You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
==Advances in the formulation of the rotation-free basic shell triangle==
3
4
'''Eugenio Oñate<math>^1</math>
5
6
Fernando G. Flores<math>^2</math>
7
8
9
10
<math>^1</math> International Center for Numerical Methods in Engineering 
11
12
Edificio C1, Gran Capitán s/n 
13
14
08034 Barcelona - Spain
15
16
17
18
<math>^2</math> National University of Cordoba 
19
20
Casilla de Correo 916 
21
22
5000 Córdoba - Argentina'''
23
-->
24
25
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">'''SUMMARY'''</div>
26
27
A family of rotation-free three node triangular shell elements is presented. The simplest element of the family is based on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of four elements and a constant membrane field computed from the standard linear interpolation of the displacements within each triangle. An enhanced version of the element is obtained by using a quadratic interpolation of the geometry in terms of the six patch nodes. This allows to compute an assumed linear membrane strain field which improves the in-plane behaviour of the original element. A simple and economic version of the element using a single integration point is presented. The efficiency of the different rotation-free shell triangles is demonstrated in many examples of application including linear and non linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
28
29
==1 INTRODUCTION==
30
31
Triangular shell elements are very useful for the solution of large scale shell problems such as those occurring in many practical engineering situations. Typical examples are the analysis of shell roofs under static and dynamic loads, sheet stamping processes, vehicle dynamics and crash-worthiness situations. Many of these problems involve high geometrical and material non linearities and time changing frictional contact conditions. These difficulties are usually increased by the need of discretizing complex geometrical shapes. Here the use of shell triangles and non-structured meshes becomes a critical necessity. Despite recent advances in the field <span id='citeF-1'></span>[[#cite-1|[1]]]&#8211;<span id='citeF-6'></span>[[#cite-6|[6]]] there are not so many simple shell triangles which are capable of accurately modelling the deformation of a shell structure under arbitrary loading conditions.
32
33
A promising line to derive simple shell triangles is to use the nodal displacements as the only unknowns for describing the shell kinematics. This idea goes back to the original attempts to solve thin plate bending problems using finite difference schemes with the deflection as the only nodal variable <span id='citeF-7'></span>[[#cite-7|[7]]]&#8211;<span id='citeF-9'></span>[[#cite-9|[9]]].
34
35
In past years some authors have derived a number of thin plate and shell triangular elements free of rotational degrees of freedom (d.o.f.) based on Kirchhoff's theory [10]&#8211;<span id='citeF-26'></span>[[#cite-26|[26]]]. In essence all methods attempt to express the curvatures field over an element in terms of the displacements of a collection of nodes belonging to a patch of adjacent elements. Oñate and Cervera [14] proposed a general procedure of this kind combining finite element and finite volume concepts for deriving thin plate triangles and quadrilaterals with the deflection as the only nodal variable and presented a simple and competitive rotation-free three d.o.f. triangular element termed BPT (for Basic Plate Triangle). These ideas were extended and formalized in [20] to derive a number of rotation-free thin plate and shell triangles. The basic ingredients of the method are a mixed Hu-Washizu formulation, a standard discretization into three node triangles, a linear finite element interpolation of the displacement field within each triangle and a finite volume type approach for computing constant curvature and bending moment fields within appropriate non-overlapping control domains. The so called cell-centered and cell-vertex triangular domains yield different families of rotation-free plate and shell triangles. Both the BPT plate element and its extension to shell analysis (termed BST for Basic Shell Triangle) can be derived from the cell-centered formulation. Here the control domain is an individual triangle. The constant curvatures field within a triangle is computed in terms of the displacements of the six nodes belonging to the four elements patch formed by the chosen triangle and the three adjacent triangles. The cell-vertex approach yields a different family of rotation-free plate and shell triangles. Details of the derivation of both rotation-free triangular shell element families can be found in [20].
36
37
An extension of the BST element to the non linear analysis of shells was implemented in an explicit dynamic code by Oñate ''et al.'' [25] using an updated Lagrangian formulation and a hypo-elastic constitutive model. Excellent numerical results were obtained for non linear dynamics of shells involving frictional contact situations and sheet stamping problems [17,18,19,25].
38
39
A large strain formulation for the BST element using a total Lagrangian description was presented by Flores and Oñate [23]. A recent extension of this formulation is based on a quadratic interpolation of the geometry of the patch formed by the BST element and the three adjacent triangles [26]. This yields a linear displacement gradient field over the element from which linear membrane strains and  constant curvatures  can be computed within the BST element.
40
41
In this paper the formulation of the BST element is revisited using an assumed strain approach. The content of the paper is the following. First some basic concepts of the formulation of the original BST element using an assumed constant curvature field are given. Next, the basic equations of the non linear thin shell theory chosen based on a total Lagrangian description are presented. Then the non linear formulation of the BST element is presented. This is based on an assumed constant membrane field derived from the linear displacement interpolation and an assumed constant curvature field expressed in terms of the displacements of the nodes of the four element patch using a finite volume type approach. An enhanced version of the BST element is derived using an assumed linear field for the membrane strains and an assumed constant curvature field. Both assumed fields are obtained from the quadratic interpolation of the patch geometry following the ideas presented in [26]. Details of the derivation of the tangent stiffness matrix needed  for a quasi-static implicit solution are given for both the BST and EBST elements. An efficient version of the  EBST element using one single quadrature point for integration of the tangent matrix is  presented. An explicit  scheme adequate for dynamic analysis is  briefly described.
42
43
The efficiency and accuracy of the standard and enhanced versions of the BST element is validated in a number of examples of application including linear and non linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
44
45
==2 FORMULATION OF THE BASIC PLATE TRIANGLE USING AN ASSUMED CONSTANT CURVATURE FIELD==
46
47
Let us consider a patch of four plate three node triangles (Figure [[#img-1|1]]). The nodes 1, 2, and 3 in the main central triangle (M) are marked with circles while the external nodes in the patch (nodes 4, 5 and 6) are marked with squares. Mid side points in the central triangle are also marked with smaller squares. Kirchhoff's thin plate theory will be assumed to hold. The deflection is linearly interpolated within each three node triangle in the standard finite element manner as
48
49
{| class="formulaSCP" style="width: 100%; text-align: left;" 
50
|-
51
| 
52
{| style="text-align: left; margin:auto;width: 100%;" 
53
|-
54
| style="text-align: center;" | <math>w=\sum _{i=1}^{3}L_{i}^{e}w_{i}^{e}</math>
55
|}
56
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
57
|}
58
59
where <math display="inline">L_{i}^{e}</math> are the linear shape functions (area coordinates) of the three node triangle, <math display="inline">w_{i}^{e}</math> are nodal deflections and superindex <math display="inline">e</math> denotes element values.
60
61
<div id='img-1'></div>
62
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
63
|-
64
|[[Image:Draft_Samper_165783789-test-fig1.png|454px|Patch of three node triangular elements including the central triangle (M) and three adjacent triangles (1, 2 and 3)]]
65
|- style="text-align: center; font-size: 75%;"
66
| colspan="1" | '''Figure 1:''' Patch of three node triangular elements including the central triangle (M) and three adjacent triangles (1, 2 and 3)
67
|}
68
69
The curvatures  within the central triangle can be expressed in terms of a constant assumed curvatures field as
70
71
<span id="eq-2"></span>
72
{| class="formulaSCP" style="width: 100%; text-align: left;" 
73
|-
74
| 
75
{| style="text-align: left; margin:auto;width: 100%;" 
76
|-
77
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\left\{ \begin{array}{c}\kappa _{xx}\\ \kappa _{yy}\\ \kappa _{xy}\end{array} \right\} =\hat{\boldsymbol \kappa } </math>
78
|}
79
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
80
|}
81
82
where <math display="inline">{\boldsymbol \kappa }</math> is the curvature vector and <math display="inline">\hat{\boldsymbol \kappa }</math> is the assumed constant curvature field defined as
83
84
<span id="eq-3"></span>
85
{| class="formulaSCP" style="width: 100%; text-align: left;" 
86
|-
87
| 
88
{| style="text-align: left; margin:auto;width: 100%;" 
89
|-
90
| style="text-align: center;" | <math>\hat{\boldsymbol \kappa }={\frac{1}{A_{M}}}\int \int _{A_{M}}\left[ -{\frac{\partial ^{2}w}{\partial x^{2}}},-{\frac{\partial ^{2}w}{\partial y^{2}}},-2{\frac{\partial ^{2}w}{\partial x\partial y}}\right] ^{T}dA </math>
91
|}
92
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
93
|}
94
95
where <math display="inline">A_{M}</math> is the area of the central triangle in Figure [[#img-1|1]].
96
97
Integrating by parts Eq.([[#eq-3|3]]) and substituting the resulting expression for <math display="inline">\hat{\boldsymbol \kappa }</math> into Eq.([[#eq-2|2]]) gives the constant curvature field within the element as
98
99
<span id="eq-4"></span>
100
{| class="formulaSCP" style="width: 100%; text-align: left;" 
101
|-
102
| 
103
{| style="text-align: left; margin:auto;width: 100%;" 
104
|-
105
| style="text-align: center;" | <math>{\boldsymbol \kappa }={\frac{1}{A_{M}}}{\displaystyle \oint _{\Gamma _{M}}} \left[ \begin{array}{cc}-n_{x} & 0\\ 0 & -n_{y}\\ -n_{y} & -n_{x}\end{array} \right] \left\{ \begin{array}{c}\dfrac{\partial w}{\partial x}\\ \dfrac{\partial w}{\partial y}\end{array} \right\} d\Gamma </math>
106
|}
107
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
108
|}
109
110
where <math display="inline">\Gamma _{M}</math> is the boundary of the central triangle and <math display="inline">\mathbf{n}=\left(n_{x},n_{y} \right)</math> is the boundary normal. Equation ([[#eq-4|4]]) defines the assumed constant curvature field within the central triangle in terms of the deflection gradient along the sides of the triangle. Equation (4) can be found to be equivalent to the standard conservation laws used in finite volume procedures as described in [27,28].
111
112
The computation of the line integral in Eq.([[#eq-4|4]]) poses a difficulty as the deflection gradient is discontinuous along the element sides. A simple method to overcome this problem is to compute the deflection gradient at the element sides as the average values of the gradient contributed by the two triangles sharing the side [20,28]. Following this idea the constant curvature field with the element is computed as
113
114
<span id="eq-5"></span>
115
{| class="formulaSCP" style="width: 100%; text-align: left;" 
116
|-
117
| 
118
{| style="text-align: left; margin:auto;width: 100%;" 
119
|-
120
| style="text-align: center;" | <math>{\boldsymbol \kappa } ={\frac{1}{A_{M}}}\sum _{j=1}^{3}{\frac{l_{j}^{M}}{2}}\left[ \begin{array}{cc}-n_{x}^{j} & 0\\ 0 & -n_{y}^{j}\\ -n_{y}^{j} & -n_{x}^{j}\end{array} \right] ^{M}\left[ {\nabla }L_{i}^{M}w_{i}^{M}+{\nabla }L_{i}^{j}w_{i}^{j}\right]</math>
121
|-
122
| style="text-align: center;" | <math> = \sum _{j=1}^{3}\left[ \begin{array}{cc}L_{j,x}^{M} & 0           \\ 0           & L_{j,y}^{M} \\ L_{j,y}^{M} & L_{j,x}^{M}\end{array} \right] \left[ {\nabla }L_{i}^{M}w_{i}^{M}+{\nabla }L_{i}^{j}w_{i}^{j}\right] =\mathbf{B}_{b}\mathbf{w}^{p} </math>
123
|}
124
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
125
|}
126
127
where <math display="inline">\mathbf{w}^{p}=[w_{1},w_{2},w_{3},w_{4},w_{5},w_{6}]^{T}</math> is the deflection vector of the six  nodes in the patch. In Eq.([[#eq-5|5]]) the sum extends over the three sides of the central element <math display="inline">M</math>, <math display="inline">l_{j}^{M}</math> are the lengths of the element sides and superindexes <math display="inline">M</math> and <math display="inline">j</math> refer to the central triangle and to each of the adjacent elements, respectively. The standard sum convention for repeated indexes is used. Note that triangular area coordinates satisfy
128
129
<span id="eq-6"></span>
130
{| class="formulaSCP" style="width: 100%; text-align: left;" 
131
|-
132
| 
133
{| style="text-align: left; margin:auto;width: 100%;" 
134
|-
135
| style="text-align: center;" | <math>\nabla L_{i}^{M}=\left[ \begin{array}{c}L_{i,x}^{M}\\ L_{i,y}^{M}\end{array} \right] =-\frac{l_{i}^{M}}{2A_{M}}\left[ \begin{array}{c}n_{x}^{i}\\ n_{y}^{i}\end{array} \right]  </math>
136
|}
137
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
138
|}
139
140
Note also that the constant curvature field is expressed in terms of the six nodes of the four element patch linked to the element <math display="inline">M</math>. The expression of the <math display="inline">3\times{6}</math> <math display="inline">\mathbf{B}_{b}</math> matrix can be found in [14,20].
141
142
The virtual work expression is written as
143
144
<span id="eq-7"></span>
145
{| class="formulaSCP" style="width: 100%; text-align: left;" 
146
|-
147
| 
148
{| style="text-align: left; margin:auto;width: 100%;" 
149
|-
150
| style="text-align: center;" | <math>\int \int _{A}\delta{\boldsymbol \kappa }^{T}\mathbf{m}\,dA=\int \int _{A}\delta w\,q\,dA </math>
151
|}
152
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
153
|}
154
155
where '''m''' is the bending moment field related to the curvatures by the standard constitutive equations
156
157
{| class="formulaSCP" style="width: 100%; text-align: left;" 
158
|-
159
| 
160
{| style="text-align: left; margin:auto;width: 100%;" 
161
|-
162
| style="text-align: center;" | <math>\mathbf{m}=[M_{xx},M_{yy},M_{xy}]^T = \mathbf{D}_{b}{\boldsymbol \kappa }\quad ,\quad  \mathbf{D}_{b}={\frac{h^{3}}{12}} {\frac{E}{(1-\nu ^{2})}}\left[ \begin{array}{ccc}1 & \nu & 0\\ \nu & 1 & 0\\ 0 & 0 & \frac{1-\nu }{2}\end{array} \right]=\frac{h^3}{12}\mathbf{D} </math>
163
|}
164
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
165
|}
166
167
In Eqs.(7) and (8) <math display="inline">h</math> is the plate thickness, <math display="inline">E</math> is the Young's modulus, <math display="inline">\nu </math> is the Poisson's ratio, <math display="inline">\delta{\boldsymbol \kappa }</math> and <math display="inline">\delta w</math> are the virtual curvatures and the virtual deflection, respectively, and <math display="inline">q</math> is a distributed vertical load.
168
169
Substituting the approximation for the vertical deflection and the assumed constant curvature field into ([[#eq-7|7]]) leads to the standard linear system of equations
170
171
{| class="formulaSCP" style="width: 100%; text-align: left;" 
172
|-
173
| 
174
{| style="text-align: left; margin:auto;width: 100%;" 
175
|-
176
| style="text-align: center;" | <math>\mathbf{K}\mathbf{w}=\mathbf{f}</math>
177
|}
178
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
179
|}
180
181
where the stiffness matrix <math display="inline">\mathbf{K}</math> and the equivalent nodal force <math display="inline">\mathbf{f}</math> can be found by assembly of the element contributions given by
182
183
{| class="formulaSCP" style="width: 100%; text-align: left;" 
184
|-
185
| 
186
{| style="text-align: left; margin:auto;width: 100%;" 
187
|-
188
| style="text-align: center;" | <math>\mathbf{K}^{e}=\int \int _{A^{e}}\mathbf{B}_{b}^{T}\mathbf{D}_{b}\mathbf{B}_{b}dA </math>
189
|}
190
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
191
|}
192
193
{| class="formulaSCP" style="width: 100%; text-align: left;" 
194
|-
195
| 
196
{| style="text-align: left; margin:auto;width: 100%;" 
197
|-
198
| style="text-align: center;" | <math>\mathbf{f}^{e}=\int \int _{A^{e}}q\left\{ \begin{array}{c}L_{1}^e\\ L_{2}^e\\ L_{3}^e\end{array} \right\} dA </math>
199
|}
200
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
201
|}
202
203
Note that <math display="inline">\mathbf{K}^{e}</math> is  a <math display="inline">6\times{6}</math> matrix, whereas <math display="inline">\mathbf{f}^{e}</math> has the same structure than for the standard linear triangle. The explicit form of <math display="inline">\mathbf{K}^{e}</math> and <math display="inline">\mathbf{f}^{e}</math> can be found in [14].
204
205
The resulting Basic Plate Triangle (BPT) has one degree of freedom per node and a wider bandwidth than the standard three node triangles as each triangular element is linked to its three neighbours through Eq.([[#eq-5|5]]).
206
207
Examples of the good performance of the BPT element for analysis of thin plates can be found in [14,20]. The extension of the BPT element to the analysis of shells yields the Basic Shell Triangle (BST) [20]. Different applications of the BST element to linear and non linear analysis of shells are reported in [14,17&#8211;20,23,25,26].
208
209
The ideas used to derive the BPT element will now be extended to derive two families of Basic Shell Triangles using a total Lagrangian description.
210
211
==3 BASIC THIN SHELL EQUATIONS USING A TOTAL LAGRANGIAN FORMULATION==
212
213
===3.1 Shell kinematics===
214
215
A summary of the most relevant hypothesis related to the kinematic behaviour of a thin shell are presented. Further details may be found in the wide literature dedicated to this field [8,9].
216
217
Consider a shell with undeformed middle surface occupying the domain <math display="inline">\Omega ^{0}</math> in <math display="inline">R^{3}</math> with a boundary <math display="inline">\Gamma ^{0}</math>. At each point of the middle surface a thickness <math display="inline">h^{0}</math> is defined. The positions <math display="inline">\mathbf{x}^{0}</math> and <math display="inline">\mathbf{x}</math> of a point in the undeformed and the deformed configurations can be respectively written as a function of the coordinates of the middle surface <math display="inline">{\boldsymbol \varphi }</math> and the normal <math display="inline">\mathbf{t}_{3}</math> at the point as
218
219
{| class="formulaSCP" style="width: 100%; text-align: left;" 
220
|-
221
| 
222
{| style="text-align: left; margin:auto;width: 100%;" 
223
|-
224
| style="text-align: center;" | <math>\mathbf{x}^{0}\left( \xi _{1},\xi _{2},\zeta \right)    ={\boldsymbol \varphi }^{0}\left( \xi _{1},\xi _{2}\right) +\lambda \mathbf{t}_{3}^{0}</math>
225
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
226
|-
227
| style="text-align: center;" | <math> \mathbf{x}\left( \xi _{1},\xi _{2},\zeta \right)    ={\boldsymbol \varphi }\left( \xi  _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}</math>
228
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
229
|}
230
|}
231
232
where <math display="inline">\xi _{1},\xi _{2}</math> are arc-length curvilinear principal coordinates defined over the middle surface of the shell and <math display="inline">\zeta </math> is the distance from the point to the middle surface in the undeformed configuration. The product <math display="inline">\zeta \lambda </math> is the distance from the point to the middle surface measured on the deformed configuration. The parameter <math display="inline">\lambda </math> relates the thickness at the present and initial configurations as:
233
234
{| class="formulaSCP" style="width: 100%; text-align: left;" 
235
|-
236
| 
237
{| style="text-align: left; margin:auto;width: 100%;" 
238
|-
239
| style="text-align: center;" | <math>\lambda =\frac{h}{h^{0}}</math>
240
|}
241
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
242
|}
243
244
This approach implies a constant strain in the normal direction. Parameter <math display="inline">\lambda </math> will not be considered as an independent variable  and will be computed from purely geometrical considerations (''isochoric'' behaviour) via a staggered iterative update. Besides this, the usual plane stress condition of thin shell theory will be adopted.
245
246
A convective system is computed at each point as
247
248
{| class="formulaSCP" style="width: 100%; text-align: left;" 
249
|-
250
| 
251
{| style="text-align: left; margin:auto;width: 100%;" 
252
|-
253
| style="text-align: center;" | <math>\mathbf{g}_{i}\left( \mathbf{\xi }\right) =\frac{\partial \mathbf{x}}{\partial \xi _{i}}\qquad i=1,2,3 </math>
254
|}
255
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
256
|}
257
258
{| class="formulaSCP" style="width: 100%; text-align: left;" 
259
|-
260
| 
261
{| style="text-align: left; margin:auto;width: 100%;" 
262
|-
263
| style="text-align: center;" | <math>\mathbf{g}_{\alpha }\left( \mathbf{\xi }\right)    =\frac{\partial \left( \mathbf{\boldsymbol \varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \xi _{\alpha }}={\boldsymbol \varphi }_{^{\prime }\alpha }+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }\alpha }\quad \alpha=1,2</math>
264
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
265
|-
266
| style="text-align: center;" | <math> \mathbf{g}_{3}\left( \mathbf{\xi }\right)    =\frac{\partial \left( \mathbf{\boldsymbol \varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \zeta }=\lambda \mathbf{t}_{3}</math>
267
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
268
|}
269
|}
270
271
This can be particularized for the points on the middle surface as
272
273
{| class="formulaSCP" style="width: 100%; text-align: left;" 
274
|-
275
| 
276
{| style="text-align: left; margin:auto;width: 100%;" 
277
|-
278
| style="text-align: center;" | <math>\mathbf{a}_{\alpha }    =\mathbf{g}_{\alpha }\left( \zeta=0\right) ={\boldsymbol \varphi  }_{^{\prime }\alpha }</math>
279
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
280
|-
281
| style="text-align: center;" | <math> \mathbf{a}_{3}    =\mathbf{g}_{3}\left( \zeta=0\right) =\lambda  \mathbf{t}_{3}</math>
282
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
283
|}
284
|}
285
286
The covariant (first fundamental form) metric tensor of the middle surface is
287
288
<span id="eq-20"></span>
289
{| class="formulaSCP" style="width: 100%; text-align: left;" 
290
|-
291
| 
292
{| style="text-align: left; margin:auto;width: 100%;" 
293
|-
294
| style="text-align: center;" | <math>a_{\alpha \beta }=\mathbf{a}_{\alpha }\cdot \mathbf{a}_{\beta } = {\boldsymbol \varphi }_{^{\prime }\alpha } \cdot  {\boldsymbol \varphi }_{^{\prime }\beta }  </math>
295
|}
296
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
297
|}
298
299
The Green-Lagrange strain vector of the middle surface points (membrane strains) is defined as
300
301
{| class="formulaSCP" style="width: 100%; text-align: left;" 
302
|-
303
| 
304
{| style="text-align: left; margin:auto;width: 100%;" 
305
|-
306
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=[\varepsilon _{m_{11}},\varepsilon _{m_{12}},\varepsilon _{m_{12}}]^{T}</math>
307
|}
308
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
309
|}
310
311
with
312
313
<span id="eq-22"></span>
314
{| class="formulaSCP" style="width: 100%; text-align: left;" 
315
|-
316
| 
317
{| style="text-align: left; margin:auto;width: 100%;" 
318
|-
319
| style="text-align: center;" | <math>\varepsilon _{m_{ij}}=\frac{1}{2}(a_{ij}-a_{ij}^{0}) </math>
320
|}
321
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
322
|}
323
324
The curvatures (second fundamental form) of the middle surface are obtained by
325
326
{| class="formulaSCP" style="width: 100%; text-align: left;" 
327
|-
328
| 
329
{| style="text-align: left; margin:auto;width: 100%;" 
330
|-
331
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\frac{1}{2}\left( {\boldsymbol \varphi }_{^{\prime }\alpha }\cdot \mathbf{t}_{3^{\prime }\beta }+{\boldsymbol \varphi }_{^{\prime }\beta }\cdot  \mathbf{t}_{3^{\prime }\alpha }\right) =- \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{{\prime }\alpha \beta }\quad , \quad \alpha ,\beta=1,2 </math>
332
|}
333
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
334
|}
335
336
The deformation gradient tensor is
337
338
{| class="formulaSCP" style="width: 100%; text-align: left;" 
339
|-
340
| 
341
{| style="text-align: left; margin:auto;width: 100%;" 
342
|-
343
| style="text-align: center;" | <math>\mathbf{F=} [{\boldsymbol x}_{{\prime }1},{\boldsymbol x}_{{\prime }2},{\boldsymbol x}_{{\prime }3}]=\left[ \begin{array}{ccc}{\boldsymbol \varphi }_{^{\prime }1}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime  }1} & {\boldsymbol \varphi }_{^{\prime }2}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }2} & \lambda \mathbf{t}_{3}\end{array} \right] </math>
344
|}
345
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
346
|}
347
348
The product <math display="inline">\mathbf{F}^{T}\mathbf{F=U}^{2}=\mathbf{C}</math> (where <math display="inline">\mathbf{U}</math> is the right stretch tensor, and <math display="inline">\mathbf{C}</math> the right Cauchy-Green deformation tensor) can be written as
349
350
<span id="eq-25"></span>
351
{| class="formulaSCP" style="width: 100%; text-align: left;" 
352
|-
353
| 
354
{| style="text-align: left; margin:auto;width: 100%;" 
355
|-
356
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{ccc}a_{11}+2\kappa _{11}\zeta \lambda & a_{12}+2\kappa _{12}\zeta \lambda & 0\\ a_{12}+2\kappa _{12}\zeta \lambda & a_{22}+2\kappa _{22}\zeta \lambda & 0\\ 0 & 0 & \lambda ^{2}\end{array} \right] </math>
357
|}
358
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
359
|}
360
361
In the derivation of expression ([[#eq-25|25]]) the derivatives of the thickness ratio <math display="inline">\lambda _{^{\prime }a}</math> and the terms associated to <math display="inline">\zeta ^{2}</math> have been neglected.
362
363
Equation ([[#eq-25|25]]) shows that <math display="inline">\mathbf{U}^{2}</math> is not a unit tensor at the original configuration for curved surfaces (<math display="inline">\kappa _{ij}^{0}\neq{0}</math>). The changes of curvature of the middle surface are computed by
364
365
{| class="formulaSCP" style="width: 100%; text-align: left;" 
366
|-
367
| 
368
{| style="text-align: left; margin:auto;width: 100%;" 
369
|-
370
| style="text-align: center;" | <math>\chi _{ij}=\kappa _{ij}-\kappa _{ij}^{0}</math>
371
|}
372
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
373
|}
374
375
Note that <math display="inline">\delta \chi _{ij}=\delta \kappa _{ij}</math>.
376
377
For computational convenience the following approximate expression (which is exact for initially flat surfaces) will be adopted
378
379
<span id="eq-27"></span>
380
{| class="formulaSCP" style="width: 100%; text-align: left;" 
381
|-
382
| 
383
{| style="text-align: left; margin:auto;width: 100%;" 
384
|-
385
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{ccc}a_{11}+2\chi _{11}\zeta \lambda & a_{12}+2\chi _{12}\zeta \lambda & 0\\ a_{12}+2\chi _{12}\zeta \lambda & a_{22}+2\chi _{22}\zeta \lambda & 0\\ 0 & 0 & \lambda ^{2}\end{array} \right]  </math>
386
|}
387
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
388
|}
389
390
This expression is useful to compute different Lagrangian strain measures. An advantage of these measures is that they are associated to material fibres, what makes it easy to take into account material anisotropy. It is also useful to compute the eigen decomposition of <math display="inline">\mathbf{U}</math> as
391
392
{| class="formulaSCP" style="width: 100%; text-align: left;" 
393
|-
394
| 
395
{| style="text-align: left; margin:auto;width: 100%;" 
396
|-
397
| style="text-align: center;" | <math>\mathbf{U=}\sum _{\alpha=1}^{3}\lambda _{\alpha } \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\alpha }</math>
398
|}
399
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
400
|}
401
402
where <math display="inline">\lambda _{\alpha }</math> and <math display="inline">\mathbf{r}_{\alpha }</math> are the eigenvalues and eigenvectors of <math display="inline">\mathbf{U}</math>.
403
404
The resultant stresses  (axial forces and moments) are obtained by integrating across the original thickness the second Piola-Kirchhoff stress vector <math display="inline">{ \boldsymbol \sigma }</math> using the actual distance to the middle surface for  evaluating the bending moments. This gives
405
406
<span id="eq-29"></span>
407
{| class="formulaSCP" style="width: 100%; text-align: left;" 
408
|-
409
| 
410
{| style="text-align: left; margin:auto;width: 100%;" 
411
|-
412
| style="text-align: center;" | <math>{\boldsymbol \sigma }_{m}\equiv \lbrack N_{11},N_{22},N_{12}]^{T}=\int _{h^{0}}{\boldsymbol \sigma }d\zeta </math>
413
|}
414
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
415
|}
416
417
<span id="eq-30"></span>
418
{| class="formulaSCP" style="width: 100%; text-align: left;" 
419
|-
420
| 
421
{| style="text-align: left; margin:auto;width: 100%;" 
422
|-
423
| style="text-align: center;" | <math>{\boldsymbol \sigma }_{b}\equiv \lbrack M_{11},M_{22},M_{12}]^{T}=\int _{h^{0}}{\boldsymbol \sigma  }\lambda \zeta  d\zeta </math>
424
|}
425
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
426
|}
427
428
With these values the virtual work can be written as
429
430
<span id="eq-31"></span>
431
{| class="formulaSCP" style="width: 100%; text-align: left;" 
432
|-
433
| 
434
{| style="text-align: left; margin:auto;width: 100%;" 
435
|-
436
| style="text-align: center;" | <math>\int \int _{A^{0}}\left[ \delta{\boldsymbol \varepsilon }_{m}^{T}{\boldsymbol \sigma }_{m}+\delta{\boldsymbol \kappa  }^{T}{\boldsymbol \sigma }_{b}\right] dA=\int \int _{A^{0}}\delta \mathbf{u}^{T}\mathbf{t}dA </math>
437
|}
438
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
439
|}
440
441
where <math display="inline">\delta \mathbf{u}</math> are virtual displacements, <math display="inline">\delta{\boldsymbol \varepsilon }_{m}</math> is the virtual Green-Lagrange membrane strain vector, <math display="inline">\delta{\boldsymbol \kappa }</math> are the virtual curvatures and <math display="inline">\mathbf{t}</math> are the surface loads. Other load types can be easily included into ([[#eq-31|31]]).
442
443
===3.2 Constitutive models===
444
445
In order to treat plasticity at finite strains an adequate stress-strain pair must be used. The Hencky measures will be adopted here. The (logarithmic) strains are defined as
446
447
<span id="eq-32"></span>
448
{| class="formulaSCP" style="width: 100%; text-align: left;" 
449
|-
450
| 
451
{| style="text-align: left; margin:auto;width: 100%;" 
452
|-
453
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=}\left[ \begin{array}{ccc}\varepsilon _{11} & \varepsilon _{21} & 0\\ \varepsilon _{12} & \varepsilon _{22} & 0\\ 0 & 0 & \varepsilon _{33}\end{array} \right] =\sum _{\alpha=1}^{3}\ln \left( \lambda _{\alpha }\right) \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\alpha } </math>
454
|}
455
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
456
|}
457
458
Two types of material models are considered here: an elastic-plastic material associated to thin rolled metal sheets and a hyper-elastic material for rubbers.
459
460
In the case of metals, where the elastic strains are small, the use of a logarithmic strain measure reasonably allows to adopt an additive decomposition of elastic and plastic components as
461
462
<span id="eq-33"></span>
463
{| class="formulaSCP" style="width: 100%; text-align: left;" 
464
|-
465
| 
466
{| style="text-align: left; margin:auto;width: 100%;" 
467
|-
468
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=E}_{\ln }^{e}+\mathbf{E}_{\ln }^{p} </math>
469
|}
470
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
471
|}
472
473
A constant linear relationship between the (plane) Hencky stresses and the logarithmic elastic strains is  adopted giving
474
475
<span id="eq-34"></span>
476
{| class="formulaSCP" style="width: 100%; text-align: left;" 
477
|-
478
| 
479
{| style="text-align: left; margin:auto;width: 100%;" 
480
|-
481
| style="text-align: center;" | <math>\mathbf{T}=\mathbf{D} \mathbf{E}_{\ln }^{e} </math>
482
|}
483
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
484
|}
485
486
These constitutive equations are integrated using a standard return algorithm. The following Mises-Hill [29] yield function with non-linear isotropic hardening is chosen
487
488
{| class="formulaSCP" style="width: 100%; text-align: left;" 
489
|-
490
| 
491
{| style="text-align: left; margin:auto;width: 100%;" 
492
|-
493
| style="text-align: center;" | <math>\left( G+H\right) \;T_{11}^{2}+\left( F+H\right) \;T_{22}^{2}-2H\;T_{11}T_{22}+2N\;T_{12}^{2}=\sigma _0\left(e_{0}+e^{p}\right) ^{n}</math>
494
|}
495
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
496
|}
497
498
where <math display="inline">F, G, H</math> and <math display="inline">N</math> define the non-isotropic shape of the yield surface and the parameters <math display="inline">\sigma _{0}</math>, <math display="inline">e_{0}</math> and <math display="inline">n</math> define its size as a function of the effective plastic strain <math display="inline">e^{p}</math>.
499
500
The simple Mises-Hill yield function  allows, as a first approximation, to treat rolled thin metal sheets with planar and transversal anisotropy.
501
502
For the case of rubbers, the Ogden [30] model extended to the compressible range is considered. The material behaviour is characterized by the strain energy density per unit undeformed volume defined as
503
504
{| class="formulaSCP" style="width: 100%; text-align: left;" 
505
|-
506
| 
507
{| style="text-align: left; margin:auto;width: 100%;" 
508
|-
509
| style="text-align: center;" | <math>\psi =\frac{K}{2}\left( \ln J\right) ^{2}+\sum _{p=1}^{N}\frac{\mu _{p}}{\alpha _{p}}\left[ J^{-\frac{\alpha _{p}}{3}}\left( \sum _{i=1}^{3}\lambda  _{i}^{\alpha _{p}-1}\right) -3\right] </math>
510
|}
511
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
512
|}
513
514
where <math display="inline">K</math> is the bulk modulus of the material, <math display="inline">J</math> is the determinant of <math display="inline">\mathbf{U}</math>, <math display="inline">N</math>, <math display="inline">\mu _{i}</math> and <math display="inline">\alpha _{i}</math> are material parameters, <math display="inline">\mu _{i}\,,\,\alpha _{i}</math> are real numbers such that <math display="inline">\mu _{i}\alpha _{i}>0</math> <math display="inline"> (\forall i=1,N)</math> and <math display="inline">N</math> is a positive integer.
515
516
The stress measures associated to the principal logarithmic strains are denoted by <math display="inline">\beta _{i}</math>. They can be computed noting that
517
518
{| class="formulaSCP" style="width: 100%; text-align: left;" 
519
|-
520
| 
521
{| style="text-align: left; margin:auto;width: 100%;" 
522
|-
523
| style="text-align: center;" | <math>\beta _{i}=\frac{\partial \psi \left(\lambda _\alpha \right) }{\partial \left( \ln \lambda _{i}\right) }=K\left( \ln J\right) +\lambda _{i}\sum _{p=1}^{N}\mu _{p}J^{-\frac{\alpha _{p}}{3}}\left( \lambda _{i}^{\alpha _{p}-1}-\frac{1}{3}\frac{1}{\lambda _{i}}\sum _{j=1}^{3}\lambda _{j}^{\alpha _{p}}\right) </math>
524
|}
525
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
526
|}
527
528
we define now
529
530
{| class="formulaSCP" style="width: 100%; text-align: left;" 
531
|-
532
| 
533
{| style="text-align: left; margin:auto;width: 100%;" 
534
|-
535
| style="text-align: center;" | <math>a^{p}=\sum _{j=1}^{3}\lambda _{j}^{\alpha _{p}}</math>
536
|}
537
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
538
|}
539
540
which gives
541
542
{| class="formulaSCP" style="width: 100%; text-align: left;" 
543
|-
544
| 
545
{| style="text-align: left; margin:auto;width: 100%;" 
546
|-
547
| style="text-align: center;" | <math>\beta _{i}=K\left( \ln J\right) +\sum _{p=1}^{N}\mu _{p}J^{-\frac{\alpha _{p}}{3}}\left( \lambda _{i}^{\alpha _{p}}-\frac{1}{3}a_{p}\right) </math>
548
|}
549
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
550
|}
551
552
The values of <math display="inline">\beta _{i}</math>, expressed in the principal strains directions, allow to evaluate the Hencky stresses in the convective coordinate system as
553
554
{| class="formulaSCP" style="width: 100%; text-align: left;" 
555
|-
556
| 
557
{| style="text-align: left; margin:auto;width: 100%;" 
558
|-
559
| style="text-align: center;" | <math>\mathbf{T}=\sum _{i=1}^{3}\beta _{i}\;\mathbf{r}_{i}\otimes \mathbf{r}_{i}</math>
560
|}
561
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
562
|}
563
564
The Hencky stress tensor <math display="inline">\mathbf{T}</math> can be easily particularized for the plane stress case.
565
566
We define the rotated Hencky and second Piola-Kirchhoff stress tensors as
567
568
{| class="formulaSCP" style="width: 100%; text-align: left;" 
569
|-
570
| 
571
{| style="text-align: left; margin:auto;width: 100%;" 
572
|-
573
| style="text-align: center;" | <math>\mathbf{T}_{L}    =\mathbf{R}_{L}^{T}\;\mathbf{T\;R}_{L}</math>
574
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
575
|-
576
| style="text-align: center;" | <math> \mathbf{S}_{L}    =\mathbf{R}_{L}^{T}\;\mathbf{S\;R}_{L}</math>
577
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
578
|}
579
|}
580
581
where <math display="inline">\mathbf{R}_{L}</math> is the rotation tensor obtained from the eigenvectors of <math display="inline">\mathbf{U}</math> given by
582
583
{| class="formulaSCP" style="width: 100%; text-align: left;" 
584
|-
585
| 
586
{| style="text-align: left; margin:auto;width: 100%;" 
587
|-
588
| style="text-align: center;" | <math>\mathbf{R}_{L}=\left[ \begin{array}{ccc}\mathbf{r}_{1}\quad ,& \mathbf{r}_{2} \quad ,& \mathbf{r}_{3}\end{array} \right] </math>
589
|}
590
| style="width: 5px;text-align: right;white-space: nowrap;" | (43)
591
|}
592
593
The relationship between the rotated Hencky and Piola-Kirchhoff stresses is <math display="inline">\left(\alpha , \beta=1,2 \right)</math>
594
595
{| class="formulaSCP" style="width: 100%; text-align: left;" 
596
|-
597
| 
598
{| style="text-align: left; margin:auto;width: 100%;" 
599
|-
600
| style="text-align: center;" | <math>\left[ S_{L}\right] _{\alpha \alpha }    =\frac{1}{\lambda _{\alpha }^{2}}\left[ T_{L}\right] _{\alpha \alpha }</math>
601
|-
602
| style="text-align: center;" | <math> \left[ S_{L}\right] _{\alpha \beta }    =\frac{\ln \left( \lambda _{\alpha  }/\lambda _{\beta }\right) }{\frac{1}{2}\left( \lambda _{\alpha }^{2}-\lambda _{\beta }^{2}\right) }\left[ T_{L}\right] _{\alpha \beta }</math>
603
|}
604
| style="width: 5px;text-align: right;white-space: nowrap;" | (44)
605
|}
606
607
The second Piola-Kirchhoff stress tensor can be computed by
608
609
{| class="formulaSCP" style="width: 100%; text-align: left;" 
610
|-
611
| 
612
{| style="text-align: left; margin:auto;width: 100%;" 
613
|-
614
| style="text-align: center;" | <math>\mathbf{S=}\sum _{\alpha=1}^{2}\sum _{\beta=1}^{2}\left[ S_{L}\right] _{\alpha \beta } \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\beta }</math>
615
|}
616
| style="width: 5px;text-align: right;white-space: nowrap;" | (45)
617
|}
618
619
The second Piola-Kirchhoff stress vector <math display="inline">{\boldsymbol \sigma }</math> of Eqs.([[#eq-29|29]]&#8211;[[#eq-30|30]]) can be readily extracted from the <math display="inline">\mathbf{S}</math> tensor.
620
621
==4 TOTAL LAGRANGIAN FORMULATION OF THE BASIC SHELL TRIANGLE==
622
623
===4.1 Definition of the element geometry and discretization of the displacement field===
624
625
The rotation-free BST element has three nodes with three displacement degrees of freedom at each node. As for the BPT element a patch is defined by the central triangle  and the three adjacent elements (Figure [[#img-1|1]]). This four elements patch helps to define the curvature field within the central triangle (the BST element) in terms of the displacements of the six patch nodes.
626
627
The node-ordering in the patch is the following (see Figure [[#img-1|1]])
628
629
* The nodes in the main element (M) are numbered locally as 1, 2 and 3. They are defined counter-clockwise around the positive normal.
630
631
* The sides in the main element are numbered locally as 1, 2, and 3. They are defined by the local node opposite to the side.
632
633
* The adjacent elements (which are part of the patch) are numbered with the number associated to the common side.
634
635
* The extra nodes of the patch are numbered locally as 4, 5 and 6, corresponding to nodes on adjacent elements opposite to sides 1, 2  and 3 respectively.
636
637
* The connectivities in the adjacent elements are defined beginning with the extra node as shown in Table 1.
638
639
640
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
641
|+ style="font-size: 75%;" |Table. 1 Element numbering and nodal connectivities of the four elements patch of Figure 1.
642
|- style="border-top: 2px solid;"
643
| style="border-left: 2px solid;border-right: 2px solid;" |  '''Element''' 
644
| style="border-left: 2px solid;border-right: 2px solid;" | N1 
645
| style="border-left: 2px solid;border-right: 2px solid;" | N2 
646
| style="border-left: 2px solid;border-right: 2px solid;" | N3
647
|- style="border-top: 2px solid;"
648
| style="border-left: 2px solid;border-right: 2px solid;" |  '''M''' 
649
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
650
| style="border-left: 2px solid;border-right: 2px solid;" | 2 
651
| style="border-left: 2px solid;border-right: 2px solid;" | 3
652
|- style="border-top: 2px solid;"
653
| style="border-left: 2px solid;border-right: 2px solid;" |  '''1''' 
654
| style="border-left: 2px solid;border-right: 2px solid;" | 4 
655
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
656
| style="border-left: 2px solid;border-right: 2px solid;" | 2
657
|- style="border-top: 2px solid;"
658
| style="border-left: 2px solid;border-right: 2px solid;" |  '''2''' 
659
| style="border-left: 2px solid;border-right: 2px solid;" | 5 
660
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
661
| style="border-left: 2px solid;border-right: 2px solid;" | 3
662
|- style="border-top: 2px solid;border-bottom: 2px solid;"
663
| style="border-left: 2px solid;border-right: 2px solid;" |  '''3''' 
664
| style="border-left: 2px solid;border-right: 2px solid;" | 6 
665
| style="border-left: 2px solid;border-right: 2px solid;" | 2 
666
| style="border-left: 2px solid;border-right: 2px solid;" | 1
667
668
|}
669
670
The following local Cartesian coordinate system is defined for the patch. In the main element the unit vector <math display="inline">\mathbf{t}_{1}</math>(associated to the local coordinate <math display="inline">\xi _{1}</math>) is directed along side 3 (from node 1 to node 2), <math display="inline">\mathbf{t}_{3}</math> (associated to the coordinate <math display="inline">\zeta </math>) is the unit normal to the plane, and finally <math display="inline">\mathbf{t}_{2}=\mathbf{t}_{3}\times \mathbf{t}_{1}</math> (associated to the coordinate <math display="inline">\xi _{2}</math>).
671
672
The coordinates and the displacements are linearly interpolated within each three node triangle in the mesh in the standard manner, i.e.
673
674
{| class="formulaSCP" style="width: 100%; text-align: left;" 
675
|-
676
| 
677
{| style="text-align: left; margin:auto;width: 100%;" 
678
|-
679
| style="text-align: center;" | <math>{\boldsymbol \varphi } = \sum \limits _{i=1}^{3} L_{i}^e {\boldsymbol \varphi }_{i} = \sum \limits _{i=1}^{3} L_{i}^e ({\boldsymbol \varphi }^{0}_{i} + \mathbf{u}_{i}) </math>
680
|}
681
| style="width: 5px;text-align: right;white-space: nowrap;" | (46)
682
|}
683
684
{| class="formulaSCP" style="width: 100%; text-align: left;" 
685
|-
686
| 
687
{| style="text-align: left; margin:auto;width: 100%;" 
688
|-
689
| style="text-align: center;" | <math>\mathbf{u}=\left\{ \begin{array}{c}u_{1}\\ u_{2}\\ u_{3}\end{array} \right\} =\sum \limits _{i=1}^{3}L_{i}^e\mathbf{u}_{i}\quad ,\quad \mathbf{u}_{i}=\left\{ \begin{array}{c}u_{1}\\ u_{2}\\ u_{3}\end{array} \right\} _{i}</math>
690
|}
691
| style="width: 5px;text-align: right;white-space: nowrap;" | (47)
692
|}
693
694
In above <math display="inline">{\boldsymbol \varphi }_{i}</math> and <math display="inline">\mathbf{u}_{i}</math> contain respectively the three coordinates and the three displacements of node <math display="inline">i</math>.
695
696
===4.2 Computation of the membrane strains===
697
698
The Green-Lagrange membrane strains are expressed by substituting the linear displacement interpolation into Eq.([[#eq-22|22]]). This gives
699
700
{| class="formulaSCP" style="width: 100%; text-align: left;" 
701
|-
702
| 
703
{| style="text-align: left; margin:auto;width: 100%;" 
704
|-
705
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\frac{1}{2}\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}\cdot \boldsymbol \varphi _{^{\prime  }1}-1 \\ \boldsymbol \varphi _{^{\prime }2}\cdot \boldsymbol \varphi _{^{\prime  }2}-1 \\ 2\boldsymbol \varphi _{^{\prime }1}\cdot \boldsymbol \varphi _{^{\prime }2}\end{array}\right] </math>
706
|}
707
| style="width: 5px;text-align: right;white-space: nowrap;" | (48)
708
|}
709
710
The membrane strain field is constant within each triangle similarly as in the standard CST element. The variation of the membrane strains is  obtained by
711
712
{| class="formulaSCP" style="width: 100%; text-align: left;" 
713
|-
714
| 
715
{| style="text-align: left; margin:auto;width: 100%;" 
716
|-
717
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\mathbf{B}_{m}\delta \mathbf{a}^{e}</math>
718
|}
719
| style="width: 5px;text-align: right;white-space: nowrap;" | (49)
720
|}
721
722
with
723
724
<span id="eq-50"></span>
725
{| class="formulaSCP" style="width: 100%; text-align: left;" 
726
|-
727
| 
728
{| style="text-align: left; margin:auto;width: 100%;" 
729
|-
730
| style="text-align: center;" | <math>\mathbf{B}_{m}=[\mathbf{B}_{m_{1}},\mathbf{B}_{m_{2}},\mathbf{B}_{m_{3}}]\quad ,\quad \mathbf{a}^{e}=\left\{ \begin{array}{c}\mathbf{u}_{1}\\ \mathbf{u}_{2}\\ \mathbf{u}_{3}\end{array} \right\} </math>
731
|}
732
| style="width: 5px;text-align: right;white-space: nowrap;" | (50)
733
|}
734
735
and
736
737
<span id="eq-51"></span>
738
{| class="formulaSCP" style="width: 100%; text-align: left;" 
739
|-
740
| 
741
{| style="text-align: left; margin:auto;width: 100%;" 
742
|-
743
| style="text-align: center;" | <math>\begin{array}{c}\\ \mathbf{B}_{m_{i}}\\ 3\times{3} \end{array} =\left[ \begin{array}{c}L_{i,1}^M\boldsymbol \varphi _{^{\prime }1}^{T}\\ L_{i,2}^M\boldsymbol \varphi _{^{\prime }2}^{T}\\ L_{i,1}^M\boldsymbol \varphi _{^{\prime }2}^{T}+L_{i,2}^M\boldsymbol \varphi _{^{\prime }1}^{T}\end{array} \right]  </math>
744
|}
745
| style="width: 5px;text-align: right;white-space: nowrap;" | (51)
746
|}
747
748
===4.3 Computation of bending strains (curvatures)===
749
750
We will assume the following constant curvature field within each element
751
752
{| class="formulaSCP" style="width: 100%; text-align: left;" 
753
|-
754
| 
755
{| style="text-align: left; margin:auto;width: 100%;" 
756
|-
757
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\hat{\kappa }_{\alpha \beta }</math>
758
|}
759
| style="width: 5px;text-align: right;white-space: nowrap;" | (52)
760
|}
761
762
where <math display="inline">\hat{\kappa }_{\alpha \beta }</math> is the assumed constant curvature field defined by
763
764
<span id="eq-53"></span>
765
{| class="formulaSCP" style="width: 100%; text-align: left;" 
766
|-
767
| 
768
{| style="text-align: left; margin:auto;width: 100%;" 
769
|-
770
| style="text-align: center;" | <math>\hat{\kappa }_{\alpha \beta }=-\frac{1}{A_{M}^{0}}\int _{A_{M}^{0}}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }\beta \alpha }\;dA^{0} </math>
771
|}
772
| style="width: 5px;text-align: right;white-space: nowrap;" | (53)
773
|}
774
775
where <math display="inline">A_{M}^{0}</math> is the area (in the original configuration) of the central element in the patch.
776
777
Substituting Eq.(53) into (52) and integrating by parts the area integral gives the curvature vector within the element in terms of the following line integral
778
779
<span id="eq-54"></span>
780
{| class="formulaSCP" style="width: 100%; text-align: left;" 
781
|-
782
| 
783
{| style="text-align: left; margin:auto;width: 100%;" 
784
|-
785
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\left\{ \begin{array}{c}\kappa _{11}\\ \kappa _{22}\\ 2\kappa _{12}\end{array} \right\} =\frac{1}{A_{M}^{0}}{\displaystyle \oint _{\Gamma _{M}^{0}}} \left[ \begin{array}{cc}-n_{1} & 0\\ 0 & -n_{2}\\ -n_{2} & -n_{1}\end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2}\end{array} \right] d\Gamma </math>
786
|}
787
| style="width: 5px;text-align: right;white-space: nowrap;" | (54)
788
|}
789
790
where <math display="inline">n_{i}</math> are the components (in the local system) of the normals to the element sides in the initial configuration <math display="inline">\Gamma _{M}^{0}</math>.
791
792
For the definition of the normal vector <math display="inline">\mathbf{t}_{3}</math>, the linear interpolation over the central element is used. In this case the tangent plane components are
793
794
{| class="formulaSCP" style="width: 100%; text-align: left;" 
795
|-
796
| 
797
{| style="text-align: left; margin:auto;width: 100%;" 
798
|-
799
| style="text-align: center;" | <math>{\boldsymbol \varphi }_{^{\prime }\alpha } = \sum _{i=1}^{3} L_{i,\alpha }^M {\boldsymbol \varphi }_{i}\quad ,\quad \alpha=1,2 </math>
800
|}
801
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
802
|}
803
804
<span id="eq-56"></span>
805
{| class="formulaSCP" style="width: 100%; text-align: left;" 
806
|-
807
| 
808
{| style="text-align: left; margin:auto;width: 100%;" 
809
|-
810
| style="text-align: center;" | <math>\mathbf{t}_{3}=\frac{{\boldsymbol \varphi }_{\prime{1}}\times{\boldsymbol \varphi }_{\prime{2}}}{\left\vert {\boldsymbol \varphi }_{\prime{1}}\times{\boldsymbol \varphi }_{\prime{2}}\right\vert }=\lambda \;{\boldsymbol \varphi  }_{1}\times{\boldsymbol \varphi }_{2} </math>
811
|}
812
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
813
|}
814
815
From these expressions it is also possible to compute in the original configuration the element area <math display="inline">A^{0}_{M}</math>, the outer normals <math display="inline">\left( n_{1},n_{2}\right) ^{i}</math> at each side and the side lengths <math display="inline">l_{i}^{M}</math>. Equation ([[#eq-56|56]]) also allows to evaluate the thickness ratio <math display="inline">\lambda </math> in the deformed configuration and the actual normal <math display="inline">\mathbf{t}_{3}</math>.
816
817
In order to compute the line integral of equation ([[#eq-54|54]]) the averaging procedure described in Section 2 is used. Hence along each side of the triangle the average value of <math display="inline">{\boldsymbol \varphi }_{^{\prime }\alpha }</math> between the main triangle and the adjacent one is taken leading to
818
819
{| class="formulaSCP" style="width: 100%; text-align: left;" 
820
|-
821
| 
822
{| style="text-align: left; margin:auto;width: 100%;" 
823
|-
824
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\frac{1}{A^{0}_{M}}\sum _{i=1}^{3} l_{i}^{M} \left[ \begin{array}{cc}-n_{1}^{i} &  0         \\          0 & -n_{2}^{i} \\ -n_{2}^{i} & -n_{1}^{i} \end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot \frac{1}{2}\left( \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{M}+\mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\right)\\ \mathbf{t}_{3}\cdot \frac{1}{2}\left( \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{M}+\mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\right) \end{array} \right] </math>
825
|}
826
| style="width: 5px;text-align: right;white-space: nowrap;" | (57)
827
|}
828
829
where the sum extends over the three elements adjacent to the central triangle <math display="inline">M</math>.
830
831
Noting that <math display="inline">\mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }\alpha }^{M}=0</math> in the main triangle and using ([[#eq-6|6]]) it can be found <span id='citeF-23'></span>[[#cite-23|[23]]]
832
833
<span id="eq-58"></span>
834
{| class="formulaSCP" style="width: 100%; text-align: left;" 
835
|-
836
| 
837
{| style="text-align: left; margin:auto;width: 100%;" 
838
|-
839
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\sum _{i=1}^{3}\left[ \begin{array}{cc}L_{i,1}^M & 0 \\         0 & L_{i,2}^M \\ L_{i,2}^M & L_{i,1}^M \end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\end{array} \right] </math>
840
|}
841
| style="width: 5px;text-align: right;white-space: nowrap;" | (58)
842
|}
843
844
This can be seen as the projection of the local derivatives of <math display="inline">{\boldsymbol \varphi }</math> in the adjacent triangles (<math display="inline">\mathbf{\boldsymbol \varphi }_{^{\prime }\alpha }^{i}</math> where index <math display="inline">i</math> denotes values associated to the adjacent elements) over the normal to the main triangle <math display="inline">\mathbf{t}_{3}</math>. As the triangles have a common side, <math display="inline">\mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }s}^{i}=0</math>, where <math display="inline">\mathbf{\boldsymbol \varphi }_{^{\prime }s}^{i}</math> is the derivative of <math display="inline">{\boldsymbol \varphi }</math> along the side. Hence only the derivative of <math display="inline">{\boldsymbol \varphi }</math>  along the side normal (<math display="inline">\mathbf{\boldsymbol \varphi }_{^{\prime }n}^{i}</math>) has non-zero component over <math display="inline">\mathbf{t}_{3}</math>. This gives
845
846
<span id="eq-59"></span>
847
{| class="formulaSCP" style="width: 100%; text-align: left;" 
848
|-
849
| 
850
{| style="text-align: left; margin:auto;width: 100%;" 
851
|-
852
| style="text-align: center;" | <math>\left[ \begin{array}{c}\mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\end{array} \right] =\left( \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime  }n}^{i}\right)\mathbf{n}^{i} </math>
853
|}
854
| style="width: 5px;text-align: right;white-space: nowrap;" | (59)
855
|}
856
857
An alternative form to express the curvatures, which is useful when their variations are needed, is to define the vectors
858
859
<span id="eq-60"></span>
860
{| class="formulaSCP" style="width: 100%; text-align: left;" 
861
|-
862
| 
863
{| style="text-align: left; margin:auto;width: 100%;" 
864
|-
865
| style="text-align: center;" | <math>\mathbf{h}_{ij}=\sum _{k=1}^{3}\frac{1}{2}\left( L_{k,i}^{M}{\boldsymbol \varphi  }_{^{\prime }j}^{k}+L_{k,j}^{M}{\boldsymbol \varphi }_{\prime i}^{k}\right) </math>
866
|}
867
| style="width: 5px;text-align: right;white-space: nowrap;" | (60)
868
|}
869
870
This gives
871
872
<span id="eq-61"></span>
873
{| class="formulaSCP" style="width: 100%; text-align: left;" 
874
|-
875
| 
876
{| style="text-align: left; margin:auto;width: 100%;" 
877
|-
878
| style="text-align: center;" | <math>\kappa _{ij}=\mathbf{h}_{ij}\cdot \mathbf{t}_{3}</math>
879
|}
880
| style="width: 5px;text-align: right;white-space: nowrap;" | (61)
881
|}
882
883
The last expression allows to interpret the curvatures as the projections of the vectors <math display="inline">\mathbf{h}_{ij}</math> over the normal of the central element. The variation of the curvatures can be obtained as
884
885
<span id="eq-62"></span>
886
{| class="formulaSCP" style="width: 100%; text-align: left;" 
887
|-
888
| 
889
{| style="text-align: left; margin:auto;width: 100%;" 
890
|-
891
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }=\sum _{i=1}^{3}\left\{ \left[ \begin{array}{cc}L_{i,1}^{M} & 0\\ 0 & L_{i,2}^{M}\\ L_{i,2}^{M} & L_{i,1}^{M}\end{array} \right] \sum _{J=1}^{3}\left[ \begin{array}{c}L_{j,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}^{i})\\ L_{j,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}^{i}) \end{array} \right] -2\left[ \begin{array}{c}(L_{i,1}^{M}\rho _{11}^{1}+L_{i,2}^{M}\rho _{11}^{2})\\ (L_{i,1}^{M}\rho _{22}^{1}+L_{i,2}^{M}\rho _{22}^{2})\\ (L_{i,1}^{M}\rho _{12}^{1}+L_{i,2}^{M}\rho _{12}^{2}) \end{array} \right] (\mathbf{t}_{3}\cdot \delta \mathbf{u}_{i}^{M})\right\} </math>
892
|}
893
| style="width: 5px;text-align: right;white-space: nowrap;" | (62)
894
|}
895
896
where the projections of the vectors <math display="inline">\mathbf{h}_{ij}</math> over the contravariant base vectors <math display="inline">{\boldsymbol \varphi }^{\alpha }</math> have been included
897
898
<span id="eq-63"></span>
899
{| class="formulaSCP" style="width: 100%; text-align: left;" 
900
|-
901
| 
902
{| style="text-align: left; margin:auto;width: 100%;" 
903
|-
904
| style="text-align: center;" | <math>\rho _{ij}^{\alpha }=\mathbf{h}_{ij}\cdot{\boldsymbol \varphi }^{\alpha }\quad ,\quad \alpha ,i,j=1,2</math>
905
|}
906
| style="width: 5px;text-align: right;white-space: nowrap;" | (63)
907
|}
908
909
with
910
911
{| class="formulaSCP" style="width: 100%; text-align: left;" 
912
|-
913
| 
914
{| style="text-align: left; margin:auto;width: 100%;" 
915
|-
916
| style="text-align: center;" | <math>\mathbf{{\boldsymbol \varphi }}^{1}    =\lambda \;\mathbf{\boldsymbol \varphi }_{^{\prime }2}\times \mathbf{t}_{3}</math>
917
| style="width: 5px;text-align: right;white-space: nowrap;" | (64)
918
|-
919
| style="text-align: center;" | <math> \mathbf{{\boldsymbol \varphi }}^{2}    =-\lambda \;\mathbf{\boldsymbol \varphi  }_{^{\prime }1}\times \mathbf{t}_{3}</math>
920
| style="width: 5px;text-align: right;white-space: nowrap;" | (65)
921
|}
922
|}
923
924
In above expressions superindexes in <math display="inline">L_{j}^k</math> and <math display="inline">\delta \mathbf{u}_{j}^k</math> refer to element numbers in the patch whereas subscripts denote node numbers of each element in the patch. As usual the superindex <math display="inline">M</math> denotes values in the central triangle (Figure [[#img-1|1]]). Note that as expected the curvatures (and their variations) in the central element are a function of the nodal displacements of the six nodes in the four elements patch. Note also the isochoric approach
925
926
{| class="formulaSCP" style="width: 100%; text-align: left;" 
927
|-
928
| 
929
{| style="text-align: left; margin:auto;width: 100%;" 
930
|-
931
| style="text-align: center;" | <math>\lambda ={\frac{h}{h^{0}}}={\frac{A_{M}^{0}}{A_{M}}}</math>
932
|}
933
| style="width: 5px;text-align: right;white-space: nowrap;" | (66)
934
|}
935
936
The derivation of Eq.([[#eq-62|62]]) can be found in [26]. This equation can be rewritten in the form
937
938
{| class="formulaSCP" style="width: 100%; text-align: left;" 
939
|-
940
| 
941
{| style="text-align: left; margin:auto;width: 100%;" 
942
|-
943
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }=\mathbf{B}_{b}\delta \mathbf{a}^{p}</math>
944
|}
945
| style="width: 5px;text-align: right;white-space: nowrap;" | (67)
946
|}
947
948
where
949
950
<span id="eq-68"></span>
951
{| class="formulaSCP" style="width: 100%; text-align: left;" 
952
|-
953
| 
954
{| style="text-align: left; margin:auto;width: 100%;" 
955
|-
956
| style="text-align: center;" | <math>\begin{array}{c}\\ \delta \mathbf{a}^{p}\\ 18\times{1} \end{array} =[\delta \mathbf{u}_{1}^{T},\delta \mathbf{u}_{2}^{T},\delta \mathbf{u}_{3}^{T},\delta \mathbf{u}_{4}^{T},\delta \mathbf{u}_{5}^{T},\delta \mathbf{u}_{6}^{T}]^{T}</math>
957
|}
958
| style="width: 5px;text-align: right;white-space: nowrap;" | (68)
959
|}
960
961
is the virtual displacement vector of the patch and
962
963
<span id="eq-69"></span>
964
{| class="formulaSCP" style="width: 100%; text-align: left;" 
965
|-
966
| 
967
{| style="text-align: left; margin:auto;width: 100%;" 
968
|-
969
| style="text-align: center;" | <math>\mathbf{B}_{b}=[\mathbf{B}_{b1},\mathbf{B}_{b2},\cdots ,\mathbf{B}_{b6}]</math>
970
|}
971
| style="width: 5px;text-align: right;white-space: nowrap;" | (69)
972
|}
973
974
is the curvature matrix relating the virtual curvatures within the central element and the 18 virtual displacements of the six nodes in the patch.
975
976
The form of matrix <math display="inline">\mathbf{B}_{b}</math> is given in the Appendix.
977
978
==5 ENHANCED BASIC SHELL TRIANGLE==
979
980
An enhanced version of the BST element (termed EBST) has been recently proposed by Flores and Oñate [26]. The main features of the element formulation are the following:
981
982
<ol>
983
984
<li>The geometry of the patch formed by the central element and the three adjacent elements is ''quadratically interpolated'' from the position of the six nodes in the patch. </li>
985
986
<li>The membrane strains are assumed to vary ''linearly'' within the central triangle and are expressed in terms of the (continuous) values of the deformation gradient at the mid side points of the triangle. </li>
987
988
<li>The assumed ''constant curvature'' field within the central triangle is obtained by expression ([[#eq-54|54]]) using now twice the values of the (continuous) deformation gradient at the mid side points. </li>
989
990
</ol>
991
992
Details of the derivation of the EBST element are given below.
993
994
===5.1 Definition of the element geometry and computation of membrane strains===
995
996
As mentioned above a quadratic approximation of the geometry of the four elements patch is chosen using the position of the six nodes in the patch. It is useful to define the patch in the isoparametric space using the nodal positions given in the Table 2 (see also Figure 2).
997
998
999
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
1000
|+ style="font-size: 75%;" |Table. 2 Isoparametric coordinates of the six nodes in the patch of Figure 2.
1001
|- style="border-top: 2px solid;"
1002
| style="border-left: 2px solid;border-right: 2px solid;" |  
1003
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
1004
| style="border-left: 2px solid;border-right: 2px solid;" | 2 
1005
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
1006
| style="border-left: 2px solid;border-right: 2px solid;" | 4 
1007
| style="border-left: 2px solid;border-right: 2px solid;" | 5 
1008
| style="border-left: 2px solid;border-right: 2px solid;" | 6
1009
|- style="border-top: 2px solid;"
1010
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\xi </math> 
1011
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
1012
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
1013
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
1014
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
1015
| style="border-left: 2px solid;border-right: 2px solid;" | -1 
1016
| style="border-left: 2px solid;border-right: 2px solid;" | 1
1017
|- style="border-top: 2px solid;border-bottom: 2px solid;"
1018
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\eta </math> 
1019
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
1020
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
1021
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
1022
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
1023
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
1024
| style="border-left: 2px solid;border-right: 2px solid;" | -1
1025
1026
|}
1027
1028
The quadratic interpolation is defined by
1029
1030
<span id="eq-70"></span>
1031
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1032
|-
1033
| 
1034
{| style="text-align: left; margin:auto;width: 100%;" 
1035
|-
1036
| style="text-align: center;" | <math>{\boldsymbol \varphi }=\sum _{i=1}^{6}N_{i}{\boldsymbol \varphi }_{i}</math>
1037
|}
1038
| style="width: 5px;text-align: right;white-space: nowrap;" | (70)
1039
|}
1040
1041
with (<math display="inline">\zeta=1-\xi-\eta</math>)
1042
1043
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1044
|-
1045
| 
1046
{| style="text-align: left; margin:auto;width: 100%;" 
1047
|-
1048
| style="text-align: center;" | <math>\begin{array}{ccc}N_{1}=\zeta{+\xi}\eta &  & N_{4}=\frac{\zeta }{2}\left( \zeta{-1}\right) \\ N_{2}=\xi{+\eta}\zeta &  & N_{5}=\frac{\xi }{2}\left( \xi{-1}\right) \\ N_{3}=\eta{+\zeta}\xi &  & N_{6}=\frac{\eta }{2}\left( \eta{-1}\right) \end{array} </math>
1049
|}
1050
| style="width: 5px;text-align: right;white-space: nowrap;" | (71)
1051
|}
1052
1053
This interpolation allows to compute the displacement gradients at selected points in order to use an assumed strain approach. The computation of the gradients is performed at the mid side points of the central element of the patch denoted by <math display="inline">G_{1}</math>, <math display="inline">G_{2}</math> and <math display="inline">G_{3}</math> in Figure [[#img-2|2]]. This choice has the following advantages.
1054
1055
<div id='img-2'></div>
1056
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1057
|-
1058
|[[Image:Draft_Samper_165783789-test-fig2.png|454px|Patch of elements in the isoparametric space.]]
1059
|- style="text-align: center; font-size: 75%;"
1060
| colspan="1" | '''Figure 2:''' Patch of elements in the isoparametric space.
1061
|}
1062
1063
* Gradients at the three mid side points depend only on the nodes belonging to the two elements adjacent to each side. This can be easily verified by sampling the derivatives of the shape functions at each mid-side point.
1064
1065
* When gradients are computed at the common mid-side point of two adjacent elements, the same values are obtained, as the coordinates of the same four points are used. This in practice means that the gradients at the mid-side points are independent of the element where they are computed. A side-oriented implementation of the finite element will therefore lead to a unique evaluation of the gradients per side.
1066
1067
The Cartesian derivatives of the shape functions are computed at the original configuration by the standard expression
1068
1069
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1070
|-
1071
| 
1072
{| style="text-align: left; margin:auto;width: 100%;" 
1073
|-
1074
| style="text-align: center;" | <math>\left[ \begin{array}{c}N_{i,1}\\ N_{i,2}\end{array} \right] =\mathbf{J}^{-1}\left[ \begin{array}{c}N_{i,\xi } \\ N_{i,\eta }\end{array} \right] </math>
1075
|}
1076
| style="width: 5px;text-align: right;white-space: nowrap;" | (72)
1077
|}
1078
1079
where the Jacobian matrix at the original configuration is
1080
1081
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1082
|-
1083
| 
1084
{| style="text-align: left; margin:auto;width: 100%;" 
1085
|-
1086
| style="text-align: center;" | <math>\mathbf{J=}\left[ \begin{array}{cc}\mathbf{\boldsymbol \varphi }_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{1} & \mathbf{\boldsymbol \varphi  }_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{1}\\ \mathbf{\boldsymbol \varphi }_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{2} & \mathbf{\boldsymbol \varphi  }_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{2}\end{array} \right] </math>
1087
|}
1088
| style="width: 5px;text-align: right;white-space: nowrap;" | (73)
1089
|}
1090
1091
The deformation gradients on the middle surface, associated to an arbitrary spatial Cartesian system and to the material cartesian system defined on the middle surface are related by
1092
1093
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1094
|-
1095
| 
1096
{| style="text-align: left; margin:auto;width: 100%;" 
1097
|-
1098
| style="text-align: center;" | <math>\left[ {\boldsymbol \varphi }_{^{\prime }1},\mathbf{\boldsymbol \varphi }_{^{\prime }2}\right] =\left[ \mathbf{\boldsymbol \varphi }_{^{\prime }\xi },\mathbf{\boldsymbol \varphi }_{^{\prime }\eta }\right]  \mathbf{J}^{-1}</math>
1099
|}
1100
| style="width: 5px;text-align: right;white-space: nowrap;" | (74)
1101
|}
1102
1103
The membrane strains within the central triangle are now obtained using a linear assumed strain field <math display="inline">\hat{\boldsymbol \varepsilon }_{m}</math>. If, for example, Green Lagrange strains are used, i.e.
1104
1105
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1106
|-
1107
| 
1108
{| style="text-align: left; margin:auto;width: 100%;" 
1109
|-
1110
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\hat{\boldsymbol \varepsilon }_{m}</math>
1111
|}
1112
| style="width: 5px;text-align: right;white-space: nowrap;" | (75)
1113
|}
1114
1115
with
1116
1117
<span id="eq-76"></span>
1118
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1119
|-
1120
| 
1121
{| style="text-align: left; margin:auto;width: 100%;" 
1122
|-
1123
| style="text-align: center;" | <math>\hat{\boldsymbol \varepsilon }_{m}=(1-2\zeta ){\boldsymbol \varepsilon }_{m}^{1}+(1-2\xi ){\boldsymbol \varepsilon  }_{m}^{2}+(1-2\eta ){\boldsymbol \varepsilon }_{m}^{3}=\sum _{i=1}^{3}\bar{N}_{i}{\boldsymbol \varepsilon }_{m}^{i}</math>
1124
|}
1125
| style="width: 5px;text-align: right;white-space: nowrap;" | (76)
1126
|}
1127
1128
where <math display="inline">{\boldsymbol \varepsilon }_{m}^{i}</math> are the membrane strains computed at the three mid side points <math display="inline">G_{i}</math> (<math display="inline">i=1,2,3</math>  see Figure [[#img-2|2]]). In Eq.([[#eq-76|76]]) <math display="inline">\bar{N}_{1}=(1-2\zeta )</math>, etc.
1129
1130
The gradient at each mid side point is computed from the quadratic interpolation ([[#eq-70|70]]):
1131
1132
<span id="eq-77"></span>
1133
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1134
|-
1135
| 
1136
{| style="text-align: left; margin:auto;width: 100%;" 
1137
|-
1138
| style="text-align: center;" | <math>\left( {\boldsymbol \varphi }_{^{\prime }\alpha }\right) _{G_{i}}={\boldsymbol \varphi }_{^{\prime  }\alpha }^{i}=\left[ \sum _{j=1}^{3}N_{j,\alpha }^{i}{\boldsymbol \varphi }_{j}\right] +N_{i+3,\alpha }^{i}{\boldsymbol \varphi }_{i+3}\quad ,\quad \alpha=1,2\quad ,\quad  i=1,2,3</math>
1139
|}
1140
| style="width: 5px;text-align: right;white-space: nowrap;" | (77)
1141
|}
1142
1143
Substituting Eq.([[#eq-22|22]]) into ([[#eq-76|76]]) and using Eq.([[#eq-20|20]]) gives the membrane strain vector as
1144
1145
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1146
|-
1147
| 
1148
{| style="text-align: left; margin:auto;width: 100%;" 
1149
|-
1150
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\sum _{i=1}^{3}\frac{1}{2}\bar{N}_{i}\left\{ \begin{array}{c}{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}-1\\ {\boldsymbol \varphi }_{^{\prime }2}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}-1\\ 2{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\end{array} \right\} </math>
1151
|}
1152
| style="width: 5px;text-align: right;white-space: nowrap;" | (78)
1153
|}
1154
1155
and the virtual membrane strains as
1156
1157
<span id="eq-79"></span>
1158
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1159
|-
1160
| 
1161
{| style="text-align: left; margin:auto;width: 100%;" 
1162
|-
1163
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\sum _{i=1}^{3}\bar{N}_{i}\left\{ \begin{array}{c}{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ {\boldsymbol \varphi }_{2}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\\ \delta{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}+{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{2}^{i}\end{array} \right\} </math>
1164
|}
1165
| style="width: 5px;text-align: right;white-space: nowrap;" | (79)
1166
|}
1167
1168
We note that the gradient at each mid side point <math display="inline">G_{i}</math> depends only on the coordinates of the three nodes of the central triangle and on those of an additional node in the patch, associated to the side <math display="inline">i</math> where the gradient is computed.
1169
1170
Combining Eqs.([[#eq-79|79]]) and ([[#eq-77|77]]) gives
1171
1172
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1173
|-
1174
| 
1175
{| style="text-align: left; margin:auto;width: 100%;" 
1176
|-
1177
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\mathbf{B}_{m}\delta \mathbf{a}^{p}</math>
1178
|}
1179
| style="width: 5px;text-align: right;white-space: nowrap;" | (80)
1180
|}
1181
1182
where <math display="inline">\delta \mathbf{a}^{p}</math> is the patch displacement vector (see Eq.([[#eq-68|68]])) and <math display="inline">\mathbf{B}_{m}</math> is the membrane strain matrix. An explicit form of this matrix is given in the Appendix.
1183
1184
Differently from the original BST element the membrane strains within the EBST element are now a function of the displacements of the six patch nodes.
1185
1186
===5.2 Computation of curvatures===
1187
1188
The constant curvature field assumed for the BST element is chosen again here. The numerical evaluation of the line  integral in Eq.([[#eq-54|54]]) results in a sum over the integration points at the element boundary which are, in fact, the same points used for evaluating the gradients when computing the membrane strains. As one integration point is used over each side, it is not necessary to distinguish between sides (<math display="inline">i</math>) and integration points (<math display="inline">G_{i}</math>). In this way the curvatures can be computed by
1189
1190
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1191
|-
1192
| 
1193
{| style="text-align: left; margin:auto;width: 100%;" 
1194
|-
1195
| style="text-align: center;" | <math>{\boldsymbol \kappa }=2\sum _{i=1}^{3}\left[ \begin{array}{cc}L_{i,1}^M & 0\\ 0         & L_{i,2}^M \\ L_{i,2}^M & L_{i,1}^M \end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2}^{i}\end{array} \right] </math>
1196
|}
1197
| style="width: 5px;text-align: right;white-space: nowrap;" | (81)
1198
|}
1199
1200
In the standard BST element <span id='citeF-20'></span><span id='citeF-23'></span>[[#cite-20|[20,23]]] the gradient <math display="inline">\mathbf{\boldsymbol \varphi  }_{\prime \alpha }^{i}</math> is computed as the average of the linear approximations over the two adjacent elements (see Section 4.3). In the enhanced version, the gradient is evaluated at each side <math display="inline">G_{i}</math> from the quadratic interpolation
1201
1202
<span id="eq-82"></span>
1203
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1204
|-
1205
| 
1206
{| style="text-align: left; margin:auto;width: 100%;" 
1207
|-
1208
| style="text-align: center;" | <math>\left[ \begin{array}{c}{\boldsymbol \varphi }_{\prime{1}}^{i}\\ {\boldsymbol \varphi }_{\prime{2}}^{i}\end{array} \right] =\left[ \begin{array}{cccc}N_{1,1}^{i} & N_{2,1}^{i} & N_{3,1}^{i} & N_{i+3,1}^{i}\\ N_{1,2}^{i} & N_{2,2}^{i} & N_{3,2}^{i} & N_{i+3,2}^{i}\end{array} \right] \left[ \begin{array}{c}{\boldsymbol \varphi }_{1}\\ {\boldsymbol \varphi }_{2}\\ {\boldsymbol \varphi }_{3}\\ {\boldsymbol \varphi }_{i+3}\end{array} \right]  </math>
1209
|}
1210
| style="width: 5px;text-align: right;white-space: nowrap;" | (82)
1211
|}
1212
1213
Note again than at each side the gradients depend only on the positions of the three nodes of the central triangle and of an extra node (<math display="inline">i+3</math>), associated precisely to the side (<math display="inline">G_{i}</math>) where the gradient is computed.
1214
1215
Direction '''t'''<math display="inline">_{3}</math> in Eq.([[#eq-82|82]]) can be seen as a reference direction. If a different direction than that given by Eq.([[#eq-56|56]]) is chosen at an angle <math display="inline">\theta </math> with the former, this has an influence of order <math display="inline">\theta ^{2}</math> in the projection. This justifies Eq.([[#eq-56|56]]) for the definition of '''t'''<math display="inline">_{3}</math> as a function exclusively of the three nodes of the central triangle, instead of using the 6-node isoparametric interpolation.
1216
1217
The variation of the curvatures can be obtained as
1218
1219
<span id="eq-83"></span>
1220
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1221
|-
1222
| 
1223
{| style="text-align: left; margin:auto;width: 100%;" 
1224
|-
1225
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }   =2\sum _{i=1}^{3}\left[ \begin{array}{cc}L_{i,1}^M & 0\\ 0         & L_{i,2}^M\\ L_{i,2}^M & L_{i,1}^M\end{array} \right] \left\{ \sum _{i=1}^{3}\left[ \begin{array}{c}N_{j,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j})\\ N_{j,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}) \end{array} \right] +\left[ \begin{array}{c}N_{i+3,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}^{i+3})\\ N_{i+3,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}^{i+3}) \end{array} \right] \right\} -</math>
1226
|-
1227
| style="text-align: center;" | <math>   -\sum _{i=1}^{3}\left[ \begin{array}{c}(L_{i,1}^M\rho _{11}^{1}+L_{i,2}^M\rho _{11}^{2})\\ (L_{i,1}^M\rho _{22}^{1}+L_{i,2}^M\rho _{22}^{2})\\ (L_{i,1}^M\rho _{12}^{1}+L_{i,2}^M\rho _{12}^{2}) \end{array} \right] (\mathbf{t}_{3}\cdot \delta \mathbf{u}_{i})=\mathbf{B}_{b}\delta \mathbf{a}^{p}</math>
1228
|}
1229
| style="width: 5px;text-align: right;white-space: nowrap;" | (83)
1230
|}
1231
1232
where the definitions ([[#eq-61|61]]) and ([[#eq-63|63]]) still hold but with the new definition of <math display="inline">\mathbf{h}_{ij}</math> given by <span id='citeF-26'></span>[[#cite-26|[26]]]
1233
1234
<span id="eq-84"></span>
1235
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1236
|-
1237
| 
1238
{| style="text-align: left; margin:auto;width: 100%;" 
1239
|-
1240
| style="text-align: center;" | <math>\mathbf{h}_{ij}=\sum _{k=1}^{3}\left( L_{k,i}^M{\boldsymbol \varphi }_{\prime j}^{k}+L_{k,j}^M{\boldsymbol \varphi }_{^{\prime }i}^{k}\right) </math>
1241
|}
1242
| style="width: 5px;text-align: right;white-space: nowrap;" | (84)
1243
|}
1244
1245
In Eq.([[#eq-83|83]])
1246
1247
<span id="eq-85"></span>
1248
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1249
|-
1250
| 
1251
{| style="text-align: left; margin:auto;width: 100%;" 
1252
|-
1253
| style="text-align: center;" | <math>\mathbf{B}_{b}=[\mathbf{B}_{b_{1}},\mathbf{B}_{b_{2}},\cdots ,\mathbf{B}_{b_{6}}]</math>
1254
|}
1255
| style="width: 5px;text-align: right;white-space: nowrap;" | (85)
1256
|}
1257
1258
The expression of the curvature matrix <math display="inline">\mathbf{B}_b</math> is given in the Appendix. Details of the derivation of Eq.([[#eq-83|83]]) can be found in [26].
1259
1260
===5.3 The EBST1 element===
1261
1262
A simplified and yet very effective version of the EBST element can be obtained by using ''one point quadrature'' for the computation of all the element integrals. This element is termed EBST1. Note that this only affects the membrane stiffness matrices and it is equivalent to using a assumed constant membrane strain field defined by an average of the metric tensors computed at each side.
1263
1264
Numerical experiments have shown that both the EBST and the EBST1 elements are free of spurious energy modes.
1265
1266
==6 BOUNDARY CONDITIONS==
1267
1268
Elements at the domain boundary, where an adjacent element does not exist, deserve a special attention. The treatment of essential boundary conditions associated to translational constraints is straightforward, as they are the natural degrees of freedom of the element. The conditions associated to the normal vector are crucial in the bending  formulation. For clamped sides or symmetry planes, the normal vector <math display="inline">\mathbf{t}_{3}</math> must be kept fixed (clamped case), or constrained to move in the plane of symmetry (symmetry case). The former case can be seen as a special case of the latter, so we will consider symmetry planes only. This restriction can be imposed through the definition of the tangent plane at the boundary, including the normal to the plane of symmetry <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{0}</math> that does not change during the process.
1269
1270
<div id='img-3'></div>
1271
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1272
|-
1273
|[[Image:Draft_Samper_165783789-test-fig3.png|600px|Local Cartesian system for the treatment of symmetry boundary conditions]]
1274
|- style="text-align: center; font-size: 75%;"
1275
| colspan="1" | '''Figure 3:''' Local Cartesian system for the treatment of symmetry boundary conditions
1276
|}
1277
1278
The tangent plane at the boundary (mid-side point) is expressed in terms of two orthogonal unit vectors referred to a local-to-the-boundary Cartesian system (see Figure [[#img-3|3]]) defined as
1279
1280
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1281
|-
1282
| 
1283
{| style="text-align: left; margin:auto;width: 100%;" 
1284
|-
1285
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }n}^{0},\;\bar{\boldsymbol \varphi }_{^{\prime }s}\right] </math>
1286
|}
1287
| style="width: 5px;text-align: right;white-space: nowrap;" | (86)
1288
|}
1289
1290
where vector <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{0}</math> is fixed during the process while direction <math display="inline">\bar{\boldsymbol \varphi }_{^{\prime }s}</math> emerges from the intersection of the symmetry plane with the plane defined by the central element (<math display="inline">M</math>). The plane (gradient) defined by the central element in the selected original convective Cartesian system (<math display="inline">\mathbf{t}_{1},\mathbf{t}_{2} </math>) is
1291
1292
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1293
|-
1294
| 
1295
{| style="text-align: left; margin:auto;width: 100%;" 
1296
|-
1297
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }1}^{M},\;\boldsymbol \varphi _{^{\prime  }2}^{M}\right] </math>
1298
|}
1299
| style="width: 5px;text-align: right;white-space: nowrap;" | (87)
1300
|}
1301
1302
the intersection line (side <math display="inline">i</math>) of this plane with the plane of symmetry can be written in terms of the position of the nodes that define the side (<math display="inline">j </math> and <math display="inline">k</math>) and the original length of the side <math display="inline">l_{i}^{M}</math>, i.e.
1303
1304
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1305
|-
1306
| 
1307
{| style="text-align: left; margin:auto;width: 100%;" 
1308
|-
1309
| style="text-align: center;" | <math>\boldsymbol \varphi _{^{\prime }s}^{i}=\frac{1}{l_{i}^{M}}\left(\boldsymbol \varphi _{k}-\boldsymbol \varphi _{j}\right) </math>
1310
|}
1311
| style="width: 5px;text-align: right;white-space: nowrap;" | (88)
1312
|}
1313
1314
That together with the outer normal to the side <math display="inline">\mathbf{n}^{i} =\left[n_{1},n_{2}\right]^{T}=\left[\mathbf{n\cdot t}_{1},\mathbf{n\cdot t}_{2}\right]^{T}</math> (resolved in the selected original convective Cartesian system) leads to
1315
1316
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1317
|-
1318
| 
1319
{| style="text-align: left; margin:auto;width: 100%;" 
1320
|-
1321
| style="text-align: center;" | <math>\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}^{iT} \\ \boldsymbol \varphi _{^{\prime }2}^{iT}\end{array}\right]=\left[ \begin{array}{cc}n_{1} & -n_{2} \\ n_{2} & n_{1}\end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }n}^{iT} \\ \boldsymbol \varphi _{^{\prime }s}^{iT}\end{array}\right] </math>
1322
|}
1323
| style="width: 5px;text-align: right;white-space: nowrap;" | (89)
1324
|}
1325
1326
where, noting  that <math display="inline">\lambda </math> is the determinant of the gradient, the normal component of the gradient <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{i}</math> can be approximated by
1327
1328
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1329
|-
1330
| 
1331
{| style="text-align: left; margin:auto;width: 100%;" 
1332
|-
1333
| style="text-align: center;" | <math>\boldsymbol \varphi _{^{\prime }n}^{i}=\frac{\boldsymbol \varphi _{^{\prime }n}^{0}}{\lambda |\boldsymbol \varphi _{^{\prime }s}^{i}|} </math>
1334
|}
1335
| style="width: 5px;text-align: right;white-space: nowrap;" | (90)
1336
|}
1337
1338
In this way the contribution of the gradient at side <math display="inline">i</math> to vectors <math display="inline">\mathbf{h}_{\alpha \beta }</math> (Eqs. [[#eq-60|60]] and [[#eq-84|84]]) results in
1339
1340
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1341
|-
1342
| 
1343
{| style="text-align: left; margin:auto;width: 100%;" 
1344
|-
1345
| style="text-align: center;" | <math>\left[ \begin{array}{c}\mathbf{h}_{11}^{T} \\ \mathbf{h}_{22}^{T} \\ 2\mathbf{h}_{12}^{T}\end{array}\right]^{i}=2\left[ \begin{array}{cc}L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M}\end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}^{iT} \\ \boldsymbol \varphi _{^{\prime }2}^{iT}\end{array}\right]=2\left[ \begin{array}{cc}L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M}\end{array}\right]\left[ \begin{array}{cc}n_{1} & -n_{2} \\ n_{2} & n_{1}\end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }n}^{iT} \\ \boldsymbol \varphi _{^{\prime }s}^{iT}\end{array}\right] </math>
1346
|}
1347
| style="width: 5px;text-align: right;white-space: nowrap;" | (91)
1348
|}
1349
1350
For the computation of the curvature variations, the contribution from the gradient at side <math display="inline">i</math> is now (see <span id='citeF-26'></span>[[#cite-26|[26]]])
1351
1352
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1353
|-
1354
| 
1355
{| style="text-align: left; margin:auto;width: 100%;" 
1356
|-
1357
| style="text-align: center;" | <math> \delta \left[ \begin{array}{c} \mathbf{h}_{11}^{T} \\ \mathbf{h}_{22}^{T} \\ 2\mathbf{h}_{12}^{T}\end{array} \right]^{i} =2\left[ \begin{array}{cc} L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M}\end{array} \right]\left[ \begin{array}{cc} n_{1} & -n_{2} \\ n_{2} & n_{1}\end{array} \right]\left[ \begin{array}{c} \mathbf{0} \\ \frac{1}{L_{o}}\left[\delta \mathbf{u}_{k}-\delta \mathbf{u}_{j}\right]^{T}\end{array} \right]</math>
1358
|}
1359
| style="width: 5px;text-align: right;white-space: nowrap;" | (92a)
1360
|}
1361
1362
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1363
|-
1364
| 
1365
{| style="text-align: left; margin:auto;width: 100%;" 
1366
|-
1367
| style="text-align: center;" | <math> =\frac{2}{l_{i}^{M}}\left[ \begin{array}{c} -L_{i,1}^{M}n_{2} \\ L_{i,2}^{M}n_{1} \\ L_{i,1}^{M}n_{1}-L_{i,2}^{M}n_{2}\end{array} \right]\left[\delta \mathbf{u}_{k}-\delta \mathbf{u}_{j}\right]^{T}</math>
1368
|}
1369
| style="width: 5px;text-align: right;white-space: nowrap;" | (92b)
1370
|}
1371
1372
where the influence of variations in the length of vector <math display="inline">\boldsymbol \varphi _{^{\prime }n}</math> has been neglected.
1373
1374
For a simple supported (hinged) side, the problem is not completely defined. The simplest choice is to neglect the contribution to the side rotations from the adjacent element missing in the patch in the evaluation of the curvatures via Eq.([[#eq-54|54]]) [20,23]. This is equivalent to assume that the gradient at the side is equal to the gradient in the central element, i.e.
1375
1376
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1377
|-
1378
| 
1379
{| style="text-align: left; margin:auto;width: 100%;" 
1380
|-
1381
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }1}^{i},\;\boldsymbol \varphi _{^{\prime }2}^{i}\right]=\left[\boldsymbol \varphi _{^{\prime }1}^{M},\;\boldsymbol \varphi _{^{\prime }2}^{M}\right] </math>
1382
|}
1383
| style="width: 5px;text-align: right;white-space: nowrap;" | (93)
1384
|}
1385
1386
More precise changes can be however introduced to account for the different natural boundary conditions. One may assume that the curvature normal to the side is zero, and consider a contribution of the missing side to introduce this constraint. As the change of curvature parallel to the side is also zero along the hinged side, this obviously leads to zero curvatures in both directions. Denoting the contribution to the curvatures of the interior sides (<math display="inline">j </math> and <math display="inline">k</math>) by
1387
1388
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1389
|-
1390
| 
1391
{| style="text-align: left; margin:auto;width: 100%;" 
1392
|-
1393
| style="text-align: center;" | <math>\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12}\end{array} \right]^{j-k} </math>
1394
|}
1395
|}
1396
1397
It can be easily shown that in order to set the normal curvature to zero the contribution of the simple supported side (<math display="inline">i</math>) should be
1398
1399
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1400
|-
1401
| 
1402
{| style="text-align: left; margin:auto;width: 100%;" 
1403
|-
1404
| style="text-align: center;" | <math>\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12}\end{array} \right]^{i}=-\left[ \begin{array}{ccc}\left(n_{1}\right)^{4} & \left(n_{1}\right)^{2}\left(n_{2}\right)^{2} & \left(n_{1}\right)^{3}n_{2} \\ \left(n_{1}\right)^{2}\left(n_{2}\right)^{2} & \left(n_{2}\right)^{4} & n_{1}\left(n_{2}\right)^{3} \\ 2\left(n_{1}\right)^{3}n_{2} & 2n_{1}\left(n_{2}\right)^{3} & 2\left( n_{1}\right)^{2}\left(n_{2}\right)^{2}\end{array} \right]\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12}\end{array} \right]^{j-k} </math>
1405
|}
1406
| style="width: 5px;text-align: right;white-space: nowrap;" | (94)
1407
|}
1408
1409
For the case of a triangle with two sides associated to hinged sides, the normal curvatures to both sides must be zero. Denoting by <math display="inline">\mathbf{n}^{i}</math> and <math display="inline">\mathbf{n}^{j}</math> the normal to the sides, and by <math display="inline">\mathbf{m}^{i}</math> and <math display="inline">\mathbf{m}^{j}</math> the dual base (associated to the base <math display="inline">\mathbf{n}^{i}-</math> <math display="inline">\mathbf{n}^{j}</math>), the contribution from the hinged sides (<math display="inline">i</math> and <math display="inline">j</math>) can be written as a function of the contribution of the only interior side (<math display="inline">k</math>):
1410
1411
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1412
|-
1413
| 
1414
{| style="text-align: left; margin:auto;width: 100%;" 
1415
|-
1416
| style="text-align: center;" | <math>\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12}\end{array} \right]^{i-j}=-\left[ \begin{array}{c}m_{1}^{i}m_{1}^{j} \\ m_{2}^{i}m_{2}^{j} \\ m_{1}^{i}m_{2}^{j}+m_{2}^{i}m_{1}^{j}\end{array} \right]\left[ \begin{array}{ccc}2n_{1}^{i}n_{1}^{j} & 2n_{2}^{i}n_{2}^{j} & n_{1}^{i}n_{2}^{j}+n_{2}^{i}n_{1}^{j}\end{array} \right]\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12}\end{array} \right]^{k} </math>
1417
|}
1418
| style="width: 5px;text-align: right;white-space: nowrap;" | (95)
1419
|}
1420
1421
For a free edge the same approximation can be used but due to Poisson's effect this will lead to some error. The curvature variations of these contributions can be easily computed.
1422
1423
For the membrane formulation of element EBST, the gradient at the mid-side point of the boundary is assumed equal to the gradient of the main triangle.
1424
1425
==7 IMPLICIT SOLUTION SCHEME==
1426
1427
For a step <math display="inline">n</math> the configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n}</math> and the plastic strains <math display="inline">{\boldsymbol \varepsilon }_{p}^{n}</math> are known. The configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n}</math> is obtained by adding the total displacements to the original configuration <math display="inline"> \mathbf{\boldsymbol \varphi }^{n}=\mathbf{\boldsymbol \varphi }^{0}+\mathbf{u}^{n}</math>. The stresses are computed at each triangle using a single sampling (integration) point at the center and <math display="inline">N_{L}</math> integration points (layers) through the thickness. The plane stress state condition of the classical thin shell theory is assumed, so that for every layer three stress components are computed, (<math display="inline">\sigma _{11}</math>,<math display="inline">\sigma _{22}</math>, and <math display="inline">\sigma _{12}</math>) referred to the local Cartesian system.
1428
1429
The computation of the incremental stresses is as follows:
1430
1431
<ol>
1432
1433
<li>Evaluate the incremental displacements: <math display="inline">\Delta \mathbf{u}^{n}=\mathbf{K}_{T}^{n}\mathbf{r}^{n}</math> where <math display="inline">\mathbf{K}_{T}</math> is the tangent stiffness matrix and '''r''' is the residual force vector  defined by for each element
1434
1435
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1436
|-
1437
| 
1438
{| style="text-align: left; margin:auto;width: 100%;" 
1439
|-
1440
| style="text-align: center;" | <math>
1441
1442
\mathbf{r}^e_i =\int \int _A L_i {\boldsymbol t}\, dA - \int \int _{A^\circ } ({\boldsymbol B}_{m_i}^T {\boldsymbol \sigma }_m + {\boldsymbol B}_{b_i}^T {\boldsymbol \sigma }_b)dA </math>
1443
|}
1444
| style="width: 5px;text-align: right;white-space: nowrap;" | (96)
1445
|}</li>
1446
1447
The expression of the tangent stiffness matrix for the element is given below. Details of the derivation can be found in <span id='citeF-23'></span>[[#cite-23|[23]]],<span id='citeF-26'></span>[[#cite-26|[26]]].
1448
1449
<li>Generate the actual configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n+1}=\mathbf{\boldsymbol \varphi }^{n}+\Delta \mathbf{u}^{n}</math> </li>
1450
1451
<li>Compute the metric tensor <math display="inline">a_{\alpha \beta }^{n+1}\mathbf{ }</math>and the curvatures <math display="inline">\kappa _{\alpha \beta }^{n+1}</math>. Then at each layer <math display="inline">k</math> compute the (approximate) right Cauchy-Green tensor ([[#eq-27|27]])
1452
1453
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1454
|-
1455
| 
1456
{| style="text-align: left; margin:auto;width: 100%;" 
1457
|-
1458
| style="text-align: center;" | <math>
1459
1460
\mathbf{C}_{k}^{n+1}=\mathbf{a}^{n+1}+z_{k}{\boldsymbol \chi }^{n+1} </math>
1461
|}
1462
| style="width: 5px;text-align: right;white-space: nowrap;" | (97)
1463
|}</li>
1464
1465
<li>Compute the total ([[#eq-32|32]]) and elastic ([[#eq-33|33]]) deformations at each layer <math display="inline">k</math> </li>
1466
1467
<span id="eq-98"></span>
1468
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1469
|-
1470
| 
1471
{| style="text-align: left; margin:auto;width: 100%;" 
1472
|-
1473
| style="text-align: center;" | <math>
1474
1475
{\boldsymbol \varepsilon }_{k}^{n+1}   = \frac{1}{2}\ln{\mathbf{C}_{k}^{n+1}} </math>
1476
| style="width: 5px;text-align: right;white-space: nowrap;" | (98)
1477
|-
1478
| style="text-align: center;" | <math> \left[ {\boldsymbol \varepsilon }_{e}\right] _{k}^{n+1}   ={\boldsymbol \varepsilon  }_{k}^{n+1}-\left[ {\boldsymbol \varepsilon }_{p}\right] _{k}^{n} </math>
1479
|}
1480
|}
1481
1482
<li>Compute the trial elastic stresses ([[#eq-34|34]]) at each layer <math display="inline">k</math>
1483
1484
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1485
|-
1486
| 
1487
{| style="text-align: left; margin:auto;width: 100%;" 
1488
|-
1489
| style="text-align: center;" | <math>
1490
1491
\mathbf{T} _{k}^{n+1}=\mathbf{D}\left[ {\boldsymbol \varepsilon }_{e}\right] _{k}^{n+1} </math>
1492
|}
1493
| style="width: 5px;text-align: right;white-space: nowrap;" | (99)
1494
|}</li>
1495
1496
<li>Check the plasticity condition and return to the plasticity surface. If necessary correct the plastic strains <math display="inline">\left[{\boldsymbol \varepsilon }_{p}\right] _{k}^{n+1}</math> at each layer </li>
1497
1498
<li>Compute the second Piola-Kirchhoff stress vector <math display="inline">\boldsymbol \sigma _k^{n+1}</math> and the generalized stresses
1499
1500
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1501
|-
1502
| 
1503
{| style="text-align: left; margin:auto;width: 100%;" 
1504
|-
1505
| style="text-align: center;" | <math>
1506
1507
{\boldsymbol \sigma }^{n+1}_{m}    =\frac{h^{0}}{N_{L}}\sum _{k=1}^{N_{L}}\boldsymbol \sigma _{k}^{n+1} w_{k}</math>
1508
|-
1509
| style="text-align: center;" | <math> {\boldsymbol \sigma }^{n+1}_{b}    =\frac{h^{0}}{N_{L}}\sum _{k=1}^{N_{L}}\boldsymbol \sigma _{k}^{n+1}z_{k} w_{k}</math>
1510
|}
1511
| style="width: 5px;text-align: right;white-space: nowrap;" | (100)
1512
|}</li>
1513
1514
Where <math display="inline"> w_{k}</math> is the weight of the through-the-thickness integration point. Recall that <math display="inline">z_{k}</math> is the current distance of the layer to the mid-surface and not the original distance. However, for small strain plasticity this distinction is not important.
1515
1516
This computation of stresses is adequate for an implicit scheme independent of the step size and it is exact for an elastic problem.
1517
1518
<li>Compute the residual force vector. The contribution for the <math display="inline">M</math>th element is given by
1519
1520
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1521
|-
1522
| 
1523
{| style="text-align: left; margin:auto;width: 100%;" 
1524
|-
1525
| style="text-align: center;" | <math>
1526
1527
(\mathbf{r}^{M})^{n+1}=-A_{M}^{0}\left[ \begin{array}{cc}
1528
1529
\mathbf{B}_{m}^{T} & \mathbf{B}_{b}^{T}\end{array} \right] ^{n+1}\left[ \begin{array}{c}
1530
1531
\boldsymbol \sigma _{m}\\ \boldsymbol \sigma _{b}\end{array} \right] ^{n+1}</math>
1532
|}
1533
| style="width: 5px;text-align: right;white-space: nowrap;" | (101)
1534
|}</li>
1535
1536
</ol>
1537
1538
===7.1 Tangent stiffness matrix===
1539
1540
As usual the tangent stiffness matrix is split into material and geometric components. The material tangent stiffness matrix is  computed by the integral
1541
1542
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1543
|-
1544
| 
1545
{| style="text-align: left; margin:auto;width: 100%;" 
1546
|-
1547
| style="text-align: center;" | <math>\mathbf{K}^{M}=\int \int _{A_{M}^{0}}\mathbf{B}^{T}\mathbf{D}_{ep}\mathbf{B}dA </math>
1548
|}
1549
| style="width: 5px;text-align: right;white-space: nowrap;" | (102)
1550
|}
1551
1552
where <math display="inline">\mathbf{B}=\mathbf{B}_{m}+\mathbf{B}_{b}</math> includes:<br/>
1553
1554
* '''-'''  a membrane contribution <math display="inline">\mathbf{B}_{m}</math> given by Eq.([[#eq-51|51]]) or Eq.(80).
1555
1556
* '''-'''  a bending contribution <math display="inline">\mathbf{B}_{b}</math> given by Eq.([[#eq-69|69]]) or Eq.([[#eq-85|85]])  which is constant over the element.
1557
1558
Matrix <math display="inline">\mathbf{D}_{ep}</math> is the elastic-plastic tangent constitutive matrix integrated through the thickness.
1559
1560
<br/>
1561
1562
A three point quadrature is used for integrating the stiffness terms <math display="inline">\mathbf{B}_{m}^{T}\mathbf{D}_{ep}\mathbf{B}_{m}</math> (recall that for the EBST element the membrane strains vary linearly within the element) whereas one point quadrature is chosen for the rest of the terms in <math display="inline">\mathbf{K}^{M}</math>.
1563
1564
===7.2 Geometric tangent stiffness matrix===
1565
1566
The geometric stiffness is written as
1567
1568
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1569
|-
1570
| 
1571
{| style="text-align: left; margin:auto;width: 100%;" 
1572
|-
1573
| style="text-align: center;" | <math>\mathbf{K}^{G}=\mathbf{K}_{m}^{G}+\mathbf{K}_{b}^{G}</math>
1574
|}
1575
| style="width: 5px;text-align: right;white-space: nowrap;" | (103)
1576
|}
1577
1578
where subscripts <math display="inline">m</math> and <math display="inline">b</math> denote as usual membrane and bending contributions. For the BST element the membrane part is the same than for the standard constant strain triangle, leading to
1579
1580
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1581
|-
1582
| 
1583
{| style="text-align: left; margin:auto;width: 100%;" 
1584
|-
1585
| style="text-align: center;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{m}^{G}\mathbf{\;}\Delta \mathbf{u}  =A_{M}^{0}\sum _{i=1}^{3}\sum _{j=1}^{3}\left\{ \delta \mathbf{u}_{i}\;\left[ \begin{array}{cc}L_{i,1}^{M} & L_{i,2}^{M}\end{array} \right] \left[ \begin{array}{cc}N_{11} & N_{12}\\ N_{21} & N_{22}\end{array} \right] \left[ \begin{array}{c}L_{j,1}^{M}\\ L_{j,2}^{M}\end{array} \right] \Delta \mathbf{u}_{j}\right\} </math>
1586
|-
1587
| style="text-align: center;" | 
1588
|}
1589
| style="width: 5px;text-align: right;white-space: nowrap;" | (104)
1590
|}
1591
1592
For the EBST element the membrane part is computed as the sum of the contributions of the three sides, i.e.
1593
1594
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1595
|-
1596
| 
1597
{| style="text-align: left; margin:auto;width: 100%;" 
1598
|-
1599
| style="text-align: center;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{m}^{G}\mathbf{\;}\Delta \mathbf{u}  =\frac{A^{M}}{3}\sum _{k=1}^{3}\sum _{i=1}^{6}\sum _{j=1}^{6}\left\{ \delta \mathbf{u}_{i}\;\left[ \begin{array}{cc}N_{i,1}^{k} & N_{i,2}^{k}\end{array} \right] \left[ \begin{array}{cc}N_{11}^{k} & N_{12}^{k}\\ N_{21}^{k} & N_{22}^{k}\end{array} \right] \left[ \begin{array}{c}N_{j,1}^{k}\\ N_{j,2}^{k}\end{array} \right] \Delta \mathbf{u}_{j}\right\} </math>
1600
|-
1601
| style="text-align: center;" | 
1602
|}
1603
| style="width: 5px;text-align: right;white-space: nowrap;" | (105)
1604
|}
1605
1606
where <math display="inline">N_{ij}={\sigma _{m}}_{ij}</math> are the axial forces defined in Eq.(29).
1607
1608
The geometric stiffness associated to bending moments is much more involved and can be found in  [26]. Numerical experiments have shown that the bending part of the geometric stiffness is not so important and can be disregarded in the iterative process.
1609
1610
Again three and one point quadratures are used for computing the membrane and bending contributions to the geometric stiffness matrix. We note that for elastic-plastic problems a uniform one point quadrature has been chosen for integrating both the membrane and bending stiffness matrices.
1611
1612
==8 EXPLICIT SOLUTION SCHEME==
1613
1614
For simulations including large non-linearities, such as frictional contact conditions on complex geometries or large instabilities in membranes, convergence is difficult to achieve with implicit schemes. In those cases an explicit solution algorithm is typically most advantageous. This scheme provides the solution for dynamic problems and also for static problems if an adequate damping is chosen.
1615
1616
The dynamic equations of motion to solve are of the form
1617
1618
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1619
|-
1620
| 
1621
{| style="text-align: left; margin:auto;width: 100%;" 
1622
|-
1623
| style="text-align: center;" | <math>\mathbf{r}(\mathbf{u}) + \mathbf{C} \dot{\mathbf{u}} + \mathbf{M} \ddot{\mathbf{u}} = 0 </math>
1624
|}
1625
| style="width: 5px;text-align: right;white-space: nowrap;" | (106)
1626
|}
1627
1628
where <math display="inline">\mathbf{M}</math> is the mass matrix, <math display="inline">\mathbf{C}</math> is the damping matrix and the dot means the time derivative. The solution is performed using the ''central difference method''. To make the method competitive a diagonal (lumped) <math display="inline">\mathbf{M}</math> matrix is typically used and <math display="inline">\mathbf{C}</math> is taken proportional to <math display="inline">\mathbf{M}</math>. As usual, mass lumping is performed by assigning one third of the triangular element mass to each node in the central element.
1629
1630
The explicit solution scheme can be summarized as follows. At each time step <math display="inline">n</math> where displacements have been computed:
1631
1632
<ol>
1633
1634
<li>Compute the internal forces <math display="inline">\mathbf{r}^{n}</math>. This  follows the same steps (2-8) described for the implicit scheme in the previous section. </li>
1635
1636
<li>Compute the accelerations at time <math display="inline">t_{n}</math>
1637
1638
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1639
|-
1640
| 
1641
{| style="text-align: left; margin:auto;width: 100%;" 
1642
|-
1643
| style="text-align: center;" | <math>
1644
1645
\ddot{\mathbf{u}}^{n} = {\boldsymbol M}_d^{-1} [ \mathbf{r}^{n} - \mathbf{C} \dot{\mathbf{u}}^{n-1/2} ]  </math>
1646
|}
1647
|}</li>
1648
1649
where <math display="inline">{\boldsymbol M}_d</math> is the diagonal (lumped) mass matrix.
1650
1651
<li>Compute the velocities at time <math display="inline">t_{n+1/2}</math>
1652
1653
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1654
|-
1655
| 
1656
{| style="text-align: left; margin:auto;width: 100%;" 
1657
|-
1658
| style="text-align: center;" | <math>
1659
1660
\dot{\mathbf{u}}^{n+1/2} = \dot{\mathbf{u}}^{n-1/2} \ddot{\mathbf{u}}^{n} \delta t  </math>
1661
|}
1662
|}</li>
1663
1664
<li>Compute the displacements at  time <math display="inline">t_{n+1}</math>
1665
1666
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1667
|-
1668
| 
1669
{| style="text-align: left; margin:auto;width: 100%;" 
1670
|-
1671
| style="text-align: center;" | <math>
1672
1673
\mathbf{u}^{n+1} = \mathbf{u}^{n} +\dot{\mathbf{u}}^{n+1/2} \delta t  </math>
1674
|}
1675
|}</li>
1676
<li>Update the shell geometry </li>
1677
<li>Check frictional contact conditions </li>
1678
1679
</ol>
1680
1681
Further details of the implementation of the standard BST element within an explicit solution scheme can be found in [25].
1682
1683
==9 EXAMPLES==
1684
1685
In this section several examples are presented to show the good performance of the rotation-free shell elements BST, EBST and EBST1. The first five static examples are solved using an implicit code. The rest of the examples are computed using the explicit dynamic scheme. For the explicit scheme the  EBST element is always integrated using one integration point per element (EBST1 version) although not indicated.
1686
1687
===9.1 Patch tests===
1688
1689
The three elements considered (BST, EBST and EBST1) satisfy the membrane patch test defined in Figure [[#img-4|4]]. A uniform axial tensile stress is obtained in all cases.
1690
1691
<div id='img-4'></div>
1692
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1693
|-
1694
|[[Image:Draft_Samper_165783789-test-fig4.png|600px|Patch test for uniform tensile stress]]
1695
|- style="text-align: center; font-size: 75%;"
1696
| colspan="1" | '''Figure 4:''' Patch test for uniform tensile stress
1697
|}
1698
1699
<div id='img-5'></div>
1700
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1701
|-
1702
|[[Image:Draft_Samper_165783789-test-fig5.png|600px|Patch test for uniform torsion]]
1703
|- style="text-align: center; font-size: 75%;"
1704
| colspan="1" | '''Figure 5:''' Patch test for uniform torsion
1705
|}
1706
1707
The element bending formulation does not allow to apply external bending moments (there are not rotational DOFs). Hence it is not possible to analyse a patch of elements under loads leading to a uniform bending moment. A uniform torsion can be considered if a point load is applied at the corner of a rectangular plate with two consecutive free sides and two simple supported sides. Figure [[#img-5|5]] shows three patches leading to correct results both in displacements and stresses. All three patches are structured meshes. When the central node in the third patch is shifted from the center, the results obtained with the EBST and EBST1 elements are not correct. This however does not seems to preclude the excellent performance of these elements, as proved in the rest of the examples analyzed. On the other hand, the BST element  gives correct results in all torsion patch tests if natural boundary conditions are imposed in the formulation. If this is not the case, incorrect results are obtained even with structured meshes.
1708
1709
===9.2 Cook's membrane problem===
1710
1711
This example is used to assess the membrane performance of the EBST and EBST1 elements and to compare it with the standard linear triangle (constant strain) and the quadratic triangle (linear strain). This example involves important shear energy and was proposed to assess the distortion capability of elements. Figure [[#img-6|6]].a shows the geometry and the applied load. Figure [[#img-6|6]].b plots the vertical displacement of the upper vertex as a function of the number of nodes in the mesh. Results obtained with other isoparametric elements have also been  plotted for comparison. They include the constant strain triangle (CST), the bilinear quadrilateral (QUAD4) and the linear strain triangle (LST) [4]. Note that as this is a pure  membrane problem  the BST and the CST elements give identical results.
1712
1713
<div id='img-6'></div>
1714
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1715
|-
1716
|[[Image:Draft_Samper_165783789-test-fig6a.png|454px|]]
1717
|[[Image:Draft_Samper_165783789-test-fig6b.png|454px|Cook's membrane problem (a) Geometry (b) Results]]
1718
|- style="text-align: center; font-size: 75%;"
1719
| colspan="2" | '''Figure 6:''' Cook's membrane problem (a) Geometry (b) Results
1720
|}
1721
1722
From the plot shown it can be seen that the enhanced element with three integration points (EBST) gives values slightly better that the constant strain triangle for the most coarse mesh (only two elements). However, when the mesh is refined a performance similar to the linear strain triangle is obtained that is dramatically superior than the former. On the other hand, if a one point quadrature is used (EBST1) the convergence in the reported displacement is notably better than for the rest of the elements.
1723
1724
===9.3 Cylindrical roof===
1725
1726
In this example an effective membrane interpolation is of primary importance. The geometry is a cylindrical roof supported by a rigid diaphragm at both ends and it is loaded by a uniform dead weight (see Figure [[#img-7|7]].a.). Only one quarter of the structure is modelled due to symmetry conditions. Unstructured and structured meshes are considered. In the latter case two orientations are possible (Figure [[#img-7|7]].a shows orientation B).
1727
1728
Tables [[#table-3|3]], [[#table-4|4]] and [[#table-5|5]] present the normalized vertical displacements at the crown (point A) and at the midpoint of the free side (point B) for the two orientations of the structured meshes and for the non-structured mesh. Values used for normalization are <math display="inline">u_{A}=0.5407</math> y <math display="inline">u_{B}=-3.610</math> that are quoted in reference [31].
1729
1730
<div id='img-7'></div>
1731
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1732
|-
1733
|[[Image:Draft_Samper_165783789-test-fig7a.png|454px|]]
1734
|[[Image:Draft_Samper_165783789-test-fig7b.png|485px|Cylindrical roof under dead weight. E=3 ×10⁶, ν=0.0, Thickness =3.0, shell weight =0.625 per unit area. (a) Geometry and mesh for orientation B. (b) Displacement of point B for both (structured) mesh orientations]]
1735
|- style="text-align: center; font-size: 75%;"
1736
| colspan="2" | '''Figure 7:''' Cylindrical roof under dead weight. <math>E=3 \times 10^{6}</math>, <math>\nu=0.0</math>, Thickness =3.0, shell weight =0.625 per unit area. (a) Geometry and mesh for orientation B. (b) Displacement of point B for both (structured) mesh orientations
1737
|}
1738
1739
1740
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
1741
|+ style="font-size: 75%;" |<span id='table-3'></span>Table. 3 Cylindrical roof under dead weight. Normalized vertical displacements for mesh orientation A
1742
|- style="border-top: 2px solid;"
1743
| style="border-left: 2px solid;border-right: 2px solid;" |  
1744
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-A
1745
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-B
1746
|- style="border-top: 2px solid;"
1747
| style="border-left: 2px solid;border-right: 2px solid;" |  NDOFs 
1748
| style="border-left: 2px solid;border-right: 2px solid;" | EBST 
1749
| style="border-left: 2px solid;border-right: 2px solid;" | EBST1 
1750
| style="border-left: 2px solid;border-right: 2px solid;" | BST 
1751
| style="border-left: 2px solid;border-right: 2px solid;" | CBST 
1752
| style="border-left: 2px solid;border-right: 2px solid;" | EBST1 
1753
| style="border-left: 2px solid;border-right: 2px solid;" | BST    
1754
|-
1755
| style="border-left: 2px solid;border-right: 2px solid;" | 16 
1756
| style="border-left: 2px solid;border-right: 2px solid;" | 0.65724 
1757
| style="border-left: 2px solid;border-right: 2px solid;" | 0.91855 
1758
| style="border-left: 2px solid;border-right: 2px solid;" | 0.74161 
1759
| style="border-left: 2px solid;border-right: 2px solid;" | 0.40950 
1760
| style="border-left: 2px solid;border-right: 2px solid;" | 0.70100 
1761
| style="border-left: 2px solid;border-right: 2px solid;" | 1.35230
1762
|-
1763
| style="border-left: 2px solid;border-right: 2px solid;" | 56 
1764
| style="border-left: 2px solid;border-right: 2px solid;" | 0.53790 
1765
| style="border-left: 2px solid;border-right: 2px solid;" | 1.03331 
1766
| style="border-left: 2px solid;border-right: 2px solid;" | 0.74006 
1767
| style="border-left: 2px solid;border-right: 2px solid;" | 0.54859 
1768
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00759 
1769
| style="border-left: 2px solid;border-right: 2px solid;" | 0.75590
1770
|-
1771
| style="border-left: 2px solid;border-right: 2px solid;" | 208 
1772
| style="border-left: 2px solid;border-right: 2px solid;" | 0.89588 
1773
| style="border-left: 2px solid;border-right: 2px solid;" | 1.04374 
1774
| style="border-left: 2px solid;border-right: 2px solid;" | 0.88491 
1775
| style="border-left: 2px solid;border-right: 2px solid;" | 0.91612 
1776
| style="border-left: 2px solid;border-right: 2px solid;" | 1.02155 
1777
| style="border-left: 2px solid;border-right: 2px solid;" | 0.88269
1778
|-
1779
| style="border-left: 2px solid;border-right: 2px solid;" | 800 
1780
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99658 
1781
| style="border-left: 2px solid;border-right: 2px solid;" | 1.01391 
1782
| style="border-left: 2px solid;border-right: 2px solid;" | 0.96521 
1783
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99263 
1784
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00607 
1785
| style="border-left: 2px solid;border-right: 2px solid;" | 0.96393
1786
|- style="border-bottom: 2px solid;"
1787
| style="border-left: 2px solid;border-right: 2px solid;" | 3136 
1788
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00142 
1789
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00385 
1790
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99105 
1791
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99881 
1792
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00102 
1793
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98992
1794
1795
|}
1796
1797
1798
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
1799
|+ style="font-size: 75%;" |<span id='table-4'></span>Table. 4 Cylindrical roof under dead weight. Normalized vertical displacements for mesh orientation B
1800
|- style="border-top: 2px solid;"
1801
| style="border-left: 2px solid;border-right: 2px solid;" |  
1802
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-A
1803
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-B
1804
|- style="border-top: 2px solid;"
1805
| style="border-left: 2px solid;border-right: 2px solid;" |  NDOFs 
1806
| style="border-left: 2px solid;border-right: 2px solid;" | EBST 
1807
| style="border-left: 2px solid;border-right: 2px solid;" | EBST1 
1808
| style="border-left: 2px solid;border-right: 2px solid;" | BST 
1809
| style="border-left: 2px solid;border-right: 2px solid;" | CBST 
1810
| style="border-left: 2px solid;border-right: 2px solid;" | EBST1 
1811
| style="border-left: 2px solid;border-right: 2px solid;" | BST
1812
|-
1813
| style="border-left: 2px solid;border-right: 2px solid;" | 16 
1814
| style="border-left: 2px solid;border-right: 2px solid;" | 0.26029 
1815
| style="border-left: 2px solid;border-right: 2px solid;" | 0.83917 
1816
| style="border-left: 2px solid;border-right: 2px solid;" | 0.40416 
1817
| style="border-left: 2px solid;border-right: 2px solid;" | 0.52601 
1818
| style="border-left: 2px solid;border-right: 2px solid;" | 0.86133 
1819
| style="border-left: 2px solid;border-right: 2px solid;" | 0.89778
1820
|-
1821
| style="border-left: 2px solid;border-right: 2px solid;" | 56 
1822
| style="border-left: 2px solid;border-right: 2px solid;" | 0.81274 
1823
| style="border-left: 2px solid;border-right: 2px solid;" | 1.10368 
1824
| style="border-left: 2px solid;border-right: 2px solid;" | 0.61642 
1825
| style="border-left: 2px solid;border-right: 2px solid;" | 0.67898 
1826
| style="border-left: 2px solid;border-right: 2px solid;" | 0.93931 
1827
| style="border-left: 2px solid;border-right: 2px solid;" | 0.68238
1828
|-
1829
| style="border-left: 2px solid;border-right: 2px solid;" | 208 
1830
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97651 
1831
| style="border-left: 2px solid;border-right: 2px solid;" | 1.04256 
1832
| style="border-left: 2px solid;border-right: 2px solid;" | 0.85010 
1833
| style="border-left: 2px solid;border-right: 2px solid;" | 0.93704 
1834
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00255 
1835
| style="border-left: 2px solid;border-right: 2px solid;" | 0.86366
1836
|-
1837
| style="border-left: 2px solid;border-right: 2px solid;" | 800 
1838
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00085 
1839
| style="border-left: 2px solid;border-right: 2px solid;" | 1.01195 
1840
| style="border-left: 2px solid;border-right: 2px solid;" | 0.95626 
1841
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99194 
1842
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00211 
1843
| style="border-left: 2px solid;border-right: 2px solid;" | 0.95864
1844
|- style="border-bottom: 2px solid;"
1845
| style="border-left: 2px solid;border-right: 2px solid;" | 3136 
1846
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00129 
1847
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00337 
1848
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98879 
1849
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99828 
1850
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00017 
1851
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98848
1852
1853
|}
1854
1855
1856
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
1857
|+ style="font-size: 75%;" |<span id='table-5'></span>Table. 5 Cylindrical roof under dead weight. Normalized vertical displacements for non-structured meshes
1858
|- style="border-top: 2px solid;"
1859
| style="border-left: 2px solid;border-right: 2px solid;" |  
1860
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-A
1861
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-B
1862
|- style="border-top: 2px solid;"
1863
| style="border-left: 2px solid;border-right: 2px solid;" |  NDOFs 
1864
| style="border-left: 2px solid;border-right: 2px solid;" | EBST 
1865
| style="border-left: 2px solid;border-right: 2px solid;" | EBST1 
1866
| style="border-left: 2px solid;border-right: 2px solid;" | BST 
1867
| style="border-left: 2px solid;border-right: 2px solid;" | EBST 
1868
| style="border-left: 2px solid;border-right: 2px solid;" | EBST1 
1869
| style="border-left: 2px solid;border-right: 2px solid;" | BST
1870
|-
1871
| style="border-left: 2px solid;border-right: 2px solid;" | 851 
1872
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97546 
1873
| style="border-left: 2px solid;border-right: 2px solid;" | 0.8581 
1874
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97598 
1875
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97662 
1876
| style="border-left: 2px solid;border-right: 2px solid;" | 1.0027 
1877
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97194
1878
|-
1879
| style="border-left: 2px solid;border-right: 2px solid;" | 3311 
1880
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98729 
1881
| style="border-left: 2px solid;border-right: 2px solid;" | 0.9682 
1882
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98968 
1883
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98476 
1884
| style="border-left: 2px solid;border-right: 2px solid;" | 1.0083 
1885
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98598
1886
|- style="border-bottom: 2px solid;"
1887
| style="border-left: 2px solid;border-right: 2px solid;" | 13536 
1888
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99582 
1889
| style="border-left: 2px solid;border-right: 2px solid;" | 0.9992 
1890
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00057 
1891
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99316 
1892
| style="border-left: 2px solid;border-right: 2px solid;" | 0.9973 
1893
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99596
1894
1895
|}
1896
1897
Plots in Figure [[#img-7|7]].b show the normalized displacement of point-B for structured meshes as a function of the number of degrees of freedom for each case studied. An excellent convergence for the EBST element can be seen. The version with only one integration point (EBST1) presents a behavior a little more flexible and converges from above for structured meshes. Table [[#table-5|5]] shows that both the EBST and the EBST1 elements have an excellent behavior for non structured meshes.
1898
1899
===9.4 Open semi-spherical dome with point loads===
1900
1901
The main problem of shell finite elements with initially curved geometry is the so called membrane locking. The EBST element  has a quadratic interpolation of the geometry, then it may suffer from this problem. To assess this we resort to an example of inextensional bending. This is an hemispherical shell of radius <math display="inline">r=10</math> and thickness <math display="inline">h=0.04</math> with an 18<math display="inline">^{o}</math> hole in the pole and free at all boundaries, subjected to two inward and two outward forces 90<math display="inline">^{o}</math> apart. Material properties are <math display="inline">E=6.825\times{10}^{7}</math> and <math display="inline">\nu=0.3</math>. Figure [[#img-8|8]].a shows the discretized geometry (only one quarter of the geometry is considered due to symmetry).
1902
1903
<div id='img-8'></div>
1904
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1905
|-
1906
|[[Image:Draft_Samper_165783789-test-fig8a.png|379px|]]
1907
|[[Image:Draft_Samper_165783789-test-fig8b.png|600px|Pinched hemispherical shell with a hole, (a)geometry, (b)normalized displacement]]
1908
|- style="text-align: center; font-size: 75%;"
1909
| colspan="2" | '''Figure 8:''' Pinched hemispherical shell with a hole, (a)geometry, (b)normalized displacement
1910
|}
1911
1912
In Figure [[#img-8|8]].b the displacements of the points under the loads have been plotted versus the number of nodes used in the discretization. Due to the orientation of the meshes chosen, the displacement of the point under the inward load is not the same as the displacement under the outward load, so in the figure an average (the absolute values) has been used. Results obtained with other elements have been included for comparison: three membrane locking free elements, namely the original linear BST element, a transverse shear-deformable quadrilateral (QUAD) [32] and an assumed strain quadratic triangle (TRIC) [3]; a transverse shear deformable quadratic triangle (TRIA) (standard displacement formulation for membrane part) [2] that is vulnerable to locking.
1913
1914
From the plotted results it can be seen that the EBST element presents slight membrane locking in bending dominated problems with initially curved geometries. This locking is much less severe than in a standard quadratic triangle. Membrane locking disappears when only one integration point is used (EBST1 element).
1915
1916
===9.5 Inflation of a sphere===
1917
1918
The example is the inflation of a spherical shell under internal pressure. An incompressible Mooney-Rivlin constitutive material has been considered. The Ogden parameters are <math display="inline">N=2</math>, <math display="inline">\alpha _{1}=2</math>, <math display="inline">\mu _{1}=40</math>, <math display="inline">\alpha _{2}=-2</math>, <math display="inline">\mu _{2}=-20</math>. Due to the simple geometry an analytical solution exists [33] (with <math display="inline">\gamma =R/R^{0}</math>):
1919
1920
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1921
|-
1922
| 
1923
{| style="text-align: left; margin:auto;width: 100%;" 
1924
|-
1925
| style="text-align: center;" | <math> p=\frac{h^{0}}{R^{0}\gamma ^{2}}\frac{dW}{d\gamma }=\frac{8h^{0}}{R^{0}\gamma ^{2}} \left( \gamma ^{6}-1\right) \left( \mu _{1}-\mu _{2}\gamma ^{2}\right) </math>
1926
|}
1927
|}
1928
1929
In this numerical simulation the same geometric and material parameters used in <span id='citeF-22'></span>[[#cite-22|[22]]] have been adopted: <math display="inline">R^{0}=1</math> and <math display="inline">h^{0}=0.02</math>. The three meshes of EBST1 element considered to evaluate convergence are shown in Figure [[#img-9|9]].a. The value of the actual radius as a function of the internal pressure is plotted in Figure [[#img-9|9]].b for the different meshes and is also compared with the analytical solution. It can be seen that with a few degrees of freedom it is possible to obtain an excellent agreement for the range of strains considered. The final value corresponds to a  ratio of <math display="inline">h/R=0.00024</math>.
1930
1931
<div id='img-9'></div>
1932
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1933
|-
1934
|[[Image:Draft_Samper_165783789-test-fig9a.png|600px|]]
1935
|[[Image:Draft_Samper_165783789-test-fig9b.png|300px|Inflation of sphere of Mooney-Rivlin material. (a) Meshes of EBST1 elements used in the analysis (b) Radius as a function of the internal pressure.]]
1936
|- style="text-align: center; font-size: 75%;"
1937
| colspan="2" | '''Figure 9:''' Inflation of sphere of Mooney-Rivlin material. (a) Meshes of EBST1 elements used in the analysis (b) Radius as a function of the internal pressure.
1938
|}
1939
1940
===9.6 Clamped spherical dome under impulse pressure loading===
1941
1942
The geometry of the dome and the material properties chosen are shown in Figure [[#img-10|10]]. A uniform pressure load of 600 psi is applied to the upper surface of the dome. The different meshes used in the analysis are shown in Figure [[#img-11|11]]. One fourth of the dome is considered only due to symmetry. Two different analyses under elastic and elastic-plastic conditions were carried out. The number of thickness layers in eq.(100) is four. Numerical experiments show that this suffices to provide an accurate solution for large elastic-plastic problems [25]. Results are obtained using the explicit scheme.
1943
1944
<div id='img-10'></div>
1945
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1946
|-
1947
|[[Image:Draft_Samper_165783789-test-fig10.png|600px|Spherical dome under impulse pressure. Geometry and material]]
1948
|- style="text-align: center; font-size: 75%;"
1949
| colspan="1" | '''Figure 10:''' Spherical dome under impulse pressure. Geometry and material
1950
|}
1951
1952
<div id='img-11'></div>
1953
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1954
|-
1955
|[[Image:Draft_Samper_165783789-test-fig11.png|600px|Spherical dome under impulse pressure. Meshes used in the analysis. Mesh-1 with 338 elements, Mesh-2 with 1250 elements and Mesh-3 with 2888 elements]]
1956
|- style="text-align: center; font-size: 75%;"
1957
| colspan="1" | '''Figure 11:''' Spherical dome under impulse pressure. Meshes used in the analysis. Mesh-1 with 338 elements, Mesh-2 with 1250 elements and Mesh-3 with 2888 elements
1958
|}
1959
1960
<div id='img-12'></div>
1961
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1962
|-
1963
|[[Image:Draft_Samper_165783789-test-fig12.png|600px|Spherical dome under impulse pressure. History of central deflection for elastic material]]
1964
|- style="text-align: center; font-size: 75%;"
1965
| colspan="1" | '''Figure 12:''' Spherical dome under impulse pressure. History of central deflection for elastic material
1966
|}
1967
1968
<div id='img-13'></div>
1969
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1970
|-
1971
|[[Image:Draft_Samper_165783789-test-fig13.png|600px|Spherical dome under impulse pressure. History of central deflection for elastic-plastic material]]
1972
|- style="text-align: center; font-size: 75%;"
1973
| colspan="1" | '''Figure 13:''' Spherical dome under impulse pressure. History of central deflection for elastic-plastic material
1974
|}
1975
1976
Figure [[#img-12|12]] shows results for the time history of the central deflection using different meshes and ''elastic material properties'' for both  BST and EBST1 elements. Results are almost identical for mesh-2 and mesh-3, showing the excellent convergence properties. The coarsest mesh shows some differences between both elements, but for the finer meshes the results are almost identical. Figure [[#img-13|13]] shows similar results but now for an ''elastic-plastic material''. The excellent convergence  of the BST and EBST1 elements is again noticeable.
1977
1978
Results obtained with the present elements compare very well with published results using fine meshes. See for example ABAQUS Explicit example problems manual <span id='citeF-34'></span>[[#cite-34|[34]]] and WHAMS-3D manual [35], showing plots comparing results using different shell elements.
1979
1980
A summary of results for the central deflection at significant times is given in Tables [[#table-6|6]] and [[#table-7|7]]. Further details on the solution of this problem with the standard  BST element can be found in [25].
1981
1982
1983
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
1984
|+ style="font-size: 75%;" |<span id='table-6'></span>Table. 6 Spherical dome. Elastic material. Comparison of the central deflection values at the mid point obtained with the BST and EBST1  elements for different meshes
1985
|- style="border-top: 2px solid;"
1986
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  Element/mesh 
1987
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.2 ms</math>
1988
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.4 ms</math>
1989
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.6 ms</math>
1990
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.8 ms</math>
1991
|- style="border-top: 2px solid;"
1992
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |   BST Coarse  
1993
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05155 
1994
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09130 
1995
| style="border-left: 2px solid;border-right: 2px solid;" | 0.04414 
1996
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08945 
1997
|-
1998
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST Medium  
1999
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04542 
2000
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09177 
2001
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03863 
2002
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08052 
2003
|-
2004
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST Fine    
2005
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04460 
2006
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09022 
2007
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03514 
2008
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08132 
2009
|- style="border-top: 2px solid;"
2010
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  EBST1 Coarse  
2011
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05088 
2012
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08929 
2013
| style="border-left: 2px solid;border-right: 2px solid;" | 0.04348 
2014
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08708 
2015
|-
2016
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 Medium  
2017
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04527 
2018
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09134 
2019
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03865 
2020
| style="border-left: 2px solid;border-right: 2px solid;" | -0.07979 
2021
|- style="border-bottom: 2px solid;"
2022
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 Fine    
2023
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04453 
2024
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09004 
2025
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03510 
2026
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08099 
2027
2028
|}
2029
2030
2031
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
2032
|+ style="font-size: 75%;" |<span id='table-7'></span>Table. 7 Spherical dome. Elastic-plastic material. Comparison of the central deflection values at the mid point obtained with the BST and EBST1  elements for different meshes
2033
|- style="border-top: 2px solid;"
2034
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  Element/mesh 
2035
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.2 ms</math>
2036
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.4 ms</math>
2037
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.6 ms</math>
2038
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.8 ms</math>
2039
|- style="border-top: 2px solid;"
2040
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |   BST Coarse  
2041
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05888 
2042
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05869 
2043
| style="border-left: 2px solid;border-right: 2px solid;" | -0.02938 
2044
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06521 
2045
|-
2046
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST Medium  
2047
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05376 
2048
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06000 
2049
| style="border-left: 2px solid;border-right: 2px solid;" | -0.02564 
2050
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06098 
2051
|-
2052
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST Fine    
2053
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05312 
2054
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05993 
2055
| style="border-left: 2px solid;border-right: 2px solid;" | -0.02464 
2056
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06105 
2057
|- style="border-top: 2px solid;"
2058
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  EBST1 Coarse  
2059
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05827 
2060
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05478 
2061
| style="border-left: 2px solid;border-right: 2px solid;" | -0.02792 
2062
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06187 
2063
|-
2064
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 Medium  
2065
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05374 
2066
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05884 
2067
| style="border-left: 2px solid;border-right: 2px solid;" | -0.02543 
2068
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06080 
2069
|- style="border-bottom: 2px solid;"
2070
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 Fine    
2071
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05317 
2072
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05935 
2073
| style="border-left: 2px solid;border-right: 2px solid;" | -0.02458 
2074
| style="border-left: 2px solid;border-right: 2px solid;" | -0.06085 
2075
2076
|}
2077
2078
===9.7 Cylindrical panel under impulse loading===
2079
2080
The geometry of the cylinder and the material properties are shown in Figure [[#img-14|14]]. A prescribed initial normal velocity of <math display="inline">v_{o}=-5650</math> in/sec is applied to the points in the region shown modelling the effect of the detonation of an explosive layer. The panel is assumed clamped along all the boundary. One half of the cylinder is discretized only due to symmetry conditions. Three different meshes of <math display="inline">6\times{12}</math>, <math display="inline">12\times{32}</math> and <math display="inline">18\times{48}</math>  triangles were used for the analysis. The deformed configurations for <math display="inline">time =1 msec</math> are shown for the three meshes in Figure [[#img-15|15]].
2081
2082
<div id='img-14'></div>
2083
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2084
|-
2085
|[[Image:Draft_Samper_165783789-test-fig14.png|420px|Cylindrical panel under impulse loading. Geometry and material properties]]
2086
|- style="text-align: center; font-size: 75%;"
2087
| colspan="1" | '''Figure 14:''' Cylindrical panel under impulse loading. Geometry and material properties
2088
|}
2089
2090
<div id='img-15'></div>
2091
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2092
|-
2093
|[[Image:Draft_Samper_165783789-test-fig15.png|600px|Impulsively loaded cylindrical panel. Deformed meshes for time =1 msec]]
2094
|- style="text-align: center; font-size: 75%;"
2095
| colspan="1" | '''Figure 15:''' Impulsively loaded cylindrical panel. Deformed meshes for <math>time =1 msec</math>
2096
|}
2097
2098
<div id='img-16'></div>
2099
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2100
|-
2101
|[[Image:Draft_Samper_165783789-test-fig16.png|600px|Cylindrical panel under impulse loading. Time evolution of the displacement of two points along the crown line. Comparison of results obtained with BST and EBST1 elements (mesh 1: 6×12 elements and mesh 3: 18×48 elements) and experimental values ]]
2102
|- style="text-align: center; font-size: 75%;"
2103
| colspan="1" | '''Figure 16:''' Cylindrical panel under impulse loading. Time evolution of the displacement of two points along the crown line. Comparison of results obtained with BST and EBST1 elements (mesh 1: <math>6\times{12}</math> elements and mesh 3: <math>18\times{48}</math> elements) and experimental values 
2104
|}
2105
2106
The analysis was performed assuming an elastic-perfect plastic material behaviour (<math display="inline">\sigma _y = k_y</math> <math display="inline">k_y'=0</math>). A study of the convergence of the solution with the number of thickness layers showed again that four layers suffice to capture accurately the non linear material response [25].
2107
2108
A comparison of the results obtained with the BST and EBST1 elements using the coarse mesh and the finer mesh is shown in Figure [[#img-16|16]] where experimental results reported in <span id='citeF-36'></span>[[#cite-36|[36]]] have also been plotted for comparison purposes. Good agreement between the numerical and experimental results is obtained. Figures [[#img-16|16]] show the time evolution of the vertical displacement of two reference points along the center line located at <math display="inline">y=6.28</math>in and <math display="inline">y=9.42</math>in, respectively. For the finer mesh results between both elements are almost identical. For the coarse mesh it can been seen again that the element BST is more flexible than element EBST1.
2109
2110
The numerical values of the vertical displacement at the two reference points obtained with the BST and EBST1  elements after a time of 0.4 ms using the <math display="inline">16\times{32}</math> mesh are compared in Table [[#table-8|8]]  with a numerical solution obtained by Stolarski ''et al.'' [37] using a curved triangular shell element and the <math display="inline">16\times{32}</math> mesh. Experimental results reported in [36] are also given for comparison. It is interesting to note the reasonable agreement of the results for <math display="inline">y=6.28</math>in. and the discrepancy of present and other published numerical solutions with the experimental value for <math display="inline">y=9.42</math>in.
2111
2112
2113
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
2114
|+ style="font-size: 75%;" |<span id='table-8'></span>Table. 8 Cylindrical panel under impulse load. Comparison of vertical displacement values of two central points for <math>t=0.4</math> ms
2115
|- style="border-top: 2px solid;"
2116
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  
2117
| colspan='2' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Vertical displacement (in.)
2118
|- style="border-top: 2px solid;"
2119
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  element/mesh                
2120
| style="border-left: 2px solid;border-right: 2px solid;" | <math>y=6.28</math>in 
2121
| style="border-left: 2px solid;border-right: 2px solid;" | <math>y=9.42</math>in 
2122
|- style="border-top: 2px solid;"
2123
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  BST  (<math display="inline"> 6\times 12</math> el.)    
2124
| style="border-left: 2px solid;border-right: 2px solid;" | -1.310     
2125
| style="border-left: 2px solid;border-right: 2px solid;" | -0.679      
2126
|-
2127
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST  (<math display="inline">18\times 48</math> el.)    
2128
| style="border-left: 2px solid;border-right: 2px solid;" | -1.181     
2129
| style="border-left: 2px solid;border-right: 2px solid;" | -0.587      
2130
|-
2131
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 (<math display="inline"> 6\times 12</math> el.)    
2132
| style="border-left: 2px solid;border-right: 2px solid;" | -1.147     
2133
| style="border-left: 2px solid;border-right: 2px solid;" | -0.575      
2134
|-
2135
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 (<math display="inline">18\times 48</math> el.)    
2136
| style="border-left: 2px solid;border-right: 2px solid;" | -1.171     
2137
| style="border-left: 2px solid;border-right: 2px solid;" | -0.584      
2138
|-
2139
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | Stolarski ''et al.'' [37] 
2140
| style="border-left: 2px solid;border-right: 2px solid;" | -1.183     
2141
| style="border-left: 2px solid;border-right: 2px solid;" | -0.530      
2142
|- style="border-bottom: 2px solid;"
2143
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | Experimental [36] 
2144
| style="border-left: 2px solid;border-right: 2px solid;" | -1.280     
2145
| style="border-left: 2px solid;border-right: 2px solid;" | -0.700      
2146
2147
|}
2148
2149
<div id='img-17'></div>
2150
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2151
|-
2152
|[[Image:Draft_Samper_165783789-test-fig17.png|500px|Cylindrical panel under impulse loading. Final deformation (t=1 msec) of the panel at the cross section y=6.28 in Comparison with experimental values. ]]
2153
|- style="text-align: center; font-size: 75%;"
2154
| colspan="1" | '''Figure 17:''' Cylindrical panel under impulse loading. Final deformation (<math>t=1 msec</math>) of the panel at the cross section <math>y=6.28 in</math> Comparison with experimental values. 
2155
|}
2156
2157
<div id='img-18'></div>
2158
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2159
|-
2160
|[[Image:Draft_Samper_165783789-test-fig18.png|600px|Cylindrical panel under impulse loading. Final deformation (t=1 msec) of the panel at the crown line (x=0.00 in). Comparison with experimental values. ]]
2161
|- style="text-align: center; font-size: 75%;"
2162
| colspan="1" | '''Figure 18:''' Cylindrical panel under impulse loading. Final deformation (<math>t=1 msec</math>) of the panel at the crown line (<math>x=0.00 in</math>). Comparison with experimental values. 
2163
|}
2164
2165
The deformed shapes of the transverse section for <math display="inline">y=6.28</math>in. and the longitudinal section for <math display="inline">x=0</math> obtained with the both elements for the coarse and the fine meshes after 1ms. are compared with the experimental results in Figures [[#img-17|17]] and [[#img-18|18]].  Excellent agreement is observed for the fine mesh for both elements.
2166
2167
===9.8 Airbag Membranes===
2168
2169
===Inflation/deflation of a circular airbag===
2170
2171
This example has been taken from Ref.[22] where it is shown that the final configuration is mesh dependent due to the strong instabilities leading to a non-uniqueness of the solution. In [22]  it is also discussed the important regularizing properties of the bending energy that, when disregarded, leads to massive wrinkling in the compressed zones.
2172
2173
The airbag geometry is initially circular with an undeformed radius of <math display="inline">0.35</math>.  The  material is a linear isotropic elastic one with modulus of elasticity <math display="inline">E=6\times 10^{7}</math>Pa, Poisson's ratio <math display="inline">\nu =0.3</math> and density <math display="inline">\rho = 2000</math>kg/m<math display="inline">^3</math>.  A symmetrical solution has been assumed and, hence, only one quarter of the geometry has been modelled.  Only the normal displacement to the original plane is constrained along the boundaries.  The thickness considered is <math display="inline">h=0.0004</math>m and the inflation pressure is <math display="inline">5000</math>Pa. Pressure is linearly increased from 0 to the final value in <math display="inline">t=0.15</math> sec.
2174
2175
Figure 19 shows the final deformed configurations for a mesh with 10201 nodes and 20000 EBST1 elements.  The figure on the left (a) corresponds to an analysis including full bending effects and the right figure (b) is a pure membrane analysis.
2176
2177
We note that when the bending energy is included a more regular final pattern is obtained.  Also the final pattern is rather independent of the discretization (note that the solution is non unique due to the strong instabilities). On the other hand, the pure membrane solution shows in the center of the modelled region a wrinkling pattern where the width of the wrinkle is the length of the element.
2178
2179
<div id='img-19'></div>
2180
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2181
|-
2182
|[[Image:Draft_Samper_165783789-test-fig19.png|600px|Inflation of a circular airbag. Deformed configurations for final pressure. (a) bending formulation; (b) membrane formulation.]]
2183
|- style="text-align: center; font-size: 75%;"
2184
| colspan="1" | '''Figure 19:''' Inflation of a circular airbag. Deformed configurations for final pressure. (a) bending formulation; (b) membrane formulation.
2185
|}
2186
2187
<div id='img-20'></div>
2188
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2189
|-
2190
|[[Image:Draft_Samper_165783789-test-fig20.png|600px|Inflation and deflation of a circular air-bag.]]
2191
|- style="text-align: center; font-size: 75%;"
2192
| colspan="1" | '''Figure 20:''' Inflation and deflation of a circular air-bag.
2193
|}
2194
2195
<div id='img-21'></div>
2196
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2197
|-
2198
|[[Image:Draft_Samper_165783789-test-fig21.png|600px|Inflation and deflation of a closed  tube. L=5, D=2, h=5×10⁻⁴.]]
2199
|- style="text-align: center; font-size: 75%;"
2200
| colspan="1" | '''Figure 21:''' Inflation and deflation of a closed  tube. <math>L=5</math>, <math>D=2</math>, <math>h=5\times 10^{-4}</math>.
2201
|}
2202
2203
<div id='img-22'></div>
2204
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2205
|-
2206
|[[Image:Draft_Samper_165783789-test-fig22.png|600px|Inflation and deflation of a closed  tube. L=6, D=2, h=3×10⁻⁴.]]
2207
|- style="text-align: center; font-size: 75%;"
2208
| colspan="1" | '''Figure 22:''' Inflation and deflation of a closed  tube. <math>L=6</math>, <math>D=2</math>, <math>h=3\times 10^{-4}</math>.
2209
|}
2210
2211
<div id='img-23'></div>
2212
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2213
|-
2214
|[[Image:Draft_Samper_165783789-test-fig23.png|461px|Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution.]]
2215
|- style="text-align: center; font-size: 75%;"
2216
| colspan="1" | '''Figure 23:''' Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution.
2217
|}
2218
2219
Figure 20 shows the results obtained for the de-inflation process.  Note that the spherical membrane falls down due to the self weight.  The configurations are, of course, non-unique.
2220
2221
===Inflation/deflation of a closed tube===
2222
2223
The next problem is the study of the inflating and de-inflating of a tube with a semi-spherical end cap.  The tube diameter is <math display="inline">D=2</math>m, its total length is <math display="inline">L=5</math>m and the thickness <math display="inline">h=5\times 10^{-3}</math>m.  The material has the following properties: <math display="inline">E=4\times 10^{8}</math>Pa, <math display="inline">\nu =0.35 </math> and <math display="inline">\rho =3\times 10^{3}</math>kg/m<math display="inline">^3</math>.  The tube is inflated fast until a pressure of <math display="inline">10^4</math>Pa and then is de-inflated under self weight.  The analysis is performed with a mesh of 4176 EBST1 elements and 2163 nodes modelling a quarter of the geometry.  The evolution of the tube walls during the de-inflating process can be seen in Figure 21.  Note that the central part collapses as expected, while the semi-spherical cap remains rather unaltered.
2224
2225
The same analysis is repeated for a longer and thinner tube (<math display="inline">L=6</math>m and <math display="inline">h=3\times 10^{-3}</math>m).  The same material than in the previous case was chosen. The evolution of the tube walls is shown in Figure 22.  Note that the central part collapses again but in a less smoother manner due to the smaller thickness.
2226
2227
===Inflation of a square airbag===
2228
2229
The last example of this kind is the inflation of a square airbag supporting a spherical object.  This example resembles a problem studied (numerically and experimentally) in [38], where fluid-structure interaction is the main subject.  Here the fluid is not modelled and a uniform pressure is applied over all the internal surfaces.  The lower surface part of the airbag is limited by a rigid plane and on the upper part a spherical dummy object is set to study the interaction between the airbag and the object.
2230
2231
The airbag geometry is initially square with an undeformed side length of 0.643m.  The constitutive material chosen is a linear isotropic elastic one with <math display="inline">E=5.88\times 10^8</math>Pa, <math display="inline">\nu =0.4</math> and a density of <math display="inline">\rho = 1000</math> kg/m<math display="inline">^3</math>.  Only one quarter of the geometry has been modelled due to symmetry.  The thickness <math display="inline">h=0.00075</math>m and the inflation pressure is 250000Pa.  Pressure is linearly incremented from 0 to the final value in <math display="inline">t=0.15</math>sec.  The spherical object has a radius <math display="inline">r=0.08</math>m and a mass of 4.8kg (one quarter) and is subjected to gravity load during all the process.
2232
2233
The mesh has 8192 EBST1 elements and 4225 nodes on each surface of the airbag.  Figure 23 shows the deformed configurations for three different times.  The sequence on the left of the figure corresponds to an analysis including full bending effects and that on the right is the result of a pure membrane analysis.  A standard penalty formulation is used in order to treat the frictionless contact.
2234
2235
===9.9 S-rail sheet stamping===
2236
2237
The final problem corresponds to one of the sheet stamping benchmark tests proposed in NUMISHEET'96 <span id='citeF-39'></span>[[#cite-39|[39]]].  The analysis comprises two parts, namely, simulation of the stamping of a S-rail sheet component and springback computations once the stamping tools are removed.  Figure [[#img-24|24]] shows the deformed sheet after springback.
2238
2239
<div id='img-24'></div>
2240
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2241
|-
2242
|[[Image:Draft_Samper_165783789-test-fig24.png|600px|Stamping of a S-rail. Final deformation of the sheet after springback obtained in the simulation. The triangular mesh of the deformed sheet is also shown]]
2243
|- style="text-align: center; font-size: 75%;"
2244
| colspan="1" | '''Figure 24:''' Stamping of a S-rail. Final deformation of the sheet after springback obtained in the simulation. The triangular mesh of the deformed sheet is also shown
2245
|}
2246
2247
The detailed geometry and material data can be found in the proceedings of the conference <span id='citeF-39'></span>[[#cite-39|[39]]] or in the web <span id='citeF-40'></span>[[#cite-40|[40]]]. The mesh used for the sheet has 6000 three  node triangular elements and 3111 points (Figure 24). The tools are treated as rigid bodies. The meshes used for the sheet and the tools are those provided by the  benchmark organizers. The material considered here is a mild steel (IF) with Young Modulus <math display="inline">E=2.06 GPa</math> and Poisson ratio <math display="inline">\nu=0.3</math>. Mises yield criterion was used for plasticity behaviour with non-linear isotropic hardening defined by <math display="inline">\sigma _y(e^p) = 545(0.13+e^p)^{0.267} [MPa]</math>. A uniform friction of 0.15 was used for all the tools. A low (10kN) blank holder force was considered in this simulation.
2248
2249
Figure [[#img-25|25]] compares the punch force during the stamping stage obtained with both BST and EBST1 elements for the simulation and experimental values. Also for reference the average values of the simulations presented in the conference are included. Explicit and implicit simulations are considered as different curves. There is a remarkable coincidence between the experimental values and the results obtained with BST and EBST1 elements.
2250
2251
<div id='img-25'></div>
2252
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2253
|-
2254
|[[Image:Draft_Samper_165783789-test-fig25.png|600px|Stamping of a S-rail. Punch force versus punch travel. Average of explicit and implicit results reported at the benchmark are also shown. ]]
2255
|- style="text-align: center; font-size: 75%;"
2256
| colspan="1" | '''Figure 25:''' Stamping of a S-rail. Punch force versus punch travel. Average of explicit and implicit results reported at the benchmark are also shown. 
2257
|}
2258
2259
Figure [[#img-26|26]] plots the <math display="inline">Z</math> coordinate along line B"&#8211;G" after springback. The top surface of the sheet does not remain plane due to some instabilities due to the low blank holder force used. Results obtained with the simulations compare very well with the experimental values.
2260
2261
<div id='img-26'></div>
2262
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2263
|-
2264
|[[Image:Draft_Samper_165783789-test-fig26.png|600px|Stamping of a S-rail. Z-coordinate along line B''&#8211;-G'' after springback. Average of explicit and implicit results reported at the benchmark are also shown. ]]
2265
|- style="text-align: center; font-size: 75%;"
2266
| colspan="1" | '''Figure 26:''' Stamping of a S-rail. Z-coordinate along line B''&#8211;-G'' after springback. Average of explicit and implicit results reported at the benchmark are also shown. 
2267
|}
2268
2269
==10 CONCLUDING REMARKS==
2270
2271
We have presented in the paper two alternative formulations for the rotation-free basic shell triangle (BST) using an assumed strain approach.  The simplest element of the family is based on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of four elements and a constant membrane field computed from the standard linear interpolation of the displacements within each triangle. An enhanced version of the BST element is obtained by using a quadratic interpolation of the geometry in terms of the six patch nodes.  This allows to compute an assumed linear membrane strain field which improves the in-plane behaviour of the original element.  A simple and economic version of the new EBST element using a single integration point has been presented.  The efficiency of the different rotation-free shell triangles has been demonstrated in many examples of application including linear and non linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
2272
2273
The enhanced rotation-free basic shell triangle element with a single integration point (the EBST1 element) has proven to be an excellent candidate for solving practical engineering shell and membrane problems involving complex geometry, dynamics, material non linearity and frictional contact conditions.
2274
2275
==ACKNOWLEDGEMENTS==
2276
2277
The problems analyzed with the explicit formulation were solved with the computer code STAMPACK <span id='citeF-41'></span>[[#cite-41|[41]]] where the rotation-free elements here presented have been implemented.  The support of the company QUANTECH (www.quantech.es) providing the code STAMPACK is gratefully acknowledged.
2278
2279
===BIBLIOGRAPHY===
2280
2281
<div id="cite-1"></div>
2282
'''[[#citeF-1|[1]]]''' E. Oñate. A review of some finite element families for thick and thin plate and shell analysis. Publication CIMNE N.53, May 1994.
2283
2284
<div id="cite-2"></div>
2285
'''[2]''' F.G. Flores, E. Oñate and F. Zárate. New assumed strain triangles for non-linear shell analysis. ''Computational Mechanics'', '''17''', 107&#8211;114, 1995.
2286
2287
<div id="cite-3"></div>
2288
'''[3]''' J.H. Argyris, M. Papadrakakis, C. Apostolopoulou and S. Koutsourelakis. The TRIC element. Theoretical and numerical investigation. ''Comput. Meth. Appl. Mech. Engrg.'', '''182''', 217&#8211;245, 2000.
2289
2290
<div id="cite-4"></div>
2291
'''[4]''' O.C. Zienkiewicz and R.L. Taylor. ''The finite element method. Solid Mechanics''. Vol II, Butterworth-Heinemann, 2000.
2292
2293
<div id="cite-5"></div>
2294
'''[5]'''  H. Stolarski, T. Belytschko and S.-H. Lee. A review of shell finite elements and corotational theories. ''Computational Mechanics Advances'', Vol. 2 N.2, North-Holland, 1995.
2295
2296
<div id="cite-6"></div>
2297
'''[[#citeF-6|[6]]]'''  E. Ramm and W.A. Wall. Shells in advanced computational environment. In ''V World Congress on Computational Mechanics'', J. Eberhardsteiner, H. Mang and F. Rammerstorfer (Eds.), Vienna, Austria, July 7&#8211;12, 2002. http://wccm.tuwien.ac.at.
2298
2299
<div id="cite-7"></div>
2300
'''[[#citeF-7|[7]]]'''  D. Bushnell and B.O. Almroth, “Finite difference energy method for non linear shell analysis”, ''J. Computers and Structures'', Vol. '''1''', 361, 1971.
2301
2302
<div id="cite-8"></div>
2303
'''[8]''' S.P. Timoshenko. ''Theory of Plates and Shells'', McGraw Hill, New York, 1971.
2304
2305
<div id="cite-9"></div>
2306
'''[[#citeF-9|[9]]]''' A.C. Ugural. ''Stresses in  Plates and Shells'', McGraw Hill, New York, 1981.
2307
2308
<div id="cite-10"></div>
2309
'''[10]''' R.A. Nay and S. Utku. An alternative to the finite element method. ''Variational Methods Eng.'', Vol. 1, 1972.
2310
2311
<div id="cite-11"></div>
2312
'''[11]''' J.K. Hampshire, B.H.V. Topping and H.C.  Chan. Three node triangular elements with one degree of freedom per node. ''Engng. Comput''. Vol. '''9''', pp. 49&#8211;62, 1992.
2313
2314
<div id="cite-12"></div>
2315
'''[12]''' R. Phaal and C.R. Calladine. A simple class of finite elements for plate and shell problems. I: Elements for beams and thin plates. ''Int. J. Num. Meth. Engng.'', Vol. '''35''', pp. 955&#8211;977, 1992.
2316
2317
<div id="cite-13"></div>
2318
'''[13]''' R. Phaal and C.R.  Calladine. A simple class of finite elements for plate and shell problems. II: An element for thin shells with only translational degrees of freedom. ''Int. J. Num. Meth. Engng.'', Vol. '''35''',  pp. 979&#8211;996, 1992.
2319
2320
<div id="cite-14"></div>
2321
'''[14]''' E. Oñate and Cervera M. Derivation of thin plate bending elements with one degree of freedom per node. ''Engineering Computations'', Vol. '''10''', pp 553&#8211;561, 1993.
2322
2323
<div id="cite-15"></div>
2324
'''[15]''' M. Brunet and F. Sabourin. Prediction of necking and wrinkles with a simplified shell element in sheet forming. ''Int. Conf. of Metal Forming Simulation in Industry'', Vol. II, pp. 27&#8211;48, B. Kröplin (Ed.), 1994.
2325
2326
<div id="cite-16"></div>
2327
'''[16]''' G. Rio, B. Tathi and H. Laurent. A new efficient finite element model of shell with only three degrees of freedom per node. Applications to industrial deep drawing test. in ''Recent Developments in Sheet Metal Forming Technology'', Ed. M.J.M. Barata Marques, 18th IDDRG Biennial Congress, Lisbon, 1994.
2328
2329
<div id="cite-17"></div>
2330
'''[17]'''  J. Rojek and E. Oñate. Sheet springback analysis using a simple shell triangle with translational degrees of freedom only. ''Int. J. of Forming Processes'', Vol. '''1''', No. 3, 275&#8211;296, 1998.
2331
2332
<div id="cite-18"></div>
2333
'''[18]'''  J. Rojek, E. Oñate and E. Postek. Application of explicit FE codes to simulation of sheet and bulk forming processes. ''J. of Materials Processing Technology'', Vols. '''80-81''', 620&#8211;627, 1998.
2334
2335
<div id="cite-19"></div>
2336
'''[19]'''  J. Jovicevic and E. Oñate. ''Analysis of beams and shells using a rotation-free finite element-finite volume formulation'', Monograph 43, CIMNE, Barcelona, 1999.
2337
2338
<div id="cite-20"></div>
2339
'''[[#citeF-20|[20]]]''' E. Oñate and F. Zárate. Rotation-free plate and shell triangles. ''Int. J. Num. Meth. Engng.'', '''47''', pp. 557&#8211;603, 2000.
2340
2341
<div id="cite-21"></div>
2342
'''[21]''' F. Cirak and M. Ortiz. Subdivision surfaces: A new paradigm for thin-shell finite element analysis. ''Int. J. Num. Meths in Engng'',  Vol. 47, 2000, 2039-2072.
2343
2344
<div id="cite-22"></div>
2345
'''[[#citeF-22|[22]]]''' F. Cirak and M. Ortiz. Fully <math display="inline">C^{1}</math>-conforming subdivision elements for finite deformations thin-shell analysis. ''Int. J. Num. Meths in Engng'', vol. 51, 2001, 813-833.
2346
2347
<div id="cite-23"></div>
2348
'''[[#citeF-23|[23]]]''' F.G. Flores and E. Oñate. A basic thin shell triangle with only translational DOFs for large strain plasticity. ''Int. J. Num. Meths in Engng'', Vol. '''51''', pp 57-83, 2001.
2349
2350
<div id="cite-24"></div>
2351
'''[24]''' G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei and R.L. Taylor. Continuous/discontinuous finite element approximation of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. ''Comput. Methods Appl. Mech. Engrg.'', Vol. 191, 3669&#8211;3750, 2002.
2352
2353
<div id="cite-25"></div>
2354
'''[25]'''  E. Oñate, P. Cendoya and J. Miquel. Non linear explicit dynamic analysis of shells using the BST rotation-free triangle. ''Engineering Computations'', '''19''' (6), 662&#8211;706, 2002.
2355
2356
<div id="cite-26"></div>
2357
'''[[#citeF-26|[26]]]''' F.G. Flores and E. Oñate. Improvements in the membrane behaviour of the three node rotation-free BST shell triangle  using an assumed strain approach. ''Computer Methods in Applied Mechanics and Engineering'', in press, 2003.
2358
2359
<div id="cite-27"></div>
2360
'''[27]'''  O.C. Zienkiewicz and E. Oñate. Finite Elements vs. Finite Volumes. Is there really a choice?. ''Nonlinear Computational Mechanics''. State of the Art. (Eds. P. Wriggers and R. Wagner). Springer Verlag, Heidelberg, 1991.
2361
2362
<div id="cite-28"></div>
2363
'''[28]''' E. Oñate, M.  Cervera  and O.C. Zienkiewicz. A finite volume format for structural mechanics. ''Int. J. Num. Meth. Engng.'', '''37''', pp. 181&#8211;201, 1994.
2364
2365
<div id="cite-29"></div>
2366
'''[29]''' R. Hill. A Theory of the Yielding and Plastic Flow of Anisotropic Metals. ''Proc. Royal Society London'', Vol. '''A193''', pp. 281, 1948.
2367
2368
<div id="cite-30"></div>
2369
'''[30]''' R.W. Ogden. Large deformation isotropic elasticity: on the correlation of theory and experiments for incompressible rubberlike solids. ''Proceedings of the Royal Society of London'', Vol. '''A326''', pp. 565&#8211;584, 1972.
2370
2371
<div id="cite-31"></div>
2372
'''[31]''' H.C. Huang, ''Static and Dynamic Analysis of Plates and Shells'', page 40, Springer-Verlag, Berlin, 1989.
2373
2374
<div id="cite-32"></div>
2375
'''[32]''' E.N. Dvorkin and K.J. Bathe. A continuum mechanics based four node shell element for general non-linear analysis. ''Eng. Comp.'', '''1''', 77&#8211;88, 1984.
2376
2377
<div id="cite-33"></div>
2378
'''[33]''' A. Needleman. Inflation of spherical rubber ballons. ''Int. J. of Solids and Structures'', '''13''', 409&#8211;421, 1977.
2379
2380
<div id="cite-34"></div>
2381
'''[[#citeF-34|[34]]]'''  Hibbit, Karlson and Sorensen Inc. ABAQUS, version 5.8, Pawtucket, USA, 1998.
2382
2383
<div id="cite-35"></div>
2384
'''[35]''' WHAMS-3D. An explicit 3D finite element program. KBS2  Inc., Willow Springs, Illinois 60480, USA.
2385
2386
<div id="cite-36"></div>
2387
'''[[#citeF-36|[36]]]'''  H.A. Balmer and E.A. Witmer. Theoretical experimental correlation of large dynamic and permanent deformation of impulsively loaded simple structures. ''Air force flight Dynamic Lab. Rep. FDQ-TDR-64-108'', Wright-Patterson AFB, Ohio, USA, 1964.
2388
2389
<div id="cite-37"></div>
2390
'''[37]'''  H. Stolarski, T. Belytschko and N. Carpenter. A simple triangular curved shell element. ''Eng. Comput.'', Vol. 1, 210&#8211;218, 1984.
2391
2392
<div id="cite-38"></div>
2393
'''[38]'''  P.O. Marklund and L. Nilsson. Simulation of airbag inflation processes using a coupled fluid structure approach. ''Computational Mechanics'', '''29''', 289&#8211;297, 2002.
2394
2395
<div id="cite-39"></div>
2396
'''[[#citeF-39|[39]]]''' NUMISHEET'96, ''Third International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, NUMISHEET'96'', E.H. Lee, G.L. Kinzel and R.H. Wagoner (Eds.), Dearbon-Michigan, USA, 1996.
2397
2398
<div id="cite-40"></div>
2399
'''[[#citeF-40|[40]]]'''  <code>http://rclsgi.eng.ohio-state.edu/%Elee-j-k/numisheet96/</code>
2400
2401
<div id="cite-41"></div>
2402
'''[[#citeF-41|[41]]]''' STAMPACK. ''A General Finite Element System for Sheet Stamping and Forming Problems'', Quantech ATZ, Barcelona, Spain, 2003 (www.quantech.es).
2403
2404
==APPENDIX==
2405
2406
==11 Curvature matrix for the BST element==
2407
2408
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2409
|-
2410
| 
2411
{| style="text-align: left; margin:auto;width: 100%;" 
2412
|-
2413
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }=\mathbf{B}_{b} \times \mathbf{t}_3 \delta \mathbf{a}^{p} </math>
2414
|}
2415
|}
2416
2417
with
2418
2419
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2420
|-
2421
| 
2422
{| style="text-align: left; margin:auto;width: 100%;" 
2423
|-
2424
| style="text-align: center;" | <math>\begin{array}{c}\\ \delta \mathbf{a}^{p}\\ 18\times{1} \end{array} =[\delta \mathbf{u}_{1}^{T},\delta \mathbf{u}_{2}^{T},\delta \mathbf{u}_{3}^{T},\delta \mathbf{u}_{4}^{T},\delta \mathbf{u}_{5}^{T},\delta \mathbf{u}_{6}^{T}]^{T} </math>
2425
|}
2426
|}
2427
2428
and 
2429
2430
<math>\mathbf{B}_{b}^{T}=</math>
2431
2432
2433
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2434
|- style="border-top: 2px solid;"
2435
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">+L^{M}_{2,1} L^{2}_{2,1}    +L^{M}_{3,1} L^{3}_{3,1} </math> 
2436
| style="border-left: 2px solid;border-right: 2px solid;" | <math>+L^{M}_{2,2} L^{2}_{2,2}    +L^{M}_{3,2} L^{3}_{3,2} </math>
2437
| style="border-left: 2px solid;border-right: 2px solid;" | <math>+L^{M}_{2,2} L^{2}_{2,1} +L^{M}_{2,1} L^{2}_{2,2}    +L^{M}_{3,2} L^{3}_{3,1} +L^{M}_{3,1} L^{3}_{3,2} </math>
2438
|- style="border-top: 2px solid;"
2439
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{1,1} L^{1}_{3,1}    +L^{M}_{3,1} L^{3}_{2,1} </math> 
2440
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{3,2}    +L^{M}_{3,2} L^{3}_{2,2} </math>
2441
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{3,1} +L^{M}_{1,1} L^{1}_{3,2}    +L^{M}_{3,2} L^{3}_{2,1} +L^{M}_{3,1} L^{3}_{2,2} </math>
2442
|- style="border-top: 2px solid;"
2443
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{1,1} L^{1}_{2,1}    +L^{M}_{2,1} L^{2}_{3,1} </math> 
2444
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{2,2}    +L^{M}_{2,2} L^{2}_{3,2} </math>
2445
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{2,1} +L^{M}_{1,1} L^{1}_{j,3}    +L^{M}_{2,2} L^{2}_{3,1} +L^{M}_{2,1} L^{2}_{3,2} </math>
2446
|- style="border-top: 2px solid;"
2447
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L^{M}_{1,1} L^{1}_{1,1} </math> 
2448
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{1,2} L^{1}_{1,2} </math>
2449
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{1,2} L^{1}_{1,1} +L^{M}_{1,1} L^{1}_{1,3} </math>
2450
|- style="border-top: 2px solid;"
2451
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L^{M}_{2,1} L^{2}_{1,1} </math> 
2452
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{2,2} L^{2}_{1,2} </math>
2453
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{2,2} L^{2}_{1,1} +L^{M}_{2,1} L^{2}_{1,3} </math>
2454
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2455
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L^{M}_{3,1} L^{3}_{1,1} </math> 
2456
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{3,2} L^{3}_{1,2} </math>
2457
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{3,2} L^{3}_{1,1} +L^{M}_{3,1} L^{3}_{1,3} </math>
2458
2459
|}
2460
2461
<math display="inline">-2</math> 
2462
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2463
|- style="border-top: 2px solid;"
2464
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{1,1}\rho _{11}^{1}+L^{M}_{1,2}\rho _{11}^{2} </math> 
2465
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,1}\rho _{22}^{1}+L^{M}_{i,2}\rho _{22}^{2} </math>
2466
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,1}\rho _{12}^{1}+L^{M}_{1,2}\rho _{12}^{2} </math>
2467
|- style="border-top: 2px solid;"
2468
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{2,1}\rho _{11}^{1}+L^{M}_{2,2}\rho _{11}^{2} </math> 
2469
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{2,1}\rho _{22}^{1}+L^{M}_{2,2}\rho _{22}^{2} </math>
2470
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{2,1}\rho _{12}^{1}+L^{M}_{2,2}\rho _{12}^{2} </math>
2471
|- style="border-top: 2px solid;"
2472
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{3,1}\rho _{11}^{1}+L^{M}_{3,2}\rho _{11}^{2} </math> 
2473
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{3,1}\rho _{22}^{1}+L^{M}_{3,2}\rho _{22}^{2} </math>
2474
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{3,1}\rho _{12}^{1}+L^{M}_{3,2}\rho _{12}^{2} </math>
2475
|- style="border-top: 2px solid;"
2476
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2477
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2478
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2479
|- style="border-top: 2px solid;"
2480
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2481
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2482
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2483
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2484
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2485
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2486
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2487
2488
|}
2489
2490
<br/><br/>
2491
2492
==12 Membrane strain matrix and curvature matrix for the EBST element==
2493
2494
===12.1 Membrane strain matrix===
2495
2496
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2497
|-
2498
| 
2499
{| style="text-align: left; margin:auto;width: 100%;" 
2500
|-
2501
| style="text-align: center;" | <math>\delta {\boldsymbol \varepsilon }_m ={\boldsymbol B}_m \delta {\boldsymbol a}^p  </math>
2502
|}
2503
|}
2504
2505
<math>\mathbf{B}_{m}^{T}=\frac{1}{3}</math>
2506
2507
2508
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2509
|- style="border-top: 2px solid;"
2510
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{1,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}   + N^{2}_{1,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}   + N^{3}_{1,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2511
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{1,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{1,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{1,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2512
|- style="border-top: 2px solid;"
2513
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{2,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}   + N^{2}_{2,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}   + N^{3}_{2,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2514
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{2,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{2,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{2,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2515
|- style="border-top: 2px solid;"
2516
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{3,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}   + N^{2}_{3,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}   + N^{3}_{3,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2517
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{3,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{3,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{3,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2518
|- style="border-top: 2px solid;"
2519
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{4,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1} </math> 
2520
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{4,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2} </math>
2521
|- style="border-top: 2px solid;"
2522
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{2}_{5,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1} </math> 
2523
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{2}_{5,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2} </math>
2524
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2525
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{3}_{6,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2526
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{3}_{6,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2527
2528
|}
2529
2530
2531
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2532
|- style="border-top: 2px solid;"
2533
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{1,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{1,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}    +N^{2}_{1,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{1,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}    +N^{3}_{1,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{1,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2534
|- style="border-top: 2px solid;"
2535
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{2,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{2,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{2,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{2,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{2,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{2,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2536
|- style="border-top: 2px solid;"
2537
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{3,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{3,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}    +N^{2}_{3,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{3,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}    +N^{3}_{3,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{3,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2538
|- style="border-top: 2px solid;"
2539
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{4,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{4,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2} </math> 
2540
|- style="border-top: 2px solid;"
2541
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{2}_{5,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{5,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2} </math> 
2542
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2543
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{3}_{6,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{6,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2544
2545
|}
2546
2547
===12.2 Curvature matrix===
2548
2549
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2550
|-
2551
| 
2552
{| style="text-align: left; margin:auto;width: 100%;" 
2553
|-
2554
| style="text-align: center;" | <math>\delta {\boldsymbol \kappa } ={\boldsymbol B}_b \times \mathbf{t}_3 \delta {\boldsymbol a}^p  </math>
2555
|}
2556
|}
2557
2558
<math>\mathbf{B}_{b}^{T}=2</math>
2559
2560
2561
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2562
|- style="border-top: 2px solid;"
2563
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{1,1}\right)_{G_{1}}   +L_{2,1}\left(N_{1,1}\right)_{G_{2}}   +L_{3,1}\left(N_{1,1}\right)_{G_{3}}</math> 
2564
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{1,2}\right)_{G_{1}}   +L_{2,2}\left(N_{1,2}\right)_{G_{2}}   +L_{3,2}\left(N_{1,2}\right)_{G_{3}}</math>
2565
|- style="border-top: 2px solid;"
2566
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{2,1}\right)_{G_{1}}   +L_{2,1}\left(N_{2,1}\right)_{G_{2}}   +L_{3,1}\left(N_{2,1}\right)_{G_{3}}</math> 
2567
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{2,2}\right)_{G_{1}}   +L_{2,2}\left(N_{2,2}\right)_{G_{2}}   +L_{3,2}\left(N_{2,2}\right)_{G_{3}}</math>
2568
|- style="border-top: 2px solid;"
2569
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{3,1}\right)_{G_{1}}   +L_{2,1}\left(N_{3,1}\right)_{G_{2}}   +L_{3,1}\left(N_{3,1}\right)_{G_{3}}</math> 
2570
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{3,2}\right)_{G_{1}}   +L_{2,2}\left(N_{3,2}\right)_{G_{2}}   +L_{3,2}\left(N_{3,2}\right)_{G_{3}}</math>
2571
|- style="border-top: 2px solid;"
2572
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{4,1}\right)_{G_{1}}</math> 
2573
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{4,2}\right)_{G_{1}}</math>
2574
|- style="border-top: 2px solid;"
2575
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{2,1}\left(N_{5,1}\right)_{G_{2}}</math> 
2576
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{2,2}\left(N_{5,2}\right)_{G_{2}}</math>
2577
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2578
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{3,1}\left(N_{6,1}\right)_{G_{3}}</math> 
2579
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{3,2}\left(N_{6,2}\right)_{G_{3}}</math>
2580
2581
|}
2582
2583
2584
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2585
|- style="border-top: 2px solid;"
2586
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{1,1}\right)_{G_{1}}+L_{1,1}\left(N_{1,2}\right)_{G_{1}}   +L_{2,2}\left(N_{1,1}\right)_{G_{2}}+L_{2,1}\left(N_{1,2}\right)_{G_{2}}   +L_{3,2}\left(N_{1,1}\right)_{G_{3}}+L_{3,1}\left(N_{1,2}\right)_{G_{3}}</math> 
2587
|- style="border-top: 2px solid;"
2588
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{2,1}\right)_{G_{1}}+L_{1,1}\left(N_{2,2}\right)_{G_{1}}   +L_{2,2}\left(N_{2,1}\right)_{G_{2}}+L_{2,1}\left(N_{2,2}\right)_{G_{2}}   +L_{3,2}\left(N_{2,1}\right)_{G_{3}}+L_{3,1}\left(N_{2,2}\right)_{G_{3}}</math> 
2589
|- style="border-top: 2px solid;"
2590
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{3,1}\right)_{G_{1}}+L_{1,1}\left(N_{j,3}\right)_{G_{1}}   +L_{2,2}\left(N_{3,1}\right)_{G_{2}}+L_{2,1}\left(N_{j,3}\right)_{G_{2}}   +L_{3,2}\left(N_{3,1}\right)_{G_{3}}+L_{3,1}\left(N_{j,3}\right)_{G_{3}}</math> 
2591
|- style="border-top: 2px solid;"
2592
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{4,1}\right)_{G_{1}}+L_{1,1}\left(N_{4,3}\right)_{G_{1}}</math> 
2593
|- style="border-top: 2px solid;"
2594
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{2,2}\left(N_{5,1}\right)_{G_{2}}+L_{2,1}\left(N_{5,3}\right)_{G_{2}}</math> 
2595
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2596
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{3,2}\left(N_{6,1}\right)_{G_{3}}+L_{3,1}\left(N_{6,3}\right)_{G_{6}}</math> 
2597
2598
|}
2599
2600
<math>-2</math>
2601
2602
2603
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
2604
|- style="border-top: 2px solid;"
2605
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\left(L_{1,1}\rho _{11}^{1}+L_{1,2}\rho _{11}^{2}\right)</math> 
2606
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{1,1}\rho _{22}^{1}+L_{i,2}\rho _{22}^{2}\right)</math>
2607
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{1,1}\rho _{12}^{1}+L_{1,2}\rho _{12}^{2}\right)</math>
2608
|- style="border-top: 2px solid;"
2609
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\left(L_{2,1}\rho _{11}^{1}+L_{2,2}\rho _{11}^{2}\right)</math> 
2610
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{2,1}\rho _{22}^{1}+L_{2,2}\rho _{22}^{2}\right)</math>
2611
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{2,1}\rho _{12}^{1}+L_{2,2}\rho _{12}^{2}\right)</math>
2612
|- style="border-top: 2px solid;"
2613
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\left(L_{3,1}\rho _{11}^{1}+L_{3,2}\rho _{11}^{2}\right)</math> 
2614
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{3,1}\rho _{22}^{1}+L_{3,2}\rho _{22}^{2}\right)</math>
2615
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{3,1}\rho _{12}^{1}+L_{3,2}\rho _{12}^{2}\right)</math>
2616
|- style="border-top: 2px solid;"
2617
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2618
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2619
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2620
|- style="border-top: 2px solid;"
2621
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2622
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2623
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2624
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2625
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2626
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2627
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2628
2629
|}
2630
2631
In this last expression <math display="inline">L_{i,j} =L_{i,j}^{M}</math>
2632

Return to Onate Flores 2005a.

Back to Top