled by introducing a very thin interface layer (<math display="inline">h=0.01</math> mm) between these two layers (Figure [[#img-26|26]]). The initial properties of the interface layer coincide with those of the upper layer. Next, the  shear modulus value for the interface layer has been progressively reduced up to 11 orders of magnitude from <math display="inline">G2= 8.76 \times 10^4</math> MPa (Model 1) to <math display="inline">G2 =8.76 \times 10^{-7}</math> MPa (Model 12)  (Table [[#table-9|9]]).
1500
1501
<div id='img-26'></div>
1502
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1503
|-
1504
|[[Image:Draft_Samper_624436055-test-Fig26.png|600px|Modeling of interface layer for delamination study in 3-layered thick cantilever beam (λ= 5) under end point load]]
1505
|- style="text-align: center; font-size: 75%;"
1506
| colspan="1" | '''Figure 26:''' Modeling of interface layer for delamination study in 3-layered thick cantilever beam (<math>\lambda = 5</math>) under end point load
1507
|}
1508
1509
1510
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
1511
|+ style="font-size: 75%;" |<span id='table-8'></span>Table. 8 Thickness and layer properties for delamination study in a 3-layered cantilever beam under end point load. Layer 2 is the interface layer. G2 values are given in Table 9
1512
|- style="border-top: 2px solid;"
1513
| style="text-align: left;" |  
1514
| colspan='4' | Composite material
1515
|- style="border-top: 2px solid;"
1516
| style="text-align: left;" |  
1517
| Layer 1
1518
| Layer 2
1519
| Layer 3
1520
| Layer 4
1521
1522
|- style="border-top: 2px solid;"
1523
| style="text-align: left;" | h [mm]
1524
| 2
1525
| 0.01
1526
| 16 
1527
| 2
1528
|-
1529
| style="text-align: left;" | E [MPa]
1530
| 2.19E5
1531
| 2.19E5
1532
| 0.0073E5
1533
| 7.30E5
1534
|- style="border-bottom: 2px solid;"
1535
| style="text-align: left;" | G [MPa] 
1536
| 0.876E5 
1537
| G2 
1538
| 0.0029E5 
1539
| 2.92E5
1540
1541
|}
1542
1543
1544
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
1545
|+ style="font-size: 75%;" |<span id='table-9'></span>Table. 9 Shear modulus values for the interface layer for delamination study in a 3-layered cantilever beam. Values of G2 in MPa
1546
|- style="border-top: 2px solid;"
1547
|  Model 
1548
| G2  
1549
| Model 
1550
| G2  
1551
| Model
1552
| G2 
1553
|- style="border-top: 2px solid;"
1554
|  1
1555
| 8.76E+004
1556
| 5
1557
| 8.76E+000 
1558
| 9 
1559
| 8.76E-004
1560
|-
1561
| 2
1562
| 8.76E+003
1563
| 6
1564
| 8.76E-001 
1565
| 10 
1566
| 8.76E-005
1567
|-
1568
| 3
1569
| 8.76E+002
1570
| 7
1571
| 8.76E-002
1572
| 11 
1573
| 8.76E-006
1574
|- style="border-bottom: 2px solid;"
1575
| 4
1576
| 8.76E+001
1577
| 8
1578
| 8.76E-003
1579
| 12 
1580
| 8.76E-007
1581
1582
|}
1583
1584
We note that the reduction of the shear  modulus has been applied over the whole beam length in this case. However it can applied in selected beam regions as appropriate.
1585
1586
Figure [[#img-27|27]] shows results for the end deflection  in terms of the shear modulus value of the interface layer for the LRZ-100 mesh. Note that the deflection increases one order of magnitude versus the non-delaminated case. It is also interesting that the end deflection does not change after the shear modulus of the interface layer is reduced beyond eight orders of magnitude (results for Model 9 in Figure [[#img-27|27]]). Results agree reasonably well (error <math display="inline">\simeq 10%</math>) with those obtained with the plane stress model of Figure 3 introducing a similar reduction  in the shear modulus of an  ''ad hoc'' interface layer.
1587
1588
<div id='img-27'></div>
1589
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1590
|-
1591
|[[Image:Draft_Samper_624436055-test-Fig27.png|600px|Delamination study in 3-layered cantilever beam under end point load. Evolution of end deflection with the shear modulus value for the interface layer  LRZ-100 results and PS solution]]
1592
|- style="text-align: center; font-size: 75%;"
1593
| colspan="1" | '''Figure 27:''' Delamination study in 3-layered cantilever beam under end point load. Evolution of end deflection with the shear modulus value for the interface layer  LRZ-100 results and PS solution
1594
|}
1595
1596
Figure [[#img-28|28]] shows the thickness distribution for the axial displacement at the mid section for four decreasing values of the shear modulus at the interface layer: <math display="inline">G2=8.76, 8.76 \times 10^{-1}, 8.76\times 10^{-3}</math> and <math display="inline">8.76 \times 10^{-6}</math> MPa. The  jump of the axial displacement across the thickness at the interface layer during delamination is well captured. We again note that the displacement jump at the interface layer remains stationary after a reduction of the material properties in that layer of six orders of magnitude. Results agree well with the plane stress solution also shown in the figure.
1597
1598
<div id='img-28'></div>
1599
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1600
|-
1601
|[[Image:Draft_Samper_624436055-test-Fig28a.png|420px|]]
1602
|[[Image:Draft_Samper_624436055-test-Fig28b.png|420px|]]
1603
|-
1604
|[[Image:Draft_Samper_624436055-test-Fig28c.png|420px|]]
1605
|[[Image:Draft_Samper_624436055-test-Fig28d.png|420px|Delamination study in 3-layered cantilever beam under end point load. Thickness distribution of axial displacement at x=\fracL2 for four decreasing values of the shear modulus at the interface layer  (Models 5, 6, 8 and 11, Table 9)]]
1606
|- style="text-align: center; font-size: 75%;"
1607
| colspan="2" | '''Figure 28:''' Delamination study in 3-layered cantilever beam under end point load. Thickness distribution of axial displacement at <math>x=\frac{L}{2}</math> for four decreasing values of the shear modulus at the interface layer  (Models 5, 6, 8 and 11, Table 9)
1608
|}
1609
1610
Figure [[#img-29|29]]  shows  the thickness distribution of the axial stress (<math display="inline">\sigma _x</math>) for  the same four decreasing values of the shear modulus at the interface layer. The effect of delamination in the stress distribution is clearly visible. Once again the LRZ-100 results agree well  with the plane stress solution.
1611
1612
<div id='img-29'></div>
1613
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1614
|-
1615
|[[Image:Draft_Samper_624436055-test-Fig29a.png|420px|]]
1616
|[[Image:Draft_Samper_624436055-test-Fig29b.png|420px|]]
1617
|-
1618
|[[Image:Draft_Samper_624436055-test-Fig29c.png|420px|]]
1619
|[[Image:Draft_Samper_624436055-test-Fig29d.png|420px|Delamination study in 3-layered cantilever beam under end point load. Thickness distribution of σₓ at x=\fracL2 for four decreasing values of the shear modulus at the interface layer  (Models 5, 6, 8 and 11, Table 9)]]
1620
|- style="text-align: center; font-size: 75%;"
1621
| colspan="2" | '''Figure 29:''' Delamination study in 3-layered cantilever beam under end point load. Thickness distribution of <math>\sigma _x</math> at <math>x=\frac{L}{2}</math> for four decreasing values of the shear modulus at the interface layer  (Models 5, 6, 8 and 11, Table 9)
1622
|}
1623
1624
Figure [[#img-30|30]] finally shows the thickness distribution for the transverse shear stress at <math display="inline">x=\frac{L}{2}</math> for the same four values of the shear modulus at the interface layer. The three graphs show  the PS results,  the LRZ-100 results and the solution obtained by integrating the equilibrium equation (via Eqs.(31)&#8211;(34)) using the LRZ-100 results. Note the accuracy of the later solution versus the standard LRZ-100 results as  delamination develops and the transverse shear stress progressively vanishes at the interface layer.
1625
1626
Similar good results for predicting the delamination and the thickness distribution of the axial and transverse shear stresses are obtained over the entire beam length.
1627
1628
The example shows clearly the capability of the LRZ element to model a complex phenomenon such as delamination in composite laminated beams ''without introducing additional kinematic variables''. More evidence of the good behaviour of the LRZ beam element for predicting delamination in beams are reported in <span id='citeF-29'></span>[[#cite-29|[29]]].
1629
1630
<div id='img-30'></div>
1631
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1632
|-
1633
|[[Image:Draft_Samper_624436055-test-Fig30a.png|420px|]]
1634
|[[Image:Draft_Samper_624436055-test-Fig30b.png|420px|]]
1635
|-
1636
|[[Image:Draft_Samper_624436055-test-Fig30c.png|420px|]]
1637
|[[Image:Draft_Samper_624436055-test-Fig30d.png|420px|Delamination study in 3-layered cantilever beam under end point load. Thickness distribution of τ<sub>xz</sub> at x=\fracL2 for four values of G at the interface layer (Models 5, 6, 8 and 11, Table 9). LRZ-100 results, plane stress (PS) solution and LRZ-100-Sx results obtained by integrating the equilibrium equation (Eq.(32)) using the LRZ-100 results]]
1638
|- style="text-align: center; font-size: 75%;"
1639
| colspan="2" | '''Figure 30:''' Delamination study in 3-layered cantilever beam under end point load. Thickness distribution of <math>\tau _{xz}</math> at <math>x=\frac{L}{2}</math> for four values of G at the interface layer (Models 5, 6, 8 and 11, Table 9). LRZ-100 results, plane stress (PS) solution and LRZ-100-Sx results obtained by integrating the equilibrium equation (Eq.(32)) using the LRZ-100 results
1640
|}
1641
1642
==8 CONCLUSIONS==
1643
1644
We have presented a simple and accurate 2-noded beam element based on the combination of the refined zigzag beam theory proposed by Tessler ''et al.'' <span id='citeF-22'></span>[[#cite-22|[22]]]. The element has four degrees of freedom per node (the axial displacement, the deflection, the rotation and the amplitude of the zigzag function). A standard <math display="inline">C^\circ </math> linear interpolation  is used for all variables. The resulting LRZ beam element is shear locking-free and has shown an excellent behaviour for analysis of thick and thin composite laminated beams with clamped and simple supported conditions. Numerical results  agree in practically all cases with  those obtained with a two-dimensional plane-stress FEM using a far larger number of degrees of freedom. It is remarkable that the zigzag distribution of the axial displacement and the axial stress across the thickness, typical of composite laminated beams, is very accurately captured with the basic approximation chosen. The possibilities of the new LRZ beam element for predicting delamination effects has been demonstrated in a simple but representative example of application.
1645
1646
==ACKNOWLEDGEMENTS==
1647
1648
This research was partially supported by project SEDUREC of the Consolider Programme of the Ministerio de Educación y Ciencia of Spain.
1649
1650
==REFERENCES==
1651
1652
<div id="cite-1"></div>
1653
[[#citeF-1|[1]]]  Timoshenko S.P. and Woinowsky-Krieger S., ''Theory of Plates and Shells''. McGraw-Hill, New York, 3rd Edition, 1959.
1654
1655
<div id="cite-2"></div>
1656
[[#citeF-2|[2]]]  Timoshenko S. On the correction for shear of differential equations for transverse vibrations of prismatic bars. Philosophical Magazine Series, Vol. 41, pp. 744-746, 1921.
1657
1658
<div id="cite-3"></div>
1659
[[#citeF-3|[3]]]  Liu D. and Li X. An overall view of laminate theories based on displacement hypothesis. Journal of Composite Materials, Vol. 30(14), pp. 1539-1561, 1996.
1660
1661
<div id="cite-4"></div>
1662
[[#citeF-4|[4]]]  Reddy, J.N., Mechanics of laminated composite plates and shells. Theory and analysis. 2nd Edition, CRC Press, Boca Raton, 2004.
1663
1664
<div id="cite-5"></div>
1665
[[#citeF-5|[5]]]  Owen D.R.J.  and  Li Z.H., A refined analysis of laminated plates by finite element displacement methods. Part I. Fundamentals and static analysis. II Vibration and stability.  Comp. Struct, Vol. 26, pp. 907&#8211;923, 1987.
1666
1667
<div id="cite-6"></div>
1668
[[#citeF-6|[6]]]  Botello, S. Oñate, E. and Canet, J.M., A layer-wise triangle for analysis of laminated composite plates and shells. Computers and Structures, Vol. 70, 635&#8211;646, 1999.
1669
1670
<div id="cite-7"></div>
1671
[[#citeF-7|[7]]]  Di Sciuva M. Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model. Journal of Sound and Vibration, Vol. 105, pp. 425-442, 1986.
1672
1673
<div id="cite-8"></div>
1674
[[#citeF-8|[8]]]  Murakami H. Laminated composite plate theory with improved in-plane responses. ASME Journal of Applied Mechanics, Vol. 53, pp. 661-666, 1986.
1675
1676
<div id="cite-9"></div>
1677
[[#citeF-9|[9]]]  Aitharaju V.R. and Averill R.C., An assessment of zig-zag kinematic displacement models for the anlaysis of laminated composites. Mech. Composite Mat. and Struct., 6, 1&#8211;26, 1999a.
1678
1679
<div id="cite-10"></div>
1680
[[#citeF-10|[10]]]  Aitharaju V.R. and Averill R.C., C<math display="inline">^\circ </math> zig-zag finite element for analysis of laminated composite beams. J. Engineering Mechanics, ASCE, 323&#8211;330, 1999b.
1681
1682
<div id="cite-11"></div>
1683
[[#citeF-11|[11]]]  Li X. and Liu D. An interlaminar shear stress continuity theory for both thin and thick composite laminates. J. Appl. Mech., 59, 502&#8211;509, 1992.
1684
1685
<div id="cite-12"></div>
1686
[[#citeF-12|[12]]]  Di Sciuva M. An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates. J. Appl. Mech. 54, 589&#8211;594, 1987.
1687
1688
<div id="cite-13"></div>
1689
[[#citeF-13|[13]]]  Toledano A and Murakami H. A higher-order laminate plate theory with improved in-plane response. Int. J. Solids and Struct., 23, 111&#8211;131, 1987b.
1690
1691
<div id="cite-14"></div>
1692
[[#citeF-14|[14]]]  Cho M. and Parmerter R.R. Efficient higher order composite plate theory for general laminations configuration. AIAA J., 31, 1299&#8211;1306, 1993.
1693
1694
<div id="cite-15"></div>
1695
[[#citeF-15|[15]]]  Kapuria, S., Dumir, P.C., Ahmed, A. and Alam, N. Finite element model of efficient zigzag theory for static analysis of hybrid piezoelectric beams, Computational Mechanics,  Vol. 34 (6), pp. 475&#8211;483, 2004.
1696
1697
<div id="cite-16"></div>
1698
[[#citeF-16|[16]]]  Averill R.C. Static and dynamic response of moderately thick laminated beams with damage. Composites Engineering, Vol. 4(4), pp. 381-395, 1994.
1699
1700
<div id="cite-17"></div>
1701
[[#citeF-17|[17]]]  Averill R.C. and Yuen Cheong Yip. Development of simple, robust finite elements based on refined theories for thick laminated beams. Computers & Structures, Vol. 59(3), pp. 529-546, 1996.
1702
1703
<div id="cite-18"></div>
1704
[[#citeF-18|[18]]]  Alam N.M. and Upadhyay N.Kr. Finite element analysis of laminated composite beams for zigzag theory using MATLAB. Int. J. of Mechanics and Solids, Vol. 5(1), pp. 1&#8211;14, 2010.
1705
1706
<div id="cite-19"></div>
1707
[[#citeF-19|[19]]]  Savoia M. On the accuracy of one-dimensional models for multilayered composite beams. Int. J. Solids Struct.,  Vol. 33, pp. 521–-44, 1996.
1708
1709
<div id="cite-20"></div>
1710
[[#citeF-20|[20]]]   Kapuria S, Dumir P.C. and Jain N.K. Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams. Composite Structures,  Vol. 64, pp. 317–-27, 2004.
1711
1712
<div id="cite-21"></div>
1713
[[#citeF-21|[21]]]  Carrera, E. Historical review of zigzag theories for multilayered plate and shell. Applied Mechanics Review, 56(3), 287&#8211;308, 2003.
1714
1715
<div id="cite-22"></div>
1716
[[#citeF-22|[22]]]  Tessler, A., Di Sciuva M. and Gherlone, M. A refined zigzag beam theory for composite and sandwich beams. J. of Composite Materials, Vol. 43, 1051&#8211;1081, 2009.
1717
1718
<div id="cite-23"></div>
1719
[[#citeF-23|[23]]]  Tessler, A., Di Sciuva M. and Gherlone, M. A consistent refinement of first-order shear-deformation theory for laminated composite and sandwich plates using improved zigzag kinematics. J. of Mechanics of Materials and Structures, 5(2), 341&#8211;367, 2010.
1720
1721
<div id="cite-24"></div>
1722
[[#citeF-24|[24]]]  Gherlone, M., Tessler, A. and Di Sciuva M. C<math display="inline">^\circ </math> beam element based on the refined zigzag theory for multilayered composite and sandwich laminates. Composite Structures. Accepted for publication, May 2011.
1723
1724
<div id="cite-25"></div>
1725
[[#citeF-25|[25]]]  Oñate, E., Eijo, A. and Oller, S. Two-noded beam element for composite and sandwich beams using Timoshenko theory and refined zigzag kinematics. Publication CIMNE PI346, CIMNE, Barcelona, October 2010.
1726
1727
<div id="cite-26"></div>
1728
[[#citeF-26|[26]]]  Di Sciuva M. and Gherlone, M. A global/local third-order Hermitian displacement field with damaged interfaces and transverse extensibility: FEM formulation. Composite Structures, 59(4), 433-444, 2003.
1729
1730
<div id="cite-27"></div>
1731
[[#citeF-27|[27]]]  Di Sciuva M. and Gherlone, M. Quasi-3D static and dynamic analysis of undamaged and damaged sandwich beams. Journal of Sandwich Structures & Materials, 7(1), 31&#8211;52, 2005.
1732
1733
<div id="cite-28"></div>
1734
[[#citeF-28|[28]]]  Oñate, E. ''Structural Analysis with the Finite Element Method''. Vol. 2 Beams, Plates and Shells. CIMNE-Springer, 2011.
1735
1736
<div id="cite-29"></div>
1737
[[#citeF-29|[29]]]  Oñate, E., Eijo, A. and Oller, S. Modeling of delamination in composite laminated beams using a two-noded beam element based in refined zigzag theory. Publication CIMNE, PI367, November 2011.
1738

Return to Onate et al 2012a.

Back to Top

Document information

Published on 01/01/2012

DOI: 10.1016/j.cma.2011.11.023
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 38
Views 173
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?