You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
2
==ABSTRACT==
3
4
A family of rotation-free three node triangular shell elements is presented. The simplest element of the family is based on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of four elements and a constant membrane field computed from the standard linear interpolation of the displacements within each triangle. An enhanced version of the element is obtained by using a quadratic interpolation of the geometry in terms of the six patch nodes. This allows to compute an assumed linear membrane strain field which improves the in-plane behaviour of the original element. A simple and economic version of the element using a single integration point is presented. The efficiency of the different rotation-free shell triangles is demonstrated in many examples of application including linear and non linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
5
6
==1 INTRODUCTION==
7
8
Triangular shell elements are very useful for the solution of large scale shell problems such as those occurring in many practical engineering situations. Typical examples are the analysis of shell roofs under static and dynamic loads, sheet stamping processes, vehicle dynamics and crash-worthiness situations. Many of these problems involve high geometrical and material non linearities and time changing frictional contact conditions. These difficulties are usually increased by the need of discretizing complex geometrical shapes. Here the use of shell triangles and non-structured meshes becomes a critical necessity. Despite recent advances in the field <span id='citeF-1'></span>[[#cite-1|[1]]]&#8211;<span id='citeF-6'></span>[[#cite-6|[6]]] there are not so many simple shell triangles which are capable of accurately modelling the deformation of a shell structure under arbitrary loading conditions.
9
10
A promising line to derive simple shell triangles is to use the nodal displacements as the only unknowns for describing the shell kinematics. This idea goes back to the original attempts to solve thin plate bending problems using finite difference schemes with the deflection as the only nodal variable <span id='citeF-7'></span>[[#cite-7|[7]]]&#8211;<span id='citeF-9'></span>[[#cite-9|[9]]].
11
12
In past years some authors have derived a number of thin plate and shell triangular elements free of rotational degrees of freedom (d.o.f.) based on Kirchhoff's theory [10]&#8211;<span id='citeF-26'></span>[[#cite-26|[26]]]. In essence all methods attempt to express the curvatures field over an element in terms of the displacements of a collection of nodes belonging to a patch of adjacent elements. Oñate and Cervera [14] proposed a general procedure of this kind combining finite element and finite volume concepts for deriving thin plate triangles and quadrilaterals with the deflection as the only nodal variable and presented a simple and competitive rotation-free three d.o.f. triangular element termed BPT (for Basic Plate Triangle). These ideas were extended and formalized in <span id='citeF-20'></span>[[#cite-20|[20]]] to derive a number of rotation-free thin plate and shell triangles. The basic ingredients of the method are a mixed Hu-Washizu formulation, a standard discretization into three node triangles, a linear finite element interpolation of the displacement field within each triangle and a finite volume type approach for computing constant curvature and bending moment fields within appropriate non-overlapping control domains. The so called cell-centered and cell-vertex triangular domains yield different families of rotation-free plate and shell triangles. Both the BPT plate element and its extension to shell analysis (termed BST for Basic Shell Triangle) can be derived from the cell-centered formulation. Here the control domain is an individual triangle. The constant curvatures field within a triangle is computed in terms of the displacements of the six nodes belonging to the four elements patch formed by the chosen triangle and the three adjacent triangles. The cell-vertex approach yields a different family of rotation-free plate and shell triangles. Details of the derivation of both rotation-free triangular shell element families can be found in [<span id='citeF-20'></span>[[#cite-20|[20]]].
13
14
An extension of the BST element to the non linear analysis of shells was implemented in an explicit dynamic code by Oñate ''et al.'' <span id='citeF-25'></span>[[#cite-25|[25]]] using an updated Lagrangian formulation and a hypo-elastic constitutive model. Excellent numerical results were obtained for non linear dynamics of shells involving frictional contact situations and sheet stamping problems <span id='citeF-17'></span>[[#cite-17|[17,18,19,25]]].
15
16
A large strain formulation for the BST element using a total Lagrangian description was presented by Flores and Oñate <span id='citeF-23'></span>[[#cite-23|[23]]]. A recent extension of this formulation is based on a quadratic interpolation of the geometry of the patch formed by the BST element and the three adjacent triangles [26]. This yields a linear displacement gradient field over the element from which linear membrane strains and  constant curvatures  can be computed within the BST element.
17
18
In this paper the formulation of the BST element is revisited using an assumed strain approach. The content of the paper is the following. First some basic concepts of the formulation of the original BST element using an assumed constant curvature field are given. Next, the basic equations of the non linear thin shell theory chosen based on a total Lagrangian description are presented. Then the non linear formulation of the BST element is presented. This is based on an assumed constant membrane field derived from the linear displacement interpolation and an assumed constant curvature field expressed in terms of the displacements of the nodes of the four element patch using a finite volume type approach. An enhanced version of the BST element is derived using an assumed linear field for the membrane strains and an assumed constant curvature field. Both assumed fields are obtained from the quadratic interpolation of the patch geometry following the ideas presented in <span id='citeF-26'></span>[[#cite-26|[26]]]. Details of the derivation of the tangent stiffness matrix needed  for a quasi-static implicit solution are given for both the BST and EBST elements. An efficient version of the  EBST element using one single quadrature point for integration of the tangent matrix is  presented. An explicit  scheme adequate for dynamic analysis is  briefly described.
19
20
The efficiency and accuracy of the standard and enhanced versions of the BST element is validated in a number of examples of application including linear and non linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
21
22
==2 FORMULATION OF THE BASIC PLATE TRIANGLE USING AN ASSUMED CONSTANT CURVATURE FIELD==
23
24
Let us consider a patch of four plate three node triangles (Figure [[#img-1|1]]). The nodes 1, 2, and 3 in the main central triangle (M) are marked with circles while the external nodes in the patch (nodes 4, 5 and 6) are marked with squares. Mid side points in the central triangle are also marked with smaller squares. Kirchhoff's thin plate theory will be assumed to hold. The deflection is linearly interpolated within each three node triangle in the standard finite element manner as
25
26
{| class="formulaSCP" style="width: 100%; text-align: left;" 
27
|-
28
| 
29
{| style="text-align: left; margin:auto;width: 100%;" 
30
|-
31
| style="text-align: center;" | <math>w=\sum _{i=1}^{3}L_{i}^{e}w_{i}^{e}</math>
32
|}
33
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
34
|}
35
36
where <math display="inline">L_{i}^{e}</math> are the linear shape functions (area coordinates) of the three node triangle, <math display="inline">w_{i}^{e}</math> are nodal deflections and superindex <math display="inline">e</math> denotes element values.
37
38
<div id='img-1'></div>
39
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
40
|-
41
|[[Image:Draft_Samper_165783789-test-fig1.png|454px|Patch of three node triangular elements including the central triangle (M) and three adjacent triangles (1, 2 and 3)]]
42
|- style="text-align: center; font-size: 75%;"
43
| colspan="1" | '''Figure 1:''' Patch of three node triangular elements including the central triangle (M) and three adjacent triangles (1, 2 and 3)
44
|}
45
46
The curvatures  within the central triangle can be expressed in terms of a constant assumed curvatures field as
47
48
<span id="eq-2"></span>
49
{| class="formulaSCP" style="width: 100%; text-align: left;" 
50
|-
51
| 
52
{| style="text-align: left; margin:auto;width: 100%;" 
53
|-
54
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\left\{ \begin{array}{c}\kappa _{xx}\\ \kappa _{yy}\\ \kappa _{xy}\end{array} \right\} =\hat{\boldsymbol \kappa } </math>
55
|}
56
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
57
|}
58
59
where <math display="inline">{\boldsymbol \kappa }</math> is the curvature vector and <math display="inline">\hat{\boldsymbol \kappa }</math> is the assumed constant curvature field defined as
60
61
<span id="eq-3"></span>
62
{| class="formulaSCP" style="width: 100%; text-align: left;" 
63
|-
64
| 
65
{| style="text-align: left; margin:auto;width: 100%;" 
66
|-
67
| style="text-align: center;" | <math>\hat{\boldsymbol \kappa }={\frac{1}{A_{M}}}\int \int _{A_{M}}\left[ -{\frac{\partial ^{2}w}{\partial x^{2}}},-{\frac{\partial ^{2}w}{\partial y^{2}}},-2{\frac{\partial ^{2}w}{\partial x\partial y}}\right] ^{T}dA </math>
68
|}
69
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
70
|}
71
72
where <math display="inline">A_{M}</math> is the area of the central triangle in Figure [[#img-1|1]].
73
74
Integrating by parts Eq.([[#eq-3|3]]) and substituting the resulting expression for <math display="inline">\hat{\boldsymbol \kappa }</math> into Eq.([[#eq-2|2]]) gives the constant curvature field within the element as
75
76
<span id="eq-4"></span>
77
{| class="formulaSCP" style="width: 100%; text-align: left;" 
78
|-
79
| 
80
{| style="text-align: left; margin:auto;width: 100%;" 
81
|-
82
| style="text-align: center;" | <math>{\boldsymbol \kappa }={\frac{1}{A_{M}}}{\displaystyle \oint _{\Gamma _{M}}} \left[ \begin{array}{cc}-n_{x} & 0\\ 0 & -n_{y}\\ -n_{y} & -n_{x}\end{array} \right] \left\{ \begin{array}{c}\dfrac{\partial w}{\partial x}\\ \dfrac{\partial w}{\partial y}\end{array} \right\} d\Gamma </math>
83
|}
84
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
85
|}
86
87
where <math display="inline">\Gamma _{M}</math> is the boundary of the central triangle and <math display="inline">\mathbf{n}=\left(n_{x},n_{y} \right)</math> is the boundary normal. Equation ([[#eq-4|4]]) defines the assumed constant curvature field within the central triangle in terms of the deflection gradient along the sides of the triangle. Equation (4) can be found to be equivalent to the standard conservation laws used in finite volume procedures as described in [27,28].
88
89
The computation of the line integral in Eq.([[#eq-4|4]]) poses a difficulty as the deflection gradient is discontinuous along the element sides. A simple method to overcome this problem is to compute the deflection gradient at the element sides as the average values of the gradient contributed by the two triangles sharing the side [20,28]. Following this idea the constant curvature field with the element is computed as
90
91
<span id="eq-5"></span>
92
{| class="formulaSCP" style="width: 100%; text-align: left;" 
93
|-
94
| 
95
{| style="text-align: left; margin:auto;width: 100%;" 
96
|-
97
| style="text-align: center;" | <math>{\boldsymbol \kappa } ={\frac{1}{A_{M}}}\sum _{j=1}^{3}{\frac{l_{j}^{M}}{2}}\left[ \begin{array}{cc}-n_{x}^{j} & 0\\ 0 & -n_{y}^{j}\\ -n_{y}^{j} & -n_{x}^{j}\end{array} \right] ^{M}\left[ {\nabla }L_{i}^{M}w_{i}^{M}+{\nabla }L_{i}^{j}w_{i}^{j}\right]</math>
98
|-
99
| style="text-align: center;" | <math> = \sum _{j=1}^{3}\left[ \begin{array}{cc}L_{j,x}^{M} & 0           \\ 0           & L_{j,y}^{M} \\ L_{j,y}^{M} & L_{j,x}^{M}\end{array} \right] \left[ {\nabla }L_{i}^{M}w_{i}^{M}+{\nabla }L_{i}^{j}w_{i}^{j}\right] =\mathbf{B}_{b}\mathbf{w}^{p} </math>
100
|}
101
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
102
|}
103
104
where <math display="inline">\mathbf{w}^{p}=[w_{1},w_{2},w_{3},w_{4},w_{5},w_{6}]^{T}</math> is the deflection vector of the six  nodes in the patch. In Eq.([[#eq-5|5]]) the sum extends over the three sides of the central element <math display="inline">M</math>, <math display="inline">l_{j}^{M}</math> are the lengths of the element sides and superindexes <math display="inline">M</math> and <math display="inline">j</math> refer to the central triangle and to each of the adjacent elements, respectively. The standard sum convention for repeated indexes is used. Note that triangular area coordinates satisfy
105
106
<span id="eq-6"></span>
107
{| class="formulaSCP" style="width: 100%; text-align: left;" 
108
|-
109
| 
110
{| style="text-align: left; margin:auto;width: 100%;" 
111
|-
112
| style="text-align: center;" | <math>\nabla L_{i}^{M}=\left[ \begin{array}{c}L_{i,x}^{M}\\ L_{i,y}^{M}\end{array} \right] =-\frac{l_{i}^{M}}{2A_{M}}\left[ \begin{array}{c}n_{x}^{i}\\ n_{y}^{i}\end{array} \right]  </math>
113
|}
114
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
115
|}
116
117
Note also that the constant curvature field is expressed in terms of the six nodes of the four element patch linked to the element <math display="inline">M</math>. The expression of the <math display="inline">3\times{6}</math> <math display="inline">\mathbf{B}_{b}</math> matrix can be found in [14,20].
118
119
The virtual work expression is written as
120
121
<span id="eq-7"></span>
122
{| class="formulaSCP" style="width: 100%; text-align: left;" 
123
|-
124
| 
125
{| style="text-align: left; margin:auto;width: 100%;" 
126
|-
127
| style="text-align: center;" | <math>\int \int _{A}\delta{\boldsymbol \kappa }^{T}\mathbf{m}\,dA=\int \int _{A}\delta w\,q\,dA </math>
128
|}
129
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
130
|}
131
132
where '''m''' is the bending moment field related to the curvatures by the standard constitutive equations
133
134
{| class="formulaSCP" style="width: 100%; text-align: left;" 
135
|-
136
| 
137
{| style="text-align: left; margin:auto;width: 100%;" 
138
|-
139
| style="text-align: center;" | <math>\mathbf{m}=[M_{xx},M_{yy},M_{xy}]^T = \mathbf{D}_{b}{\boldsymbol \kappa }\quad ,\quad  \mathbf{D}_{b}={\frac{h^{3}}{12}} {\frac{E}{(1-\nu ^{2})}}\left[ \begin{array}{ccc}1 & \nu & 0\\ \nu & 1 & 0\\ 0 & 0 & \frac{1-\nu }{2}\end{array} \right]=\frac{h^3}{12}\mathbf{D} </math>
140
|}
141
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
142
|}
143
144
In Eqs.(7) and (8) <math display="inline">h</math> is the plate thickness, <math display="inline">E</math> is the Young's modulus, <math display="inline">\nu </math> is the Poisson's ratio, <math display="inline">\delta{\boldsymbol \kappa }</math> and <math display="inline">\delta w</math> are the virtual curvatures and the virtual deflection, respectively, and <math display="inline">q</math> is a distributed vertical load.
145
146
Substituting the approximation for the vertical deflection and the assumed constant curvature field into ([[#eq-7|7]]) leads to the standard linear system of equations
147
148
{| class="formulaSCP" style="width: 100%; text-align: left;" 
149
|-
150
| 
151
{| style="text-align: left; margin:auto;width: 100%;" 
152
|-
153
| style="text-align: center;" | <math>\mathbf{K}\mathbf{w}=\mathbf{f}</math>
154
|}
155
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
156
|}
157
158
where the stiffness matrix <math display="inline">\mathbf{K}</math> and the equivalent nodal force <math display="inline">\mathbf{f}</math> can be found by assembly of the element contributions given by
159
160
{| class="formulaSCP" style="width: 100%; text-align: left;" 
161
|-
162
| 
163
{| style="text-align: left; margin:auto;width: 100%;" 
164
|-
165
| style="text-align: center;" | <math>\mathbf{K}^{e}=\int \int _{A^{e}}\mathbf{B}_{b}^{T}\mathbf{D}_{b}\mathbf{B}_{b}dA </math>
166
|}
167
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
168
|}
169
170
{| class="formulaSCP" style="width: 100%; text-align: left;" 
171
|-
172
| 
173
{| style="text-align: left; margin:auto;width: 100%;" 
174
|-
175
| style="text-align: center;" | <math>\mathbf{f}^{e}=\int \int _{A^{e}}q\left\{ \begin{array}{c}L_{1}^e\\ L_{2}^e\\ L_{3}^e\end{array} \right\} dA </math>
176
|}
177
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
178
|}
179
180
Note that <math display="inline">\mathbf{K}^{e}</math> is  a <math display="inline">6\times{6}</math> matrix, whereas <math display="inline">\mathbf{f}^{e}</math> has the same structure than for the standard linear triangle. The explicit form of <math display="inline">\mathbf{K}^{e}</math> and <math display="inline">\mathbf{f}^{e}</math> can be found in [14].
181
182
The resulting Basic Plate Triangle (BPT) has one degree of freedom per node and a wider bandwidth than the standard three node triangles as each triangular element is linked to its three neighbours through Eq.([[#eq-5|5]]).
183
184
Examples of the good performance of the BPT element for analysis of thin plates can be found in [14,20]. The extension of the BPT element to the analysis of shells yields the Basic Shell Triangle (BST) [20]. Different applications of the BST element to linear and non linear analysis of shells are reported in [14,17&#8211;20,23,25,26].
185
186
The ideas used to derive the BPT element will now be extended to derive two families of Basic Shell Triangles using a total Lagrangian description.
187
188
==3 BASIC THIN SHELL EQUATIONS USING A TOTAL LAGRANGIAN FORMULATION==
189
190
===3.1 Shell kinematics===
191
192
A summary of the most relevant hypothesis related to the kinematic behaviour of a thin shell are presented. Further details may be found in the wide literature dedicated to this field [8,9].
193
194
Consider a shell with undeformed middle surface occupying the domain <math display="inline">\Omega ^{0}</math> in <math display="inline">R^{3}</math> with a boundary <math display="inline">\Gamma ^{0}</math>. At each point of the middle surface a thickness <math display="inline">h^{0}</math> is defined. The positions <math display="inline">\mathbf{x}^{0}</math> and <math display="inline">\mathbf{x}</math> of a point in the undeformed and the deformed configurations can be respectively written as a function of the coordinates of the middle surface <math display="inline">{\boldsymbol \varphi }</math> and the normal <math display="inline">\mathbf{t}_{3}</math> at the point as
195
196
{| class="formulaSCP" style="width: 100%; text-align: left;" 
197
|-
198
| 
199
{| style="text-align: left; margin:auto;width: 100%;" 
200
|-
201
| style="text-align: center;" | <math>\mathbf{x}^{0}\left( \xi _{1},\xi _{2},\zeta \right)    ={\boldsymbol \varphi }^{0}\left( \xi _{1},\xi _{2}\right) +\lambda \mathbf{t}_{3}^{0}</math>
202
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
203
|-
204
| style="text-align: center;" | <math> \mathbf{x}\left( \xi _{1},\xi _{2},\zeta \right)    ={\boldsymbol \varphi }\left( \xi  _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}</math>
205
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
206
|}
207
|}
208
209
where <math display="inline">\xi _{1},\xi _{2}</math> are arc-length curvilinear principal coordinates defined over the middle surface of the shell and <math display="inline">\zeta </math> is the distance from the point to the middle surface in the undeformed configuration. The product <math display="inline">\zeta \lambda </math> is the distance from the point to the middle surface measured on the deformed configuration. The parameter <math display="inline">\lambda </math> relates the thickness at the present and initial configurations as:
210
211
{| class="formulaSCP" style="width: 100%; text-align: left;" 
212
|-
213
| 
214
{| style="text-align: left; margin:auto;width: 100%;" 
215
|-
216
| style="text-align: center;" | <math>\lambda =\frac{h}{h^{0}}</math>
217
|}
218
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
219
|}
220
221
This approach implies a constant strain in the normal direction. Parameter <math display="inline">\lambda </math> will not be considered as an independent variable  and will be computed from purely geometrical considerations (''isochoric'' behaviour) via a staggered iterative update. Besides this, the usual plane stress condition of thin shell theory will be adopted.
222
223
A convective system is computed at each point as
224
225
{| class="formulaSCP" style="width: 100%; text-align: left;" 
226
|-
227
| 
228
{| style="text-align: left; margin:auto;width: 100%;" 
229
|-
230
| style="text-align: center;" | <math>\mathbf{g}_{i}\left( \mathbf{\xi }\right) =\frac{\partial \mathbf{x}}{\partial \xi _{i}}\qquad i=1,2,3 </math>
231
|}
232
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
233
|}
234
235
{| class="formulaSCP" style="width: 100%; text-align: left;" 
236
|-
237
| 
238
{| style="text-align: left; margin:auto;width: 100%;" 
239
|-
240
| style="text-align: center;" | <math>\mathbf{g}_{\alpha }\left( \mathbf{\xi }\right)    =\frac{\partial \left( \mathbf{\boldsymbol \varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \xi _{\alpha }}={\boldsymbol \varphi }_{^{\prime }\alpha }+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }\alpha }\quad \alpha=1,2</math>
241
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
242
|-
243
| style="text-align: center;" | <math> \mathbf{g}_{3}\left( \mathbf{\xi }\right)    =\frac{\partial \left( \mathbf{\boldsymbol \varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \zeta }=\lambda \mathbf{t}_{3}</math>
244
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
245
|}
246
|}
247
248
This can be particularized for the points on the middle surface as
249
250
{| class="formulaSCP" style="width: 100%; text-align: left;" 
251
|-
252
| 
253
{| style="text-align: left; margin:auto;width: 100%;" 
254
|-
255
| style="text-align: center;" | <math>\mathbf{a}_{\alpha }    =\mathbf{g}_{\alpha }\left( \zeta=0\right) ={\boldsymbol \varphi  }_{^{\prime }\alpha }</math>
256
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
257
|-
258
| style="text-align: center;" | <math> \mathbf{a}_{3}    =\mathbf{g}_{3}\left( \zeta=0\right) =\lambda  \mathbf{t}_{3}</math>
259
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
260
|}
261
|}
262
263
The covariant (first fundamental form) metric tensor of the middle surface is
264
265
<span id="eq-20"></span>
266
{| class="formulaSCP" style="width: 100%; text-align: left;" 
267
|-
268
| 
269
{| style="text-align: left; margin:auto;width: 100%;" 
270
|-
271
| style="text-align: center;" | <math>a_{\alpha \beta }=\mathbf{a}_{\alpha }\cdot \mathbf{a}_{\beta } = {\boldsymbol \varphi }_{^{\prime }\alpha } \cdot  {\boldsymbol \varphi }_{^{\prime }\beta }  </math>
272
|}
273
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
274
|}
275
276
The Green-Lagrange strain vector of the middle surface points (membrane strains) is defined as
277
278
{| class="formulaSCP" style="width: 100%; text-align: left;" 
279
|-
280
| 
281
{| style="text-align: left; margin:auto;width: 100%;" 
282
|-
283
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=[\varepsilon _{m_{11}},\varepsilon _{m_{12}},\varepsilon _{m_{12}}]^{T}</math>
284
|}
285
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
286
|}
287
288
with
289
290
<span id="eq-22"></span>
291
{| class="formulaSCP" style="width: 100%; text-align: left;" 
292
|-
293
| 
294
{| style="text-align: left; margin:auto;width: 100%;" 
295
|-
296
| style="text-align: center;" | <math>\varepsilon _{m_{ij}}=\frac{1}{2}(a_{ij}-a_{ij}^{0}) </math>
297
|}
298
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
299
|}
300
301
The curvatures (second fundamental form) of the middle surface are obtained by
302
303
{| class="formulaSCP" style="width: 100%; text-align: left;" 
304
|-
305
| 
306
{| style="text-align: left; margin:auto;width: 100%;" 
307
|-
308
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\frac{1}{2}\left( {\boldsymbol \varphi }_{^{\prime }\alpha }\cdot \mathbf{t}_{3^{\prime }\beta }+{\boldsymbol \varphi }_{^{\prime }\beta }\cdot  \mathbf{t}_{3^{\prime }\alpha }\right) =- \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{{\prime }\alpha \beta }\quad , \quad \alpha ,\beta=1,2 </math>
309
|}
310
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
311
|}
312
313
The deformation gradient tensor is
314
315
{| class="formulaSCP" style="width: 100%; text-align: left;" 
316
|-
317
| 
318
{| style="text-align: left; margin:auto;width: 100%;" 
319
|-
320
| style="text-align: center;" | <math>\mathbf{F=} [{\boldsymbol x}_{{\prime }1},{\boldsymbol x}_{{\prime }2},{\boldsymbol x}_{{\prime }3}]=\left[ \begin{array}{ccc}{\boldsymbol \varphi }_{^{\prime }1}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime  }1} & {\boldsymbol \varphi }_{^{\prime }2}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }2} & \lambda \mathbf{t}_{3}\end{array} \right] </math>
321
|}
322
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
323
|}
324
325
The product <math display="inline">\mathbf{F}^{T}\mathbf{F=U}^{2}=\mathbf{C}</math> (where <math display="inline">\mathbf{U}</math> is the right stretch tensor, and <math display="inline">\mathbf{C}</math> the right Cauchy-Green deformation tensor) can be written as
326
327
<span id="eq-25"></span>
328
{| class="formulaSCP" style="width: 100%; text-align: left;" 
329
|-
330
| 
331
{| style="text-align: left; margin:auto;width: 100%;" 
332
|-
333
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{ccc}a_{11}+2\kappa _{11}\zeta \lambda & a_{12}+2\kappa _{12}\zeta \lambda & 0\\ a_{12}+2\kappa _{12}\zeta \lambda & a_{22}+2\kappa _{22}\zeta \lambda & 0\\ 0 & 0 & \lambda ^{2}\end{array} \right] </math>
334
|}
335
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
336
|}
337
338
In the derivation of expression ([[#eq-25|25]]) the derivatives of the thickness ratio <math display="inline">\lambda _{^{\prime }a}</math> and the terms associated to <math display="inline">\zeta ^{2}</math> have been neglected.
339
340
Equation ([[#eq-25|25]]) shows that <math display="inline">\mathbf{U}^{2}</math> is not a unit tensor at the original configuration for curved surfaces (<math display="inline">\kappa _{ij}^{0}\neq{0}</math>). The changes of curvature of the middle surface are computed by
341
342
{| class="formulaSCP" style="width: 100%; text-align: left;" 
343
|-
344
| 
345
{| style="text-align: left; margin:auto;width: 100%;" 
346
|-
347
| style="text-align: center;" | <math>\chi _{ij}=\kappa _{ij}-\kappa _{ij}^{0}</math>
348
|}
349
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
350
|}
351
352
Note that <math display="inline">\delta \chi _{ij}=\delta \kappa _{ij}</math>.
353
354
For computational convenience the following approximate expression (which is exact for initially flat surfaces) will be adopted
355
356
<span id="eq-27"></span>
357
{| class="formulaSCP" style="width: 100%; text-align: left;" 
358
|-
359
| 
360
{| style="text-align: left; margin:auto;width: 100%;" 
361
|-
362
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{ccc}a_{11}+2\chi _{11}\zeta \lambda & a_{12}+2\chi _{12}\zeta \lambda & 0\\ a_{12}+2\chi _{12}\zeta \lambda & a_{22}+2\chi _{22}\zeta \lambda & 0\\ 0 & 0 & \lambda ^{2}\end{array} \right]  </math>
363
|}
364
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
365
|}
366
367
This expression is useful to compute different Lagrangian strain measures. An advantage of these measures is that they are associated to material fibres, what makes it easy to take into account material anisotropy. It is also useful to compute the eigen decomposition of <math display="inline">\mathbf{U}</math> as
368
369
{| class="formulaSCP" style="width: 100%; text-align: left;" 
370
|-
371
| 
372
{| style="text-align: left; margin:auto;width: 100%;" 
373
|-
374
| style="text-align: center;" | <math>\mathbf{U=}\sum _{\alpha=1}^{3}\lambda _{\alpha } \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\alpha }</math>
375
|}
376
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
377
|}
378
379
where <math display="inline">\lambda _{\alpha }</math> and <math display="inline">\mathbf{r}_{\alpha }</math> are the eigenvalues and eigenvectors of <math display="inline">\mathbf{U}</math>.
380
381
The resultant stresses  (axial forces and moments) are obtained by integrating across the original thickness the second Piola-Kirchhoff stress vector <math display="inline">{ \boldsymbol \sigma }</math> using the actual distance to the middle surface for  evaluating the bending moments. This gives
382
383
<span id="eq-29"></span>
384
{| class="formulaSCP" style="width: 100%; text-align: left;" 
385
|-
386
| 
387
{| style="text-align: left; margin:auto;width: 100%;" 
388
|-
389
| style="text-align: center;" | <math>{\boldsymbol \sigma }_{m}\equiv \lbrack N_{11},N_{22},N_{12}]^{T}=\int _{h^{0}}{\boldsymbol \sigma }d\zeta </math>
390
|}
391
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
392
|}
393
394
<span id="eq-30"></span>
395
{| class="formulaSCP" style="width: 100%; text-align: left;" 
396
|-
397
| 
398
{| style="text-align: left; margin:auto;width: 100%;" 
399
|-
400
| style="text-align: center;" | <math>{\boldsymbol \sigma }_{b}\equiv \lbrack M_{11},M_{22},M_{12}]^{T}=\int _{h^{0}}{\boldsymbol \sigma  }\lambda \zeta  d\zeta </math>
401
|}
402
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
403
|}
404
405
With these values the virtual work can be written as
406
407
<span id="eq-31"></span>
408
{| class="formulaSCP" style="width: 100%; text-align: left;" 
409
|-
410
| 
411
{| style="text-align: left; margin:auto;width: 100%;" 
412
|-
413
| style="text-align: center;" | <math>\int \int _{A^{0}}\left[ \delta{\boldsymbol \varepsilon }_{m}^{T}{\boldsymbol \sigma }_{m}+\delta{\boldsymbol \kappa  }^{T}{\boldsymbol \sigma }_{b}\right] dA=\int \int _{A^{0}}\delta \mathbf{u}^{T}\mathbf{t}dA </math>
414
|}
415
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
416
|}
417
418
where <math display="inline">\delta \mathbf{u}</math> are virtual displacements, <math display="inline">\delta{\boldsymbol \varepsilon }_{m}</math> is the virtual Green-Lagrange membrane strain vector, <math display="inline">\delta{\boldsymbol \kappa }</math> are the virtual curvatures and <math display="inline">\mathbf{t}</math> are the surface loads. Other load types can be easily included into ([[#eq-31|31]]).
419
420
===3.2 Constitutive models===
421
422
In order to treat plasticity at finite strains an adequate stress-strain pair must be used. The Hencky measures will be adopted here. The (logarithmic) strains are defined as
423
424
<span id="eq-32"></span>
425
{| class="formulaSCP" style="width: 100%; text-align: left;" 
426
|-
427
| 
428
{| style="text-align: left; margin:auto;width: 100%;" 
429
|-
430
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=}\left[ \begin{array}{ccc}\varepsilon _{11} & \varepsilon _{21} & 0\\ \varepsilon _{12} & \varepsilon _{22} & 0\\ 0 & 0 & \varepsilon _{33}\end{array} \right] =\sum _{\alpha=1}^{3}\ln \left( \lambda _{\alpha }\right) \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\alpha } </math>
431
|}
432
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
433
|}
434
435
Two types of material models are considered here: an elastic-plastic material associated to thin rolled metal sheets and a hyper-elastic material for rubbers.
436
437
In the case of metals, where the elastic strains are small, the use of a logarithmic strain measure reasonably allows to adopt an additive decomposition of elastic and plastic components as
438
439
<span id="eq-33"></span>
440
{| class="formulaSCP" style="width: 100%; text-align: left;" 
441
|-
442
| 
443
{| style="text-align: left; margin:auto;width: 100%;" 
444
|-
445
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=E}_{\ln }^{e}+\mathbf{E}_{\ln }^{p} </math>
446
|}
447
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
448
|}
449
450
A constant linear relationship between the (plane) Hencky stresses and the logarithmic elastic strains is  adopted giving
451
452
<span id="eq-34"></span>
453
{| class="formulaSCP" style="width: 100%; text-align: left;" 
454
|-
455
| 
456
{| style="text-align: left; margin:auto;width: 100%;" 
457
|-
458
| style="text-align: center;" | <math>\mathbf{T}=\mathbf{D} \mathbf{E}_{\ln }^{e} </math>
459
|}
460
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
461
|}
462
463
These constitutive equations are integrated using a standard return algorithm. The following Mises-Hill [29] yield function with non-linear isotropic hardening is chosen
464
465
{| class="formulaSCP" style="width: 100%; text-align: left;" 
466
|-
467
| 
468
{| style="text-align: left; margin:auto;width: 100%;" 
469
|-
470
| style="text-align: center;" | <math>\left( G+H\right) \;T_{11}^{2}+\left( F+H\right) \;T_{22}^{2}-2H\;T_{11}T_{22}+2N\;T_{12}^{2}=\sigma _0\left(e_{0}+e^{p}\right) ^{n}</math>
471
|}
472
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
473
|}
474
475
where <math display="inline">F, G, H</math> and <math display="inline">N</math> define the non-isotropic shape of the yield surface and the parameters <math display="inline">\sigma _{0}</math>, <math display="inline">e_{0}</math> and <math display="inline">n</math> define its size as a function of the effective plastic strain <math display="inline">e^{p}</math>.
476
477
The simple Mises-Hill yield function  allows, as a first approximation, to treat rolled thin metal sheets with planar and transversal anisotropy.
478
479
For the case of rubbers, the Ogden [30] model extended to the compressible range is considered. The material behaviour is characterized by the strain energy density per unit undeformed volume defined as
480
481
{| class="formulaSCP" style="width: 100%; text-align: left;" 
482
|-
483
| 
484
{| style="text-align: left; margin:auto;width: 100%;" 
485
|-
486
| style="text-align: center;" | <math>\psi =\frac{K}{2}\left( \ln J\right) ^{2}+\sum _{p=1}^{N}\frac{\mu _{p}}{\alpha _{p}}\left[ J^{-\frac{\alpha _{p}}{3}}\left( \sum _{i=1}^{3}\lambda  _{i}^{\alpha _{p}-1}\right) -3\right] </math>
487
|}
488
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
489
|}
490
491
where <math display="inline">K</math> is the bulk modulus of the material, <math display="inline">J</math> is the determinant of <math display="inline">\mathbf{U}</math>, <math display="inline">N</math>, <math display="inline">\mu _{i}</math> and <math display="inline">\alpha _{i}</math> are material parameters, <math display="inline">\mu _{i}\,,\,\alpha _{i}</math> are real numbers such that <math display="inline">\mu _{i}\alpha _{i}>0</math> <math display="inline"> (\forall i=1,N)</math> and <math display="inline">N</math> is a positive integer.
492
493
The stress measures associated to the principal logarithmic strains are denoted by <math display="inline">\beta _{i}</math>. They can be computed noting that
494
495
{| class="formulaSCP" style="width: 100%; text-align: left;" 
496
|-
497
| 
498
{| style="text-align: left; margin:auto;width: 100%;" 
499
|-
500
| style="text-align: center;" | <math>\beta _{i}=\frac{\partial \psi \left(\lambda _\alpha \right) }{\partial \left( \ln \lambda _{i}\right) }=K\left( \ln J\right) +\lambda _{i}\sum _{p=1}^{N}\mu _{p}J^{-\frac{\alpha _{p}}{3}}\left( \lambda _{i}^{\alpha _{p}-1}-\frac{1}{3}\frac{1}{\lambda _{i}}\sum _{j=1}^{3}\lambda _{j}^{\alpha _{p}}\right) </math>
501
|}
502
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
503
|}
504
505
we define now
506
507
{| class="formulaSCP" style="width: 100%; text-align: left;" 
508
|-
509
| 
510
{| style="text-align: left; margin:auto;width: 100%;" 
511
|-
512
| style="text-align: center;" | <math>a^{p}=\sum _{j=1}^{3}\lambda _{j}^{\alpha _{p}}</math>
513
|}
514
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
515
|}
516
517
which gives
518
519
{| class="formulaSCP" style="width: 100%; text-align: left;" 
520
|-
521
| 
522
{| style="text-align: left; margin:auto;width: 100%;" 
523
|-
524
| style="text-align: center;" | <math>\beta _{i}=K\left( \ln J\right) +\sum _{p=1}^{N}\mu _{p}J^{-\frac{\alpha _{p}}{3}}\left( \lambda _{i}^{\alpha _{p}}-\frac{1}{3}a_{p}\right) </math>
525
|}
526
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
527
|}
528
529
The values of <math display="inline">\beta _{i}</math>, expressed in the principal strains directions, allow to evaluate the Hencky stresses in the convective coordinate system as
530
531
{| class="formulaSCP" style="width: 100%; text-align: left;" 
532
|-
533
| 
534
{| style="text-align: left; margin:auto;width: 100%;" 
535
|-
536
| style="text-align: center;" | <math>\mathbf{T}=\sum _{i=1}^{3}\beta _{i}\;\mathbf{r}_{i}\otimes \mathbf{r}_{i}</math>
537
|}
538
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
539
|}
540
541
The Hencky stress tensor <math display="inline">\mathbf{T}</math> can be easily particularized for the plane stress case.
542
543
We define the rotated Hencky and second Piola-Kirchhoff stress tensors as
544
545
{| class="formulaSCP" style="width: 100%; text-align: left;" 
546
|-
547
| 
548
{| style="text-align: left; margin:auto;width: 100%;" 
549
|-
550
| style="text-align: center;" | <math>\mathbf{T}_{L}    =\mathbf{R}_{L}^{T}\;\mathbf{T\;R}_{L}</math>
551
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
552
|-
553
| style="text-align: center;" | <math> \mathbf{S}_{L}    =\mathbf{R}_{L}^{T}\;\mathbf{S\;R}_{L}</math>
554
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
555
|}
556
|}
557
558
where <math display="inline">\mathbf{R}_{L}</math> is the rotation tensor obtained from the eigenvectors of <math display="inline">\mathbf{U}</math> given by
559
560
{| class="formulaSCP" style="width: 100%; text-align: left;" 
561
|-
562
| 
563
{| style="text-align: left; margin:auto;width: 100%;" 
564
|-
565
| style="text-align: center;" | <math>\mathbf{R}_{L}=\left[ \begin{array}{ccc}\mathbf{r}_{1}\quad ,& \mathbf{r}_{2} \quad ,& \mathbf{r}_{3}\end{array} \right] </math>
566
|}
567
| style="width: 5px;text-align: right;white-space: nowrap;" | (43)
568
|}
569
570
The relationship between the rotated Hencky and Piola-Kirchhoff stresses is <math display="inline">\left(\alpha , \beta=1,2 \right)</math>
571
572
{| class="formulaSCP" style="width: 100%; text-align: left;" 
573
|-
574
| 
575
{| style="text-align: left; margin:auto;width: 100%;" 
576
|-
577
| style="text-align: center;" | <math>\left[ S_{L}\right] _{\alpha \alpha }    =\frac{1}{\lambda _{\alpha }^{2}}\left[ T_{L}\right] _{\alpha \alpha }</math>
578
|-
579
| style="text-align: center;" | <math> \left[ S_{L}\right] _{\alpha \beta }    =\frac{\ln \left( \lambda _{\alpha  }/\lambda _{\beta }\right) }{\frac{1}{2}\left( \lambda _{\alpha }^{2}-\lambda _{\beta }^{2}\right) }\left[ T_{L}\right] _{\alpha \beta }</math>
580
|}
581
| style="width: 5px;text-align: right;white-space: nowrap;" | (44)
582
|}
583
584
The second Piola-Kirchhoff stress tensor can be computed by
585
586
{| class="formulaSCP" style="width: 100%; text-align: left;" 
587
|-
588
| 
589
{| style="text-align: left; margin:auto;width: 100%;" 
590
|-
591
| style="text-align: center;" | <math>\mathbf{S=}\sum _{\alpha=1}^{2}\sum _{\beta=1}^{2}\left[ S_{L}\right] _{\alpha \beta } \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\beta }</math>
592
|}
593
| style="width: 5px;text-align: right;white-space: nowrap;" | (45)
594
|}
595
596
The second Piola-Kirchhoff stress vector <math display="inline">{\boldsymbol \sigma }</math> of Eqs.([[#eq-29|29]]&#8211;[[#eq-30|30]]) can be readily extracted from the <math display="inline">\mathbf{S}</math> tensor.
597
598
==4 TOTAL LAGRANGIAN FORMULATION OF THE BASIC SHELL TRIANGLE==
599
600
===4.1 Definition of the element geometry and discretization of the displacement field===
601
602
The rotation-free BST element has three nodes with three displacement degrees of freedom at each node. As for the BPT element a patch is defined by the central triangle  and the three adjacent elements (Figure [[#img-1|1]]). This four elements patch helps to define the curvature field within the central triangle (the BST element) in terms of the displacements of the six patch nodes.
603
604
The node-ordering in the patch is the following (see Figure [[#img-1|1]])
605
606
* The nodes in the main element (M) are numbered locally as 1, 2 and 3. They are defined counter-clockwise around the positive normal.
607
608
* The sides in the main element are numbered locally as 1, 2, and 3. They are defined by the local node opposite to the side.
609
610
* The adjacent elements (which are part of the patch) are numbered with the number associated to the common side.
611
612
* The extra nodes of the patch are numbered locally as 4, 5 and 6, corresponding to nodes on adjacent elements opposite to sides 1, 2  and 3 respectively.
613
614
* The connectivities in the adjacent elements are defined beginning with the extra node as shown in Table 1.
615
616
617
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
618
|+ style="font-size: 75%;" |Table. 1 Element numbering and nodal connectivities of the four elements patch of Figure 1.
619
|- style="border-top: 2px solid;"
620
| style="border-left: 2px solid;border-right: 2px solid;" |  '''Element''' 
621
| style="border-left: 2px solid;border-right: 2px solid;" | N1 
622
| style="border-left: 2px solid;border-right: 2px solid;" | N2 
623
| style="border-left: 2px solid;border-right: 2px solid;" | N3
624
|- style="border-top: 2px solid;"
625
| style="border-left: 2px solid;border-right: 2px solid;" |  '''M''' 
626
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
627
| style="border-left: 2px solid;border-right: 2px solid;" | 2 
628
| style="border-left: 2px solid;border-right: 2px solid;" | 3
629
|- style="border-top: 2px solid;"
630
| style="border-left: 2px solid;border-right: 2px solid;" |  '''1''' 
631
| style="border-left: 2px solid;border-right: 2px solid;" | 4 
632
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
633
| style="border-left: 2px solid;border-right: 2px solid;" | 2
634
|- style="border-top: 2px solid;"
635
| style="border-left: 2px solid;border-right: 2px solid;" |  '''2''' 
636
| style="border-left: 2px solid;border-right: 2px solid;" | 5 
637
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
638
| style="border-left: 2px solid;border-right: 2px solid;" | 3
639
|- style="border-top: 2px solid;border-bottom: 2px solid;"
640
| style="border-left: 2px solid;border-right: 2px solid;" |  '''3''' 
641
| style="border-left: 2px solid;border-right: 2px solid;" | 6 
642
| style="border-left: 2px solid;border-right: 2px solid;" | 2 
643
| style="border-left: 2px solid;border-right: 2px solid;" | 1
644
645
|}
646
647
The following local Cartesian coordinate system is defined for the patch. In the main element the unit vector <math display="inline">\mathbf{t}_{1}</math>(associated to the local coordinate <math display="inline">\xi _{1}</math>) is directed along side 3 (from node 1 to node 2), <math display="inline">\mathbf{t}_{3}</math> (associated to the coordinate <math display="inline">\zeta </math>) is the unit normal to the plane, and finally <math display="inline">\mathbf{t}_{2}=\mathbf{t}_{3}\times \mathbf{t}_{1}</math> (associated to the coordinate <math display="inline">\xi _{2}</math>).
648
649
The coordinates and the displacements are linearly interpolated within each three node triangle in the mesh in the standard manner, i.e.
650
651
{| class="formulaSCP" style="width: 100%; text-align: left;" 
652
|-
653
| 
654
{| style="text-align: left; margin:auto;width: 100%;" 
655
|-
656
| style="text-align: center;" | <math>{\boldsymbol \varphi } = \sum \limits _{i=1}^{3} L_{i}^e {\boldsymbol \varphi }_{i} = \sum \limits _{i=1}^{3} L_{i}^e ({\boldsymbol \varphi }^{0}_{i} + \mathbf{u}_{i}) </math>
657
|}
658
| style="width: 5px;text-align: right;white-space: nowrap;" | (46)
659
|}
660
661
{| class="formulaSCP" style="width: 100%; text-align: left;" 
662
|-
663
| 
664
{| style="text-align: left; margin:auto;width: 100%;" 
665
|-
666
| style="text-align: center;" | <math>\mathbf{u}=\left\{ \begin{array}{c}u_{1}\\ u_{2}\\ u_{3}\end{array} \right\} =\sum \limits _{i=1}^{3}L_{i}^e\mathbf{u}_{i}\quad ,\quad \mathbf{u}_{i}=\left\{ \begin{array}{c}u_{1}\\ u_{2}\\ u_{3}\end{array} \right\} _{i}</math>
667
|}
668
| style="width: 5px;text-align: right;white-space: nowrap;" | (47)
669
|}
670
671
In above <math display="inline">{\boldsymbol \varphi }_{i}</math> and <math display="inline">\mathbf{u}_{i}</math> contain respectively the three coordinates and the three displacements of node <math display="inline">i</math>.
672
673
===4.2 Computation of the membrane strains===
674
675
The Green-Lagrange membrane strains are expressed by substituting the linear displacement interpolation into Eq.([[#eq-22|22]]). This gives
676
677
{| class="formulaSCP" style="width: 100%; text-align: left;" 
678
|-
679
| 
680
{| style="text-align: left; margin:auto;width: 100%;" 
681
|-
682
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\frac{1}{2}\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}\cdot \boldsymbol \varphi _{^{\prime  }1}-1 \\ \boldsymbol \varphi _{^{\prime }2}\cdot \boldsymbol \varphi _{^{\prime  }2}-1 \\ 2\boldsymbol \varphi _{^{\prime }1}\cdot \boldsymbol \varphi _{^{\prime }2}\end{array}\right] </math>
683
|}
684
| style="width: 5px;text-align: right;white-space: nowrap;" | (48)
685
|}
686
687
The membrane strain field is constant within each triangle similarly as in the standard CST element. The variation of the membrane strains is  obtained by
688
689
{| class="formulaSCP" style="width: 100%; text-align: left;" 
690
|-
691
| 
692
{| style="text-align: left; margin:auto;width: 100%;" 
693
|-
694
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\mathbf{B}_{m}\delta \mathbf{a}^{e}</math>
695
|}
696
| style="width: 5px;text-align: right;white-space: nowrap;" | (49)
697
|}
698
699
with
700
701
<span id="eq-50"></span>
702
{| class="formulaSCP" style="width: 100%; text-align: left;" 
703
|-
704
| 
705
{| style="text-align: left; margin:auto;width: 100%;" 
706
|-
707
| style="text-align: center;" | <math>\mathbf{B}_{m}=[\mathbf{B}_{m_{1}},\mathbf{B}_{m_{2}},\mathbf{B}_{m_{3}}]\quad ,\quad \mathbf{a}^{e}=\left\{ \begin{array}{c}\mathbf{u}_{1}\\ \mathbf{u}_{2}\\ \mathbf{u}_{3}\end{array} \right\} </math>
708
|}
709
| style="width: 5px;text-align: right;white-space: nowrap;" | (50)
710
|}
711
712
and
713
714
<span id="eq-51"></span>
715
{| class="formulaSCP" style="width: 100%; text-align: left;" 
716
|-
717
| 
718
{| style="text-align: left; margin:auto;width: 100%;" 
719
|-
720
| style="text-align: center;" | <math>\begin{array}{c}\\ \mathbf{B}_{m_{i}}\\ 3\times{3} \end{array} =\left[ \begin{array}{c}L_{i,1}^M\boldsymbol \varphi _{^{\prime }1}^{T}\\ L_{i,2}^M\boldsymbol \varphi _{^{\prime }2}^{T}\\ L_{i,1}^M\boldsymbol \varphi _{^{\prime }2}^{T}+L_{i,2}^M\boldsymbol \varphi _{^{\prime }1}^{T}\end{array} \right]  </math>
721
|}
722
| style="width: 5px;text-align: right;white-space: nowrap;" | (51)
723
|}
724
725
===4.3 Computation of bending strains (curvatures)===
726
727
We will assume the following constant curvature field within each element
728
729
{| class="formulaSCP" style="width: 100%; text-align: left;" 
730
|-
731
| 
732
{| style="text-align: left; margin:auto;width: 100%;" 
733
|-
734
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\hat{\kappa }_{\alpha \beta }</math>
735
|}
736
| style="width: 5px;text-align: right;white-space: nowrap;" | (52)
737
|}
738
739
where <math display="inline">\hat{\kappa }_{\alpha \beta }</math> is the assumed constant curvature field defined by
740
741
<span id="eq-53"></span>
742
{| class="formulaSCP" style="width: 100%; text-align: left;" 
743
|-
744
| 
745
{| style="text-align: left; margin:auto;width: 100%;" 
746
|-
747
| style="text-align: center;" | <math>\hat{\kappa }_{\alpha \beta }=-\frac{1}{A_{M}^{0}}\int _{A_{M}^{0}}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }\beta \alpha }\;dA^{0} </math>
748
|}
749
| style="width: 5px;text-align: right;white-space: nowrap;" | (53)
750
|}
751
752
where <math display="inline">A_{M}^{0}</math> is the area (in the original configuration) of the central element in the patch.
753
754
Substituting Eq.(53) into (52) and integrating by parts the area integral gives the curvature vector within the element in terms of the following line integral
755
756
<span id="eq-54"></span>
757
{| class="formulaSCP" style="width: 100%; text-align: left;" 
758
|-
759
| 
760
{| style="text-align: left; margin:auto;width: 100%;" 
761
|-
762
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\left\{ \begin{array}{c}\kappa _{11}\\ \kappa _{22}\\ 2\kappa _{12}\end{array} \right\} =\frac{1}{A_{M}^{0}}{\displaystyle \oint _{\Gamma _{M}^{0}}} \left[ \begin{array}{cc}-n_{1} & 0\\ 0 & -n_{2}\\ -n_{2} & -n_{1}\end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2}\end{array} \right] d\Gamma </math>
763
|}
764
| style="width: 5px;text-align: right;white-space: nowrap;" | (54)
765
|}
766
767
where <math display="inline">n_{i}</math> are the components (in the local system) of the normals to the element sides in the initial configuration <math display="inline">\Gamma _{M}^{0}</math>.
768
769
For the definition of the normal vector <math display="inline">\mathbf{t}_{3}</math>, the linear interpolation over the central element is used. In this case the tangent plane components are
770
771
{| class="formulaSCP" style="width: 100%; text-align: left;" 
772
|-
773
| 
774
{| style="text-align: left; margin:auto;width: 100%;" 
775
|-
776
| style="text-align: center;" | <math>{\boldsymbol \varphi }_{^{\prime }\alpha } = \sum _{i=1}^{3} L_{i,\alpha }^M {\boldsymbol \varphi }_{i}\quad ,\quad \alpha=1,2 </math>
777
|}
778
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
779
|}
780
781
<span id="eq-56"></span>
782
{| class="formulaSCP" style="width: 100%; text-align: left;" 
783
|-
784
| 
785
{| style="text-align: left; margin:auto;width: 100%;" 
786
|-
787
| style="text-align: center;" | <math>\mathbf{t}_{3}=\frac{{\boldsymbol \varphi }_{\prime{1}}\times{\boldsymbol \varphi }_{\prime{2}}}{\left\vert {\boldsymbol \varphi }_{\prime{1}}\times{\boldsymbol \varphi }_{\prime{2}}\right\vert }=\lambda \;{\boldsymbol \varphi  }_{1}\times{\boldsymbol \varphi }_{2} </math>
788
|}
789
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
790
|}
791
792
From these expressions it is also possible to compute in the original configuration the element area <math display="inline">A^{0}_{M}</math>, the outer normals <math display="inline">\left( n_{1},n_{2}\right) ^{i}</math> at each side and the side lengths <math display="inline">l_{i}^{M}</math>. Equation ([[#eq-56|56]]) also allows to evaluate the thickness ratio <math display="inline">\lambda </math> in the deformed configuration and the actual normal <math display="inline">\mathbf{t}_{3}</math>.
793
794
In order to compute the line integral of equation ([[#eq-54|54]]) the averaging procedure described in Section 2 is used. Hence along each side of the triangle the average value of <math display="inline">{\boldsymbol \varphi }_{^{\prime }\alpha }</math> between the main triangle and the adjacent one is taken leading to
795
796
{| class="formulaSCP" style="width: 100%; text-align: left;" 
797
|-
798
| 
799
{| style="text-align: left; margin:auto;width: 100%;" 
800
|-
801
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\frac{1}{A^{0}_{M}}\sum _{i=1}^{3} l_{i}^{M} \left[ \begin{array}{cc}-n_{1}^{i} &  0         \\          0 & -n_{2}^{i} \\ -n_{2}^{i} & -n_{1}^{i} \end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot \frac{1}{2}\left( \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{M}+\mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\right)\\ \mathbf{t}_{3}\cdot \frac{1}{2}\left( \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{M}+\mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\right) \end{array} \right] </math>
802
|}
803
| style="width: 5px;text-align: right;white-space: nowrap;" | (57)
804
|}
805
806
where the sum extends over the three elements adjacent to the central triangle <math display="inline">M</math>.
807
808
Noting that <math display="inline">\mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }\alpha }^{M}=0</math> in the main triangle and using ([[#eq-6|6]]) it can be found <span id='citeF-23'></span>[[#cite-23|[23]]]
809
810
<span id="eq-58"></span>
811
{| class="formulaSCP" style="width: 100%; text-align: left;" 
812
|-
813
| 
814
{| style="text-align: left; margin:auto;width: 100%;" 
815
|-
816
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\sum _{i=1}^{3}\left[ \begin{array}{cc}L_{i,1}^M & 0 \\         0 & L_{i,2}^M \\ L_{i,2}^M & L_{i,1}^M \end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\end{array} \right] </math>
817
|}
818
| style="width: 5px;text-align: right;white-space: nowrap;" | (58)
819
|}
820
821
This can be seen as the projection of the local derivatives of <math display="inline">{\boldsymbol \varphi }</math> in the adjacent triangles (<math display="inline">\mathbf{\boldsymbol \varphi }_{^{\prime }\alpha }^{i}</math> where index <math display="inline">i</math> denotes values associated to the adjacent elements) over the normal to the main triangle <math display="inline">\mathbf{t}_{3}</math>. As the triangles have a common side, <math display="inline">\mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }s}^{i}=0</math>, where <math display="inline">\mathbf{\boldsymbol \varphi }_{^{\prime }s}^{i}</math> is the derivative of <math display="inline">{\boldsymbol \varphi }</math> along the side. Hence only the derivative of <math display="inline">{\boldsymbol \varphi }</math>  along the side normal (<math display="inline">\mathbf{\boldsymbol \varphi }_{^{\prime }n}^{i}</math>) has non-zero component over <math display="inline">\mathbf{t}_{3}</math>. This gives
822
823
<span id="eq-59"></span>
824
{| class="formulaSCP" style="width: 100%; text-align: left;" 
825
|-
826
| 
827
{| style="text-align: left; margin:auto;width: 100%;" 
828
|-
829
| style="text-align: center;" | <math>\left[ \begin{array}{c}\mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\end{array} \right] =\left( \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime  }n}^{i}\right)\mathbf{n}^{i} </math>
830
|}
831
| style="width: 5px;text-align: right;white-space: nowrap;" | (59)
832
|}
833
834
An alternative form to express the curvatures, which is useful when their variations are needed, is to define the vectors
835
836
<span id="eq-60"></span>
837
{| class="formulaSCP" style="width: 100%; text-align: left;" 
838
|-
839
| 
840
{| style="text-align: left; margin:auto;width: 100%;" 
841
|-
842
| style="text-align: center;" | <math>\mathbf{h}_{ij}=\sum _{k=1}^{3}\frac{1}{2}\left( L_{k,i}^{M}{\boldsymbol \varphi  }_{^{\prime }j}^{k}+L_{k,j}^{M}{\boldsymbol \varphi }_{\prime i}^{k}\right) </math>
843
|}
844
| style="width: 5px;text-align: right;white-space: nowrap;" | (60)
845
|}
846
847
This gives
848
849
<span id="eq-61"></span>
850
{| class="formulaSCP" style="width: 100%; text-align: left;" 
851
|-
852
| 
853
{| style="text-align: left; margin:auto;width: 100%;" 
854
|-
855
| style="text-align: center;" | <math>\kappa _{ij}=\mathbf{h}_{ij}\cdot \mathbf{t}_{3}</math>
856
|}
857
| style="width: 5px;text-align: right;white-space: nowrap;" | (61)
858
|}
859
860
The last expression allows to interpret the curvatures as the projections of the vectors <math display="inline">\mathbf{h}_{ij}</math> over the normal of the central element. The variation of the curvatures can be obtained as
861
862
<span id="eq-62"></span>
863
{| class="formulaSCP" style="width: 100%; text-align: left;" 
864
|-
865
| 
866
{| style="text-align: left; margin:auto;width: 100%;" 
867
|-
868
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }=\sum _{i=1}^{3}\left\{ \left[ \begin{array}{cc}L_{i,1}^{M} & 0\\ 0 & L_{i,2}^{M}\\ L_{i,2}^{M} & L_{i,1}^{M}\end{array} \right] \sum _{J=1}^{3}\left[ \begin{array}{c}L_{j,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}^{i})\\ L_{j,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}^{i}) \end{array} \right] -2\left[ \begin{array}{c}(L_{i,1}^{M}\rho _{11}^{1}+L_{i,2}^{M}\rho _{11}^{2})\\ (L_{i,1}^{M}\rho _{22}^{1}+L_{i,2}^{M}\rho _{22}^{2})\\ (L_{i,1}^{M}\rho _{12}^{1}+L_{i,2}^{M}\rho _{12}^{2}) \end{array} \right] (\mathbf{t}_{3}\cdot \delta \mathbf{u}_{i}^{M})\right\} </math>
869
|}
870
| style="width: 5px;text-align: right;white-space: nowrap;" | (62)
871
|}
872
873
where the projections of the vectors <math display="inline">\mathbf{h}_{ij}</math> over the contravariant base vectors <math display="inline">{\boldsymbol \varphi }^{\alpha }</math> have been included
874
875
<span id="eq-63"></span>
876
{| class="formulaSCP" style="width: 100%; text-align: left;" 
877
|-
878
| 
879
{| style="text-align: left; margin:auto;width: 100%;" 
880
|-
881
| style="text-align: center;" | <math>\rho _{ij}^{\alpha }=\mathbf{h}_{ij}\cdot{\boldsymbol \varphi }^{\alpha }\quad ,\quad \alpha ,i,j=1,2</math>
882
|}
883
| style="width: 5px;text-align: right;white-space: nowrap;" | (63)
884
|}
885
886
with
887
888
{| class="formulaSCP" style="width: 100%; text-align: left;" 
889
|-
890
| 
891
{| style="text-align: left; margin:auto;width: 100%;" 
892
|-
893
| style="text-align: center;" | <math>\mathbf{{\boldsymbol \varphi }}^{1}    =\lambda \;\mathbf{\boldsymbol \varphi }_{^{\prime }2}\times \mathbf{t}_{3}</math>
894
| style="width: 5px;text-align: right;white-space: nowrap;" | (64)
895
|-
896
| style="text-align: center;" | <math> \mathbf{{\boldsymbol \varphi }}^{2}    =-\lambda \;\mathbf{\boldsymbol \varphi  }_{^{\prime }1}\times \mathbf{t}_{3}</math>
897
| style="width: 5px;text-align: right;white-space: nowrap;" | (65)
898
|}
899
|}
900
901
In above expressions superindexes in <math display="inline">L_{j}^k</math> and <math display="inline">\delta \mathbf{u}_{j}^k</math> refer to element numbers in the patch whereas subscripts denote node numbers of each element in the patch. As usual the superindex <math display="inline">M</math> denotes values in the central triangle (Figure [[#img-1|1]]). Note that as expected the curvatures (and their variations) in the central element are a function of the nodal displacements of the six nodes in the four elements patch. Note also the isochoric approach
902
903
{| class="formulaSCP" style="width: 100%; text-align: left;" 
904
|-
905
| 
906
{| style="text-align: left; margin:auto;width: 100%;" 
907
|-
908
| style="text-align: center;" | <math>\lambda ={\frac{h}{h^{0}}}={\frac{A_{M}^{0}}{A_{M}}}</math>
909
|}
910
| style="width: 5px;text-align: right;white-space: nowrap;" | (66)
911
|}
912
913
The derivation of Eq.([[#eq-62|62]]) can be found in [26]. This equation can be rewritten in the form
914
915
{| class="formulaSCP" style="width: 100%; text-align: left;" 
916
|-
917
| 
918
{| style="text-align: left; margin:auto;width: 100%;" 
919
|-
920
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }=\mathbf{B}_{b}\delta \mathbf{a}^{p}</math>
921
|}
922
| style="width: 5px;text-align: right;white-space: nowrap;" | (67)
923
|}
924
925
where
926
927
<span id="eq-68"></span>
928
{| class="formulaSCP" style="width: 100%; text-align: left;" 
929
|-
930
| 
931
{| style="text-align: left; margin:auto;width: 100%;" 
932
|-
933
| style="text-align: center;" | <math>\begin{array}{c}\\ \delta \mathbf{a}^{p}\\ 18\times{1} \end{array} =[\delta \mathbf{u}_{1}^{T},\delta \mathbf{u}_{2}^{T},\delta \mathbf{u}_{3}^{T},\delta \mathbf{u}_{4}^{T},\delta \mathbf{u}_{5}^{T},\delta \mathbf{u}_{6}^{T}]^{T}</math>
934
|}
935
| style="width: 5px;text-align: right;white-space: nowrap;" | (68)
936
|}
937
938
is the virtual displacement vector of the patch and
939
940
<span id="eq-69"></span>
941
{| class="formulaSCP" style="width: 100%; text-align: left;" 
942
|-
943
| 
944
{| style="text-align: left; margin:auto;width: 100%;" 
945
|-
946
| style="text-align: center;" | <math>\mathbf{B}_{b}=[\mathbf{B}_{b1},\mathbf{B}_{b2},\cdots ,\mathbf{B}_{b6}]</math>
947
|}
948
| style="width: 5px;text-align: right;white-space: nowrap;" | (69)
949
|}
950
951
is the curvature matrix relating the virtual curvatures within the central element and the 18 virtual displacements of the six nodes in the patch.
952
953
The form of matrix <math display="inline">\mathbf{B}_{b}</math> is given in the Appendix.
954
955
==5 ENHANCED BASIC SHELL TRIANGLE==
956
957
An enhanced version of the BST element (termed EBST) has been recently proposed by Flores and Oñate [26]. The main features of the element formulation are the following:
958
959
<ol>
960
961
<li>The geometry of the patch formed by the central element and the three adjacent elements is ''quadratically interpolated'' from the position of the six nodes in the patch. </li>
962
963
<li>The membrane strains are assumed to vary ''linearly'' within the central triangle and are expressed in terms of the (continuous) values of the deformation gradient at the mid side points of the triangle. </li>
964
965
<li>The assumed ''constant curvature'' field within the central triangle is obtained by expression ([[#eq-54|54]]) using now twice the values of the (continuous) deformation gradient at the mid side points. </li>
966
967
</ol>
968
969
Details of the derivation of the EBST element are given below.
970
971
===5.1 Definition of the element geometry and computation of membrane strains===
972
973
As mentioned above a quadratic approximation of the geometry of the four elements patch is chosen using the position of the six nodes in the patch. It is useful to define the patch in the isoparametric space using the nodal positions given in the Table 2 (see also Figure 2).
974
975
976
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
977
|+ style="font-size: 75%;" |Table. 2 Isoparametric coordinates of the six nodes in the patch of Figure 2.
978
|- style="border-top: 2px solid;"
979
| style="border-left: 2px solid;border-right: 2px solid;" |  
980
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
981
| style="border-left: 2px solid;border-right: 2px solid;" | 2 
982
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
983
| style="border-left: 2px solid;border-right: 2px solid;" | 4 
984
| style="border-left: 2px solid;border-right: 2px solid;" | 5 
985
| style="border-left: 2px solid;border-right: 2px solid;" | 6
986
|- style="border-top: 2px solid;"
987
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\xi </math> 
988
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
989
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
990
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
991
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
992
| style="border-left: 2px solid;border-right: 2px solid;" | -1 
993
| style="border-left: 2px solid;border-right: 2px solid;" | 1
994
|- style="border-top: 2px solid;border-bottom: 2px solid;"
995
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\eta </math> 
996
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
997
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
998
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
999
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
1000
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
1001
| style="border-left: 2px solid;border-right: 2px solid;" | -1
1002
1003
|}
1004
1005
The quadratic interpolation is defined by
1006
1007
<span id="eq-70"></span>
1008
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1009
|-
1010
| 
1011
{| style="text-align: left; margin:auto;width: 100%;" 
1012
|-
1013
| style="text-align: center;" | <math>{\boldsymbol \varphi }=\sum _{i=1}^{6}N_{i}{\boldsymbol \varphi }_{i}</math>
1014
|}
1015
| style="width: 5px;text-align: right;white-space: nowrap;" | (70)
1016
|}
1017
1018
with (<math display="inline">\zeta=1-\xi-\eta</math>)
1019
1020
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1021
|-
1022
| 
1023
{| style="text-align: left; margin:auto;width: 100%;" 
1024
|-
1025
| style="text-align: center;" | <math>\begin{array}{ccc}N_{1}=\zeta{+\xi}\eta &  & N_{4}=\frac{\zeta }{2}\left( \zeta{-1}\right) \\ N_{2}=\xi{+\eta}\zeta &  & N_{5}=\frac{\xi }{2}\left( \xi{-1}\right) \\ N_{3}=\eta{+\zeta}\xi &  & N_{6}=\frac{\eta }{2}\left( \eta{-1}\right) \end{array} </math>
1026
|}
1027
| style="width: 5px;text-align: right;white-space: nowrap;" | (71)
1028
|}
1029
1030
This interpolation allows to compute the displacement gradients at selected points in order to use an assumed strain approach. The computation of the gradients is performed at the mid side points of the central element of the patch denoted by <math display="inline">G_{1}</math>, <math display="inline">G_{2}</math> and <math display="inline">G_{3}</math> in Figure [[#img-2|2]]. This choice has the following advantages.
1031
1032
<div id='img-2'></div>
1033
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1034
|-
1035
|[[Image:Draft_Samper_165783789-test-fig2.png|454px|Patch of elements in the isoparametric space.]]
1036
|- style="text-align: center; font-size: 75%;"
1037
| colspan="1" | '''Figure 2:''' Patch of elements in the isoparametric space.
1038
|}
1039
1040
* Gradients at the three mid side points depend only on the nodes belonging to the two elements adjacent to each side. This can be easily verified by sampling the derivatives of the shape functions at each mid-side point.
1041
1042
* When gradients are computed at the common mid-side point of two adjacent elements, the same values are obtained, as the coordinates of the same four points are used. This in practice means that the gradients at the mid-side points are independent of the element where they are computed. A side-oriented implementation of the finite element will therefore lead to a unique evaluation of the gradients per side.
1043
1044
The Cartesian derivatives of the shape functions are computed at the original configuration by the standard expression
1045
1046
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1047
|-
1048
| 
1049
{| style="text-align: left; margin:auto;width: 100%;" 
1050
|-
1051
| style="text-align: center;" | <math>\left[ \begin{array}{c}N_{i,1}\\ N_{i,2}\end{array} \right] =\mathbf{J}^{-1}\left[ \begin{array}{c}N_{i,\xi } \\ N_{i,\eta }\end{array} \right] </math>
1052
|}
1053
| style="width: 5px;text-align: right;white-space: nowrap;" | (72)
1054
|}
1055
1056
where the Jacobian matrix at the original configuration is
1057
1058
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1059
|-
1060
| 
1061
{| style="text-align: left; margin:auto;width: 100%;" 
1062
|-
1063
| style="text-align: center;" | <math>\mathbf{J=}\left[ \begin{array}{cc}\mathbf{\boldsymbol \varphi }_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{1} & \mathbf{\boldsymbol \varphi  }_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{1}\\ \mathbf{\boldsymbol \varphi }_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{2} & \mathbf{\boldsymbol \varphi  }_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{2}\end{array} \right] </math>
1064
|}
1065
| style="width: 5px;text-align: right;white-space: nowrap;" | (73)
1066
|}
1067
1068
The deformation gradients on the middle surface, associated to an arbitrary spatial Cartesian system and to the material cartesian system defined on the middle surface are related by
1069
1070
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1071
|-
1072
| 
1073
{| style="text-align: left; margin:auto;width: 100%;" 
1074
|-
1075
| style="text-align: center;" | <math>\left[ {\boldsymbol \varphi }_{^{\prime }1},\mathbf{\boldsymbol \varphi }_{^{\prime }2}\right] =\left[ \mathbf{\boldsymbol \varphi }_{^{\prime }\xi },\mathbf{\boldsymbol \varphi }_{^{\prime }\eta }\right]  \mathbf{J}^{-1}</math>
1076
|}
1077
| style="width: 5px;text-align: right;white-space: nowrap;" | (74)
1078
|}
1079
1080
The membrane strains within the central triangle are now obtained using a linear assumed strain field <math display="inline">\hat{\boldsymbol \varepsilon }_{m}</math>. If, for example, Green Lagrange strains are used, i.e.
1081
1082
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1083
|-
1084
| 
1085
{| style="text-align: left; margin:auto;width: 100%;" 
1086
|-
1087
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\hat{\boldsymbol \varepsilon }_{m}</math>
1088
|}
1089
| style="width: 5px;text-align: right;white-space: nowrap;" | (75)
1090
|}
1091
1092
with
1093
1094
<span id="eq-76"></span>
1095
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1096
|-
1097
| 
1098
{| style="text-align: left; margin:auto;width: 100%;" 
1099
|-
1100
| style="text-align: center;" | <math>\hat{\boldsymbol \varepsilon }_{m}=(1-2\zeta ){\boldsymbol \varepsilon }_{m}^{1}+(1-2\xi ){\boldsymbol \varepsilon  }_{m}^{2}+(1-2\eta ){\boldsymbol \varepsilon }_{m}^{3}=\sum _{i=1}^{3}\bar{N}_{i}{\boldsymbol \varepsilon }_{m}^{i}</math>
1101
|}
1102
| style="width: 5px;text-align: right;white-space: nowrap;" | (76)
1103
|}
1104
1105
where <math display="inline">{\boldsymbol \varepsilon }_{m}^{i}</math> are the membrane strains computed at the three mid side points <math display="inline">G_{i}</math> (<math display="inline">i=1,2,3</math>  see Figure [[#img-2|2]]). In Eq.([[#eq-76|76]]) <math display="inline">\bar{N}_{1}=(1-2\zeta )</math>, etc.
1106
1107
The gradient at each mid side point is computed from the quadratic interpolation ([[#eq-70|70]]):
1108
1109
<span id="eq-77"></span>
1110
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1111
|-
1112
| 
1113
{| style="text-align: left; margin:auto;width: 100%;" 
1114
|-
1115
| style="text-align: center;" | <math>\left( {\boldsymbol \varphi }_{^{\prime }\alpha }\right) _{G_{i}}={\boldsymbol \varphi }_{^{\prime  }\alpha }^{i}=\left[ \sum _{j=1}^{3}N_{j,\alpha }^{i}{\boldsymbol \varphi }_{j}\right] +N_{i+3,\alpha }^{i}{\boldsymbol \varphi }_{i+3}\quad ,\quad \alpha=1,2\quad ,\quad  i=1,2,3</math>
1116
|}
1117
| style="width: 5px;text-align: right;white-space: nowrap;" | (77)
1118
|}
1119
1120
Substituting Eq.([[#eq-22|22]]) into ([[#eq-76|76]]) and using Eq.([[#eq-20|20]]) gives the membrane strain vector as
1121
1122
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1123
|-
1124
| 
1125
{| style="text-align: left; margin:auto;width: 100%;" 
1126
|-
1127
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\sum _{i=1}^{3}\frac{1}{2}\bar{N}_{i}\left\{ \begin{array}{c}{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}-1\\ {\boldsymbol \varphi }_{^{\prime }2}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}-1\\ 2{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\end{array} \right\} </math>
1128
|}
1129
| style="width: 5px;text-align: right;white-space: nowrap;" | (78)
1130
|}
1131
1132
and the virtual membrane strains as
1133
1134
<span id="eq-79"></span>
1135
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1136
|-
1137
| 
1138
{| style="text-align: left; margin:auto;width: 100%;" 
1139
|-
1140
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\sum _{i=1}^{3}\bar{N}_{i}\left\{ \begin{array}{c}{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ {\boldsymbol \varphi }_{2}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\\ \delta{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}+{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{2}^{i}\end{array} \right\} </math>
1141
|}
1142
| style="width: 5px;text-align: right;white-space: nowrap;" | (79)
1143
|}
1144
1145
We note that the gradient at each mid side point <math display="inline">G_{i}</math> depends only on the coordinates of the three nodes of the central triangle and on those of an additional node in the patch, associated to the side <math display="inline">i</math> where the gradient is computed.
1146
1147
Combining Eqs.([[#eq-79|79]]) and ([[#eq-77|77]]) gives
1148
1149
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1150
|-
1151
| 
1152
{| style="text-align: left; margin:auto;width: 100%;" 
1153
|-
1154
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\mathbf{B}_{m}\delta \mathbf{a}^{p}</math>
1155
|}
1156
| style="width: 5px;text-align: right;white-space: nowrap;" | (80)
1157
|}
1158
1159
where <math display="inline">\delta \mathbf{a}^{p}</math> is the patch displacement vector (see Eq.([[#eq-68|68]])) and <math display="inline">\mathbf{B}_{m}</math> is the membrane strain matrix. An explicit form of this matrix is given in the Appendix.
1160
1161
Differently from the original BST element the membrane strains within the EBST element are now a function of the displacements of the six patch nodes.
1162
1163
===5.2 Computation of curvatures===
1164
1165
The constant curvature field assumed for the BST element is chosen again here. The numerical evaluation of the line  integral in Eq.([[#eq-54|54]]) results in a sum over the integration points at the element boundary which are, in fact, the same points used for evaluating the gradients when computing the membrane strains. As one integration point is used over each side, it is not necessary to distinguish between sides (<math display="inline">i</math>) and integration points (<math display="inline">G_{i}</math>). In this way the curvatures can be computed by
1166
1167
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1168
|-
1169
| 
1170
{| style="text-align: left; margin:auto;width: 100%;" 
1171
|-
1172
| style="text-align: center;" | <math>{\boldsymbol \kappa }=2\sum _{i=1}^{3}\left[ \begin{array}{cc}L_{i,1}^M & 0\\ 0         & L_{i,2}^M \\ L_{i,2}^M & L_{i,1}^M \end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2}^{i}\end{array} \right] </math>
1173
|}
1174
| style="width: 5px;text-align: right;white-space: nowrap;" | (81)
1175
|}
1176
1177
In the standard BST element <span id='citeF-20'></span><span id='citeF-23'></span>[[#cite-20|[20,23]]] the gradient <math display="inline">\mathbf{\boldsymbol \varphi  }_{\prime \alpha }^{i}</math> is computed as the average of the linear approximations over the two adjacent elements (see Section 4.3). In the enhanced version, the gradient is evaluated at each side <math display="inline">G_{i}</math> from the quadratic interpolation
1178
1179
<span id="eq-82"></span>
1180
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1181
|-
1182
| 
1183
{| style="text-align: left; margin:auto;width: 100%;" 
1184
|-
1185
| style="text-align: center;" | <math>\left[ \begin{array}{c}{\boldsymbol \varphi }_{\prime{1}}^{i}\\ {\boldsymbol \varphi }_{\prime{2}}^{i}\end{array} \right] =\left[ \begin{array}{cccc}N_{1,1}^{i} & N_{2,1}^{i} & N_{3,1}^{i} & N_{i+3,1}^{i}\\ N_{1,2}^{i} & N_{2,2}^{i} & N_{3,2}^{i} & N_{i+3,2}^{i}\end{array} \right] \left[ \begin{array}{c}{\boldsymbol \varphi }_{1}\\ {\boldsymbol \varphi }_{2}\\ {\boldsymbol \varphi }_{3}\\ {\boldsymbol \varphi }_{i+3}\end{array} \right]  </math>
1186
|}
1187
| style="width: 5px;text-align: right;white-space: nowrap;" | (82)
1188
|}
1189
1190
Note again than at each side the gradients depend only on the positions of the three nodes of the central triangle and of an extra node (<math display="inline">i+3</math>), associated precisely to the side (<math display="inline">G_{i}</math>) where the gradient is computed.
1191
1192
Direction '''t'''<math display="inline">_{3}</math> in Eq.([[#eq-82|82]]) can be seen as a reference direction. If a different direction than that given by Eq.([[#eq-56|56]]) is chosen at an angle <math display="inline">\theta </math> with the former, this has an influence of order <math display="inline">\theta ^{2}</math> in the projection. This justifies Eq.([[#eq-56|56]]) for the definition of '''t'''<math display="inline">_{3}</math> as a function exclusively of the three nodes of the central triangle, instead of using the 6-node isoparametric interpolation.
1193
1194
The variation of the curvatures can be obtained as
1195
1196
<span id="eq-83"></span>
1197
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1198
|-
1199
| 
1200
{| style="text-align: left; margin:auto;width: 100%;" 
1201
|-
1202
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }   =2\sum _{i=1}^{3}\left[ \begin{array}{cc}L_{i,1}^M & 0\\ 0         & L_{i,2}^M\\ L_{i,2}^M & L_{i,1}^M\end{array} \right] \left\{ \sum _{i=1}^{3}\left[ \begin{array}{c}N_{j,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j})\\ N_{j,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}) \end{array} \right] +\left[ \begin{array}{c}N_{i+3,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}^{i+3})\\ N_{i+3,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}^{i+3}) \end{array} \right] \right\} -</math>
1203
|-
1204
| style="text-align: center;" | <math>   -\sum _{i=1}^{3}\left[ \begin{array}{c}(L_{i,1}^M\rho _{11}^{1}+L_{i,2}^M\rho _{11}^{2})\\ (L_{i,1}^M\rho _{22}^{1}+L_{i,2}^M\rho _{22}^{2})\\ (L_{i,1}^M\rho _{12}^{1}+L_{i,2}^M\rho _{12}^{2}) \end{array} \right] (\mathbf{t}_{3}\cdot \delta \mathbf{u}_{i})=\mathbf{B}_{b}\delta \mathbf{a}^{p}</math>
1205
|}
1206
| style="width: 5px;text-align: right;white-space: nowrap;" | (83)
1207
|}
1208
1209
where the definitions ([[#eq-61|61]]) and ([[#eq-63|63]]) still hold but with the new definition of <math display="inline">\mathbf{h}_{ij}</math> given by <span id='citeF-26'></span>[[#cite-26|[26]]]
1210
1211
<span id="eq-84"></span>
1212
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1213
|-
1214
| 
1215
{| style="text-align: left; margin:auto;width: 100%;" 
1216
|-
1217
| style="text-align: center;" | <math>\mathbf{h}_{ij}=\sum _{k=1}^{3}\left( L_{k,i}^M{\boldsymbol \varphi }_{\prime j}^{k}+L_{k,j}^M{\boldsymbol \varphi }_{^{\prime }i}^{k}\right) </math>
1218
|}
1219
| style="width: 5px;text-align: right;white-space: nowrap;" | (84)
1220
|}
1221
1222
In Eq.([[#eq-83|83]])
1223
1224
<span id="eq-85"></span>
1225
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1226
|-
1227
| 
1228
{| style="text-align: left; margin:auto;width: 100%;" 
1229
|-
1230
| style="text-align: center;" | <math>\mathbf{B}_{b}=[\mathbf{B}_{b_{1}},\mathbf{B}_{b_{2}},\cdots ,\mathbf{B}_{b_{6}}]</math>
1231
|}
1232
| style="width: 5px;text-align: right;white-space: nowrap;" | (85)
1233
|}
1234
1235
The expression of the curvature matrix <math display="inline">\mathbf{B}_b</math> is given in the Appendix. Details of the derivation of Eq.([[#eq-83|83]]) can be found in [26].
1236
1237
===5.3 The EBST1 element===
1238
1239
A simplified and yet very effective version of the EBST element can be obtained by using ''one point quadrature'' for the computation of all the element integrals. This element is termed EBST1. Note that this only affects the membrane stiffness matrices and it is equivalent to using a assumed constant membrane strain field defined by an average of the metric tensors computed at each side.
1240
1241
Numerical experiments have shown that both the EBST and the EBST1 elements are free of spurious energy modes.
1242
1243
==6 BOUNDARY CONDITIONS==
1244
1245
Elements at the domain boundary, where an adjacent element does not exist, deserve a special attention. The treatment of essential boundary conditions associated to translational constraints is straightforward, as they are the natural degrees of freedom of the element. The conditions associated to the normal vector are crucial in the bending  formulation. For clamped sides or symmetry planes, the normal vector <math display="inline">\mathbf{t}_{3}</math> must be kept fixed (clamped case), or constrained to move in the plane of symmetry (symmetry case). The former case can be seen as a special case of the latter, so we will consider symmetry planes only. This restriction can be imposed through the definition of the tangent plane at the boundary, including the normal to the plane of symmetry <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{0}</math> that does not change during the process.
1246
1247
<div id='img-3'></div>
1248
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1249
|-
1250
|[[Image:Draft_Samper_165783789-test-fig3.png|600px|Local Cartesian system for the treatment of symmetry boundary conditions]]
1251
|- style="text-align: center; font-size: 75%;"
1252
| colspan="1" | '''Figure 3:''' Local Cartesian system for the treatment of symmetry boundary conditions
1253
|}
1254
1255
The tangent plane at the boundary (mid-side point) is expressed in terms of two orthogonal unit vectors referred to a local-to-the-boundary Cartesian system (see Figure [[#img-3|3]]) defined as
1256
1257
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1258
|-
1259
| 
1260
{| style="text-align: left; margin:auto;width: 100%;" 
1261
|-
1262
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }n}^{0},\;\bar{\boldsymbol \varphi }_{^{\prime }s}\right] </math>
1263
|}
1264
| style="width: 5px;text-align: right;white-space: nowrap;" | (86)
1265
|}
1266
1267
where vector <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{0}</math> is fixed during the process while direction <math display="inline">\bar{\boldsymbol \varphi }_{^{\prime }s}</math> emerges from the intersection of the symmetry plane with the plane defined by the central element (<math display="inline">M</math>). The plane (gradient) defined by the central element in the selected original convective Cartesian system (<math display="inline">\mathbf{t}_{1},\mathbf{t}_{2} </math>) is
1268
1269
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1270
|-
1271
| 
1272
{| style="text-align: left; margin:auto;width: 100%;" 
1273
|-
1274
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }1}^{M},\;\boldsymbol \varphi _{^{\prime  }2}^{M}\right] </math>
1275
|}
1276
| style="width: 5px;text-align: right;white-space: nowrap;" | (87)
1277
|}
1278
1279
the intersection line (side <math display="inline">i</math>) of this plane with the plane of symmetry can be written in terms of the position of the nodes that define the side (<math display="inline">j </math> and <math display="inline">k</math>) and the original length of the side <math display="inline">l_{i}^{M}</math>, i.e.
1280
1281
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1282
|-
1283
| 
1284
{| style="text-align: left; margin:auto;width: 100%;" 
1285
|-
1286
| style="text-align: center;" | <math>\boldsymbol \varphi _{^{\prime }s}^{i}=\frac{1}{l_{i}^{M}}\left(\boldsymbol \varphi _{k}-\boldsymbol \varphi _{j}\right) </math>
1287
|}
1288
| style="width: 5px;text-align: right;white-space: nowrap;" | (88)
1289
|}
1290
1291
That together with the outer normal to the side <math display="inline">\mathbf{n}^{i} =\left[n_{1},n_{2}\right]^{T}=\left[\mathbf{n\cdot t}_{1},\mathbf{n\cdot t}_{2}\right]^{T}</math> (resolved in the selected original convective Cartesian system) leads to
1292
1293
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1294
|-
1295
| 
1296
{| style="text-align: left; margin:auto;width: 100%;" 
1297
|-
1298
| style="text-align: center;" | <math>\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}^{iT} \\ \boldsymbol \varphi _{^{\prime }2}^{iT}\end{array}\right]=\left[ \begin{array}{cc}n_{1} & -n_{2} \\ n_{2} & n_{1}\end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }n}^{iT} \\ \boldsymbol \varphi _{^{\prime }s}^{iT}\end{array}\right] </math>
1299
|}
1300
| style="width: 5px;text-align: right;white-space: nowrap;" | (89)
1301
|}
1302
1303
where, noting  that <math display="inline">\lambda </math> is the determinant of the gradient, the normal component of the gradient <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{i}</math> can be approximated by
1304
1305
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1306
|-
1307
| 
1308
{| style="text-align: left; margin:auto;width: 100%;" 
1309
|-
1310
| style="text-align: center;" | <math>\boldsymbol \varphi _{^{\prime }n}^{i}=\frac{\boldsymbol \varphi _{^{\prime }n}^{0}}{\lambda |\boldsymbol \varphi _{^{\prime }s}^{i}|} </math>
1311
|}
1312
| style="width: 5px;text-align: right;white-space: nowrap;" | (90)
1313
|}
1314
1315
In this way the contribution of the gradient at side <math display="inline">i</math> to vectors <math display="inline">\mathbf{h}_{\alpha \beta }</math> (Eqs. [[#eq-60|60]] and [[#eq-84|84]]) results in
1316
1317
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1318
|-
1319
| 
1320
{| style="text-align: left; margin:auto;width: 100%;" 
1321
|-
1322
| style="text-align: center;" | <math>\left[ \begin{array}{c}\mathbf{h}_{11}^{T} \\ \mathbf{h}_{22}^{T} \\ 2\mathbf{h}_{12}^{T}\end{array}\right]^{i}=2\left[ \begin{array}{cc}L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M}\end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}^{iT} \\ \boldsymbol \varphi _{^{\prime }2}^{iT}\end{array}\right]=2\left[ \begin{array}{cc}L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M}\end{array}\right]\left[ \begin{array}{cc}n_{1} & -n_{2} \\ n_{2} & n_{1}\end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }n}^{iT} \\ \boldsymbol \varphi _{^{\prime }s}^{iT}\end{array}\right] </math>
1323
|}
1324
| style="width: 5px;text-align: right;white-space: nowrap;" | (91)
1325
|}
1326
1327
For the computation of the curvature variations, the contribution from the gradient at side <math display="inline">i</math> is now (see <span id='citeF-26'></span>[[#cite-26|[26]]])
1328
1329
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1330
|-
1331
| 
1332
{| style="text-align: left; margin:auto;width: 100%;" 
1333
|-
1334
| style="text-align: center;" | <math> \delta \left[ \begin{array}{c} \mathbf{h}_{11}^{T} \\ \mathbf{h}_{22}^{T} \\ 2\mathbf{h}_{12}^{T}\end{array} \right]^{i} =2\left[ \begin{array}{cc} L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M}\end{array} \right]\left[ \begin{array}{cc} n_{1} & -n_{2} \\ n_{2} & n_{1}\end{array} \right]\left[ \begin{array}{c} \mathbf{0} \\ \frac{1}{L_{o}}\left[\delta \mathbf{u}_{k}-\delta \mathbf{u}_{j}\right]^{T}\end{array} \right]</math>
1335
|}
1336
| style="width: 5px;text-align: right;white-space: nowrap;" | (92a)
1337
|}
1338
1339
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1340
|-
1341
| 
1342
{| style="text-align: left; margin:auto;width: 100%;" 
1343
|-
1344
| style="text-align: center;" | <math> =\frac{2}{l_{i}^{M}}\left[ \begin{array}{c} -L_{i,1}^{M}n_{2} \\ L_{i,2}^{M}n_{1} \\ L_{i,1}^{M}n_{1}-L_{i,2}^{M}n_{2}\end{array} \right]\left[\delta \mathbf{u}_{k}-\delta \mathbf{u}_{j}\right]^{T}</math>
1345
|}
1346
| style="width: 5px;text-align: right;white-space: nowrap;" | (92b)
1347
|}
1348
1349
where the influence of variations in the length of vector <math display="inline">\boldsymbol \varphi _{^{\prime }n}</math> has been neglected.
1350
1351
For a simple supported (hinged) side, the problem is not completely defined. The simplest choice is to neglect the contribution to the side rotations from the adjacent element missing in the patch in the evaluation of the curvatures via Eq.([[#eq-54|54]]) [20,23]. This is equivalent to assume that the gradient at the side is equal to the gradient in the central element, i.e.
1352
1353
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1354
|-
1355
| 
1356
{| style="text-align: left; margin:auto;width: 100%;" 
1357
|-
1358
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }1}^{i},\;\boldsymbol \varphi _{^{\prime }2}^{i}\right]=\left[\boldsymbol \varphi _{^{\prime }1}^{M},\;\boldsymbol \varphi _{^{\prime }2}^{M}\right] </math>
1359
|}
1360
| style="width: 5px;text-align: right;white-space: nowrap;" | (93)
1361
|}
1362
1363
More precise changes can be however introduced to account for the different natural boundary conditions. One may assume that the curvature normal to the side is zero, and consider a contribution of the missing side to introduce this constraint. As the change of curvature parallel to the side is also zero along the hinged side, this obviously leads to zero curvatures in both directions. Denoting the contribution to the curvatures of the interior sides (<math display="inline">j </math> and <math display="inline">k</math>) by
1364
1365
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1366
|-
1367
| 
1368
{| style="text-align: left; margin:auto;width: 100%;" 
1369
|-
1370
| style="text-align: center;" | <math>\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12}\end{array} \right]^{j-k} </math>
1371
|}
1372
|}
1373
1374
It can be easily shown that in order to set the normal curvature to zero the contribution of the simple supported side (<math display="inline">i</math>) should be
1375
1376
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1377
|-
1378
| 
1379
{| style="text-align: left; margin:auto;width: 100%;" 
1380
|-
1381
| style="text-align: center;" | <math>\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12}\end{array} \right]^{i}=-\left[ \begin{array}{ccc}\left(n_{1}\right)^{4} & \left(n_{1}\right)^{2}\left(n_{2}\right)^{2} & \left(n_{1}\right)^{3}n_{2} \\ \left(n_{1}\right)^{2}\left(n_{2}\right)^{2} & \left(n_{2}\right)^{4} & n_{1}\left(n_{2}\right)^{3} \\ 2\left(n_{1}\right)^{3}n_{2} & 2n_{1}\left(n_{2}\right)^{3} & 2\left( n_{1}\right)^{2}\left(n_{2}\right)^{2}\end{array} \right]\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12}\end{array} \right]^{j-k} </math>
1382
|}
1383
| style="width: 5px;text-align: right;white-space: nowrap;" | (94)
1384
|}
1385
1386
For the case of a triangle with two sides associated to hinged sides, the normal curvatures to both sides must be zero. Denoting by <math display="inline">\mathbf{n}^{i}</math> and <math display="inline">\mathbf{n}^{j}</math> the normal to the sides, and by <math display="inline">\mathbf{m}^{i}</math> and <math display="inline">\mathbf{m}^{j}</math> the dual base (associated to the base <math display="inline">\mathbf{n}^{i}-</math> <math display="inline">\mathbf{n}^{j}</math>), the contribution from the hinged sides (<math display="inline">i</math> and <math display="inline">j</math>) can be written as a function of the contribution of the only interior side (<math display="inline">k</math>):
1387
1388
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1389
|-
1390
| 
1391
{| style="text-align: left; margin:auto;width: 100%;" 
1392
|-
1393
| style="text-align: center;" | <math>\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12}\end{array} \right]^{i-j}=-\left[ \begin{array}{c}m_{1}^{i}m_{1}^{j} \\ m_{2}^{i}m_{2}^{j} \\ m_{1}^{i}m_{2}^{j}+m_{2}^{i}m_{1}^{j}\end{array} \right]\left[ \begin{array}{ccc}2n_{1}^{i}n_{1}^{j} & 2n_{2}^{i}n_{2}^{j} & n_{1}^{i}n_{2}^{j}+n_{2}^{i}n_{1}^{j}\end{array} \right]\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12}\end{array} \right]^{k} </math>
1394
|}
1395
| style="width: 5px;text-align: right;white-space: nowrap;" | (95)
1396
|}
1397
1398
For a free edge the same approximation can be used but due to Poisson's effect this will lead to some error. The curvature variations of these contributions can be easily computed.
1399
1400
For the membrane formulation of element EBST, the gradient at the mid-side point of the boundary is assumed equal to the gradient of the main triangle.
1401
1402
==7 IMPLICIT SOLUTION SCHEME==
1403
1404
For a step <math display="inline">n</math> the configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n}</math> and the plastic strains <math display="inline">{\boldsymbol \varepsilon }_{p}^{n}</math> are known. The configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n}</math> is obtained by adding the total displacements to the original configuration <math display="inline"> \mathbf{\boldsymbol \varphi }^{n}=\mathbf{\boldsymbol \varphi }^{0}+\mathbf{u}^{n}</math>. The stresses are computed at each triangle using a single sampling (integration) point at the center and <math display="inline">N_{L}</math> integration points (layers) through the thickness. The plane stress state condition of the classical thin shell theory is assumed, so that for every layer three stress components are computed, (<math display="inline">\sigma _{11}</math>,<math display="inline">\sigma _{22}</math>, and <math display="inline">\sigma _{12}</math>) referred to the local Cartesian system.
1405
1406
The computation of the incremental stresses is as follows:
1407
1408
<ol>
1409
1410
<li>Evaluate the incremental displacements: <math display="inline">\Delta \mathbf{u}^{n}=\mathbf{K}_{T}^{n}\mathbf{r}^{n}</math> where <math display="inline">\mathbf{K}_{T}</math> is the tangent stiffness matrix and '''r''' is the residual force vector  defined by for each element
1411
1412
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1413
|-
1414
| 
1415
{| style="text-align: left; margin:auto;width: 100%;" 
1416
|-
1417
| style="text-align: center;" | <math>
1418
1419
\mathbf{r}^e_i =\int \int _A L_i {\boldsymbol t}\, dA - \int \int _{A^\circ } ({\boldsymbol B}_{m_i}^T {\boldsymbol \sigma }_m + {\boldsymbol B}_{b_i}^T {\boldsymbol \sigma }_b)dA </math>
1420
|}
1421
| style="width: 5px;text-align: right;white-space: nowrap;" | (96)
1422
|}</li>
1423
1424
The expression of the tangent stiffness matrix for the element is given below. Details of the derivation can be found in <span id='citeF-23'></span>[[#cite-23|[23]]],<span id='citeF-26'></span>[[#cite-26|[26]]].
1425
1426
<li>Generate the actual configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n+1}=\mathbf{\boldsymbol \varphi }^{n}+\Delta \mathbf{u}^{n}</math> </li>
1427
1428
<li>Compute the metric tensor <math display="inline">a_{\alpha \beta }^{n+1}\mathbf{ }</math>and the curvatures <math display="inline">\kappa _{\alpha \beta }^{n+1}</math>. Then at each layer <math display="inline">k</math> compute the (approximate) right Cauchy-Green tensor ([[#eq-27|27]])
1429
1430
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1431
|-
1432
| 
1433
{| style="text-align: left; margin:auto;width: 100%;" 
1434
|-
1435
| style="text-align: center;" | <math>
1436
1437
\mathbf{C}_{k}^{n+1}=\mathbf{a}^{n+1}+z_{k}{\boldsymbol \chi }^{n+1} </math>
1438
|}
1439
| style="width: 5px;text-align: right;white-space: nowrap;" | (97)
1440
|}</li>
1441
1442
<li>Compute the total ([[#eq-32|32]]) and elastic ([[#eq-33|33]]) deformations at each layer <math display="inline">k</math> </li>
1443
1444
<span id="eq-98"></span>
1445
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1446
|-
1447
| 
1448
{| style="text-align: left; margin:auto;width: 100%;" 
1449
|-
1450
| style="text-align: center;" | <math>
1451
1452
{\boldsymbol \varepsilon }_{k}^{n+1}   = \frac{1}{2}\ln{\mathbf{C}_{k}^{n+1}} </math>
1453
| style="width: 5px;text-align: right;white-space: nowrap;" | (98)
1454
|-
1455
| style="text-align: center;" | <math> \left[ {\boldsymbol \varepsilon }_{e}\right] _{k}^{n+1}   ={\boldsymbol \varepsilon  }_{k}^{n+1}-\left[ {\boldsymbol \varepsilon }_{p}\right] _{k}^{n} </math>
1456
|}
1457
|}
1458
1459
<li>Compute the trial elastic stresses ([[#eq-34|34]]) at each layer <math display="inline">k</math>
1460
1461
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1462
|-
1463
| 
1464
{| style="text-align: left; margin:auto;width: 100%;" 
1465
|-
1466
| style="text-align: center;" | <math>
1467
1468
\mathbf{T} _{k}^{n+1}=\mathbf{D}\left[ {\boldsymbol \varepsilon }_{e}\right] _{k}^{n+1} </math>
1469
|}
1470
| style="width: 5px;text-align: right;white-space: nowrap;" | (99)
1471
|}</li>
1472
1473
<li>Check the plasticity condition and return to the plasticity surface. If necessary correct the plastic strains <math display="inline">\left[{\boldsymbol \varepsilon }_{p}\right] _{k}^{n+1}</math> at each layer </li>
1474
1475
<li>Compute the second Piola-Kirchhoff stress vector <math display="inline">\boldsymbol \sigma _k^{n+1}</math> and the generalized stresses
1476
1477
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1478
|-
1479
| 
1480
{| style="text-align: left; margin:auto;width: 100%;" 
1481
|-
1482
| style="text-align: center;" | <math>
1483
1484
{\boldsymbol \sigma }^{n+1}_{m}    =\frac{h^{0}}{N_{L}}\sum _{k=1}^{N_{L}}\boldsymbol \sigma _{k}^{n+1} w_{k}</math>
1485
|-
1486
| style="text-align: center;" | <math> {\boldsymbol \sigma }^{n+1}_{b}    =\frac{h^{0}}{N_{L}}\sum _{k=1}^{N_{L}}\boldsymbol \sigma _{k}^{n+1}z_{k} w_{k}</math>
1487
|}
1488
| style="width: 5px;text-align: right;white-space: nowrap;" | (100)
1489
|}</li>
1490
1491
Where <math display="inline"> w_{k}</math> is the weight of the through-the-thickness integration point. Recall that <math display="inline">z_{k}</math> is the current distance of the layer to the mid-surface and not the original distance. However, for small strain plasticity this distinction is not important.
1492
1493
This computation of stresses is adequate for an implicit scheme independent of the step size and it is exact for an elastic problem.
1494
1495
<li>Compute the residual force vector. The contribution for the <math display="inline">M</math>th element is given by
1496
1497
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1498
|-
1499
| 
1500
{| style="text-align: left; margin:auto;width: 100%;" 
1501
|-
1502
| style="text-align: center;" | <math>
1503
1504
(\mathbf{r}^{M})^{n+1}=-A_{M}^{0}\left[ \begin{array}{cc}
1505
1506
\mathbf{B}_{m}^{T} & \mathbf{B}_{b}^{T}\end{array} \right] ^{n+1}\left[ \begin{array}{c}
1507
1508
\boldsymbol \sigma _{m}\\ \boldsymbol \sigma _{b}\end{array} \right] ^{n+1}</math>
1509
|}
1510
| style="width: 5px;text-align: right;white-space: nowrap;" | (101)
1511
|}</li>
1512
1513
</ol>
1514
1515
===7.1 Tangent stiffness matrix===
1516
1517
As usual the tangent stiffness matrix is split into material and geometric components. The material tangent stiffness matrix is  computed by the integral
1518
1519
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1520
|-
1521
| 
1522
{| style="text-align: left; margin:auto;width: 100%;" 
1523
|-
1524
| style="text-align: center;" | <math>\mathbf{K}^{M}=\int \int _{A_{M}^{0}}\mathbf{B}^{T}\mathbf{D}_{ep}\mathbf{B}dA </math>
1525
|}
1526
| style="width: 5px;text-align: right;white-space: nowrap;" | (102)
1527
|}
1528
1529
where <math display="inline">\mathbf{B}=\mathbf{B}_{m}+\mathbf{B}_{b}</math> includes:<br/>
1530
1531
*   a membrane contribution <math display="inline">\mathbf{B}_{m}</math> given by Eq.([[#eq-51|51]]) or Eq.(80).
1532
1533
*   a bending contribution <math display="inline">\mathbf{B}_{b}</math> given by Eq.([[#eq-69|69]]) or Eq.([[#eq-85|85]])  which is constant over the element.
1534
1535
1536
Matrix <math display="inline">\mathbf{D}_{ep}</math> is the elastic-plastic tangent constitutive matrix integrated through the thickness.
1537
1538
<br/>
1539
1540
A three point quadrature is used for integrating the stiffness terms <math display="inline">\mathbf{B}_{m}^{T}\mathbf{D}_{ep}\mathbf{B}_{m}</math> (recall that for the EBST element the membrane strains vary linearly within the element) whereas one point quadrature is chosen for the rest of the terms in <math display="inline">\mathbf{K}^{M}</math>.
1541
1542
===7.2 Geometric tangent stiffness matrix===
1543
1544
The geometric stiffness is written as
1545
1546
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1547
|-
1548
| 
1549
{| style="text-align: left; margin:auto;width: 100%;" 
1550
|-
1551
| style="text-align: center;" | <math>\mathbf{K}^{G}=\mathbf{K}_{m}^{G}+\mathbf{K}_{b}^{G}</math>
1552
|}
1553
| style="width: 5px;text-align: right;white-space: nowrap;" | (103)
1554
|}
1555
1556
where subscripts <math display="inline">m</math> and <math display="inline">b</math> denote as usual membrane and bending contributions. For the BST element the membrane part is the same than for the standard constant strain triangle, leading to
1557
1558
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1559
|-
1560
| 
1561
{| style="text-align: left; margin:auto;width: 100%;" 
1562
|-
1563
| style="text-align: center;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{m}^{G}\mathbf{\;}\Delta \mathbf{u}  =A_{M}^{0}\sum _{i=1}^{3}\sum _{j=1}^{3}\left\{ \delta \mathbf{u}_{i}\;\left[ \begin{array}{cc}L_{i,1}^{M} & L_{i,2}^{M}\end{array} \right] \left[ \begin{array}{cc}N_{11} & N_{12}\\ N_{21} & N_{22}\end{array} \right] \left[ \begin{array}{c}L_{j,1}^{M}\\ L_{j,2}^{M}\end{array} \right] \Delta \mathbf{u}_{j}\right\} </math>
1564
|-
1565
| style="text-align: center;" | 
1566
|}
1567
| style="width: 5px;text-align: right;white-space: nowrap;" | (104)
1568
|}
1569
1570
For the EBST element the membrane part is computed as the sum of the contributions of the three sides, i.e.
1571
1572
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1573
|-
1574
| 
1575
{| style="text-align: left; margin:auto;width: 100%;" 
1576
|-
1577
| style="text-align: center;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{m}^{G}\mathbf{\;}\Delta \mathbf{u}  =\frac{A^{M}}{3}\sum _{k=1}^{3}\sum _{i=1}^{6}\sum _{j=1}^{6}\left\{ \delta \mathbf{u}_{i}\;\left[ \begin{array}{cc}N_{i,1}^{k} & N_{i,2}^{k}\end{array} \right] \left[ \begin{array}{cc}N_{11}^{k} & N_{12}^{k}\\ N_{21}^{k} & N_{22}^{k}\end{array} \right] \left[ \begin{array}{c}N_{j,1}^{k}\\ N_{j,2}^{k}\end{array} \right] \Delta \mathbf{u}_{j}\right\} </math>
1578
|-
1579
| style="text-align: center;" | 
1580
|}
1581
| style="width: 5px;text-align: right;white-space: nowrap;" | (105)
1582
|}
1583
1584
where <math display="inline">N_{ij}={\sigma _{m}}_{ij}</math> are the axial forces defined in Eq.(29).
1585
1586
The geometric stiffness associated to bending moments is much more involved and can be found in  [26]. Numerical experiments have shown that the bending part of the geometric stiffness is not so important and can be disregarded in the iterative process.
1587
1588
Again three and one point quadratures are used for computing the membrane and bending contributions to the geometric stiffness matrix. We note that for elastic-plastic problems a uniform one point quadrature has been chosen for integrating both the membrane and bending stiffness matrices.
1589
1590
==8 EXPLICIT SOLUTION SCHEME==
1591
1592
For simulations including large non-linearities, such as frictional contact conditions on complex geometries or large instabilities in membranes, convergence is difficult to achieve with implicit schemes. In those cases an explicit solution algorithm is typically most advantageous. This scheme provides the solution for dynamic problems and also for static problems if an adequate damping is chosen.
1593
1594
The dynamic equations of motion to solve are of the form
1595
1596
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1597
|-
1598
| 
1599
{| style="text-align: left; margin:auto;width: 100%;" 
1600
|-
1601
| style="text-align: center;" | <math>\mathbf{r}(\mathbf{u}) + \mathbf{C} \dot{\mathbf{u}} + \mathbf{M} \ddot{\mathbf{u}} = 0 </math>
1602
|}
1603
| style="width: 5px;text-align: right;white-space: nowrap;" | (106)
1604
|}
1605
1606
where <math display="inline">\mathbf{M}</math> is the mass matrix, <math display="inline">\mathbf{C}</math> is the damping matrix and the dot means the time derivative. The solution is performed using the ''central difference method''. To make the method competitive a diagonal (lumped) <math display="inline">\mathbf{M}</math> matrix is typically used and <math display="inline">\mathbf{C}</math> is taken proportional to <math display="inline">\mathbf{M}</math>. As usual, mass lumping is performed by assigning one third of the triangular element mass to each node in the central element.
1607
1608
The explicit solution scheme can be summarized as follows. At each time step <math display="inline">n</math> where displacements have been computed:
1609
1610
<ol>
1611
1612
<li>Compute the internal forces <math display="inline">\mathbf{r}^{n}</math>. This  follows the same steps (2-8) described for the implicit scheme in the previous section. </li>
1613
1614
<li>Compute the accelerations at time <math display="inline">t_{n}</math>
1615
1616
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1617
|-
1618
| 
1619
{| style="text-align: left; margin:auto;width: 100%;" 
1620
|-
1621
| style="text-align: center;" | <math>
1622
1623
\ddot{\mathbf{u}}^{n} = {\boldsymbol M}_d^{-1} [ \mathbf{r}^{n} - \mathbf{C} \dot{\mathbf{u}}^{n-1/2} ]  </math>
1624
|}
1625
|}</li>
1626
1627
where <math display="inline">{\boldsymbol M}_d</math> is the diagonal (lumped) mass matrix.
1628
1629
<li>Compute the velocities at time <math display="inline">t_{n+1/2}</math>
1630
1631
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1632
|-
1633
| 
1634
{| style="text-align: left; margin:auto;width: 100%;" 
1635
|-
1636
| style="text-align: center;" | <math>
1637
1638
\dot{\mathbf{u}}^{n+1/2} = \dot{\mathbf{u}}^{n-1/2} \ddot{\mathbf{u}}^{n} \delta t  </math>
1639
|}
1640
|}</li>
1641
1642
<li>Compute the displacements at  time <math display="inline">t_{n+1}</math>
1643
1644
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1645
|-
1646
| 
1647
{| style="text-align: left; margin:auto;width: 100%;" 
1648
|-
1649
| style="text-align: center;" | <math>
1650
1651
\mathbf{u}^{n+1} = \mathbf{u}^{n} +\dot{\mathbf{u}}^{n+1/2} \delta t  </math>
1652
|}
1653
|}</li>
1654
<li>Update the shell geometry </li>
1655
<li>Check frictional contact conditions </li>
1656
1657
</ol>
1658
1659
Further details of the implementation of the standard BST element within an explicit solution scheme can be found in [25].
1660
1661
==9 EXAMPLES==
1662
1663
In this section several examples are presented to show the good performance of the rotation-free shell elements BST, EBST and EBST1. The first five static examples are solved using an implicit code. The rest of the examples are computed using the explicit dynamic scheme. For the explicit scheme the  EBST element is always integrated using one integration point per element (EBST1 version) although not indicated.
1664
1665
===9.1 Patch tests===
1666
1667
The three elements considered (BST, EBST and EBST1) satisfy the membrane patch test defined in Figure [[#img-4|4]]. A uniform axial tensile stress is obtained in all cases.
1668
1669
<div id='img-4'></div>
1670
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1671
|-
1672
|[[Image:Draft_Samper_165783789-test-fig4.png|600px|Patch test for uniform tensile stress]]
1673
|- style="text-align: center; font-size: 75%;"
1674
| colspan="1" | '''Figure 4:''' Patch test for uniform tensile stress
1675
|}
1676
1677
<div id='img-5'></div>
1678
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1679
|-
1680
|[[Image:Draft_Samper_165783789-test-fig5.png|600px|Patch test for uniform torsion]]
1681
|- style="text-align: center; font-size: 75%;"
1682
| colspan="1" | '''Figure 5:''' Patch test for uniform torsion
1683
|}
1684
1685
The element bending formulation does not allow to apply external bending moments (there are not rotational DOFs). Hence it is not possible to analyse a patch of elements under loads leading to a uniform bending moment. A uniform torsion can be considered if a point load is applied at the corner of a rectangular plate with two consecutive free sides and two simple supported sides. Figure [[#img-5|5]] shows three patches leading to correct results both in displacements and stresses. All three patches are structured meshes. When the central node in the third patch is shifted from the center, the results obtained with the EBST and EBST1 elements are not correct. This however does not seems to preclude the excellent performance of these elements, as proved in the rest of the examples analyzed. On the other hand, the BST element  gives correct results in all torsion patch tests if natural boundary conditions are imposed in the formulation. If this is not the case, incorrect results are obtained even with structured meshes.
1686
1687
===9.2 Cook's membrane problem===
1688
1689
This example is used to assess the membrane performance of the EBST and EBST1 elements and to compare it with the standard linear triangle (constant strain) and the quadratic triangle (linear strain). This example involves important shear energy and was proposed to assess the distortion capability of elements. Figure [[#img-6|6]].a shows the geometry and the applied load. Figure [[#img-6|6]].b plots the vertical displacement of the upper vertex as a function of the number of nodes in the mesh. Results obtained with other isoparametric elements have also been  plotted for comparison. They include the constant strain triangle (CST), the bilinear quadrilateral (QUAD4) and the linear strain triangle (LST) [4]. Note that as this is a pure  membrane problem  the BST and the CST elements give identical results.
1690
1691
<div id='img-6'></div>
1692
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1693
|-
1694
|[[Image:Draft_Samper_165783789-test-fig6a.png|354px|]]
1695
|[[Image:Draft_Samper_165783789-test-fig6b.png|354px|Cook's membrane problem (a) Geometry (b) Results]]
1696
|- style="text-align: center; font-size: 75%;"
1697
| colspan="2" | '''Figure 6:''' Cook's membrane problem (a) Geometry (b) Results
1698
|}
1699
1700
From the plot shown it can be seen that the enhanced element with three integration points (EBST) gives values slightly better that the constant strain triangle for the most coarse mesh (only two elements). However, when the mesh is refined a performance similar to the linear strain triangle is obtained that is dramatically superior than the former. On the other hand, if a one point quadrature is used (EBST1) the convergence in the reported displacement is notably better than for the rest of the elements.
1701
1702
===9.3 Cylindrical roof===
1703
1704
In this example an effective membrane interpolation is of primary importance. The geometry is a cylindrical roof supported by a rigid diaphragm at both ends and it is loaded by a uniform dead weight (see Figure [[#img-7|7]].a.). Only one quarter of the structure is modelled due to symmetry conditions. Unstructured and structured meshes are considered. In the latter case two orientations are possible (Figure [[#img-7|7]].a shows orientation B).
1705
1706
Tables [[#table-3|3]], [[#table-4|4]] and [[#table-5|5]] present the normalized vertical displacements at the crown (point A) and at the midpoint of the free side (point B) for the two orientations of the structured meshes and for the non-structured mesh. Values used for normalization are <math display="inline">u_{A}=0.5407</math> y <math display="inline">u_{B}=-3.610</math> that are quoted in reference [31].
1707
1708
<div id='img-7'></div>
1709
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1710
|-
1711
|[[Image:Draft_Samper_165783789-test-fig7a.png|354px|]]
1712
|[[Image:Draft_Samper_165783789-test-fig7b.png|385px|Cylindrical roof under dead weight. E=3 ×10⁶, ν=0.0, Thickness =3.0, shell weight =0.625 per unit area. (a) Geometry and mesh for orientation B. (b) Displacement of point B for both (structured) mesh orientations]]
1713
|- style="text-align: center; font-size: 75%;"
1714
| colspan="2" | '''Figure 7:''' Cylindrical roof under dead weight. <math>E=3 \times 10^{6}</math>, <math>\nu=0.0</math>, Thickness =3.0, shell weight =0.625 per unit area. (a) Geometry and mesh for orientation B. (b) Displacement of point B for both (structured) mesh orientations
1715
|}
1716
1717
1718
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
1719
|+ style="font-size: 75%;" |<span id='table-3'></span>Table. 3 Cylindrical roof under dead weight. Normalized vertical displacements for mesh orientation A
1720
|- style="border-top: 2px solid;"
1721
| style="border-left: 2px solid;border-right: 2px solid;" |  
1722
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-A
1723
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-B
1724
|- style="border-top: 2px solid;"
1725
| style="border-left: 2px solid;border-right: 2px solid;" |  NDOFs 
1726
| style="border-left: 2px solid;border-right: 2px solid;" | EBST 
1727
| style="border-left: 2px solid;border-right: 2px solid;" | EBST1 
1728
| style="border-left: 2px solid;border-right: 2px solid;" | BST 
1729
| style="border-left: 2px solid;border-right: 2px solid;" | CBST 
1730
| style="border-left: 2px solid;border-right: 2px solid;" | EBST1 
1731
| style="border-left: 2px solid;border-right: 2px solid;" | BST    
1732
|-
1733
| style="border-left: 2px solid;border-right: 2px solid;" | 16 
1734
| style="border-left: 2px solid;border-right: 2px solid;" | 0.65724 
1735
| style="border-left: 2px solid;border-right: 2px solid;" | 0.91855 
1736
| style="border-left: 2px solid;border-right: 2px solid;" | 0.74161 
1737
| style="border-left: 2px solid;border-right: 2px solid;" | 0.40950 
1738
| style="border-left: 2px solid;border-right: 2px solid;" | 0.70100 
1739
| style="border-left: 2px solid;border-right: 2px solid;" | 1.35230
1740
|-
1741
| style="border-left: 2px solid;border-right: 2px solid;" | 56 
1742
| style="border-left: 2px solid;border-right: 2px solid;" | 0.53790 
1743
| style="border-left: 2px solid;border-right: 2px solid;" | 1.03331 
1744
| style="border-left: 2px solid;border-right: 2px solid;" | 0.74006 
1745
| style="border-left: 2px solid;border-right: 2px solid;" | 0.54859 
1746
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00759 
1747
| style="border-left: 2px solid;border-right: 2px solid;" | 0.75590
1748
|-
1749
| style="border-left: 2px solid;border-right: 2px solid;" | 208 
1750
| style="border-left: 2px solid;border-right: 2px solid;" | 0.89588 
1751
| style="border-left: 2px solid;border-right: 2px solid;" | 1.04374 
1752
| style="border-left: 2px solid;border-right: 2px solid;" | 0.88491 
1753
| style="border-left: 2px solid;border-right: 2px solid;" | 0.91612 
1754
| style="border-left: 2px solid;border-right: 2px solid;" | 1.02155 
1755
| style="border-left: 2px solid;border-right: 2px solid;" | 0.88269
1756
|-
1757
| style="border-left: 2px solid;border-right: 2px solid;" | 800 
1758
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99658 
1759
| style="border-left: 2px solid;border-right: 2px solid;" | 1.01391 
1760
| style="border-left: 2px solid;border-right: 2px solid;" | 0.96521 
1761
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99263 
1762
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00607 
1763
| style="border-left: 2px solid;border-right: 2px solid;" | 0.96393
1764
|- style="border-bottom: 2px solid;"
1765
| style="border-left: 2px solid;border-right: 2px solid;" | 3136 
1766
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00142 
1767
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00385 
1768
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99105 
1769
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99881 
1770
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00102 
1771
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98992
1772
1773
|}
1774
1775
1776
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
1777
|+ style="font-size: 75%;" |<span id='table-4'></span>Table. 4 Cylindrical roof under dead weight. Normalized vertical displacements for mesh orientation B
1778
|- style="border-top: 2px solid;"
1779
| style="border-left: 2px solid;border-right: 2px solid;" |  
1780
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-A
1781
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-B
1782
|- style="border-top: 2px solid;"
1783
| style="border-left: 2px solid;border-right: 2px solid;" |  NDOFs 
1784
| style="border-left: 2px solid;border-right: 2px solid;" | EBST 
1785
| style="border-left: 2px solid;border-right: 2px solid;" | EBST1 
1786
| style="border-left: 2px solid;border-right: 2px solid;" | BST 
1787
| style="border-left: 2px solid;border-right: 2px solid;" | CBST 
1788
| style="border-left: 2px solid;border-right: 2px solid;" | EBST1 
1789
| style="border-left: 2px solid;border-right: 2px solid;" | BST
1790
|-
1791
| style="border-left: 2px solid;border-right: 2px solid;" | 16 
1792
| style="border-left: 2px solid;border-right: 2px solid;" | 0.26029 
1793
| style="border-left: 2px solid;border-right: 2px solid;" | 0.83917 
1794
| style="border-left: 2px solid;border-right: 2px solid;" | 0.40416 
1795
| style="border-left: 2px solid;border-right: 2px solid;" | 0.52601 
1796
| style="border-left: 2px solid;border-right: 2px solid;" | 0.86133 
1797
| style="border-left: 2px solid;border-right: 2px solid;" | 0.89778
1798
|-
1799
| style="border-left: 2px solid;border-right: 2px solid;" | 56 
1800
| style="border-left: 2px solid;border-right: 2px solid;" | 0.81274 
1801
| style="border-left: 2px solid;border-right: 2px solid;" | 1.10368 
1802
| style="border-left: 2px solid;border-right: 2px solid;" | 0.61642 
1803
| style="border-left: 2px solid;border-right: 2px solid;" | 0.67898 
1804
| style="border-left: 2px solid;border-right: 2px solid;" | 0.93931 
1805
| style="border-left: 2px solid;border-right: 2px solid;" | 0.68238
1806
|-
1807
| style="border-left: 2px solid;border-right: 2px solid;" | 208 
1808
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97651 
1809
| style="border-left: 2px solid;border-right: 2px solid;" | 1.04256 
1810
| style="border-left: 2px solid;border-right: 2px solid;" | 0.85010 
1811
| style="border-left: 2px solid;border-right: 2px solid;" | 0.93704 
1812
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00255 
1813
| style="border-left: 2px solid;border-right: 2px solid;" | 0.86366
1814
|-
1815
| style="border-left: 2px solid;border-right: 2px solid;" | 800 
1816
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00085 
1817
| style="border-left: 2px solid;border-right: 2px solid;" | 1.01195 
1818
| style="border-left: 2px solid;border-right: 2px solid;" | 0.95626 
1819
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99194 
1820
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00211 
1821
| style="border-left: 2px solid;border-right: 2px solid;" | 0.95864
1822
|- style="border-bottom: 2px solid;"
1823
| style="border-left: 2px solid;border-right: 2px solid;" | 3136 
1824
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00129 
1825
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00337 
1826
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98879 
1827
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99828 
1828
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00017 
1829
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98848
1830
1831
|}
1832
1833
1834
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
1835
|+ style="font-size: 75%;" |<span id='table-5'></span>Table. 5 Cylindrical roof under dead weight. Normalized vertical displacements for non-structured meshes
1836
|- style="border-top: 2px solid;"
1837
| style="border-left: 2px solid;border-right: 2px solid;" |  
1838
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-A
1839
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-B
1840
|- style="border-top: 2px solid;"
1841
| style="border-left: 2px solid;border-right: 2px solid;" |  NDOFs 
1842
| style="border-left: 2px solid;border-right: 2px solid;" | EBST 
1843
| style="border-left: 2px solid;border-right: 2px solid;" | EBST1 
1844
| style="border-left: 2px solid;border-right: 2px solid;" | BST 
1845
| style="border-left: 2px solid;border-right: 2px solid;" | EBST 
1846
| style="border-left: 2px solid;border-right: 2px solid;" | EBST1 
1847
| style="border-left: 2px solid;border-right: 2px solid;" | BST
1848
|-
1849
| style="border-left: 2px solid;border-right: 2px solid;" | 851 
1850
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97546 
1851
| style="border-left: 2px solid;border-right: 2px solid;" | 0.8581 
1852
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97598 
1853
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97662 
1854
| style="border-left: 2px solid;border-right: 2px solid;" | 1.0027 
1855
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97194
1856
|-
1857
| style="border-left: 2px solid;border-right: 2px solid;" | 3311 
1858
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98729 
1859
| style="border-left: 2px solid;border-right: 2px solid;" | 0.9682 
1860
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98968 
1861
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98476 
1862
| style="border-left: 2px solid;border-right: 2px solid;" | 1.0083 
1863
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98598
1864
|- style="border-bottom: 2px solid;"
1865
| style="border-left: 2px solid;border-right: 2px solid;" | 13536 
1866
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99582 
1867
| style="border-left: 2px solid;border-right: 2px solid;" | 0.9992 
1868
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00057 
1869
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99316 
1870
| style="border-left: 2px solid;border-right: 2px solid;" | 0.9973 
1871
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99596
1872
1873
|}
1874
1875
Plots in Figure [[#img-7|7]].b show the normalized displacement of point-B for structured meshes as a function of the number of degrees of freedom for each case studied. An excellent convergence for the EBST element can be seen. The version with only one integration point (EBST1) presents a behavior a little more flexible and converges from above for structured meshes. Table [[#table-5|5]] shows that both the EBST and the EBST1 elements have an excellent behavior for non structured meshes.
1876
1877
===9.4 Open semi-spherical dome with point loads===
1878
1879
The main problem of shell finite elements with initially curved geometry is the so called membrane locking. The EBST element  has a quadratic interpolation of the geometry, then it may suffer from this problem. To assess this we resort to an example of inextensional bending. This is an hemispherical shell of radius <math display="inline">r=10</math> and thickness <math display="inline">h=0.04</math> with an 18<math display="inline">^{o}</math> hole in the pole and free at all boundaries, subjected to two inward and two outward forces 90<math display="inline">^{o}</math> apart. Material properties are <math display="inline">E=6.825\times{10}^{7}</math> and <math display="inline">\nu=0.3</math>. Figure [[#img-8|8]].a shows the discretized geometry (only one quarter of the geometry is considered due to symmetry).
1880
1881
<div id='img-8'></div>
1882
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1883
|-
1884
|[[Image:Draft_Samper_165783789-test-fig8a.png|279px|]]
1885
|[[Image:Draft_Samper_165783789-test-fig8b.png|500px|Pinched hemispherical shell with a hole, (a)geometry, (b)normalized displacement]]
1886
|- style="text-align: center; font-size: 75%;"
1887
| colspan="2" | '''Figure 8:''' Pinched hemispherical shell with a hole, (a)geometry, (b)normalized displacement
1888
|}
1889
1890
In Figure [[#img-8|8]].b the displacements of the points under the loads have been plotted versus the number of nodes used in the discretization. Due to the orientation of the meshes chosen, the displacement of the point under the inward load is not the same as the displacement under the outward load, so in the figure an average (the absolute values) has been used. Results obtained with other elements have been included for comparison: three membrane locking free elements, namely the original linear BST element, a transverse shear-deformable quadrilateral (QUAD) [32] and an assumed strain quadratic triangle (TRIC) [3]; a transverse shear deformable quadratic triangle (TRIA) (standard displacement formulation for membrane part) [2] that is vulnerable to locking.
1891
1892
From the plotted results it can be seen that the EBST element presents slight membrane locking in bending dominated problems with initially curved geometries. This locking is much less severe than in a standard quadratic triangle. Membrane locking disappears when only one integration point is used (EBST1 element).
1893
1894
===9.5 Inflation of a sphere===
1895
1896
The example is the inflation of a spherical shell under internal pressure. An incompressible Mooney-Rivlin constitutive material has been considered. The Ogden parameters are <math display="inline">N=2</math>, <math display="inline">\alpha _{1}=2</math>, <math display="inline">\mu _{1}=40</math>, <math display="inline">\alpha _{2}=-2</math>, <math display="inline">\mu _{2}=-20</math>. Due to the simple geometry an analytical solution exists [33] (with <math display="inline">\gamma =R/R^{0}</math>):
1897
1898
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1899
|-
1900
| 
1901
{| style="text-align: left; margin:auto;width: 100%;" 
1902
|-
1903
| style="text-align: center;" | <math> p=\frac{h^{0}}{R^{0}\gamma ^{2}}\frac{dW}{d\gamma }=\frac{8h^{0}}{R^{0}\gamma ^{2}} \left( \gamma ^{6}-1\right) \left( \mu _{1}-\mu _{2}\gamma ^{2}\right) </math>
1904
|}
1905
|}
1906
1907
In this numerical simulation the same geometric and material parameters used in <span id='citeF-22'></span>[[#cite-22|[22]]] have been adopted: <math display="inline">R^{0}=1</math> and <math display="inline">h^{0}=0.02</math>. The three meshes of EBST1 element considered to evaluate convergence are shown in Figure [[#img-9|9]].a. The value of the actual radius as a function of the internal pressure is plotted in Figure [[#img-9|9]].b for the different meshes and is also compared with the analytical solution. It can be seen that with a few degrees of freedom it is possible to obtain an excellent agreement for the range of strains considered. The final value corresponds to a  ratio of <math display="inline">h/R=0.00024</math>.
1908
1909
<div id='img-9'></div>
1910
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1911
|-
1912
|[[Image:Draft_Samper_165783789-test-fig9a.png|600px|]]
1913
|-
1914
|(a)
1915
|-
1916
|[[Image:Draft_Samper_165783789-test-fig9b.png|300px|Inflation of sphere of Mooney-Rivlin material. (a) Meshes of EBST1 elements used in the analysis (b) Radius as a function of the internal pressure.]]
1917
|-
1918
|(b)
1919
|- style="text-align: center; font-size: 75%;"
1920
| colspan="2" | '''Figure 9:''' Inflation of sphere of Mooney-Rivlin material. (a) Meshes of EBST1 elements used in the analysis. (b) Radius as a function of the internal pressure.
1921
|}
1922
1923
===9.6 Clamped spherical dome under impulse pressure loading===
1924
1925
The geometry of the dome and the material properties chosen are shown in Figure [[#img-10|10]]. A uniform pressure load of 600 psi is applied to the upper surface of the dome. The different meshes used in the analysis are shown in Figure [[#img-11|11]]. One fourth of the dome is considered only due to symmetry. Two different analyses under elastic and elastic-plastic conditions were carried out. The number of thickness layers in eq.(100) is four. Numerical experiments show that this suffices to provide an accurate solution for large elastic-plastic problems [25]. Results are obtained using the explicit scheme.
1926
1927
<div id='img-10'></div>
1928
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1929
|-
1930
|[[Image:Draft_Samper_165783789-test-fig10.png|500px|Spherical dome under impulse pressure. Geometry and material]]
1931
|- style="text-align: center; font-size: 75%;"
1932
| colspan="1" | '''Figure 10:''' Spherical dome under impulse pressure. Geometry and material
1933
|}
1934
1935
<div id='img-11'></div>
1936
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1937
|-
1938
|[[Image:Draft_Samper_165783789-test-fig11.png|600px|Spherical dome under impulse pressure. Meshes used in the analysis. Mesh-1 with 338 elements, Mesh-2 with 1250 elements and Mesh-3 with 2888 elements]]
1939
|- style="text-align: center; font-size: 75%;"
1940
| colspan="1" | '''Figure 11:''' Spherical dome under impulse pressure. Meshes used in the analysis. Mesh-1 with 338 elements, Mesh-2 with 1250 elements and Mesh-3 with 2888 elements
1941
|}
1942
1943
1944
Figure [[#img-12|12]] shows results for the time history of the central deflection using different meshes and ''elastic material properties'' for both  BST and EBST1 elements. Results are almost identical for mesh-2 and mesh-3, showing the excellent convergence properties. The coarsest mesh shows some differences between both elements, but for the finer meshes the results are almost identical. Figure [[#img-13|13]] shows similar results but now for an ''elastic-plastic material''. The excellent convergence  of the BST and EBST1 elements is again noticeable.
1945
1946
1947
<div id='img-12'></div>
1948
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1949
|-
1950
|[[Image:Draft_Samper_165783789-test-fig12.png|600px|Spherical dome under impulse pressure. History of central deflection for elastic material]]
1951
|- style="text-align: center; font-size: 75%;"
1952
| colspan="1" | '''Figure 12:''' Spherical dome under impulse pressure. History of central deflection for elastic material
1953
|}
1954
1955
<div id='img-13'></div>
1956
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1957
|-
1958
|[[Image:Draft_Samper_165783789-test-fig13.png|600px|Spherical dome under impulse pressure. History of central deflection for elastic-plastic material]]
1959
|- style="text-align: center; font-size: 75%;"
1960
| colspan="1" | '''Figure 13:''' Spherical dome under impulse pressure. History of central deflection for elastic-plastic material
1961
|}
1962
1963
1964
Results obtained with the present elements compare very well with published results using fine meshes. See for example ABAQUS Explicit example problems manual <span id='citeF-34'></span>[[#cite-34|[34]]] and WHAMS-3D manual [35], showing plots comparing results using different shell elements.
1965
1966
A summary of results for the central deflection at significant times is given in Tables [[#table-6|6]] and [[#table-7|7]]. Further details on the solution of this problem with the standard  BST element can be found in [25].
1967
1968
1969
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
1970
|+ style="font-size: 75%;" |<span id='table-6'></span>Table. 6 Spherical dome. Elastic material. Comparison of the central deflection values at the mid point obtained with the BST and EBST1  elements for different meshes
1971
|- style="border-top: 2px solid;"
1972
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  Element/mesh 
1973
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.2 ms</math>
1974
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.4 ms</math>
1975
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.6 ms</math>
1976
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.8 ms</math>
1977
|- style="border-top: 2px solid;"
1978
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |   BST Coarse  
1979
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05155 
1980
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09130 
1981
| style="border-left: 2px solid;border-right: 2px solid;" | 0.04414 
1982
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08945 
1983
|-
1984
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST Medium  
1985
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04542 
1986
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09177 
1987
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03863 
1988
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08052 
1989
|-
1990
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST Fine    
1991
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04460 
1992
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09022 
1993
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03514 
1994
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08132 
1995
|- style="border-top: 2px solid;"
1996
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  EBST1 Coarse  
1997
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05088 
1998
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08929 
1999
| style="border-left: 2px solid;border-right: 2px solid;" | 0.04348 
2000
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08708 
2001
|-
2002
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 Medium  
2003
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04527 
2004
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09134 
2005
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03865 
2006
| style="border-left: 2px solid;border-right: 2px solid;" | -0.07979 
2007
|- style="border-bottom: 2px solid;"
2008
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 Fine    
2009
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04453 
2010
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09004 
2011
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03510 
2012
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08099 
2013
2014
|}
2015
2016
2017
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
2018
|+ style="font-size: 75%;" |<span id='table-7'></span>Table. 7 Spherical dome. Elastic-plastic material. Comparison of the central deflection values at the mid point obtained with the BST and EBST1  elements for different meshes
2019
|- style="border-top: 2px solid;"
2020
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  Element/mesh 
2021
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.2 ms</math>
2022
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.4 ms</math>
2023
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.6 ms</math>
2024
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.8 ms</math>
2025
|- style="border-top: 2px solid;"
2026
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |   BST Coarse  
2027
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05888 
2028
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05869 
2029
| style="border-left: 2px solid;border-right: 2px solid;" | -0.02938 
2030
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06521 
2031
|-
2032
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST Medium  
2033
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05376 
2034
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06000 
2035
| style="border-left: 2px solid;border-right: 2px solid;" | -0.02564 
2036
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06098 
2037
|-
2038
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST Fine    
2039
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05312 
2040
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05993 
2041
| style="border-left: 2px solid;border-right: 2px solid;" | -0.02464 
2042
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06105 
2043
|- style="border-top: 2px solid;"
2044
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  EBST1 Coarse  
2045
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05827 
2046
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05478 
2047
| style="border-left: 2px solid;border-right: 2px solid;" | -0.02792 
2048
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06187 
2049
|-
2050
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 Medium  
2051
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05374 
2052
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05884 
2053
| style="border-left: 2px solid;border-right: 2px solid;" | -0.02543 
2054
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06080 
2055
|- style="border-bottom: 2px solid;"
2056
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 Fine    
2057
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05317 
2058
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05935 
2059
| style="border-left: 2px solid;border-right: 2px solid;" | -0.02458 
2060
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06085 
2061
2062
|}
2063
2064
===9.7 Cylindrical panel under impulse loading===
2065
2066
The geometry of the cylinder and the material properties are shown in Figure [[#img-14|14]]. A prescribed initial normal velocity of <math display="inline">v_{o}=-5650</math> in/sec is applied to the points in the region shown modelling the effect of the detonation of an explosive layer. The panel is assumed clamped along all the boundary. One half of the cylinder is discretized only due to symmetry conditions. Three different meshes of <math display="inline">6\times{12}</math>, <math display="inline">12\times{32}</math> and <math display="inline">18\times{48}</math>  triangles were used for the analysis. The deformed configurations for <math display="inline">time =1 msec</math> are shown for the three meshes in Figure [[#img-15|15]].
2067
2068
<div id='img-14'></div>
2069
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2070
|-
2071
|[[Image:Draft_Samper_165783789-test-fig14.png|420px|Cylindrical panel under impulse loading. Geometry and material properties]]
2072
|- style="text-align: center; font-size: 75%;"
2073
| colspan="1" | '''Figure 14:''' Cylindrical panel under impulse loading. Geometry and material properties
2074
|}
2075
2076
<div id='img-15'></div>
2077
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2078
|-
2079
|[[Image:Draft_Samper_165783789-test-fig15.png|600px|Impulsively loaded cylindrical panel. Deformed meshes for time =1 msec]]
2080
|- style="text-align: center; font-size: 75%;"
2081
| colspan="1" | '''Figure 15:''' Impulsively loaded cylindrical panel. Deformed meshes for <math>time =1 msec</math>
2082
|}
2083
2084
2085
The analysis was performed assuming an elastic-perfect plastic material behaviour (<math display="inline">\sigma _y = k_y</math> <math display="inline">k_y'=0</math>). A study of the convergence of the solution with the number of thickness layers showed again that four layers suffice to capture accurately the non linear material response [25].
2086
2087
A comparison of the results obtained with the BST and EBST1 elements using the coarse mesh and the finer mesh is shown in Figure [[#img-16|16]] where experimental results reported in <span id='citeF-36'></span>[[#cite-36|[36]]] have also been plotted for comparison purposes. Good agreement between the numerical and experimental results is obtained. Figures [[#img-16|16]] show the time evolution of the vertical displacement of two reference points along the center line located at <math display="inline">y=6.28</math>in and <math display="inline">y=9.42</math>in, respectively. For the finer mesh results between both elements are almost identical. For the coarse mesh it can been seen again that the element BST is more flexible than element EBST1.
2088
2089
<div id='img-16'></div>
2090
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2091
|-
2092
|[[Image:Draft_Samper_165783789-test-fig16.png|600px|Cylindrical panel under impulse loading. Time evolution of the displacement of two points along the crown line. Comparison of results obtained with BST and EBST1 elements (mesh 1: 6×12 elements and mesh 3: 18×48 elements) and experimental values ]]
2093
|- style="text-align: center; font-size: 75%;"
2094
| colspan="1" | '''Figure 16:''' Cylindrical panel under impulse loading. Time evolution of the displacement of two points along the crown line. Comparison of results obtained with BST and EBST1 elements (mesh 1: <math>6\times{12}</math> elements and mesh 3: <math>18\times{48}</math> elements) and experimental values 
2095
|}
2096
2097
2098
The numerical values of the vertical displacement at the two reference points obtained with the BST and EBST1  elements after a time of 0.4 ms using the <math display="inline">16\times{32}</math> mesh are compared in Table [[#table-8|8]]  with a numerical solution obtained by Stolarski ''et al.'' [37] using a curved triangular shell element and the <math display="inline">16\times{32}</math> mesh. Experimental results reported in [36] are also given for comparison. It is interesting to note the reasonable agreement of the results for <math display="inline">y=6.28</math>in. and the discrepancy of present and other published numerical solutions with the experimental value for <math display="inline">y=9.42</math>in.
2099
2100
2101
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
2102
|+ style="font-size: 75%;" |<span id='table-8'></span>Table. 8 Cylindrical panel under impulse load. Comparison of vertical displacement values of two central points for <math>t=0.4</math> ms
2103
|- style="border-top: 2px solid;"
2104
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  
2105
| colspan='2' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Vertical displacement (in.)
2106
|- style="border-top: 2px solid;"
2107
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  element/mesh                
2108
| style="border-left: 2px solid;border-right: 2px solid;" | <math>y=6.28</math>in 
2109
| style="border-left: 2px solid;border-right: 2px solid;" | <math>y=9.42</math>in 
2110
|- style="border-top: 2px solid;"
2111
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  BST  (<math display="inline"> 6\times 12</math> el.)    
2112
| style="border-left: 2px solid;border-right: 2px solid;" | -1.310     
2113
| style="border-left: 2px solid;border-right: 2px solid;" | -0.679      
2114
|-
2115
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST  (<math display="inline">18\times 48</math> el.)    
2116
| style="border-left: 2px solid;border-right: 2px solid;" | -1.181     
2117
| style="border-left: 2px solid;border-right: 2px solid;" | -0.587      
2118
|-
2119
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 (<math display="inline"> 6\times 12</math> el.)    
2120
| style="border-left: 2px solid;border-right: 2px solid;" | -1.147     
2121
| style="border-left: 2px solid;border-right: 2px solid;" | -0.575      
2122
|-
2123
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 (<math display="inline">18\times 48</math> el.)    
2124
| style="border-left: 2px solid;border-right: 2px solid;" | -1.171     
2125
| style="border-left: 2px solid;border-right: 2px solid;" | -0.584      
2126
|-
2127
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | Stolarski ''et al.'' [37] 
2128
| style="border-left: 2px solid;border-right: 2px solid;" | -1.183     
2129
| style="border-left: 2px solid;border-right: 2px solid;" | -0.530      
2130
|- style="border-bottom: 2px solid;"
2131
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | Experimental [36] 
2132
| style="border-left: 2px solid;border-right: 2px solid;" | -1.280     
2133
| style="border-left: 2px solid;border-right: 2px solid;" | -0.700      
2134
2135
|}
2136
2137
2138
The deformed shapes of the transverse section for <math display="inline">y=6.28</math>in. and the longitudinal section for <math display="inline">x=0</math> obtained with the both elements for the coarse and the fine meshes after 1ms. are compared with the experimental results in Figures [[#img-17|17]] and [[#img-18|18]].  Excellent agreement is observed for the fine mesh for both elements.
2139
2140
<div id='img-17'></div>
2141
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2142
|-
2143
|[[Image:Draft_Samper_165783789-test-fig17.png|380px|Cylindrical panel under impulse loading. Final deformation (t=1 msec) of the panel at the cross section y=6.28 in Comparison with experimental values. ]]
2144
|- style="text-align: center; font-size: 75%;"
2145
| colspan="1" | '''Figure 17:''' Cylindrical panel under impulse loading. Final deformation (<math>t=1 msec</math>) of the panel at the cross section <math>y=6.28 in</math> Comparison with experimental values. 
2146
|}
2147
2148
<div id='img-18'></div>
2149
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2150
|-
2151
|[[Image:Draft_Samper_165783789-test-fig18.png|600px|Cylindrical panel under impulse loading. Final deformation (t=1 msec) of the panel at the crown line (x=0.00 in). Comparison with experimental values. ]]
2152
|- style="text-align: center; font-size: 75%;"
2153
| colspan="1" | '''Figure 18:''' Cylindrical panel under impulse loading. Final deformation (<math>t=1 msec</math>) of the panel at the crown line (<math>x=0.00 in</math>). Comparison with experimental values. 
2154
|}
2155
2156
===9.8 Airbag Membranes===
2157
2158
'''Inflation/deflation of a circular airbag'''
2159
2160
This example has been taken from Ref.[22] where it is shown that the final configuration is mesh dependent due to the strong instabilities leading to a non-uniqueness of the solution. In [22]  it is also discussed the important regularizing properties of the bending energy that, when disregarded, leads to massive wrinkling in the compressed zones.
2161
2162
The airbag geometry is initially circular with an undeformed radius of <math display="inline">0.35</math>.  The  material is a linear isotropic elastic one with modulus of elasticity <math display="inline">E=6\times 10^{7}</math>Pa, Poisson's ratio <math display="inline">\nu =0.3</math> and density <math display="inline">\rho = 2000</math>kg/m<math display="inline">^3</math>.  A symmetrical solution has been assumed and, hence, only one quarter of the geometry has been modelled.  Only the normal displacement to the original plane is constrained along the boundaries.  The thickness considered is <math display="inline">h=0.0004</math>m and the inflation pressure is <math display="inline">5000</math>Pa. Pressure is linearly increased from 0 to the final value in <math display="inline">t=0.15</math> sec.
2163
2164
Figure 19 shows the final deformed configurations for a mesh with 10201 nodes and 20000 EBST1 elements.  The figure on the left (a) corresponds to an analysis including full bending effects and the right figure (b) is a pure membrane analysis.
2165
2166
We note that when the bending energy is included a more regular final pattern is obtained.  Also the final pattern is rather independent of the discretization (note that the solution is non unique due to the strong instabilities). On the other hand, the pure membrane solution shows in the center of the modelled region a wrinkling pattern where the width of the wrinkle is the length of the element.
2167
2168
<div id='img-19'></div>
2169
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2170
|-
2171
|[[Image:Draft_Samper_165783789-test-fig19.png|600px|Inflation of a circular airbag. Deformed configurations for final pressure. (a) bending formulation; (b) membrane formulation.]]
2172
|- style="text-align: center; font-size: 75%;"
2173
| colspan="1" | '''Figure 19:''' Inflation of a circular airbag. Deformed configurations for final pressure. (a) bending formulation; (b) membrane formulation.
2174
|}
2175
2176
2177
Figure 20 shows the results obtained for the de-inflation process.  Note that the spherical membrane falls down due to the self weight.  The configurations are, of course, non-unique.
2178
2179
2180
<div id='img-20'></div>
2181
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2182
|-
2183
|[[Image:Draft_Samper_165783789-test-fig20.png|600px|Inflation and deflation of a circular air-bag.]]
2184
|- style="text-align: center; font-size: 75%;"
2185
| colspan="1" | '''Figure 20:''' Inflation and deflation of a circular air-bag.
2186
|}
2187
2188
===Inflation/deflation of a closed tube===
2189
2190
The next problem is the study of the inflating and de-inflating of a tube with a semi-spherical end cap.  The tube diameter is <math display="inline">D=2</math>m, its total length is <math display="inline">L=5</math>m and the thickness <math display="inline">h=5\times 10^{-3}</math>m.  The material has the following properties: <math display="inline">E=4\times 10^{8}</math>Pa, <math display="inline">\nu =0.35 </math> and <math display="inline">\rho =3\times 10^{3}</math>kg/m<math display="inline">^3</math>.  The tube is inflated fast until a pressure of <math display="inline">10^4</math>Pa and then is de-inflated under self weight.  The analysis is performed with a mesh of 4176 EBST1 elements and 2163 nodes modelling a quarter of the geometry.  The evolution of the tube walls during the de-inflating process can be seen in Figure 21.  Note that the central part collapses as expected, while the semi-spherical cap remains rather unaltered.
2191
2192
The same analysis is repeated for a longer and thinner tube (<math display="inline">L=6</math>m and <math display="inline">h=3\times 10^{-3}</math>m).  The same material than in the previous case was chosen. The evolution of the tube walls is shown in Figure 22.  Note that the central part collapses again but in a less smoother manner due to the smaller thickness.
2193
2194
<div id='img-21'></div>
2195
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2196
|-
2197
|[[Image:Draft_Samper_165783789-test-fig21.png|600px|Inflation and deflation of a closed  tube. L=5, D=2, h=5×10⁻⁴.]]
2198
|- style="text-align: center; font-size: 75%;"
2199
| colspan="1" | '''Figure 21:''' Inflation and deflation of a closed  tube. <math>L=5</math>, <math>D=2</math>, <math>h=5\times 10^{-4}</math>.
2200
|}
2201
2202
2203
<div id='img-22'></div>
2204
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2205
|-
2206
|[[Image:Draft_Samper_165783789-test-fig22.png|600px|Inflation and deflation of a closed  tube. L=6, D=2, h=3×10⁻⁴.]]
2207
|- style="text-align: center; font-size: 75%;"
2208
| colspan="1" | '''Figure 22:''' Inflation and deflation of a closed  tube. <math>L=6</math>, <math>D=2</math>, <math>h=3\times 10^{-4}</math>.
2209
|}
2210
2211
'''Inflation of a square airbag'''
2212
2213
The last example of this kind is the inflation of a square airbag supporting a spherical object.  This example resembles a problem studied (numerically and experimentally) in [38], where fluid-structure interaction is the main subject.  Here the fluid is not modelled and a uniform pressure is applied over all the internal surfaces.  The lower surface part of the airbag is limited by a rigid plane and on the upper part a spherical dummy object is set to study the interaction between the airbag and the object.
2214
2215
The airbag geometry is initially square with an undeformed side length of 0.643m.  The constitutive material chosen is a linear isotropic elastic one with <math display="inline">E=5.88\times 10^8</math>Pa, <math display="inline">\nu =0.4</math> and a density of <math display="inline">\rho = 1000</math> kg/m<math display="inline">^3</math>.  Only one quarter of the geometry has been modelled due to symmetry.  The thickness <math display="inline">h=0.00075</math>m and the inflation pressure is 250000Pa.  Pressure is linearly incremented from 0 to the final value in <math display="inline">t=0.15</math>sec.  The spherical object has a radius <math display="inline">r=0.08</math>m and a mass of 4.8kg (one quarter) and is subjected to gravity load during all the process.
2216
2217
The mesh has 8192 EBST1 elements and 4225 nodes on each surface of the airbag.  Figure 23 shows the deformed configurations for three different times.  The sequence on the left of the figure corresponds to an analysis including full bending effects and that on the right is the result of a pure membrane analysis.  A standard penalty formulation is used in order to treat the frictionless contact.
2218
2219
<div id='img-23'></div>
2220
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2221
|-
2222
|[[Image:Draft_Samper_165783789-test-fig23.png|461px|Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution.]]
2223
|- style="text-align: center; font-size: 75%;"
2224
| colspan="1" | '''Figure 23:''' Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution.
2225
|}
2226
2227
===9.9 S-rail sheet stamping===
2228
2229
The final problem corresponds to one of the sheet stamping benchmark tests proposed in NUMISHEET'96 <span id='citeF-39'></span>[[#cite-39|[39]]].  The analysis comprises two parts, namely, simulation of the stamping of a S-rail sheet component and springback computations once the stamping tools are removed.  Figure [[#img-24|24]] shows the deformed sheet after springback.
2230
2231
<div id='img-24'></div>
2232
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2233
|-
2234
|[[Image:Draft_Samper_165783789-test-fig24.png|600px|Stamping of a S-rail. Final deformation of the sheet after springback obtained in the simulation. The triangular mesh of the deformed sheet is also shown]]
2235
|- style="text-align: center; font-size: 75%;"
2236
| colspan="1" | '''Figure 24:''' Stamping of a S-rail. Final deformation of the sheet after springback obtained in the simulation. The triangular mesh of the deformed sheet is also shown
2237
|}
2238
2239
The detailed geometry and material data can be found in the proceedings of the conference <span id='citeF-39'></span>[[#cite-39|[39]]] or in the web <span id='citeF-40'></span>[[#cite-40|[40]]]. The mesh used for the sheet has 6000 three  node triangular elements and 3111 points (Figure 24). The tools are treated as rigid bodies. The meshes used for the sheet and the tools are those provided by the  benchmark organizers. The material considered here is a mild steel (IF) with Young Modulus <math display="inline">E=2.06 GPa</math> and Poisson ratio <math display="inline">\nu=0.3</math>. Mises yield criterion was used for plasticity behaviour with non-linear isotropic hardening defined by <math display="inline">\sigma _y(e^p) = 545(0.13+e^p)^{0.267} [MPa]</math>. A uniform friction of 0.15 was used for all the tools. A low (10kN) blank holder force was considered in this simulation.
2240
2241
Figure [[#img-25|25]] compares the punch force during the stamping stage obtained with both BST and EBST1 elements for the simulation and experimental values. Also for reference the average values of the simulations presented in the conference are included. Explicit and implicit simulations are considered as different curves. There is a remarkable coincidence between the experimental values and the results obtained with BST and EBST1 elements.
2242
2243
<div id='img-25'></div>
2244
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2245
|-
2246
|[[Image:Draft_Samper_165783789-test-fig25.png|600px|Stamping of a S-rail. Punch force versus punch travel. Average of explicit and implicit results reported at the benchmark are also shown. ]]
2247
|- style="text-align: center; font-size: 75%;"
2248
| colspan="1" | '''Figure 25:''' Stamping of a S-rail. Punch force versus punch travel. Average of explicit and implicit results reported at the benchmark are also shown. 
2249
|}
2250
2251
Figure [[#img-26|26]] plots the <math display="inline">Z</math> coordinate along line B"&#8211;G" after springback. The top surface of the sheet does not remain plane due to some instabilities due to the low blank holder force used. Results obtained with the simulations compare very well with the experimental values.
2252
2253
<div id='img-26'></div>
2254
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2255
|-
2256
|[[Image:Draft_Samper_165783789-test-fig26.png|600px|Stamping of a S-rail. Z-coordinate along line B''&#8211;-G'' after springback. Average of explicit and implicit results reported at the benchmark are also shown. ]]
2257
|- style="text-align: center; font-size: 75%;"
2258
| colspan="1" | '''Figure 26:''' Stamping of a S-rail. Z-coordinate along line B''&#8211;-G'' after springback. Average of explicit and implicit results reported at the benchmark are also shown. 
2259
|}
2260
2261
==10 CONCLUDING REMARKS==
2262
2263
We have presented in the paper two alternative formulations for the rotation-free basic shell triangle (BST) using an assumed strain approach.  The simplest element of the family is based on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of four elements and a constant membrane field computed from the standard linear interpolation of the displacements within each triangle. An enhanced version of the BST element is obtained by using a quadratic interpolation of the geometry in terms of the six patch nodes.  This allows to compute an assumed linear membrane strain field which improves the in-plane behaviour of the original element.  A simple and economic version of the new EBST element using a single integration point has been presented.  The efficiency of the different rotation-free shell triangles has been demonstrated in many examples of application including linear and non linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
2264
2265
The enhanced rotation-free basic shell triangle element with a single integration point (the EBST1 element) has proven to be an excellent candidate for solving practical engineering shell and membrane problems involving complex geometry, dynamics, material non linearity and frictional contact conditions.
2266
2267
==ACKNOWLEDGEMENTS==
2268
2269
The problems analyzed with the explicit formulation were solved with the computer code STAMPACK <span id='citeF-41'></span>[[#cite-41|[41]]] where the rotation-free elements here presented have been implemented.  The support of the company QUANTECH (www.quantech.es) providing the code STAMPACK is gratefully acknowledged.
2270
2271
==REFERENCES==
2272
2273
<div id="cite-1"></div>
2274
'''[[#citeF-1|[1]]]''' E. Oñate. A review of some finite element families for thick and thin plate and shell analysis. Publication CIMNE N.53, May 1994.
2275
2276
<div id="cite-2"></div>
2277
'''[[#citeF-2|[2]]]''' F.G. Flores, E. Oñate and F. Zárate. New assumed strain triangles for non-linear shell analysis. ''Computational Mechanics'', '''17''', 107&#8211;114, 1995.
2278
2279
<div id="cite-3"></div>
2280
'''[[#citeF-3|[3]]]''' J.H. Argyris, M. Papadrakakis, C. Apostolopoulou and S. Koutsourelakis. The TRIC element. Theoretical and numerical investigation. ''Comput. Meth. Appl. Mech. Engrg.'', '''182''', 217&#8211;245, 2000.
2281
2282
<div id="cite-4"></div>
2283
'''[[#citeF-4|[4]]]''' O.C. Zienkiewicz and R.L. Taylor. ''The finite element method. Solid Mechanics''. Vol II, Butterworth-Heinemann, 2000.
2284
2285
<div id="cite-5"></div>
2286
'''[[#citeF-5|[5]]]'''  H. Stolarski, T. Belytschko and S.-H. Lee. A review of shell finite elements and corotational theories. ''Computational Mechanics Advances'', Vol. 2 N.2, North-Holland, 1995.
2287
2288
<div id="cite-6"></div>
2289
'''[[#citeF-6|[6]]]'''  E. Ramm and W.A. Wall. Shells in advanced computational environment. In ''V World Congress on Computational Mechanics'', J. Eberhardsteiner, H. Mang and F. Rammerstorfer (Eds.), Vienna, Austria, July 7&#8211;12, 2002. http://wccm.tuwien.ac.at.
2290
2291
<div id="cite-7"></div>
2292
'''[[#citeF-7|[7]]]'''  D. Bushnell and B.O. Almroth, “Finite difference energy method for non linear shell analysis”, ''J. Computers and Structures'', Vol. '''1''', 361, 1971.
2293
2294
<div id="cite-8"></div>
2295
'''[[#citeF-8|[8]]]''' S.P. Timoshenko. ''Theory of Plates and Shells'', McGraw Hill, New York, 1971.
2296
2297
<div id="cite-9"></div>
2298
'''[[#citeF-9|[9]]]''' A.C. Ugural. ''Stresses in  Plates and Shells'', McGraw Hill, New York, 1981.
2299
2300
<div id="cite-10"></div>
2301
'''[[#citeF-10|[10]]]''' R.A. Nay and S. Utku. An alternative to the finite element method. ''Variational Methods Eng.'', Vol. 1, 1972.
2302
2303
<div id="cite-11"></div>
2304
'''[[#citeF-11|[11]]]''' J.K. Hampshire, B.H.V. Topping and H.C.  Chan. Three node triangular elements with one degree of freedom per node. ''Engng. Comput''. Vol. '''9''', pp. 49&#8211;62, 1992.
2305
2306
<div id="cite-12"></div>
2307
'''[[#citeF-12|[12]]]''' R. Phaal and C.R. Calladine. A simple class of finite elements for plate and shell problems. I: Elements for beams and thin plates. ''Int. J. Num. Meth. Engng.'', Vol. '''35''', pp. 955&#8211;977, 1992.
2308
2309
<div id="cite-13"></div>
2310
'''[[#citeF-13|[13]]]''' R. Phaal and C.R.  Calladine. A simple class of finite elements for plate and shell problems. II: An element for thin shells with only translational degrees of freedom. ''Int. J. Num. Meth. Engng.'', Vol. '''35''',  pp. 979&#8211;996, 1992.
2311
2312
<div id="cite-14"></div>
2313
'''[[#citeF-14|[14]]]''' E. Oñate and Cervera M. Derivation of thin plate bending elements with one degree of freedom per node. ''Engineering Computations'', Vol. '''10''', pp 553&#8211;561, 1993.
2314
2315
<div id="cite-15"></div>
2316
'''[[#citeF-15|[15]]]''' M. Brunet and F. Sabourin. Prediction of necking and wrinkles with a simplified shell element in sheet forming. ''Int. Conf. of Metal Forming Simulation in Industry'', Vol. II, pp. 27&#8211;48, B. Kröplin (Ed.), 1994.
2317
2318
<div id="cite-16"></div>
2319
'''[[#citeF-16|[16]]]''' G. Rio, B. Tathi and H. Laurent. A new efficient finite element model of shell with only three degrees of freedom per node. Applications to industrial deep drawing test. in ''Recent Developments in Sheet Metal Forming Technology'', Ed. M.J.M. Barata Marques, 18th IDDRG Biennial Congress, Lisbon, 1994.
2320
2321
<div id="cite-17"></div>
2322
'''[[#citeF-17|[17]]]'''  J. Rojek and E. Oñate. Sheet springback analysis using a simple shell triangle with translational degrees of freedom only. ''Int. J. of Forming Processes'', Vol. '''1''', No. 3, 275&#8211;296, 1998.
2323
2324
<div id="cite-18"></div>
2325
'''[[#citeF-18|[18]]]'''  J. Rojek, E. Oñate and E. Postek. Application of explicit FE codes to simulation of sheet and bulk forming processes. ''J. of Materials Processing Technology'', Vols. '''80-81''', 620&#8211;627, 1998.
2326
2327
<div id="cite-19"></div>
2328
'''[[#citeF-19|[19]]]'''  J. Jovicevic and E. Oñate. ''Analysis of beams and shells using a rotation-free finite element-finite volume formulation'', Monograph 43, CIMNE, Barcelona, 1999.
2329
2330
<div id="cite-20"></div>
2331
'''[[#citeF-20|[20]]]''' E. Oñate and F. Zárate. Rotation-free plate and shell triangles. ''Int. J. Num. Meth. Engng.'', '''47''', pp. 557&#8211;603, 2000.
2332
2333
<div id="cite-21"></div>
2334
'''[[#citeF-21|[21]]]''' F. Cirak and M. Ortiz. Subdivision surfaces: A new paradigm for thin-shell finite element analysis. ''Int. J. Num. Meths in Engng'',  Vol. 47, 2000, 2039-2072.
2335
2336
<div id="cite-22"></div>
2337
'''[[#citeF-22|[22]]]''' F. Cirak and M. Ortiz. Fully <math display="inline">C^{1}</math>-conforming subdivision elements for finite deformations thin-shell analysis. ''Int. J. Num. Meths in Engng'', vol. 51, 2001, 813-833.
2338
2339
<div id="cite-23"></div>
2340
'''[[#citeF-23|[23]]]''' F.G. Flores and E. Oñate. A basic thin shell triangle with only translational DOFs for large strain plasticity. ''Int. J. Num. Meths in Engng'', Vol. '''51''', pp 57-83, 2001.
2341
2342
<div id="cite-24"></div>
2343
'''[[#citeF-24|[24]]]''' G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei and R.L. Taylor. Continuous/discontinuous finite element approximation of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. ''Comput. Methods Appl. Mech. Engrg.'', Vol. 191, 3669&#8211;3750, 2002.
2344
2345
<div id="cite-25"></div>
2346
'''[[#citeF-25|[25]]]'''  E. Oñate, P. Cendoya and J. Miquel. Non linear explicit dynamic analysis of shells using the BST rotation-free triangle. ''Engineering Computations'', '''19''' (6), 662&#8211;706, 2002.
2347
2348
<div id="cite-26"></div>
2349
'''[[#citeF-26|[26]]]''' F.G. Flores and E. Oñate. Improvements in the membrane behaviour of the three node rotation-free BST shell triangle  using an assumed strain approach. ''Computer Methods in Applied Mechanics and Engineering'', in press, 2003.
2350
2351
<div id="cite-27"></div>
2352
'''[[#citeF-27|[27]]]'''  O.C. Zienkiewicz and E. Oñate. Finite Elements vs. Finite Volumes. Is there really a choice?. ''Nonlinear Computational Mechanics''. State of the Art. (Eds. P. Wriggers and R. Wagner). Springer Verlag, Heidelberg, 1991.
2353
2354
<div id="cite-28"></div>
2355
'''[[#citeF-28|[28]]]''' E. Oñate, M.  Cervera  and O.C. Zienkiewicz. A finite volume format for structural mechanics. ''Int. J. Num. Meth. Engng.'', '''37''', pp. 181&#8211;201, 1994.
2356
2357
<div id="cite-29"></div>
2358
'''[[#citeF-29|[29]]]''' R. Hill. A Theory of the Yielding and Plastic Flow of Anisotropic Metals. ''Proc. Royal Society London'', Vol. '''A193''', pp. 281, 1948.
2359
2360
<div id="cite-30"></div>
2361
'''[[#citeF-30|[30]]]''' R.W. Ogden. Large deformation isotropic elasticity: on the correlation of theory and experiments for incompressible rubberlike solids. ''Proceedings of the Royal Society of London'', Vol. '''A326''', pp. 565&#8211;584, 1972.
2362
2363
<div id="cite-31"></div>
2364
'''[[#citeF-31|[31]]]''' H.C. Huang, ''Static and Dynamic Analysis of Plates and Shells'', page 40, Springer-Verlag, Berlin, 1989.
2365
2366
<div id="cite-32"></div>
2367
'''[[#citeF-32|[32]]]''' E.N. Dvorkin and K.J. Bathe. A continuum mechanics based four node shell element for general non-linear analysis. ''Eng. Comp.'', '''1''', 77&#8211;88, 1984.
2368
2369
<div id="cite-33"></div>
2370
'''[[#citeF-33|[33]]]''' A. Needleman. Inflation of spherical rubber ballons. ''Int. J. of Solids and Structures'', '''13''', 409&#8211;421, 1977.
2371
2372
<div id="cite-34"></div>
2373
'''[[#citeF-34|[34]]]'''  Hibbit, Karlson and Sorensen Inc. ABAQUS, version 5.8, Pawtucket, USA, 1998.
2374
2375
<div id="cite-35"></div>
2376
'''[[#citeF-35|[35]]]''' WHAMS-3D. An explicit 3D finite element program. KBS2  Inc., Willow Springs, Illinois 60480, USA.
2377
2378
<div id="cite-36"></div>
2379
'''[[#citeF-36|[36]]]'''  H.A. Balmer and E.A. Witmer. Theoretical experimental correlation of large dynamic and permanent deformation of impulsively loaded simple structures. ''Air force flight Dynamic Lab. Rep. FDQ-TDR-64-108'', Wright-Patterson AFB, Ohio, USA, 1964.
2380
2381
<div id="cite-37"></div>
2382
'''[[#citeF-37|[37]]]'''  H. Stolarski, T. Belytschko and N. Carpenter. A simple triangular curved shell element. ''Eng. Comput.'', Vol. 1, 210&#8211;218, 1984.
2383
2384
<div id="cite-38"></div>
2385
'''[[#citeF-38|[38]]]'''  P.O. Marklund and L. Nilsson. Simulation of airbag inflation processes using a coupled fluid structure approach. ''Computational Mechanics'', '''29''', 289&#8211;297, 2002.
2386
2387
<div id="cite-39"></div>
2388
'''[[#citeF-39|[39]]]''' NUMISHEET'96, ''Third International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, NUMISHEET'96'', E.H. Lee, G.L. Kinzel and R.H. Wagoner (Eds.), Dearbon-Michigan, USA, 1996.
2389
2390
<div id="cite-40"></div>
2391
'''[[#citeF-40|[40]]]'''  <code>http://rclsgi.eng.ohio-state.edu/%Elee-j-k/numisheet96/</code>
2392
2393
<div id="cite-41"></div>
2394
'''[[#citeF-41|[41]]]''' STAMPACK. ''A General Finite Element System for Sheet Stamping and Forming Problems'', Quantech ATZ, Barcelona, Spain, 2003 (www.quantech.es).
2395
2396
2397
==APPENDIX==
2398
2399
===A.1Curvature matrix for the BST element===
2400
2401
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2402
|-
2403
| 
2404
{| style="text-align: left; margin:auto;width: 100%;" 
2405
|-
2406
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }=\mathbf{B}_{b} \times \mathbf{t}_3 \delta \mathbf{a}^{p} </math>
2407
|}
2408
|}
2409
2410
with
2411
2412
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2413
|-
2414
| 
2415
{| style="text-align: left; margin:auto;width: 100%;" 
2416
|-
2417
| style="text-align: center;" | <math>\begin{array}{c}\\ \delta \mathbf{a}^{p}\\ 18\times{1} \end{array} =[\delta \mathbf{u}_{1}^{T},\delta \mathbf{u}_{2}^{T},\delta \mathbf{u}_{3}^{T},\delta \mathbf{u}_{4}^{T},\delta \mathbf{u}_{5}^{T},\delta \mathbf{u}_{6}^{T}]^{T} </math>
2418
|}
2419
|}
2420
2421
and 
2422
2423
<math>\mathbf{B}_{b}^{T}=</math>
2424
2425
2426
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2427
|- style="border-top: 2px solid;"
2428
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">+L^{M}_{2,1} L^{2}_{2,1}    +L^{M}_{3,1} L^{3}_{3,1} </math> 
2429
| style="border-left: 2px solid;border-right: 2px solid;" | <math>+L^{M}_{2,2} L^{2}_{2,2}    +L^{M}_{3,2} L^{3}_{3,2} </math>
2430
| style="border-left: 2px solid;border-right: 2px solid;" | <math>+L^{M}_{2,2} L^{2}_{2,1} +L^{M}_{2,1} L^{2}_{2,2}    +L^{M}_{3,2} L^{3}_{3,1} +L^{M}_{3,1} L^{3}_{3,2} </math>
2431
|- style="border-top: 2px solid;"
2432
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{1,1} L^{1}_{3,1}    +L^{M}_{3,1} L^{3}_{2,1} </math> 
2433
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{3,2}    +L^{M}_{3,2} L^{3}_{2,2} </math>
2434
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{3,1} +L^{M}_{1,1} L^{1}_{3,2}    +L^{M}_{3,2} L^{3}_{2,1} +L^{M}_{3,1} L^{3}_{2,2} </math>
2435
|- style="border-top: 2px solid;"
2436
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{1,1} L^{1}_{2,1}    +L^{M}_{2,1} L^{2}_{3,1} </math> 
2437
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{2,2}    +L^{M}_{2,2} L^{2}_{3,2} </math>
2438
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{2,1} +L^{M}_{1,1} L^{1}_{j,3}    +L^{M}_{2,2} L^{2}_{3,1} +L^{M}_{2,1} L^{2}_{3,2} </math>
2439
|- style="border-top: 2px solid;"
2440
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L^{M}_{1,1} L^{1}_{1,1} </math> 
2441
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{1,2} L^{1}_{1,2} </math>
2442
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{1,2} L^{1}_{1,1} +L^{M}_{1,1} L^{1}_{1,3} </math>
2443
|- style="border-top: 2px solid;"
2444
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L^{M}_{2,1} L^{2}_{1,1} </math> 
2445
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{2,2} L^{2}_{1,2} </math>
2446
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{2,2} L^{2}_{1,1} +L^{M}_{2,1} L^{2}_{1,3} </math>
2447
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2448
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L^{M}_{3,1} L^{3}_{1,1} </math> 
2449
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{3,2} L^{3}_{1,2} </math>
2450
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{3,2} L^{3}_{1,1} +L^{M}_{3,1} L^{3}_{1,3} </math>
2451
2452
|}
2453
2454
<math display="inline">-2</math> 
2455
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2456
|- style="border-top: 2px solid;"
2457
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{1,1}\rho _{11}^{1}+L^{M}_{1,2}\rho _{11}^{2} </math> 
2458
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,1}\rho _{22}^{1}+L^{M}_{i,2}\rho _{22}^{2} </math>
2459
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,1}\rho _{12}^{1}+L^{M}_{1,2}\rho _{12}^{2} </math>
2460
|- style="border-top: 2px solid;"
2461
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{2,1}\rho _{11}^{1}+L^{M}_{2,2}\rho _{11}^{2} </math> 
2462
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{2,1}\rho _{22}^{1}+L^{M}_{2,2}\rho _{22}^{2} </math>
2463
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{2,1}\rho _{12}^{1}+L^{M}_{2,2}\rho _{12}^{2} </math>
2464
|- style="border-top: 2px solid;"
2465
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{3,1}\rho _{11}^{1}+L^{M}_{3,2}\rho _{11}^{2} </math> 
2466
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{3,1}\rho _{22}^{1}+L^{M}_{3,2}\rho _{22}^{2} </math>
2467
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{3,1}\rho _{12}^{1}+L^{M}_{3,2}\rho _{12}^{2} </math>
2468
|- style="border-top: 2px solid;"
2469
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2470
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2471
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2472
|- style="border-top: 2px solid;"
2473
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2474
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2475
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2476
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2477
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2478
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2479
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2480
2481
|}
2482
2483
<br/><br/>
2484
2485
===A.2 Membrane strain matrix and curvature matrix for the EBST element===
2486
2487
====A.2.1 Membrane strain matrix====
2488
2489
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2490
|-
2491
| 
2492
{| style="text-align: left; margin:auto;width: 100%;" 
2493
|-
2494
| style="text-align: center;" | <math>\delta {\boldsymbol \varepsilon }_m ={\boldsymbol B}_m \delta {\boldsymbol a}^p  </math>
2495
|}
2496
|}
2497
2498
<math>\mathbf{B}_{m}^{T}=\frac{1}{3}</math>
2499
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2500
|- style="border-top: 2px solid;"
2501
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{1,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}   + N^{2}_{1,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}   + N^{3}_{1,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2502
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{1,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{1,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{1,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2503
|- style="border-top: 2px solid;"
2504
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{2,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}   + N^{2}_{2,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}   + N^{3}_{2,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2505
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{2,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{2,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{2,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2506
|- style="border-top: 2px solid;"
2507
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{3,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}   + N^{2}_{3,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}   + N^{3}_{3,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2508
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{3,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{3,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{3,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2509
|- style="border-top: 2px solid;"
2510
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{4,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1} </math> 
2511
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{4,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2} </math>
2512
|- style="border-top: 2px solid;"
2513
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{2}_{5,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1} </math> 
2514
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{2}_{5,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2} </math>
2515
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2516
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{3}_{6,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2517
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{3}_{6,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2518
2519
|}
2520
2521
2522
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2523
|- style="border-top: 2px solid;"
2524
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{1,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{1,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}    +N^{2}_{1,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{1,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}    +N^{3}_{1,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{1,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2525
|- style="border-top: 2px solid;"
2526
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{2,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{2,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{2,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{2,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{2,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{2,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2527
|- style="border-top: 2px solid;"
2528
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{3,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{3,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}    +N^{2}_{3,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{3,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}    +N^{3}_{3,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{3,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2529
|- style="border-top: 2px solid;"
2530
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{4,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{4,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2} </math> 
2531
|- style="border-top: 2px solid;"
2532
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{2}_{5,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{5,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2} </math> 
2533
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2534
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{3}_{6,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{6,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2535
2536
|}
2537
2538
====A.2.2 Curvature matrix====
2539
2540
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2541
|-
2542
| 
2543
{| style="text-align: left; margin:auto;width: 100%;" 
2544
|-
2545
| style="text-align: center;" | <math>\delta {\boldsymbol \kappa } ={\boldsymbol B}_b \times \mathbf{t}_3 \delta {\boldsymbol a}^p  </math>
2546
|}
2547
|}
2548
2549
<math>\mathbf{B}_{b}^{T}=2</math>
2550
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2551
|- style="border-top: 2px solid;"
2552
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{1,1}\right)_{G_{1}}   +L_{2,1}\left(N_{1,1}\right)_{G_{2}}   +L_{3,1}\left(N_{1,1}\right)_{G_{3}}</math> 
2553
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{1,2}\right)_{G_{1}}   +L_{2,2}\left(N_{1,2}\right)_{G_{2}}   +L_{3,2}\left(N_{1,2}\right)_{G_{3}}</math>
2554
|- style="border-top: 2px solid;"
2555
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{2,1}\right)_{G_{1}}   +L_{2,1}\left(N_{2,1}\right)_{G_{2}}   +L_{3,1}\left(N_{2,1}\right)_{G_{3}}</math> 
2556
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{2,2}\right)_{G_{1}}   +L_{2,2}\left(N_{2,2}\right)_{G_{2}}   +L_{3,2}\left(N_{2,2}\right)_{G_{3}}</math>
2557
|- style="border-top: 2px solid;"
2558
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{3,1}\right)_{G_{1}}   +L_{2,1}\left(N_{3,1}\right)_{G_{2}}   +L_{3,1}\left(N_{3,1}\right)_{G_{3}}</math> 
2559
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{3,2}\right)_{G_{1}}   +L_{2,2}\left(N_{3,2}\right)_{G_{2}}   +L_{3,2}\left(N_{3,2}\right)_{G_{3}}</math>
2560
|- style="border-top: 2px solid;"
2561
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{4,1}\right)_{G_{1}}</math> 
2562
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{4,2}\right)_{G_{1}}</math>
2563
|- style="border-top: 2px solid;"
2564
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{2,1}\left(N_{5,1}\right)_{G_{2}}</math> 
2565
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{2,2}\left(N_{5,2}\right)_{G_{2}}</math>
2566
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2567
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{3,1}\left(N_{6,1}\right)_{G_{3}}</math> 
2568
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{3,2}\left(N_{6,2}\right)_{G_{3}}</math>
2569
2570
|}
2571
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2572
|- style="border-top: 2px solid;"
2573
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{1,1}\right)_{G_{1}}+L_{1,1}\left(N_{1,2}\right)_{G_{1}}   +L_{2,2}\left(N_{1,1}\right)_{G_{2}}+L_{2,1}\left(N_{1,2}\right)_{G_{2}}   +L_{3,2}\left(N_{1,1}\right)_{G_{3}}+L_{3,1}\left(N_{1,2}\right)_{G_{3}}</math> 
2574
|- style="border-top: 2px solid;"
2575
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{2,1}\right)_{G_{1}}+L_{1,1}\left(N_{2,2}\right)_{G_{1}}   +L_{2,2}\left(N_{2,1}\right)_{G_{2}}+L_{2,1}\left(N_{2,2}\right)_{G_{2}}   +L_{3,2}\left(N_{2,1}\right)_{G_{3}}+L_{3,1}\left(N_{2,2}\right)_{G_{3}}</math> 
2576
|- style="border-top: 2px solid;"
2577
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{3,1}\right)_{G_{1}}+L_{1,1}\left(N_{j,3}\right)_{G_{1}}   +L_{2,2}\left(N_{3,1}\right)_{G_{2}}+L_{2,1}\left(N_{j,3}\right)_{G_{2}}   +L_{3,2}\left(N_{3,1}\right)_{G_{3}}+L_{3,1}\left(N_{j,3}\right)_{G_{3}}</math> 
2578
|- style="border-top: 2px solid;"
2579
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{4,1}\right)_{G_{1}}+L_{1,1}\left(N_{4,3}\right)_{G_{1}}</math> 
2580
|- style="border-top: 2px solid;"
2581
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{2,2}\left(N_{5,1}\right)_{G_{2}}+L_{2,1}\left(N_{5,3}\right)_{G_{2}}</math> 
2582
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2583
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{3,2}\left(N_{6,1}\right)_{G_{3}}+L_{3,1}\left(N_{6,3}\right)_{G_{6}}</math> 
2584
2585
|}
2586
2587
<math>-2</math>
2588
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2589
|- style="border-top: 2px solid;"
2590
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\left(L_{1,1}\rho _{11}^{1}+L_{1,2}\rho _{11}^{2}\right)</math> 
2591
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{1,1}\rho _{22}^{1}+L_{i,2}\rho _{22}^{2}\right)</math>
2592
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{1,1}\rho _{12}^{1}+L_{1,2}\rho _{12}^{2}\right)</math>
2593
|- style="border-top: 2px solid;"
2594
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\left(L_{2,1}\rho _{11}^{1}+L_{2,2}\rho _{11}^{2}\right)</math> 
2595
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{2,1}\rho _{22}^{1}+L_{2,2}\rho _{22}^{2}\right)</math>
2596
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{2,1}\rho _{12}^{1}+L_{2,2}\rho _{12}^{2}\right)</math>
2597
|- style="border-top: 2px solid;"
2598
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\left(L_{3,1}\rho _{11}^{1}+L_{3,2}\rho _{11}^{2}\right)</math> 
2599
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{3,1}\rho _{22}^{1}+L_{3,2}\rho _{22}^{2}\right)</math>
2600
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{3,1}\rho _{12}^{1}+L_{3,2}\rho _{12}^{2}\right)</math>
2601
|- style="border-top: 2px solid;"
2602
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2603
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2604
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2605
|- style="border-top: 2px solid;"
2606
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2607
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2608
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2609
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2610
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2611
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2612
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2613
2614
|}
2615
2616
In this last expression <math display="inline">L_{i,j} =L_{i,j}^{M}</math>
2617

Return to Onate Flores 2005a.

Back to Top