You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
==Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach==
3
4
'''Fernando G. Flores
5
6
National University of Córdoba 
7
8
Casilla de Correo 916 
9
10
5000 Córdoba - Argentina 
11
12
and 
13
14
Eugenio Oñate 
15
16
International Centre for Numerical Methods in Engineering 
17
18
Edificio C1, Gran Capitán s/n 
19
20
08034 Barcelona - Spain'''
21
-->
22
23
==Abstract==
24
25
In this paper an assumed strain approach is presented in order to improve the  membrane behaviour of a thin shell triangular element. The so called Basic Shell Triangle (BST) has three  nodes with only translational degrees of freedom and is based on a Total  Lagrangian Formulation. As in the original BST element the curvatures are computed  resorting to the surrounding elements (patch of four elements). Membrane  strains are now also computed from the same patch of elements which leads to a  non-conforming  membrane behaviour. Despite this non-conformity the element  passes the patch test. Large strain plasticity is considered using a logarithmic  strain-stress pair. A plane stress behaviour with an additive decomposition of  elastic and plastic strains is assumed. A hyperplastic law is considered for  the elastic part while for the plastic part an anisotropic quadratic (Hill)  yield function with non-linear isotropic hardening is adopted. The element,  termed CBST, has been implemented  in an explicit (hydro-)code adequate to simulate sheet-stamping processes and  in an implicit static/dynamic code. Several examples are given showing the good performance of the enhnaced rotation-free shell triangle.
26
27
16.0cm   22.0cm  0cm  -1cm
28
29
==1 Introduction==
30
31
Development of efficient and robust shell finite elements for modelling large-scale  industrial applications has been a field of constant research in the last  thirty years. The continuining efforts of many scientists has focused in the direction of deriving simple elements (preferably triangles) applicable to large scale computation, typical of practical shell problems. Some recent successful shell triangles are reported in [1,2]. For a comprehensive review of shell elements see [3]. From the theoretical point of view Kirchhoff hypothesis are  enough for the simulation of the essential aspects of most shells problems,  including structures in civil, mechanical and naval engineering, sheet metal  forming, crash-worthiness analysis and others. Due the well-known difficulties  associated to <math display="inline">C^{1}</math> continuity, “thick shell” approaches that need <math display="inline">C^{0}</math>  continuity only have been extensively used, although they are computationally  more expensive due to the number of degrees of freedom necessary to obtain thin   solutions with similar precision. The development of shell elements without  transversal shear strains then collides with the need for C<math display="inline">^{1}</math> continuity, which is not  simple to satisfy in general conditions and has led to the development of  non-conforming approaches. Among the many options of this kind, the use of shell elements with only  displacements as degrees of freedom (rotation-free) is very attractive from  the computational point of view.
32
33
Few shell elements exists in the literature with only translations as degrees of  freedom. They are generally based on non-conforming approaches. A state of the  art can be found in Ref.<span id='citeF-4'></span>[[#cite-4|[4]]]. Recently Cirak y  Ortiz<sup><span id='citeF-5'></span>[[#cite-5|[5]]]</sup> have developed a conforming thin shell element,  but it departs in some aspects from the standard finite element formulation. The  use of rotation-free shell elements in large scale simulations of sheet metal forming processes  is growing <sup><span id='citeF-6'></span>[[#cite-6|[6]]]-<span id='citeF-9'></span>[[#cite-9|[9]]]</sup>, specially in  explicit integration codes.
34
35
In Ref.<span id='citeF-10'></span>[[#cite-10|[10]]] we presented a thin shell triangular element with only  displacements as degrees of freedom, based on a total lagrangian formulation.  The element is an extension of the rotation-free Basic Shell Triangle (BST) originally developed by Oñate y  Zárate<sup><span id='citeF-4'></span>[[#cite-4|[4]]]</sup> using an updated lagrangian formulation  The element has three nodes and a linear approximation of the displacement field. The membrane part is identical to the standard  constant strain triangle. The bending part is also constant and is computed  from an integration over the element boundary using information from the  deflection gradients of the adjacent elements. This leads to a non-conforming element for  the bending part, but it converges to the right solution and is robust. The BST element  has  a very good performance in bending for structured meshes, but it is less accurate  for non-structured grids. On the other hand, for membrane dominated problems,  as is the case for most sheet metal forming simulations, it requires  fine  discretizations associated to the constant strain triangle behaviour.
36
37
In this paper an extension of the rotation-free BST element is presented.  The displacement gradient terms needed for the membrane and bending strains are  computed from the nodal displacements of a patch of element using a new procedure. This allows to improve the membrane  behaviour and obtain a smoother curvature field. The outline of this  paper is as follows. In sections 2 and 3 we introduce the kinematics of the  shell and the constitutive models used in the numerical simulations. Sections  4 to 6 describe the finite element approximation, including the new  proposal for the gradient evaluation from a patch of elements, the computation of  the metric tensor and the curvatures and the derivation of the necessary  element expressions for the computer implementation. Sections 7 and 8 sumarize  the numerical experiments performed in the linear and non-linear range. Numerical results   demonstrate the excellent performance of the enhanced three node rotation-free shell triangle.
38
39
==2 Shell kinematics==
40
41
A  summary of the most relevant hypothesis related to the kinematic  behaviour of the shell are presented. Further details may be found in the wide  literature dedicated to this field <span id='citeF-3'></span>[[#cite-3|[3]]].
42
43
Consider a shell with undeformed middle surface occupying the domain <math display="inline">\Omega ^{0}</math> in <math display="inline">R^{3}</math> with a boundary <math display="inline">\Gamma ^{0}</math>. At each point of the middle  surface a thickness <math display="inline">h^{0}</math> is defined. The positions <math display="inline">\mathbf{x}^{0}</math> and <math display="inline">\mathbf{x}</math> of any point in the undeformed and the deformed configurations  can be respectively written as a function of the position of the middle  surface <math display="inline">\mathbf{\varphi }</math> and the normal <math display="inline">\mathbf{t}_{3}</math> at the point as
44
45
{| class="formulaSCP" style="width: 100%; text-align: left;" 
46
|-
47
| 
48
{| style="text-align: left; margin:auto;width: 100%;" 
49
|-
50
| style="text-align: center;" | <math>\mathbf{x}^{0}\left( \xi _{1},\xi _{2},\zeta \right)    =\mathbf{\varphi }^{0}\left( \xi _{1},\xi _{2}\right) +\lambda \mathbf{t}_{3}^{0}</math>
51
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
52
|-
53
| style="text-align: center;" | <math> \mathbf{x}\left( \xi _{1},\xi _{2},\zeta \right)    =\mathbf{\varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3} </math>
54
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
55
|}
56
|}
57
58
where <math display="inline">\xi _{1},\xi _{2}</math> are curvilinear local coordinates defined over the  middle surface of the shell, and <math display="inline">\zeta </math> is the distance in the undeformed  configuration of the point to the middle surface. The product <math display="inline">\zeta \lambda </math>  is the distance of the point to the middle surface measured on the deformed  configuration. This implies a constant strain in the normal direction  associated to the parameter <math display="inline">\lambda </math> relating the thickness at the present and initial   configurations, i.e.
59
60
{| class="formulaSCP" style="width: 100%; text-align: left;" 
61
|-
62
| 
63
{| style="text-align: left; margin:auto;width: 100%;" 
64
|-
65
| style="text-align: center;" | <math>  \lambda =\frac{h}{h^{0}} </math>
66
|}
67
|}
68
69
A convective system is defined at each point as
70
71
{| class="formulaSCP" style="width: 100%; text-align: left;" 
72
|-
73
| 
74
{| style="text-align: left; margin:auto;width: 100%;" 
75
|-
76
| style="text-align: center;" | <math>\mathbf{g}_{i}\left( \mathbf{\xi }\right) =\frac{\partial \mathbf{x}}{\partial \xi _{i}} </math>
77
|}
78
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
79
|}
80
81
{| class="formulaSCP" style="width: 100%; text-align: left;" 
82
|-
83
| 
84
{| style="text-align: left; margin:auto;width: 100%;" 
85
|-
86
| style="text-align: center;" | <math>\mathbf{g}_{\alpha }\left( \mathbf{\xi }\right)    =\frac{\partial \left( \mathbf{\varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \xi _{\alpha }}=\mathbf{\varphi }_{^{\prime }\alpha } +\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }\alpha }</math>
87
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
88
|-
89
| style="text-align: center;" | <math> \mathbf{g}_{3}\left( \mathbf{\xi }\right)    =\frac{\partial \left( \mathbf{\varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \zeta }=\lambda \mathbf{t}_{3} </math>
90
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
91
|}
92
|}
93
94
This can be particularized for the points on the middle surface as
95
96
{| class="formulaSCP" style="width: 100%; text-align: left;" 
97
|-
98
| 
99
{| style="text-align: left; margin:auto;width: 100%;" 
100
|-
101
| style="text-align: center;" | <math>\mathbf{a}_{\alpha }    =\mathbf{g}_{\alpha }\left( \zeta=0\right) =\mathbf{\varphi }_{^{\prime }\alpha }</math>
102
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
103
|-
104
| style="text-align: center;" | <math> \mathbf{a}_{3}    =\mathbf{g}_{3}\left( \zeta=0\right) =\lambda  \mathbf{t}_{3} </math>
105
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
106
|}
107
|}
108
109
This allows to introduce the covariant (first fundamental form) and  contravariant metric tensors of the middle surface as
110
111
{| class="formulaSCP" style="width: 100%; text-align: left;" 
112
|-
113
| 
114
{| style="text-align: left; margin:auto;width: 100%;" 
115
|-
116
| style="text-align: center;" | <math>a_{\alpha \beta }=\mathbf{a}_{\alpha }\cdot \mathbf{a}_{\beta } </math>
117
|}
118
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
119
|}
120
121
{| class="formulaSCP" style="width: 100%; text-align: left;" 
122
|-
123
| 
124
{| style="text-align: left; margin:auto;width: 100%;" 
125
|-
126
| style="text-align: center;" | <math>a^{\alpha \beta }=\mathbf{a}^{\alpha }\cdot \mathbf{a}^{\beta }=\mathbf{\tilde  {\varphi }}_{^{\prime }\alpha }\cdot \mathbf{\tilde{\varphi }}_{^{\prime }\beta } </math>
127
|}
128
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
129
|}
130
131
and the curvatures (second fundamental form) of the middle surface as
132
133
{| class="formulaSCP" style="width: 100%; text-align: left;" 
134
|-
135
| 
136
{| style="text-align: left; margin:auto;width: 100%;" 
137
|-
138
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\frac{1}{2}\left( \mathbf{\varphi }_{^{\prime }\alpha  }\cdot \mathbf{t}_{3^{\prime }\beta }+\mathbf{\varphi }_{^{\prime }\beta } \cdot \mathbf{t}_{3^{\prime }\alpha }\right) </math>
139
|}
140
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
141
|}
142
143
The deformation gradient can be written as
144
145
{| class="formulaSCP" style="width: 100%; text-align: left;" 
146
|-
147
| 
148
{| style="text-align: left; margin:auto;width: 100%;" 
149
|-
150
| style="text-align: center;" | <math>\mathbf{F=}\left[ \begin{array}{c}[c]{ccc} \mathbf{\varphi }_{^{\prime }1}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }1} & \mathbf{\varphi }_{^{\prime }2}+\zeta \left( \lambda  \mathbf{t}_{3}\right) _{^{\prime }2} & \lambda \mathbf{t}_{3} \end{array}  \right] </math>
151
|}
152
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
153
|}
154
155
The product <math display="inline">\mathbf{F}^{T}\mathbf{F=U}^{2}=\mathbf{C}</math> (where <math display="inline">\mathbf{U}</math> is the right stretch tensor, and <math display="inline">\mathbf{C}</math> the right Cauchy-Green  deformation tensor) is
156
157
{| class="formulaSCP" style="width: 100%; text-align: left;" 
158
|-
159
| 
160
{| style="text-align: left; margin:auto;width: 100%;" 
161
|-
162
| style="text-align: center;" | <math>\mathbf{U}^{2}    =\left[ \begin{array}{c}[c]{c} \mathbf{\varphi }_{^{\prime }1}^{T}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }1}^{T}\\
163
 \mathbf{\varphi }_{^{\prime }2}^{T}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }2}^{T}\\
164
 \lambda \mathbf{t}_{3}^{T} \end{array}  \right] \left[ \begin{array}{c}[c]{ccc} \mathbf{\varphi }_{^{\prime }1}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }1} & \mathbf{\varphi }_{^{\prime }2}+\zeta \left( \lambda  \mathbf{t}_{3}\right) _{^{\prime }2} & \lambda \mathbf{t}_{3} \end{array}  \right]</math>
165
|-
166
| style="text-align: center;" | <math>   =\left[ \begin{array}{c}[c]{ccc} \mathbf{\varphi }_{^{\prime }1}\cdot \mathbf{\varphi }_{^{\prime }1} &  \mathbf{\varphi }_{^{\prime }1}\cdot \mathbf{\varphi }_{^{\prime }2} & 0\\
167
 \mathbf{\varphi }_{^{\prime }1}\cdot \mathbf{\varphi }_{^{\prime }2} &  \mathbf{\varphi }_{^{\prime }2}\cdot \mathbf{\varphi }_{^{\prime }2} & 0\\
168
 0 & 0 & \lambda ^{2} \end{array}  \right]</math>
169
|-
170
| style="text-align: center;" | <math>   +\zeta \lambda \left[ \begin{array}{c}[c]{ccc} 2\mathbf{\varphi }_{^{\prime }1}\cdot \mathbf{t}_{3^{\prime }1} & \mathbf{\varphi  }_{^{\prime }1}\cdot \mathbf{t}_{3^{\prime }2}+\mathbf{\varphi }_{^{\prime }2} \cdot \mathbf{t}_{3^{\prime }1} & 0 \\
171
 \mathbf{\varphi }_{^{\prime }1}\cdot \mathbf{t}_{3^{\prime }2}+\mathbf{\varphi  }_{^{\prime }2}\cdot \mathbf{t}_{3^{\prime }1} & \mathbf{\varphi }_{^{\prime } 2}\cdot \mathbf{t}_{3^{\prime }2} & 0\\
172
 0 & 0 & 0  \end{array}  \right]</math>
173
|-
174
| style="text-align: center;" | <math>   +\zeta ^{2}\lambda ^{2}\left[ \begin{array}{c}[c]{ccc} \mathbf{t}_{3^{\prime }1}\cdot \mathbf{t}_{3^{\prime }1} & \mathbf{t}_{3^{\prime  }1}\cdot \mathbf{t}_{3^{\prime }2} & 0\\
175
 \mathbf{t}_{3^{\prime }1}\cdot \mathbf{t}_{3^{\prime }2} & \mathbf{t}_{3^{\prime  }2}\cdot \mathbf{t}_{3^{\prime }2} & 0\\
176
 0 & 0 & 0  \end{array}  \right] </math>
177
|}
178
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
179
|}
180
181
where the derivatives of the thickness ratio <math display="inline">\lambda _{^{\prime }a}</math> have been  neglected. Neglecting also the term associated to <math display="inline">\zeta ^{2}</math> and introducing  the definition of the covariant metric tensor <math display="inline">a_{\alpha \beta }</math> at the middle  surface and the curvatures <math display="inline">k_{\alpha \beta }</math> gives
182
183
{| class="formulaSCP" style="width: 100%; text-align: left;" 
184
|-
185
| 
186
{| style="text-align: left; margin:auto;width: 100%;" 
187
|-
188
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{c}[c]{ccc} a_{11}+2k_{11}\zeta \lambda & a_{12}+2k_{12}\zeta \lambda & 0\\
189
 a_{12}+2k_{12}\zeta \lambda & a_{22}+2k_{22}\zeta \lambda & 0\\
190
 0 & 0 & \lambda ^{2} \end{array}  \right] </math>
191
|}
192
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
193
|}
194
195
Above expression shows that <math display="inline">\mathbf{U}^{2}</math>   is non-zero at the original  configuration for curved surfaces (<math display="inline">\kappa _{ij}^{0}\neq{0}</math>). The changes of curvature of the middle surface are computed by
196
197
{| class="formulaSCP" style="width: 100%; text-align: left;" 
198
|-
199
| 
200
{| style="text-align: left; margin:auto;width: 100%;" 
201
|-
202
| style="text-align: center;" | <math>\chi _{ij}=\kappa _{ij}-\kappa _{ij}^{0} </math>
203
|}
204
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
205
|}
206
207
For computational convenience the following approximate expression (which is  exact for initially flat surfaces) will be adopted
208
209
{| class="formulaSCP" style="width: 100%; text-align: left;" 
210
|-
211
| 
212
{| style="text-align: left; margin:auto;width: 100%;" 
213
|-
214
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{c}[c]{ccc} a_{11}+2\chi _{11}\zeta \lambda & a_{12}+2\chi _{12}\zeta \lambda & 0\\
215
 a_{12}+2\chi _{12}\zeta \lambda & a_{22}+2\chi _{22}\zeta \lambda & 0\\
216
 0 & 0 & \lambda ^{2} \end{array}  \right] </math>
217
|}
218
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
219
|}
220
221
Above expression of <math display="inline">\mathbf{U}^{2}</math> is useful  to compute different Lagrangian strain  measures. An advantage of these measures is that they are associated to  material fibres, what makes it easy to take into account  material anisotropy. It is also useful to compute  the eigen decomposition of <math display="inline">\mathbf{U}</math> as
222
223
{| class="formulaSCP" style="width: 100%; text-align: left;" 
224
|-
225
| 
226
{| style="text-align: left; margin:auto;width: 100%;" 
227
|-
228
| style="text-align: center;" | <math>\mathbf{U=}\sum _{\alpha=1}^{3}\lambda _{\alpha } \mathbf{r}_{\alpha } \otimes \mathbf{r}_{\alpha } </math>
229
|}
230
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
231
|}
232
233
where <math display="inline">\lambda _{\alpha }</math> and <math display="inline">\mathbf{r}_{\alpha }</math> are the eigenvalues and  eigenvectors of the right stretch tensor <math display="inline">\mathbf{U}</math>.
234
235
In order to treat plasticity at finite strains an adequate stress-strain pair must  be used. The Hencky measures will be adopted here. The (logarithmic)  strains are defined as
236
237
{| class="formulaSCP" style="width: 100%; text-align: left;" 
238
|-
239
| 
240
{| style="text-align: left; margin:auto;width: 100%;" 
241
|-
242
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=}\left[ \begin{array}{c}[c]{ccc} \varepsilon _{11} & \varepsilon _{21} & 0\\
243
 \varepsilon _{12} & \varepsilon _{22} & 0\\
244
 0 & 0 & \varepsilon _{33} \end{array}  \right] =\sum _{\alpha=1}^{3}\ln \left( \lambda _{\alpha }\right) \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\alpha } </math>
245
|}
246
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
247
|}
248
249
Consistently, the Hencky stress tensor <math display="inline">\mathbf{T}</math>  will be  used as the stress measure. Using a total lagrangian formulation it is convenient to work with  the the second Piola-Kirchhoff stresses (<math display="inline">\mathbf{S}</math>) for the evaluation of  the residual forces. We define the rotated tensors as
250
251
{| class="formulaSCP" style="width: 100%; text-align: left;" 
252
|-
253
| 
254
{| style="text-align: left; margin:auto;width: 100%;" 
255
|-
256
| style="text-align: center;" | <math>\mathbf{T}_{L}    =\mathbf{R}_{L}^{T}\;\mathbf{T\;R}_{L}</math>
257
|-
258
| style="text-align: center;" | <math> \mathbf{S}_{L}    =\mathbf{R}_{L}^{T}\;\mathbf{S\;R}_{L} </math>
259
|}
260
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
261
|}
262
263
where <math display="inline">\mathbf{R}_{L}</math> is the rotation tensor obtained from the eigenvectors  of <math display="inline">\mathbf{U}</math> given by
264
265
{| class="formulaSCP" style="width: 100%; text-align: left;" 
266
|-
267
| 
268
{| style="text-align: left; margin:auto;width: 100%;" 
269
|-
270
| style="text-align: center;" | <math>\mathbf{R}_{L}=\left[ \begin{array}{c}[c]{ccc} \mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} \end{array}  \right] </math>
271
|}
272
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
273
|}
274
275
The relationship between the Hencky and Piola-Kirchhoff stresses is
276
277
{| class="formulaSCP" style="width: 100%; text-align: left;" 
278
|-
279
| 
280
{| style="text-align: left; margin:auto;width: 100%;" 
281
|-
282
| style="text-align: center;" | <math>\left[ S_{L}\right] _{\alpha \alpha }    =\frac{1}{\lambda _{\alpha }^{2} }\left[ T_{L}\right] _{\alpha \alpha }</math>
283
|-
284
| style="text-align: center;" | <math> \left[ S_{L}\right] _{\alpha \beta }    =\frac{\ln \left( \lambda _{\alpha  }/\lambda _{\beta }\right) }{\frac{1}{2}\left( \lambda _{\alpha }^{2} -\lambda _{\beta }^{2}\right) }\left[ T_{L}\right] _{\alpha \beta } </math>
285
|}
286
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
287
|}
288
289
The second Piola-Kirchhoff stress tensor can be finally computed by
290
291
{| class="formulaSCP" style="width: 100%; text-align: left;" 
292
|-
293
| 
294
{| style="text-align: left; margin:auto;width: 100%;" 
295
|-
296
| style="text-align: center;" | <math>\mathbf{S}=\mathbf{R}_{L}\;\mathbf{S}_{L}\mathbf{\;R}_{L}^{T} </math>
297
|}
298
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
299
|}
300
301
The generalized stresses (forces and moments) are obtained by integrating across the  original thickness the second Piola-Kirchhoff stress tensor using the actual  distance to the middle surface for the evaluation of the bending moments, i.e.
302
303
{| class="formulaSCP" style="width: 100%; text-align: left;" 
304
|-
305
| 
306
{| style="text-align: left; margin:auto;width: 100%;" 
307
|-
308
| style="text-align: center;" | <math>\mathbf{N}=\int _{h^{0}}\mathbf{S} d\zeta </math>
309
| style="width: 5px;text-align: right;white-space: nowrap;" | (22.a)
310
|-
311
| style="text-align: center;" | <math> \mathbf{M}=\int _{h^{0}}\mathbf{S }\lambda \zeta  d\zeta  </math>
312
| style="width: 5px;text-align: right;white-space: nowrap;" | (22.b)
313
|}
314
|}
315
316
With these values the weak form of the equilibrium equations can be written as
317
318
<span id="eq-23"></span>
319
{| class="formulaSCP" style="width: 100%; text-align: left;" 
320
|-
321
| 
322
{| style="text-align: left; margin:auto;width: 100%;" 
323
|-
324
| style="text-align: center;" | <math>\delta \Pi =\int _{\Omega ^{0}}\left[ \delta \mathbf{E}:\mathbf{N} +\delta {\boldsymbol K}:\mathbf{M}\right] d\Omega ^{0}+\delta \Pi _{ext}=0   </math>
325
|}
326
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
327
|}
328
329
where <math display="inline">{\boldsymbol K}</math> is the virtual curvature vector and <math display="inline">\mathbf{E}</math> is the virtual  Green-Lagrange strain vector of the middle surface, with
330
331
{| class="formulaSCP" style="width: 100%; text-align: left;" 
332
|-
333
| 
334
{| style="text-align: left; margin:auto;width: 100%;" 
335
|-
336
| style="text-align: center;" | <math>E_{ij}={1\over 2} (a_{ij}-\delta _{ij})  </math>
337
|}
338
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
339
|}
340
341
==3 Constitutive models==
342
343
In this section, a brief description  of the constitutive models used  in the numerical examples presented in Sections 7 and 8 is given. Two types of  materials are described: an elastic-plastic material associated to thin rolled  metal sheets and a hyper-elastic material for rubbers.
344
345
In the case of metals, where the elastic strains are small, the use of a  logarithmic strain measure reasonably allows to adopt an additive  decomposition of elastic and plastic components as
346
347
{| class="formulaSCP" style="width: 100%; text-align: left;" 
348
|-
349
| 
350
{| style="text-align: left; margin:auto;width: 100%;" 
351
|-
352
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=E}_{\ln }^{e}+\mathbf{E}_{\ln }^{p} </math>
353
|}
354
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
355
|}
356
357
A constant linear relationship between (plane) stresses and elastic strains is  also adopted giving
358
359
{| class="formulaSCP" style="width: 100%; text-align: left;" 
360
|-
361
| 
362
{| style="text-align: left; margin:auto;width: 100%;" 
363
|-
364
| style="text-align: center;" | <math>\mathbf{T}=\mathbf{CE}_{\ln }^{e} </math>
365
|}
366
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
367
|}
368
369
These constitutive equations are integrated using a standard return algorithm.  The following Mises-Hill<sup><span id='citeF-11'></span>[[#cite-11|[11]]]</sup> yield function with non-linear isotropic  hardening is adopted
370
371
{| class="formulaSCP" style="width: 100%; text-align: left;" 
372
|-
373
| 
374
{| style="text-align: left; margin:auto;width: 100%;" 
375
|-
376
| style="text-align: center;" | <math>\left( G+H\right) \;T_{11}^{2}+\left( F+H\right) \;T_{22}^{2} -2H\;T_{11}T_{22}+2N\;T_{12}^{2}=\kappa \left( \varepsilon _{0}+e^{p}\right) ^{n} </math>
377
|}
378
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
379
|}
380
381
where <math display="inline">F, G, H</math> and <math display="inline">N</math> define the non-isotropic shape of the yield  surface and the parameters <math display="inline">\kappa ,</math> <math display="inline">\varepsilon _{0}</math> and <math display="inline">n</math> define its size  as a function of the effective plastic strain <math display="inline">e^{p}</math>.
382
383
The Mises-Hill yield function has the advantage of simplicity and it allows, as a  first approximation, to treat rolled thin metal sheets with  planar and transversal anisotropy.
384
385
For the case of rubbers, the Ogden<sup><span id='citeF-12'></span>[[#cite-12|[12]]]</sup> model extended to  the compressible range is considered. The material behaviour is characterized  by the strain energy density per unit undeformed volume of the form
386
387
{| class="formulaSCP" style="width: 100%; text-align: left;" 
388
|-
389
| 
390
{| style="text-align: left; margin:auto;width: 100%;" 
391
|-
392
| style="text-align: center;" | <math>\psi =\frac{K}{2}\left( \ln J\right) ^{2}+\sum _{p=1}^{N}\frac{\mu _{p}}{\alpha _{p}}\left[ J^{-\dfrac{\alpha _{p}}{3}}\left( \sum _{i=1}^{3} \lambda _{i}^{\alpha _{p}-1}\right) -3\right] </math>
393
|}
394
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
395
|}
396
397
where <math display="inline">K</math> is the bulk modulus of the material, <math display="inline">J</math> is the determinant of <math display="inline">\mathbf{U}</math>, <math display="inline">N</math>, <math display="inline">\mu _{i}</math> and <math display="inline">\alpha _{i}</math> are material parameters, <math display="inline">\mu _{i}\,,\,\alpha _{i}</math> are real numbers such that <math display="inline">\mu _{i}\alpha _{i}>0</math> <math display="inline"> (\forall i=1,N)</math> and <math display="inline">N</math> is a positive integer.
398
399
The stress measures associated to the principal logarithmic strains are  denoted by <math display="inline">\beta _{i}</math>. They can be computed noting that
400
401
{| class="formulaSCP" style="width: 100%; text-align: left;" 
402
|-
403
| 
404
{| style="text-align: left; margin:auto;width: 100%;" 
405
|-
406
| style="text-align: center;" | <math>\beta _{i}=\frac{\partial \psi \left( \Lambda \right) }{\partial \left( \ln \lambda _{i}\right) }=K\left( \ln J\right) +\lambda _{i}\sum _{p=1}^{N} \mu _{p}J^{-\dfrac{\alpha _{p}}{3}}\left( \lambda _{i}^{\alpha _{p}-1}-\frac{1}{3}\frac{1}{\lambda _{i}}\sum _{j=1}^{3}\lambda _{j}^{\alpha _{p}}\right) </math>
407
|}
408
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
409
|}
410
411
we define now
412
413
{| class="formulaSCP" style="width: 100%; text-align: left;" 
414
|-
415
| 
416
{| style="text-align: left; margin:auto;width: 100%;" 
417
|-
418
| style="text-align: center;" | <math>a_{p}=\sum _{j=1}^{3}\lambda _{j}^{\alpha _{p}} </math>
419
|}
420
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
421
|}
422
423
which gives
424
425
{| class="formulaSCP" style="width: 100%; text-align: left;" 
426
|-
427
| 
428
{| style="text-align: left; margin:auto;width: 100%;" 
429
|-
430
| style="text-align: center;" | <math>\beta _{i}=K\left( \ln J\right) +\sum _{p=1}^{N}\mu _{p}J^{-\dfrac{\alpha _{p} }{3}}\left( \lambda _{i}^{\alpha _{p}}-\frac{1}{3}a_{p}\right) </math>
431
|}
432
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
433
|}
434
435
The values of <math display="inline">\beta _i</math>, expressed in the principal strains directions, allow to evaluate  the stresses  in the convective coordinate system as
436
437
{| class="formulaSCP" style="width: 100%; text-align: left;" 
438
|-
439
| 
440
{| style="text-align: left; margin:auto;width: 100%;" 
441
|-
442
| style="text-align: center;" | <math>\mathbf{T}=\sum _{i=1}^{3}\beta _{i}\;\mathbf{r}_{i}\otimes \mathbf{r}_{i} </math>
443
|}
444
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
445
|}
446
447
We note that the Hencky stress tensor <math display="inline">\mathbf{T}</math> can be easily  particularized for the plane stress case.
448
449
==4 Interpolation functions and gradient evaluation==
450
451
The starting point of the enhanced rotation-free of BST element is  to discretize the shell surface with a standard 3-node  triangular mesh. The difference with a standard finite element method is that for the  computation of strains within an element, the configuration of the three adjacent triangular  elements is  used. Then at each triangle a patch of four elements, formed by the central triangle and the three adjacent ones is considered (see Figure [[#img-1|1]].a). This allows to define a  quadratic interpolation of the geometry from the position  of the 6 nodes. In the isoparametric space, we keep the vertices of the  3-node master element (standard linear triangle) with the positions
452
453
* node 1: <math display="inline">\left( \xi ,\eta \right) =\left( 0,0\right) </math>
454
455
* node 2: <math display="inline">\left( \xi ,\eta \right) =\left( 1,0\right) </math>
456
457
* node 3: <math display="inline">\left( \xi ,\eta \right) =\left( 0,1\right) </math>
458
459
and the three additional nodes that complete the patch with the positions
460
461
* node 4: <math display="inline">\left( \xi ,\eta \right) =\left( 1,1\right) </math>
462
463
* node 5: <math display="inline">\left( \xi ,\eta \right) =\left( -1,1\right) </math>
464
465
* node 6: <math display="inline">\left( \xi ,\eta \right) =\left( 1,-1\right) </math>
466
467
<div id='img-1'></div>
468
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
469
|-
470
|[[Image:Draft_Samper_340530075-test-fig1.png|600px|Patch of four elements  (a)in spacial coordinates (b)in natural coordinates]]
471
|- style="text-align: center; font-size: 75%;"
472
| colspan="1" | '''Figure 1:''' Patch of four elements  (a)in spacial coordinates (b)in natural coordinates
473
|}
474
475
It is possible to define now a set of (non-standard) quadratic shape functions over  over the six node element as:
476
477
{| class="formulaSCP" style="width: 100%; text-align: left;" 
478
|-
479
| 
480
{| style="text-align: left; margin:auto;width: 100%;" 
481
|-
482
| style="text-align: center;" | <math>\begin{array}{c}[c]{ccc} N^{1}=\zeta{+\xi}\eta &  & N^{4}=\frac{\zeta }{2}\left( \zeta{-1}\right)\\
483
 N^{2}=\xi{+\eta}\zeta &  & N^{5}=\frac{\xi }{2}\left( \xi{-1}\right)\\
484
 N^{3}=\eta{+\zeta}\xi &  & N^{6}=\frac{\eta }{2}\left( \eta{-1}\right) \end{array}  </math>
485
|}
486
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
487
|}
488
489
This interpolation allows to compute the displacement gradients at selected  points in order to use an assumed strain approach. The computation of the  gradients is performed at three points over the boundary of the central  element of the patch. These points are located at the mid-point of each side,  denoted by G1, G2 and G3 in Figure [[#img-1|1]].b. This election has the  following characteristics.
490
491
* Gradients at these points depend only on the nodes pertaining to  the two elements adjacent to the side. This can be easily verified by sampling the derivatives of  the shape functions  at each mid-side point.
492
493
* When gradients are computed at the common mid-side point from two  adjacent elements, the same values are  obtained, as the coordinates of  the same four points are used. That is, the gradients at the mid-side points are  independent of the element where they are computed. A side-oriented  implementation of the finite element could lead to a unique evaluation of the  gradients per side.
494
495
Next, some details of the implementation chosen are presented. We denote by <math display="inline">\mathbf{t}_{1}</math> and <math display="inline">\mathbf{t}_{2}</math> the orthogonal unit vectors over the  tangent plane (undeformed configuration) associated to a conveniently selected  local cartesian system. The cartesian derivatives of the shape functions are computed at the original configuration by the standard expression
496
497
{| class="formulaSCP" style="width: 100%; text-align: left;" 
498
|-
499
| 
500
{| style="text-align: left; margin:auto;width: 100%;" 
501
|-
502
| style="text-align: center;" | <math>\left[ \begin{array}{c}[c]{c} N_{^{\prime }1}^{I}\\
503
 N_{^{\prime }2}^{I} \end{array}  \right] =\mathbf{J}^{-1}\left[ \begin{array}{c}[c]{c} N_{^{\prime }\xi }^{I}\\
504
 N_{^{\prime }\eta }^{I} \end{array}  \right] </math>
505
|}
506
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
507
|}
508
509
where the Jacobian matrix at the original configuration is
510
511
{| class="formulaSCP" style="width: 100%; text-align: left;" 
512
|-
513
| 
514
{| style="text-align: left; margin:auto;width: 100%;" 
515
|-
516
| style="text-align: center;" | <math>\mathbf{J=}\left[ \begin{array}{c}[c]{cc} \mathbf{\varphi }_{^{\prime }\xi }^{\left( 0\right) }\cdot \mathbf{t}_{1} &  \mathbf{\varphi }_{^{\prime }\eta }^{\left( 0\right) }\cdot \mathbf{t}_{1}\\
517
 \mathbf{\varphi }_{^{\prime }\xi }^{\left( 0\right) }\cdot \mathbf{t}_{2} &  \mathbf{\varphi }_{^{\prime }\eta }^{\left( 0\right) }\cdot \mathbf{t}_{2} \end{array}  \right] </math>
518
|}
519
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
520
|}
521
522
With the previous definitions the deformation gradient on the middle surface,  associated to an arbitrary spatial cartesian system and to the material  cartesian system defined on the middle surface, is
523
524
{| class="formulaSCP" style="width: 100%; text-align: left;" 
525
|-
526
| 
527
{| style="text-align: left; margin:auto;width: 100%;" 
528
|-
529
| style="text-align: center;" | <math>\left[ \mathbf{\varphi }_{^{\prime }1},\mathbf{\varphi }_{^{\prime }2}\right] =\left[ \mathbf{\varphi }_{^{\prime }\xi },\mathbf{\varphi }_{^{\prime }\eta  }\right]  \mathbf{J}^{-1} </math>
530
|}
531
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
532
|}
533
534
The covariant metric tensor can be computed from above expression as
535
536
{| class="formulaSCP" style="width: 100%; text-align: left;" 
537
|-
538
| 
539
{| style="text-align: left; margin:auto;width: 100%;" 
540
|-
541
| style="text-align: center;" | <math>\mathbf{g=}\left[ \begin{array}{c}[c]{cc} a_{11} & a_{12}\\
542
 a_{21} & a_{22} \end{array}  \right] =\left[ \begin{array}{c}[c]{cc} \mathbf{\varphi }_{^{\prime }1}\cdot \mathbf{\varphi }_{^{\prime }1} &  \mathbf{\varphi }_{^{\prime }1}\cdot \mathbf{\varphi }_{^{\prime }2}\\
543
 \mathbf{\varphi }_{^{\prime }2}\cdot \mathbf{\varphi }_{^{\prime }1} &  \mathbf{\varphi }_{^{\prime }2}\cdot \mathbf{\varphi }_{^{\prime }2} \end{array}  \right] </math>
544
|}
545
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
546
|}
547
548
The component of <math display="inline">\boldsymbol g</math> can be used to compute any convenient membrane strain measures. For example the  Green-Lagrange strain tensor is obtained by
549
550
{| class="formulaSCP" style="width: 100%; text-align: left;" 
551
|-
552
| 
553
{| style="text-align: left; margin:auto;width: 100%;" 
554
|-
555
| style="text-align: center;" | <math>\mathbf{E}_{GL}\mathbf{=}\frac{1}{2}\left[ \begin{array}{c}[c]{cc} \mathbf{\varphi }_{^{\prime }1}\cdot \mathbf{\varphi }_{^{\prime }1}-1 &  \mathbf{\varphi }_{^{\prime }1}\cdot \mathbf{\varphi }_{^{\prime }2}\\
556
 \mathbf{\varphi }_{^{\prime }2}\cdot \mathbf{\varphi }_{^{\prime }1} &  \mathbf{\varphi }_{^{\prime }2}\cdot \mathbf{\varphi }_{^{\prime }2}-1  \end{array}  \right] =\frac{1}{2}\left[ \begin{array}{c}[c]{cc} a_{11}-1 & a_{12}\\
557
 a_{21} & a_{22}-1  \end{array}  \right] </math>
558
|}
559
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
560
|}
561
562
In the usual FEM matrix notation
563
564
{| class="formulaSCP" style="width: 100%; text-align: left;" 
565
|-
566
| 
567
{| style="text-align: left; margin:auto;width: 100%;" 
568
|-
569
| style="text-align: center;" | <math>\left[ \begin{array}{c}[c]{c} E_{11}\\
570
 E_{22}\\
571
 2E_{12} \end{array}  \right] =\frac{1}{2}\left[ \begin{array}{c}[c]{c} \mathbf{\varphi }_{^{\prime }1}\cdot \mathbf{\varphi }_{^{\prime }1}-1\\
572
 \mathbf{\varphi }_{^{\prime }2}\cdot \mathbf{\varphi }_{^{\prime }2}-1\\
573
 2\mathbf{\varphi }_{^{\prime }1}\cdot \mathbf{\varphi }_{^{\prime }2} \end{array}  \right] </math>
574
|}
575
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
576
|}
577
578
The virtual strains are obtained by the variation of above expression as
579
580
{| class="formulaSCP" style="width: 100%; text-align: left;" 
581
|-
582
| 
583
{| style="text-align: left; margin:auto;width: 100%;" 
584
|-
585
| style="text-align: center;" | <math>\delta \left[ \begin{array}{c}[c]{c} E_{11}\\
586
 E_{22}\\
587
 2E_{12} \end{array}  \right] =\left[ \begin{array}{c}[c]{c} \mathbf{\varphi }_{^{\prime }1}\cdot \delta \mathbf{\varphi }_{^{\prime }1}\\
588
 \mathbf{\varphi }_{^{\prime }2}\cdot \delta \mathbf{\varphi }_{^{\prime }2}\\
589
 \mathbf{\varphi }_{^{\prime }1}\cdot \delta \mathbf{\varphi }_{^{\prime }2} +\delta \mathbf{\varphi }_{^{\prime }1}\cdot \mathbf{\varphi }_{^{\prime }2} \end{array}  \right] </math>
590
|}
591
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
592
|}
593
594
In sides of elements where the adjacent element does not exist  (i.e. at the  boundaries of the shell), the gradient on that side is made equal to the  gradient computed over the 3 nodes of the central element of the patch. From  the definition of the gradients at the three mid-side points of the triangle,  the element formulation can be interpreted as an ''assumed strain'' approach, where  the metric tensor is interpolated over the element using the values computed  on the sides by
595
596
{| class="formulaSCP" style="width: 100%; text-align: left;" 
597
|-
598
| 
599
{| style="text-align: left; margin:auto;width: 100%;" 
600
|-
601
| style="text-align: center;" | <math>\mathbf{g}\left( \xi ,\eta \right) =\left( 1-2\zeta \right) \mathbf{g}^{1}  +\left( 1-2\xi \right) \mathbf{g}^{2} +\left( 1-2\eta \right) \mathbf{g}^{3} </math>
602
|}
603
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
604
|}
605
606
==5 Computation of curvatures==
607
608
Curvatures are assumed to be constant over the element. They are computed by performing  an average over the central element as
609
610
{| class="formulaSCP" style="width: 100%; text-align: left;" 
611
|-
612
| 
613
{| style="text-align: left; margin:auto;width: 100%;" 
614
|-
615
| style="text-align: center;" | <math>\kappa _{\alpha \beta }\mathbf{ =}\frac{-1}{A^{M}}\int _{A^{M}}\mathbf{t}_{3}\cdot \mathbf{\varphi }_{^{\prime }\beta \alpha }\;dA^{M} </math>
616
|}
617
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
618
|}
619
620
where (<math display="inline">A^{M}</math> is the original area of the element).
621
622
Integrating by parts Eq.(43), the following integral over the element boundary <math display="inline">\Gamma ^{M}</math> is  obtained:
623
624
{| class="formulaSCP" style="width: 100%; text-align: left;" 
625
|-
626
| 
627
{| style="text-align: left; margin:auto;width: 100%;" 
628
|-
629
| style="text-align: center;" | <math>\kappa _{\alpha \beta }\mathbf{ =}\frac{-1}{A^{M}}{\displaystyle \oint  _{\Gamma ^{M}}}\mathbf{t}_{3}\cdot \mathbf{\varphi }_{^{\prime }\alpha }\;n_{\beta  }\;d\Gamma ^{M} </math>
630
|}
631
| style="width: 5px;text-align: right;white-space: nowrap;" | (43)
632
|}
633
634
The three distinct components of the curvature tensor are
635
636
<span id="eq-44"></span>
637
{| class="formulaSCP" style="width: 100%; text-align: left;" 
638
|-
639
| 
640
{| style="text-align: left; margin:auto;width: 100%;" 
641
|-
642
| style="text-align: center;" | <math>\left[ \begin{array}{c}[c]{c} \kappa _{11}\\
643
 \kappa _{22}\\
644
 2\kappa _{12} \end{array}  \right] =\frac{-1}{A^{M}}{\displaystyle \oint _{\Gamma ^{M}}}\left[ \begin{array}{c}[c]{cc} n_{1} & 0\\
645
 0 & n_{2}\\
646
 n_{2} & n_{1} \end{array}  \right] \left[ \begin{array}{c}[c]{c} \mathbf{t}_{3}\cdot \mathbf{\varphi }_{^{\prime }1}\\
647
 \mathbf{t}_{3}\cdot \mathbf{\varphi }_{^{\prime }2} \end{array}  \right] d\Gamma ^{M}  </math>
648
|}
649
| style="width: 5px;text-align: right;white-space: nowrap;" | (44)
650
|}
651
652
The numerical evaluation of the boundary integral in Eq.([[#eq-44|44]]) results in a sum over the integration  points on the element boundary which are, in fact, the same points used for the computation of  the gradients in the membrane formulations, i.e.
653
654
{| class="formulaSCP" style="width: 100%; text-align: left;" 
655
|-
656
| 
657
{| style="text-align: left; margin:auto;width: 100%;" 
658
|-
659
| style="text-align: center;" | <math>\left[ \begin{array}{c}[c]{c} \kappa _{11}\\
660
 \kappa _{22}\\
661
 2\kappa _{12} \end{array}  \right] =\frac{-1}{A^{M}}\sum _{G=1}^{3}l_{G}\left[ \begin{array}{c}[c]{rr} n_{1} & 0\\
662
 0 & n_{2}\\
663
 n_{2} & n_{1} \end{array}  \right] ^{G}\left[ \begin{array}{c}[c]{c} \mathbf{\varphi }_{1}^{G}\cdot \mathbf{t}_{3}\\
664
 \mathbf{\varphi }_{2}^{G}\cdot \mathbf{t}_{3} \end{array}  \right] </math>
665
|}
666
| style="width: 5px;text-align: right;white-space: nowrap;" | (45)
667
|}
668
669
For the definition of <math display="inline">\mathbf{t}_{3}</math>, the linear interpolation over the  central element is used. In this case the tangent plane components are (with <math display="inline">a_{i}</math>  and <math display="inline">b_{i}</math> being the usual cartesian projections of the sides when area coordinates  are used)
670
671
<span id="eq-46"></span>
672
{| class="formulaSCP" style="width: 100%; text-align: left;" 
673
|-
674
| 
675
{| style="text-align: left; margin:auto;width: 100%;" 
676
|-
677
| style="text-align: center;" | <math>\left[ \begin{array}{c}[c]{c} \mathbf{\varphi }_{1}\\
678
 \mathbf{\varphi }_{2} \end{array}  \right] ^{M}    =\frac{1}{2A^{M}}\sum _{i=1}^{3}\left[ \begin{array}{c}[c]{c} -b_{i}\\
679
 a_{i} \end{array}  \right] \mathbf{\varphi }^{i}=\left[ \begin{array}{c}[c]{ccc} \bar{N}_{^{\prime }1}^{1} & \bar{N}_{^{\prime }1}^{2} & \bar{N}_{^{\prime }1} ^{3}\\
680
 \bar{N}_{^{\prime }2}^{1} & \bar{N}_{^{\prime }2}^{2} & \bar{N}_{^{\prime }2}^{3} \end{array}  \right] \left[ \begin{array}{c}[c]{c} \mathbf{\varphi }^{1}\\
681
 \mathbf{\varphi }^{2}\\
682
 \mathbf{\varphi }^{3} \end{array}  \right]  </math>
683
|}
684
| style="width: 5px;text-align: right;white-space: nowrap;" | (46)
685
|}
686
687
<span id="eq-47"></span>
688
{| class="formulaSCP" style="width: 100%; text-align: left;" 
689
|-
690
| 
691
{| style="text-align: left; margin:auto;width: 100%;" 
692
|-
693
| style="text-align: center;" | <math>\mathbf{t}_{3}    =\frac{\mathbf{\varphi }_{1}^{M}\times \mathbf{\varphi }_{2}^{M}}{\left\vert \mathbf{\varphi }_{1}^{M}\times \mathbf{\varphi }_{2} ^{M}\right\vert }=\lambda \;\mathbf{\varphi }_{1}^{M}\times \mathbf{\varphi }_{2}^{M}  </math>
694
|}
695
| style="width: 5px;text-align: right;white-space: nowrap;" | (47)
696
|}
697
698
From these expressions it is also possible to compute in the original  configuration the element area <math display="inline">A^{M}</math>, the outer normals <math display="inline">\left( n_{1} ,n_{2}\right) ^{i}</math> at each side and its lengths <math display="inline">l_{i}</math>. Eq.([[#eq-47|47]]) also allows to evaluate the thickness ratio <math display="inline">\lambda </math> in the deformed configuration and the actual normal <math display="inline">\mathbf{t}_{3}</math>. In Eq.([[#eq-46|46]]), <math display="inline">\bar{N}^{I}</math> are the linear shape functions of the three node linear triangle <span id='citeF-3'></span>[[#cite-3|[3]]].
699
700
As one integration point is used over each side, it is not necessary to  distinguish  between sides (<math display="inline">I</math>) and integrations points (<math display="inline">G</math>) any more. In  this way the curvatures can be computed by:
701
702
{| class="formulaSCP" style="width: 100%; text-align: left;" 
703
|-
704
| 
705
{| style="text-align: left; margin:auto;width: 100%;" 
706
|-
707
| style="text-align: center;" | <math>\left[ \begin{array}{c}[c]{c} \kappa _{11}\\
708
 \kappa _{22}\\
709
 2\kappa _{12} \end{array}  \right]    =\frac{-1}{A^{M}}\sum _{I=1}^{3}l_{I}\left[ \begin{array}{c}[c]{rr} n_{1} & 0\\
710
 0 & n_{2}\\
711
 n_{2} & n_{1} \end{array}  \right] ^{G}\left[ \begin{array}{c}[c]{c} \mathbf{\varphi }_{1}^{I}\cdot \mathbf{t}_{3}\\
712
 \mathbf{\varphi }_{2}^{I}\cdot \mathbf{t}_{3} \end{array}  \right]</math>
713
| style="width: 5px;text-align: right;white-space: nowrap;" | (48)
714
|-
715
| style="text-align: center;" | <math>   =2\sum _{I=1}^{3}\left[ \begin{array}{c}[c]{rr} \bar{N}_{^{\prime }1}^{I} & 0\\
716
 0 & \bar{N}_{^{\prime }2}^{I}\\
717
 \bar{N}_{^{\prime }2}^{I} & \bar{N}_{^{\prime }1}^{I} \end{array}  \right] \left[ \begin{array}{c}[c]{c} \mathbf{\varphi }_{1}^{I}\cdot \mathbf{t}_{3}\\
718
 \mathbf{\varphi }_{2}^{I}\cdot \mathbf{t}_{3} \end{array}  \right] </math>
719
| style="width: 5px;text-align: right;white-space: nowrap;" | (49)
720
|}
721
|}
722
723
In the original BST element<sup><span id='citeF-4'></span><span id='citeF-10'></span>[[#cite-4|[4,10]]]</sup> the gradient <math display="inline">\mathbf{\varphi  }_{\alpha }^{I}</math> was computed as the average of the linear approximations over  the two adjacent elements. In the new version, the gradient is  computed at each side <math display="inline">I</math> from the quadratic interpolation
724
725
{| class="formulaSCP" style="width: 100%; text-align: left;" 
726
|-
727
| 
728
{| style="text-align: left; margin:auto;width: 100%;" 
729
|-
730
| style="text-align: center;" | <math>\left[ \begin{array}{c}[c]{c} \mathbf{\varphi }_{1}\\
731
 \mathbf{\varphi }_{2} \end{array}  \right] ^{I}=\left[ \begin{array}{c}[c]{cccc} N_{^{\prime }1}^{1} & N_{^{\prime }1}^{2} & N_{^{\prime }1}^{3} & N_{^{\prime } 1}^{I+3}\\
732
 N_{^{\prime }2}^{1} & N_{^{\prime }2}^{2} & N_{^{\prime }2}^{3} & N_{^{\prime } 2}^{I+3} \end{array}  \right] ^{I}\left[ \begin{array}{c}[c]{c} \mathbf{\varphi }^{1}\\
733
 \mathbf{\varphi }^{2}\\
734
 \mathbf{\varphi }^{3}\\
735
 \mathbf{\varphi }^{I+3} \end{array}  \right] </math>
736
|}
737
| style="width: 5px;text-align: right;white-space: nowrap;" | (50)
738
|}
739
740
Note again than at each side the gradients  depend only on the positions of the three nodes of the central triangle and of an  extra node (<math display="inline">I+3</math>), associated precisely to the side (<math display="inline">I</math>) where the gradient is computed.
741
742
An alternative form to express the curvatures, which is useful when their  variations are needed, is to define:
743
744
<span id="eq-51"></span>
745
{| class="formulaSCP" style="width: 100%; text-align: left;" 
746
|-
747
| 
748
{| style="text-align: left; margin:auto;width: 100%;" 
749
|-
750
| style="text-align: center;" | <math>\mathbf{h}_{ij}=\sum _{I=1}^{3}\left( \bar{N}_{^{\prime }i}^{I} \;\mathbf{\varphi }_{j}^{I}+\bar{N}_{^{\prime }j}^{I}\;\mathbf{\varphi }_{i} ^{I}\right)  </math>
751
|}
752
| style="width: 5px;text-align: right;white-space: nowrap;" | (51)
753
|}
754
755
This gives
756
757
<span id="eq-52"></span>
758
{| class="formulaSCP" style="width: 100%; text-align: left;" 
759
|-
760
| 
761
{| style="text-align: left; margin:auto;width: 100%;" 
762
|-
763
| style="text-align: center;" | <math>\kappa _{ij}=\mathbf{h}_{ij}\cdot \mathbf{t}_{3}  </math>
764
|}
765
| style="width: 5px;text-align: right;white-space: nowrap;" | (52)
766
|}
767
768
This last expression allows to interpret the curvatures as the projections of the  vectors <math display="inline">\mathbf{h}_{ij}</math> over the normal of the central element. Direction  '''t'''<math display="inline">_{3}</math> can be seen as a reference direction.  If a different  direction  is chosen, at an angle <math display="inline">\theta </math> with the former, this has an  influence of order <math display="inline">\theta ^{2}</math> in the projection. This justifies Eq.([[#eq-47|47]]) for the  definition of '''t'''<math display="inline">_{3}</math> as a function exclusively of the three nodes of  the central triangle,  instead of the 6-node  isoparametric interpolation.
769
770
===5.1 Variation of the curvatures===
771
772
From Eq.([[#eq-52|52]]) the variation of the curvatures is obtained as
773
774
<span id="eq-53"></span>
775
{| class="formulaSCP" style="width: 100%; text-align: left;" 
776
|-
777
| 
778
{| style="text-align: left; margin:auto;width: 100%;" 
779
|-
780
| style="text-align: center;" | <math>\delta \kappa _{ij}=\delta \mathbf{h}_{ij}\cdot \mathbf{t}_{3}+\mathbf{h}_{ij}\cdot \delta \mathbf{t}_{3}  </math>
781
|}
782
| style="width: 5px;text-align: right;white-space: nowrap;" | (53)
783
|}
784
785
The first term is crucial in the evaluation of the curvatures variation. The variations of <math display="inline">\mathbf{h}_{ij}</math> are:
786
787
<span id="eq-54"></span>
788
{| class="formulaSCP" style="width: 100%; text-align: left;" 
789
|-
790
| 
791
{| style="text-align: left; margin:auto;width: 100%;" 
792
|-
793
| style="text-align: center;" | <math>\delta \mathbf{h}_{ij}=\sum _{I=1}^{3}\left( \bar{N}_{^{\prime }i}^{I} \;\delta \mathbf{\varphi }_{j}^{I}+\bar{N}_{^{\prime }j}^{I}\;\delta  \mathbf{\varphi }_{i}^{I}\right)  </math>
794
|}
795
| style="width: 5px;text-align: right;white-space: nowrap;" | (54)
796
|}
797
798
where
799
800
{| class="formulaSCP" style="width: 100%; text-align: left;" 
801
|-
802
| 
803
{| style="text-align: left; margin:auto;width: 100%;" 
804
|-
805
| style="text-align: center;" | <math>\left[ \begin{array}{c}[c]{c} \delta \mathbf{\varphi }_{1}\\
806
 \delta \mathbf{\varphi }_{2} \end{array}  \right] ^{I}=\left[ \begin{array}{c}[c]{cccc} N_{^{\prime }1}^{1} & N_{^{\prime }1}^{2} & N_{^{\prime }1}^{3} & N_{^{\prime } 1}^{I+3}\\
807
 N_{^{\prime }2}^{1} & N_{^{\prime }2}^{2} & N_{^{\prime }2}^{3} & N_{^{\prime } 2}^{I+3} \end{array}  \right] ^{I}\left[ \begin{array}{c}[c]{c} \delta \mathbf{u}^{1}\\
808
 \delta \mathbf{u}^{2}\\
809
 \delta \mathbf{u}^{3}\\
810
 \delta \mathbf{u}^{I+3} \end{array}  \right] </math>
811
|}
812
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
813
|}
814
815
The variations of '''t'''<math display="inline">_{3}</math> can be computed as shown in the  original BST element <sup><span id='citeF-10'></span>[[#cite-10|[10]]]</sup>.
816
817
{| class="formulaSCP" style="width: 100%; text-align: left;" 
818
|-
819
| 
820
{| style="text-align: left; margin:auto;width: 100%;" 
821
|-
822
| style="text-align: center;" | <math>\begin{array}{l}\delta t_{31}    =-\mathbf{t}_{3}\cdot \delta \mathbf{\varphi }_{^{\prime }1} ^{M}\\
823
 \\
824
 \delta t_{32}    =-\mathbf{t}_{3}\cdot \delta \mathbf{\varphi }_{^{\prime }2}^{M} \end{array}  </math>
825
|}
826
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
827
|}
828
829
leading to
830
831
{| class="formulaSCP" style="width: 100%; text-align: left;" 
832
|-
833
| 
834
{| style="text-align: left; margin:auto;width: 100%;" 
835
|-
836
| style="text-align: center;" | <math>\delta \mathbf{t}_{3}=\delta t_{31}\mathbf{\tilde{\varphi }}_{^{\prime }1}+\delta  t_{32}\mathbf{\tilde{\varphi }}_{^{\prime }2} </math>
837
|}
838
| style="width: 5px;text-align: right;white-space: nowrap;" | (57)
839
|}
840
841
where <math display="inline">\mathbf{\tilde{\varphi }}_{^{\prime }\alpha }</math> are the  contravariant base vectors in the central triangle
842
843
{| class="formulaSCP" style="width: 100%; text-align: left;" 
844
|-
845
| 
846
{| style="text-align: left; margin:auto;width: 100%;" 
847
|-
848
| style="text-align: center;" | <math>\begin{array}{l}\mathbf{\tilde{\varphi }}_{^{\prime }1}    =\lambda \;\mathbf{\varphi }_{^{\prime }2}^{M}\times \mathbf{t}_{3}\\
849
 \\
850
 \mathbf{\tilde{\varphi }}_{^{\prime }2}    =-\lambda \;\mathbf{\varphi  }_{^{\prime }1}^{M}\times \mathbf{t}_{3} \end{array}  </math>
851
|}
852
| style="width: 5px;text-align: right;white-space: nowrap;" | (58)
853
|}
854
855
We then have
856
857
{| class="formulaSCP" style="width: 100%; text-align: left;" 
858
|-
859
| 
860
{| style="text-align: left; margin:auto;width: 100%;" 
861
|-
862
| style="text-align: center;" | <math>\delta \mathbf{t}_{3}    =\left( -\mathbf{t}_{3}\cdot \delta \mathbf{\varphi  }_{^{\prime }1}^{M}\right) \mathbf{\tilde{\varphi }}_{^{\prime }1}+\left( -\mathbf{t}_{3}\cdot \delta \mathbf{\varphi }_{^{\prime }2}^{M}\right) \mathbf{\tilde{\varphi }}_{^{\prime }2}</math>
863
|-
864
| style="text-align: center;" | <math>   =-\sum _{J=1}^{3}\left[ \bar{N}_{^{\prime }1}^{J}\mathbf{\tilde{\varphi }}_{^{\prime }1}+\bar{N}_{^{\prime }2}^{J}\mathbf{\tilde{\varphi }}_{^{\prime } 2}\right] \left( \mathbf{t}_{3}\cdot \delta \mathbf{u}^{J}\right) </math>
865
|}
866
| style="width: 5px;text-align: right;white-space: nowrap;" | (59)
867
|}
868
869
Substituting the last expression in Eq.([[#eq-53|53]]), results
870
871
<span id="eq-60"></span>
872
{| class="formulaSCP" style="width: 100%; text-align: left;" 
873
|-
874
| 
875
{| style="text-align: left; margin:auto;width: 100%;" 
876
|-
877
| style="text-align: center;" | <math>\left[ \begin{array}{c}[c]{c} \delta \chi _{11}\\
878
 \delta \chi _{22}\\
879
 2\delta \chi _{12} \end{array}  \right]    =2\sum \limits _{I=1}^{3}\left[ \begin{array}{c}[c]{rr} \bar{N}_{^{\prime }1}^{I} & 0\\
880
 0 & \bar{N}_{^{\prime }2}^{I}\\
881
 \bar{N}_{^{\prime }2}^{I} & \bar{N}_{^{\prime }1}^{I} \end{array}  \right] \left\{ \sum \limits _{J=1}^{3}\left[ \begin{array}{c}[c]{c} N_{^{\prime }1}^{J\left( I\right) }\left( \mathbf{t}_{3}\cdot \delta  \mathbf{u}^{J}\right)\\
882
 N_{^{\prime }2}^{J\left( I\right) }\left( \mathbf{t}_{3}\cdot \delta  \mathbf{u}^{J}\right) \end{array}  \right] +\left[ \begin{array}{c}[c]{c} N_{^{\prime }1}^{I+3\left( I\right) }\left( \mathbf{t}_{3}\cdot  \delta \mathbf{u}^{I+3}\right)\\
883
 N_{^{\prime }2}^{I+3\left( I\right) }\left( \mathbf{t}_{3}\cdot  \delta \mathbf{u}^{I+3}\right) \end{array}  \right] \right\}</math>
884
|-
885
| style="text-align: center;" | <math>   -2\sum \limits _{I=1}^{3}\left[ \begin{array}{c}[c]{c} \left( \bar{N}_{^{\prime }1}^{I}\rho _{11}^{1}+\bar{N}_{^{\prime }2}^{I} \rho _{11}^{2}\right)\\
886
 \left( \bar{N}_{^{\prime }1}^{I}\rho _{22}^{1}+\bar{N}_{^{\prime }2}^{I} \rho _{22}^{2}\right)\\
887
 \left( \bar{N}_{^{\prime }1}^{I}\rho _{12}^{1}+\bar{N}_{^{\prime }2}^{I} \rho _{12}^{2}\right) \end{array}  \right] \left( \mathbf{t}_{3}\cdot \delta \mathbf{u}^{I}\right)  </math>
888
|}
889
| style="width: 5px;text-align: right;white-space: nowrap;" | (60)
890
|}
891
892
where the projections of the vectors <math display="inline">\mathbf{h}_{ij}</math> over the  contravariant base vectors <math display="inline">\mathbf{\tilde{\varphi }}_{^{\prime }\alpha }</math> have  been included
893
894
<span id="eq-61"></span>
895
{| class="formulaSCP" style="width: 100%; text-align: left;" 
896
|-
897
| 
898
{| style="text-align: left; margin:auto;width: 100%;" 
899
|-
900
| style="text-align: center;" | <math>\rho _{ij}^{\alpha }=\mathbf{h}_{ij}\cdot \mathbf{\tilde{\varphi }}_{^{\prime  }\alpha }  </math>
901
|}
902
| style="width: 5px;text-align: right;white-space: nowrap;" | (61)
903
|}
904
905
These projections together with Eq.([[#eq-52|52]]) allows to write
906
907
{| class="formulaSCP" style="width: 100%; text-align: left;" 
908
|-
909
| 
910
{| style="text-align: left; margin:auto;width: 100%;" 
911
|-
912
| style="text-align: center;" | <math>\mathbf{h}_{ij}=\sum _{\alpha=1}^{2}\rho _{ij}^{\alpha }\;\mathbf{\varphi  }_{^{\prime }\alpha }+\kappa _{ij}\mathbf{t}_{3} </math>
913
|}
914
| style="width: 5px;text-align: right;white-space: nowrap;" | (62)
915
|}
916
917
===5.2 Boundary conditions===
918
919
Elements at the domain boundary, where an adjacent element does not  exist, deserve a special attention. The treatment of essential boundary  conditions associated to translational constraints is straightforward, as they  are the natural degrees of freedom of the element. The conditions associated to the  normal vector are crucial in this formulation. For clamped sides or  symmetry planes, the normal vector <math display="inline">\mathbf{t}_{3}</math> must be kept fixed (clamped case), or  constrained to move in the plane of symmetry (symmetry case). The former case can be seen as a  special case of the latter, so we will consider symmetry planes only. This  restriction can be imposed through the definition of the tangent plane at the  boundary, including the normal to the plane of symmetry <math display="inline">\mathbf{\varphi  }_{^{\prime }n}^{\left( 0\right) }</math> that does not change during the process.
920
921
<div id='img-2'></div>
922
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
923
|-
924
|[[Image:Draft_Samper_340530075-test-fig2.png|300px|Local cartesian system for the treatment of boundary conditions]]
925
|- style="text-align: center; font-size: 75%;"
926
| colspan="1" | '''Figure 2:''' Local cartesian system for the treatment of boundary conditions
927
|}
928
929
The tangent plane at the boundary is expressed in terms of two orthogonal  unit vectors referred to as local-to-the-boundary cartesian system (see Figure  [[#img-2|2]]) and defined as
930
931
{| class="formulaSCP" style="width: 100%; text-align: left;" 
932
|-
933
| 
934
{| style="text-align: left; margin:auto;width: 100%;" 
935
|-
936
| style="text-align: center;" | <math>\left[ \mathbf{\varphi }_{^{\prime }n}^{\left( 0\right) },\;\mathbf{\bar  {\varphi }}_{^{\prime }s}\right] </math>
937
|}
938
| style="width: 5px;text-align: right;white-space: nowrap;" | (63)
939
|}
940
941
where vector <math display="inline">\mathbf{\varphi }_{^{\prime }n}^{\left( 0\right) }</math> is fixed while  direction <math display="inline">\mathbf{\bar{\varphi }}_{^{\prime }s}</math> emerges as the intersection of  the symmetry plane with the plane defined by the central element (<math display="inline">M</math>). The  plane (gradient) defined by the central element is
942
943
{| class="formulaSCP" style="width: 100%; text-align: left;" 
944
|-
945
| 
946
{| style="text-align: left; margin:auto;width: 100%;" 
947
|-
948
| style="text-align: center;" | <math>\left[ \mathbf{\varphi }_{^{\prime }1}^{M},\;\mathbf{\varphi }_{^{\prime }2} ^{M}\right] </math>
949
|}
950
| style="width: 5px;text-align: right;white-space: nowrap;" | (64)
951
|}
952
953
the intersection of this plane with the plane of symmetry can be written in  terms of the position of the nodes that define the side (<math display="inline">J</math> and <math display="inline">K</math>) and the  original length of the side <math display="inline">L_{0}</math>, i.e.
954
955
{| class="formulaSCP" style="width: 100%; text-align: left;" 
956
|-
957
| 
958
{| style="text-align: left; margin:auto;width: 100%;" 
959
|-
960
| style="text-align: center;" | <math>\mathbf{\varphi }_{^{\prime }s}=\frac{1}{L_{0}}\left( \mathbf{\varphi }^{K}-\mathbf{\varphi }^{J}\right) </math>
961
|}
962
| style="width: 5px;text-align: right;white-space: nowrap;" | (65)
963
|}
964
965
That together with the outer normal to the side <math display="inline">\mathbf{n =}\left[ \nu  _{1},\nu _{2}\right]^T  </math>(resolved in the selected original convective cartesian  system) leads to
966
967
{| class="formulaSCP" style="width: 100%; text-align: left;" 
968
|-
969
| 
970
{| style="text-align: left; margin:auto;width: 100%;" 
971
|-
972
| style="text-align: center;" | <math>\left[ \mathbf{\varphi }_{^{\prime }1}^{I},\;\mathbf{\varphi }_{^{\prime }2} ^{I}\right] =\left[ \mathbf{\varphi }_{^{\prime }n},\;\mathbf{\varphi  }_{^{\prime }s}\right] \left[ \begin{array}{c}[c]{cc} \nu _{1} & \nu _{2}\\
973
 -\nu _{2} & \nu _{1} \end{array}  \right] </math>
974
|}
975
| style="width: 5px;text-align: right;white-space: nowrap;" | (66)
976
|}
977
978
where the normal component of the gradient <math display="inline">\mathbf{\varphi }_{^{\prime }n}</math> is
979
980
{| class="formulaSCP" style="width: 100%; text-align: left;" 
981
|-
982
| 
983
{| style="text-align: left; margin:auto;width: 100%;" 
984
|-
985
| style="text-align: center;" | <math>\mathbf{\varphi }_{^{\prime }n}=\frac{\mathbf{\varphi }_{^{\prime }n}^{\left( 0\right) }}{\lambda |\mathbf{\varphi }_{^{\prime }s}|} </math>
986
|}
987
| style="width: 5px;text-align: right;white-space: nowrap;" | (67)
988
|}
989
990
In this way the contribution of the gradient at side <math display="inline">I</math> to vectors <math display="inline">\mathbf{h}_{ij}</math> results in
991
992
{| class="formulaSCP" style="width: 100%; text-align: left;" 
993
|-
994
| 
995
{| style="text-align: left; margin:auto;width: 100%;" 
996
|-
997
| style="text-align: center;" | <math>\left[ \begin{array}{c}[c]{c} \mathbf{h}_{11}^{T}\\
998
 \mathbf{h}_{22}^{T}\\
999
 2\mathbf{h}_{12}^{T} \end{array}  \right] ^{I}=2\left[ \begin{array}{c}[c]{cc} \bar{N}_{^{\prime }1}^{I} & 0\\
1000
 0 & \bar{N}_{^{\prime }2}^{I}\\
1001
 \bar{N}_{^{\prime }2}^{I} & \bar{N}_{^{\prime }1}^{I} \end{array}  \right] \left[ \begin{array}{c}[c]{cc} \nu _{1} & -\nu _{2}\\
1002
 \nu _{2} & \nu _{1} \end{array}  \right] \left[ \begin{array}{c}[c]{c} \mathbf{\varphi }_{^{\prime }n}^{T}\\
1003
 \mathbf{\varphi }_{^{\prime }s}^{T} \end{array}  \right] </math>
1004
|}
1005
| style="width: 5px;text-align: right;white-space: nowrap;" | (68)
1006
|}
1007
1008
The only difference with Eq.([[#eq-54|54]]) necessary for the computation  of the curvature variations, is that now the contribution from the gradient at  side <math display="inline">I</math> is
1009
1010
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1011
|-
1012
| 
1013
{| style="text-align: left; margin:auto;width: 100%;" 
1014
|-
1015
| style="text-align: center;" | <math>\delta \left[ \begin{array}{c}[c]{c} \mathbf{h}_{11}^{T}\\
1016
 \mathbf{h}_{22}^{T}\\
1017
 2\mathbf{h}_{12}^{T} \end{array}  \right] ^{I}    =2\left[ \begin{array}{c}[c]{cc} \bar{N}_{^{\prime }1}^{I} & 0\\
1018
 0 & \bar{N}_{^{\prime }2}^{I}\\
1019
 \bar{N}_{^{\prime }2}^{I} & \bar{N}_{^{\prime }1}^{I} \end{array}  \right] \left[ \begin{array}{c}[c]{cc} \nu _{1} & -\nu _{2}\\
1020
 \nu _{2} & \nu _{1} \end{array}  \right] \left[ \begin{array}{c}[c]{c} \mathbf{0}\\
1021
 \frac{1}{L_{o}}\left[ \delta \mathbf{u}^{K}-\delta \mathbf{u}^{J}\right] ^{T} \end{array}  \right]</math>
1022
| style="width: 5px;text-align: right;white-space: nowrap;" | (69)
1023
|-
1024
| style="text-align: center;" | <math>   =\frac{2}{L_{0}}\left[ \begin{array}{c}[c]{c} -\bar{N}_{^{\prime }1}^{I}\nu _{2}\\
1025
 \bar{N}_{^{\prime }2}^{I}\nu _{1}\\
1026
 \bar{N}_{^{\prime }1}^{I}\nu _{1}-\bar{N}_{^{\prime }2}^{I}\nu _{2} \end{array}  \right] \left[ \delta \mathbf{u}^{K}-\delta \mathbf{u}^{J}\right] ^{T} </math>
1027
| style="width: 5px;text-align: right;white-space: nowrap;" | (70)
1028
|}
1029
|}
1030
1031
where the influence of variations in the length of vector <math display="inline">\mathbf{\varphi  }_{^{\prime }n}</math> has been neglected.
1032
1033
In the case of natural boundary conditions (either free or simple supported) the  gradient at the sides is supposed to be equal to the gradient in the central  element, similarly as in the membrane approach, i.e.
1034
1035
<span id="eq-71"></span>
1036
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1037
|-
1038
| 
1039
{| style="text-align: left; margin:auto;width: 100%;" 
1040
|-
1041
| style="text-align: center;" | <math>\left[ \mathbf{\varphi }_{^{\prime }1}^{I},\;\mathbf{\varphi }_{^{\prime }2} ^{I}\right] =\left[ \mathbf{\varphi }_{^{\prime }1}^{M},\;\mathbf{\varphi  }_{^{\prime }2}^{M}\right]   </math>
1042
|}
1043
| style="width: 5px;text-align: right;white-space: nowrap;" | (71)
1044
|}
1045
1046
Using Eq.([[#eq-71|71]]), vectors <math display="inline">\mathbf{h}_{ij}</math> and their variations can be easily  computed. A second possibility is to make use of the natural boundary  condition constraining the normal curvature to a zero  value. In simple supported  sides where the curvature along the side is zero, this leads to zero values for  both bending moments.
1047
1048
==6 Stiffness matrix evaluation==
1049
1050
When a predictor-corrector scheme is used to trace the movement of the shell,  the derivative (stiffness matrix) of the weak form of the momentum equations  ([[#eq-23|23]]) is needed. As usual, '''material''' and '''geometric'''  components are computed separately. The material part does not offer difficulties and  it is computed from the integral
1051
1052
<span id="eq-72"></span>
1053
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1054
|-
1055
| 
1056
{| style="text-align: left; margin:auto;width: 100%;" 
1057
|-
1058
| style="text-align: center;" | <math>\int _{A}\mathbf{B}^{T}\;\mathbf{C\;B}\;dA    </math>
1059
|}
1060
| style="width: 5px;text-align: right;white-space: nowrap;" | (72)
1061
|}
1062
1063
where matrix <math display="inline">\mathbf{B}={\boldsymbol B}_m+{\boldsymbol B}_\phi </math>  includes:
1064
1065
a) a '''membrane part''' <math display="inline">{\boldsymbol B}_m</math> computed at each mid side point <math display="inline">I</math> from
1066
1067
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1068
|-
1069
| 
1070
{| style="text-align: left; margin:auto;width: 100%;" 
1071
|-
1072
| style="text-align: center;" | <math>\delta \left[ \begin{array}{c}[c]{c} E_{11}\\
1073
 E_{22}\\
1074
 2E_{12} \end{array}  \right] ^{I}    =\left[ \begin{array}{c}[c]{cc} \mathbf{\varphi }_{^{\prime }1}^{T} & \mathbf{0}_{3\times{1}}^{T}\\
1075
 \mathbf{0}_{3\times{1}}^{T} & \mathbf{\varphi }_{^{\prime }2}^{T}\\
1076
 \mathbf{\varphi }_{^{\prime }2}^{T} & \mathbf{\varphi }_{^{\prime }1}^{T} \end{array}  \right] ^{I}\left[ \begin{array}{c}[c]{cccc} N_{^{\prime }1}^{1} & N_{^{\prime }1}^{2} & N_{^{\prime }1}^{3} & N_{^{\prime } 1}^{I+3}\\
1077
 N_{^{\prime }2}^{1} & N_{^{\prime }2}^{2} & N_{^{\prime }2}^{3} & N_{^{\prime } 2}^{I+3} \end{array}  \right] \left[ \begin{array}{c}[c]{c} \delta \mathbf{u}^{1}\\
1078
 \delta \mathbf{u}^{2}\\
1079
 \delta \mathbf{u}^{3}\\
1080
 \delta \mathbf{u}^{I+3} \end{array}  \right]</math>
1081
|-
1082
| style="text-align: center;" | <math>   =\left[ \begin{array}{c}[c]{cc} \mathbf{\varphi }_{^{\prime }1}^{T} & \mathbf{0}_{3\times{1}}^{T}\\
1083
 \mathbf{0}_{3\times{1}}^{T} & \mathbf{\varphi }_{^{\prime }2}^{T}\\
1084
 \mathbf{\varphi }_{^{\prime }2}^{T} & \mathbf{\varphi }_{^{\prime }1}^{T} \end{array}  \right] ^{I}\left[ \begin{array}{c}[c]{cccc} N_{^{\prime }1}^{1\left( I\right) } & N_{^{\prime }1}^{2\left( I\right) } &  N_{^{\prime }1}^{3\left( I\right) } & N_{^{\prime }1}^{4\left( I\right) }\\
1085
 N_{^{\prime }2}^{1\left( I\right) } & N_{^{\prime }2}^{2\left( I\right) } &  N_{^{\prime }2}^{3\left( I\right) } & N_{^{\prime }2}^{4\left( I\right) } \end{array}  \right] \left[ \begin{array}{c}[c]{c} \delta \mathbf{u}^{1}\\
1086
 \delta \mathbf{u}^{2}\\
1087
 \delta \mathbf{u}^{3}\\
1088
 \delta \mathbf{u}^{4}={\boldsymbol B}\delta {\boldsymbol u} \end{array}  \right] ^{\left( I\right) } </math>
1089
|}
1090
| style="width: 5px;text-align: right;white-space: nowrap;" | (73)
1091
|}
1092
1093
Typically one integration point is used for computing the terms in <math display="inline">{\boldsymbol B}_m</math>.
1094
1095
b) a '''bending part''' <math display="inline">{\boldsymbol B}_\phi </math> which results from Eq.([[#eq-60|60]]) that is  constant over the element.
1096
1097
In Eq.([[#eq-72|72]]), '''C''' is the elasticity matrix integrated in the thickness. If material  non-linearity is considered, a layer wise numerical integration across the  thickness is required This leads to the tangent or algorithmic elastic-plastic  constitutive matrix <math display="inline">\mathbf{C}_{ep}</math>.
1098
1099
===6.1 Geometric stiffness (membrane part)===
1100
1101
The geometric stiffness due to membrane forces results from computing
1102
1103
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1104
|-
1105
| 
1106
{| style="text-align: left; margin:auto;width: 100%;" 
1107
|-
1108
| style="text-align: center;" | <math>\delta \mathbf{u}^{T}\;\mathbf{K}_{m}^{G}\;\Delta \mathbf{u=}\int _{A} \frac{\partial }{\partial \mathbf{u}}\left( \delta \mathbf{\varepsilon }^{T}\mathbf{N}\right) \Delta \mathbf{u}\;dA  </math>
1109
|}
1110
| style="width: 5px;text-align: right;white-space: nowrap;" | (74)
1111
|}
1112
1113
This can be written as the sum of the contributions of the three sides, i.e.
1114
1115
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1116
|-
1117
| 
1118
{| style="text-align: left; margin:auto;width: 100%;" 
1119
|-
1120
| style="text-align: center;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{m}^{G}\mathbf{\;}\Delta \mathbf{u}    =\int _{A}\frac{\partial }{\partial \mathbf{u}}\left( \delta \mathbf{\varepsilon  }^{T}\right) \mathbf{N}\;\Delta \mathbf{u\;}dA</math>
1121
|-
1122
| style="text-align: center;" | <math>   =\frac{A^{M}}{3}\sum _{K=1}^{3}\sum _{I=1}^{4}\sum _{J=1}^{4}\left[ N_{^{\prime }1}^{I\left( K\right) }N_{^{\prime }1}^{J\left( K\right) }\;N_{11}^{\left( K\right) }+N_{^{\prime }2}^{I\left( K\right) } N_{^{\prime }2}^{J\left( K\right) }\;N_{22}^{\left( K\right) }\right. </math>
1123
|-
1124
| style="text-align: center;" | <math>   +\left. \left( N_{^{\prime }1}^{I\left( K\right) }N_{^{\prime } 2}^{J\left( K\right) }+N_{^{\prime }2}^{I\left( K\right) }N_{^{\prime } 1}^{J\left( K\right) }\right) N_{12}^{\left( K\right) }\right] \delta \mathbf{u}^{J\left( K\right) }\cdot \Delta \mathbf{u}^{I\left( K\right) }</math>
1125
|-
1126
| style="text-align: center;" | <math>   =\frac{A^{M}}{3}\sum _{K=1}^{3}\sum _{I=1}^{4}\sum _{J=1}^{4}\left\{ \delta \mathbf{u}^{I}\;\left[ \begin{array}{c}[c]{cc} N_{^{\prime }1}^{J} & N_{^{\prime }2}^{J} \end{array}  \right] \left[ \begin{array}{c}[c]{cc} N_{11} & N_{12}\\
1127
 N_{21} & N_{22} \end{array}  \right] \left[ \begin{array}{c}[c]{c} N_{^{\prime }1}^{J}\\
1128
 N_{^{\prime }2}^{J} \end{array}  \right] \Delta \mathbf{u}^{J}\right\} ^{\left( K\right) }</math>
1129
|-
1130
| style="text-align: center;" | <math>   .  </math>
1131
|}
1132
| style="width: 5px;text-align: right;white-space: nowrap;" | (75)
1133
|}
1134
1135
===6.2 Geometric stiffness (bending part)===
1136
1137
The geometric stiffness associated to bending moments is  more  involved. Its expression stems from
1138
1139
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1140
|-
1141
| 
1142
{| style="text-align: left; margin:auto;width: 100%;" 
1143
|-
1144
| style="text-align: center;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{b}^{G}\mathbf{\;}\Delta \mathbf{u=}\int  _{A}\left( \frac{\partial }{\partial \mathbf{u}}\left( \delta \mathbf{\chi }^{T}\right) \mathbf{M}\right) \Delta \mathbf{u\;}dA  </math>
1145
|}
1146
| style="width: 5px;text-align: right;white-space: nowrap;" | (76)
1147
|}
1148
1149
Recalling expressions ([[#eq-51|51]]) and ([[#eq-52|52]]) it can be written
1150
1151
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1152
|-
1153
| 
1154
{| style="text-align: left; margin:auto;width: 100%;" 
1155
|-
1156
| style="text-align: center;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{b}^{G}\Delta \mathbf{u}=A^{M}\;M_{ij} \;\Delta \left[ \delta \left( \mathbf{t}_{3}\cdot \mathbf{h}_{ij}\right) \right] </math>
1157
|}
1158
| style="width: 5px;text-align: right;white-space: nowrap;" | (77)
1159
|}
1160
1161
where
1162
1163
<span id="eq-78"></span>
1164
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1165
|-
1166
| 
1167
{| style="text-align: left; margin:auto;width: 100%;" 
1168
|-
1169
| style="text-align: center;" | <math>\Delta \left[ \delta \left( \mathbf{t}_{3}\cdot \mathbf{h}_{ij}\right) \right] =\Delta \mathbf{t}_{3}\cdot \delta \mathbf{h}_{ij}+\delta \mathbf{t}_{3}\cdot \Delta \mathbf{h}_{ij}+\Delta \left( \delta \mathbf{t}_{3}\right) \cdot \mathbf{h}_{ij}  </math>
1170
|}
1171
| style="width: 5px;text-align: right;white-space: nowrap;" | (78)
1172
|}
1173
1174
The first two terms lead to  symmetric components. The  second one <math display="inline">\left( \delta \mathbf{t}_{3}\cdot \Delta \mathbf{h}_{ij}\right) </math>  can be expressed as
1175
1176
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1177
|-
1178
| 
1179
{| style="text-align: left; margin:auto;width: 100%;" 
1180
|-
1181
| style="text-align: center;" | <math>=\left\{ -\sum _{J=1}^{3}\left[ \bar{N}_{^{\prime }1}^{J}\mathbf{\tilde  {\varphi }}_{^{\prime }1}+\bar{N}_{^{\prime }2}^{J}\mathbf{\tilde{\varphi }}_{^{\prime }2}\right] \left( \mathbf{t}_{3}\cdot \delta \mathbf{u}^{J}\right) \right\} \cdot \left\{ \sum _{I=1}^{3}\sum _{K=1}^{4}\left( \bar{N}_{^{\prime  }i}^{I}\;N_{^{\prime }j}^{K}+\bar{N}_{^{\prime }j}^{I}\;N_{i}^{K}\right) \Delta \mathbf{u}^{K\left( I\right) }\right\}</math>
1182
|-
1183
| style="text-align: center;" | <math>   =-\sum _{J=1}^{3}\sum _{I=1}^{3}\sum _{K=1}^{4}\left( \delta \mathbf{u}^{J}\right) ^{T}\left[ \bar{N}_{^{\prime }1}^{J}\left( \mathbf{t}_{3} \otimes \mathbf{\tilde{\varphi }}_{^{\prime }1}\right) +\bar{N}_{^{\prime }2} ^{J}\left( \mathbf{t}_{3}\otimes \mathbf{\tilde{\varphi }}_{^{\prime }2}\right) \right] \left( \bar{N}_{^{\prime }i}^{I}\;N_{^{\prime }j}^{K}+\bar  {N}_{^{\prime }j}^{I}\;N_{i}^{K}\right) \Delta \mathbf{u}^{K\left( I\right) }</math>
1184
|-
1185
| style="text-align: center;" | <math>   \;\;
1186
 </math>
1187
|}
1188
| style="width: 5px;text-align: right;white-space: nowrap;" | (79)
1189
|}
1190
1191
Then, a first component of the geometric bending stiffness  can be  written as
1192
1193
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1194
|-
1195
| 
1196
{| style="text-align: left; margin:auto;width: 100%;" 
1197
|-
1198
| style="text-align: center;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{b1}^{G}\Delta \mathbf{u}    =A^{M}\left\{ -\sum _{J=1}^{3}\left( \delta \mathbf{u}^{J}\right) ^{T}\left[ \begin{array}{c}[c]{cc} \bar{N}_{^{\prime }1}^{J} \mathbf{1} & \bar{N}_{^{\prime }2}^{J} \mathbf{1}\end{array}  \right] \left[ \begin{array}{c}[c]{c} \mathbf{t}_{3}\otimes \mathbf{\tilde{\varphi }}_{^{\prime }1}\\
1199
 \mathbf{t}_{3}\otimes \mathbf{\tilde{\varphi }}_{^{\prime }2} \end{array}  \right] \right\}</math>
1200
|-
1201
| style="text-align: center;" | <math>   \sum _{I=1}^{3}\left[ \begin{array}{c}[c]{cc} \bar{N}_{^{\prime }1}^{I} & \bar{N}_{^{\prime }2}^{I} \end{array}  \right] \left[ \begin{array}{c}[c]{cc} M_{11} & M_{12}\\
1202
 M_{12} & M_{22} \end{array}  \right] \sum _{K=1}^{4}\left[ \begin{array}{c}[c]{c} N_{^{\prime }1}^{K\left( I\right) }\\
1203
 N_{^{\prime }2}^{K\left( I\right) } \end{array}  \right] \Delta \mathbf{u}^{K\left( I\right) }</math>
1204
|-
1205
| style="text-align: center;" | 
1206
|}
1207
| style="width: 5px;text-align: right;white-space: nowrap;" | (80)
1208
|}
1209
1210
The last term in ([[#eq-78|78]]), can be obtained observing that (sum in <math display="inline">\alpha </math> and <math display="inline">\beta </math>)
1211
1212
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1213
|-
1214
| 
1215
{| style="text-align: left; margin:auto;width: 100%;" 
1216
|-
1217
| style="text-align: center;" | <math>\Delta \left( \delta \mathbf{t}_{3}\right)    =\left[ \Delta \left( \delta \mathbf{t}_{3}\right) \right] _{1}\mathbf{\tilde{\varphi }}_{^{\prime  }1}+\left[ \Delta \left( \delta \mathbf{t}_{3}\right) \right] _{2} \mathbf{\tilde{\varphi }}_{^{\prime }2}+\left[ \Delta \left( \delta  \mathbf{t}_{3}\right) \right] _{3}\mathbf{t}_{3}</math>
1218
|-
1219
| style="text-align: center;" | <math>   =-\left( \mathbf{\tilde{\varphi }}_{^{\prime }\alpha }\cdot \mathbf{\tilde  {\varphi }}_{^{\prime }\beta }\right) \left[ \delta \mathbf{\varphi }_{^{\prime  }\alpha }^{T}\left( \mathbf{t}_{3}\otimes \mathbf{t}_{3}\right) \Delta  \mathbf{\varphi }_{^{\prime }\beta }\right] \mathbf{t}_{3}+</math>
1220
| style="width: 5px;text-align: right;white-space: nowrap;" | (81)
1221
|-
1222
| style="text-align: center;" | <math>   +\left[ \delta \mathbf{\varphi }_{^{\prime }\alpha }^{T}\left( \mathbf{t}_{3}\otimes \mathbf{\tilde{\varphi }}_{^{\prime }\alpha }\right) \Delta  \mathbf{\varphi }_{^{\prime }\beta }\right] \mathbf{\tilde{\varphi }}_{^{\prime  }\beta }+\left[ \delta \mathbf{\varphi }_{^{\prime }\alpha }^{T}\left( \mathbf{\tilde{\varphi }}_{^{\prime }\beta }\otimes \mathbf{t}_{3}\right) \Delta \mathbf{\varphi }_{^{\prime }\beta }\right] \mathbf{\tilde{\varphi }}_{^{\prime }\alpha } </math>
1223
|}
1224
|}
1225
1226
then
1227
1228
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1229
|-
1230
| 
1231
{| style="text-align: left; margin:auto;width: 100%;" 
1232
|-
1233
| style="text-align: center;" | <math>\Delta \left( \delta \mathbf{t}_{3}\right) \cdot \mathbf{h}_{ij}    =-\left( \mathbf{\tilde{\varphi }}_{^{\prime }\alpha }\cdot \mathbf{\tilde{\varphi }}_{^{\prime }\beta }\right) \left[ \delta \mathbf{\varphi }_{^{\prime }\alpha  }^{T}\left( \mathbf{t}_{3}\otimes \mathbf{t}_{3}\right) \Delta \mathbf{\varphi  }_{^{\prime }\beta }\right] \left( \mathbf{t}_{3}\cdot \mathbf{h}_{ij}\right) +</math>
1234
|-
1235
| style="text-align: center;" | <math>   +\left[ \delta \mathbf{\varphi }_{^{\prime }\alpha }^{T}\left( \mathbf{t}_{3}\otimes \mathbf{\tilde{\varphi }}_{^{\prime }\alpha }\right) \Delta  \mathbf{\varphi }_{^{\prime }\beta }\right] \left( \mathbf{\tilde{\varphi }}_{^{\prime }\beta }\cdot \mathbf{h}_{ij}\right)</math>
1236
|-
1237
| style="text-align: center;" | <math>   +\left[ \delta \mathbf{\varphi }_{^{\prime }\alpha }^{T}\left( \mathbf{\tilde  {\varphi }}_{^{\prime }\beta }\otimes \mathbf{t}_{3}\right) \Delta \mathbf{\varphi  }_{^{\prime }\beta }\right] \left( \mathbf{\tilde{\varphi }}_{^{\prime }\alpha  }\cdot \mathbf{h}_{ij}\right)</math>
1238
|-
1239
| style="text-align: center;" | <math>   =\delta \mathbf{\varphi }_{^{\prime }\alpha }^{T}\left\{ \rho _{ij}^{\beta  }\left( \mathbf{t}_{3}\otimes \mathbf{\tilde{\varphi }}_{^{\prime }\alpha  }\right) +\rho _{ij}^{\alpha }\left( \mathbf{\tilde{\varphi }}_{^{\prime }\beta  }\otimes \mathbf{t}_{3}\right) -g^{\alpha \beta }\kappa _{ij}\left( \mathbf{t}_{3}\otimes \mathbf{t}_{3}\right) \right\} \Delta \mathbf{\varphi  }_{^{\prime }\beta } </math>
1240
|}
1241
| style="width: 5px;text-align: right;white-space: nowrap;" | (82)
1242
|}
1243
1244
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1245
|-
1246
| 
1247
{| style="text-align: left; margin:auto;width: 100%;" 
1248
|-
1249
| style="text-align: center;" | <math>\Delta \left( \delta \mathbf{t}_{3}\right) \cdot \mathbf{h}_{ij}=\sum _{J=1} ^{3}\sum _{K=1}^{3}\sum _{\alpha=1}^{2}\sum _{\beta=1}^{2}\bar{N}_{^{\prime  }\alpha }^{J}\bar{N}_{^{\prime }\beta }^{K}\left[ \delta \mathbf{u}^{J}\right] ^{T}\;\mathbf{P}_{ij}^{a\beta }\mathbf{\;}\Delta \mathbf{u}^{K} </math>
1250
|}
1251
| style="width: 5px;text-align: right;white-space: nowrap;" | (83)
1252
|}
1253
1254
with
1255
1256
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1257
|-
1258
| 
1259
{| style="text-align: left; margin:auto;width: 100%;" 
1260
|-
1261
| style="text-align: center;" | <math>\mathbf{P}_{ij}^{\alpha \beta }=\left[ -a^{\alpha \beta }\;\kappa _{ij}\;\left( \mathbf{t}_{3}\otimes \mathbf{t}_{3}\right) +\rho _{ij}^{\beta }\left( \mathbf{t}_{3}\otimes \mathbf{\tilde{\varphi }}_{^{\prime }\alpha }\right) +\rho _{ij}^{\alpha }\left( \mathbf{\tilde{\varphi }}_{^{\prime }\beta } \otimes \mathbf{t}_{3}\right) \right] </math>
1262
|}
1263
| style="width: 5px;text-align: right;white-space: nowrap;" | (84)
1264
|}
1265
1266
where the covariant metric tensor at the middle surface <math display="inline">a^{\alpha \beta }</math> has  been used.
1267
1268
Denoting the sum
1269
1270
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1271
|-
1272
| 
1273
{| style="text-align: left; margin:auto;width: 100%;" 
1274
|-
1275
| style="text-align: center;" | <math>\mathbf{Q}^{\alpha \beta }=A^{M}\;\sum _{i=1}^{2}\sum _{j=1}^{2}\mathbf{P}_{ij}^{a\beta }M_{\iota j} </math>
1276
|}
1277
| style="width: 5px;text-align: right;white-space: nowrap;" | (85)
1278
|}
1279
1280
the term
1281
1282
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1283
|-
1284
| 
1285
{| style="text-align: left; margin:auto;width: 100%;" 
1286
|-
1287
| style="text-align: center;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{b2}^{G}\Delta \mathbf{u}=A^{M}\;M_{ij}\left( \Delta \left( \delta \mathbf{t}_{3}\right) \cdot \mathbf{h}_{ij}\right) </math>
1288
|}
1289
| style="width: 5px;text-align: right;white-space: nowrap;" | (86)
1290
|}
1291
1292
results in
1293
1294
<span id="eq-87"></span>
1295
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1296
|-
1297
| 
1298
{| style="text-align: left; margin:auto;width: 100%;" 
1299
|-
1300
| style="text-align: center;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{b2}^{G}\Delta \mathbf{u}=\sum _{J=1}^{3} \sum _{K=1}^{3}\sum _{\alpha=1}^{2}\sum _{\beta=1}^{2}\bar{N}_{^{\prime }\alpha  }^{J}\bar{N}_{^{\prime }\beta }^{K}\left[ \delta \mathbf{u}^{J}\right] ^{T}\;\mathbf{Q}^{a\beta }\mathbf{\;}\Delta \mathbf{u}^{K}  </math>
1301
|}
1302
| style="width: 5px;text-align: right;white-space: nowrap;" | (87)
1303
|}
1304
1305
The last expression ([[#eq-87|87]]) has components only in the nodes of the  central element, which stems from the definition used for '''t'''<math display="inline">_{3}</math>.
1306
1307
Numerical experiments have shown that the bending part of the geometric stiffness is not so important and can be disregarded in the iterative process.
1308
1309
==7 Numerical examples in the linear range==
1310
1311
In this section, a summary of the results obtained in the assessment of the  proposed element in the linear range are presented. In this first part of the  numerical experiments, results have been obtained with a static/dynamic code  that uses a implicit solution of the discretized equilibrium equations. In the examples,  the original BST element<sup><span id='citeF-10'></span>[[#cite-10|[10]]]</sup> is compared with the enhanced version here proposed, denoted by CBST when a numerical integration is  performed with three points, and  CBST1 when only one integration point is  used. Note that one integration quadrature is equivalent to averaging  the metric tensors computed  at each side.
1312
1313
===7.1 Membrane patch test===
1314
1315
<div id='img-3'></div>
1316
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1317
|-
1318
|[[Image:Draft_Samper_340530075-test-fig3.png|600px|Membrane patch  test]]
1319
|- style="text-align: center; font-size: 75%;"
1320
| colspan="1" | '''Figure 3:''' Membrane patch  test
1321
|}
1322
1323
The main objective of the present formulation is to obtain a (non conforming)  membrane element  with a similar performance than the linear strain triangle,  that satisfies the patch test. To assess this, a square domain subjected to  nodal forces associated to a constant stress state (in both directions and in  shear) is considered. Figure [[#img-3|3]] shows the patch of elements and the  necessary nodal forces to obtain a uniform tensile stress in direction <math display="inline">x_{1} </math>. Note that the nodal forces used correspond to the constant strain  triangle, not to the linear one. For the distorted mesh shown, correct results  are obtained using either  1 or 3 integration points.
1324
1325
===7.2 Bending patch test (torsion)===
1326
1327
<div id='img-4'></div>
1328
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1329
|-
1330
|[[Image:Draft_Samper_340530075-test-fig4.png|600px|Patch test for uniform  torsion]]
1331
|- style="text-align: center; font-size: 75%;"
1332
| colspan="1" | '''Figure 4:''' Patch test for uniform  torsion
1333
|}
1334
1335
The element bending formulation does not allow to apply external bending moments  (there are not rotational DOFs). Hence it is not possible to analyse a patch of  elements under loads leading to a uniform bending moment. A uniform torsion  can be considered if a point load is applied at the corner of a rectangular  plate with two consecutive free sides and two simple supported sides. Figure  [[#img-4|4]] shows three patches leading to correct results both in  displacements and stresses. All three patches are structured meshes. When the  central node in the third patch is displaced from the center, the results  obtained with the CBST element are not correct. The original element BST gives correct  results in all cases, if natural  boundary conditions are imposed in the formulation. If this is  not the case, incorrent  results are obtained even with structured meshes.
1336
1337
===7.3 Cook's membrane problem===
1338
1339
This example is used to assess the membrane performance of the CBST element  and to compare it with the linear triangle (constant strain) and the quadratic  triangle (linear strain). This example involves important shear energy and was  proposed to assess the distortion capability of elements. Figure  [[#img-5|5]].a shows the geometry and the applied load. Figure [[#img-5|5]].b  plots the vertical displacement of the upper vertex as a function of the  number of nodes in the mesh. In this figure results obtained with other  isoparametric elements have been also plotted for comparison. They include  the constain strain triangle (CST), the bilinear  quadrilateral (QUAD4) and the linear strain triangle (LST). Note that in this membrane problem both the BST and the CST elements give identical results.
1340
1341
<div id='img-5'></div>
1342
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1343
|-
1344
|[[Image:Draft_Samper_340530075-test-fig5.png|600px|Cook membrane problem (a)  Geometry (b) Results]]
1345
|- style="text-align: center; font-size: 75%;"
1346
| colspan="1" | '''Figure 5:''' Cook membrane problem (a)  Geometry (b) Results
1347
|}
1348
1349
From the plot shown it can be seen that the new element with three integration  points (CBST)  gives values  slightly better that the constant strain triangle for the most coarse mesh (only two elements). However, when the mesh is  refined, a  performance similar to the linear strain triangle is obtained, that  is dramatically superior that the former. On the other hand, if a one point  quadrature is used (CBST1) the convergence in the reported displacement is notably  better that for the rest of the elements.
1350
1351
===7.4 Cylindrical roof===
1352
1353
In this example an effective membrane interpolation is of primary importance. Hence this is good test to assess the new element. The geometry is a  cylindrical roof supported by a rigid diaphragm at both ends and it is loaded by  a uniform dead weight (see [[#img-6|6]].a.). Only one quarter of the structure is modelled due  to symmetry conditions. Unstructured and structured meshes are considered.  In  the latter case two orientations are possible (Figure [[#img-6|6]] shows orientation B).
1354
1355
Tables [[#table-1|1]], [[#table-2|2]] and [[#table-3|3]] present the normalized  vertical displacements at the crown (point A) and in the midpoint of the free  side (point B) for the two orientations of structured meshes and  non-structured meshes. Values used for normalization are <math display="inline">u_{A}=0.5407</math> y <math display="inline">u_{B}=-3.610</math> that are quoted in reference <span id='citeF-13'></span>[[#cite-13|[13]]].
1356
1357
<div id='img-6'></div>
1358
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1359
|-
1360
|[[Image:Draft_Samper_340530075-test-fig6.png|600px|Cylindrical roof under dead  weight. E=3 E⁶, ν=0.0, Thickness =3.0, shell weight =0.625 per unit  area.]]
1361
|- style="text-align: center; font-size: 75%;"
1362
| colspan="1" | '''Figure 6:''' Cylindrical roof under dead  weight. E=3 E<math>^{6}</math>, <math>\nu=0.0</math>, Thickness =3.0, shell weight =0.625 per unit  area.
1363
|}
1364
1365
1366
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
1367
|+ style="font-size: 75%;" |<span id='table-1'></span>Table. 1 Cylindrical roof under dead weigth. Normalized displacements for mesh  orientation A
1368
|- style="border-top: 2px solid;"
1369
| style="border-left: 2px solid;border-right: 2px solid;" |  
1370
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-A
1371
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-B
1372
|- style="border-top: 2px solid;"
1373
| style="border-left: 2px solid;border-right: 2px solid;" |  NDOFs 
1374
| style="border-left: 2px solid;border-right: 2px solid;" | CBST 
1375
| style="border-left: 2px solid;border-right: 2px solid;" | CBST1 
1376
| style="border-left: 2px solid;border-right: 2px solid;" | BST 
1377
| style="border-left: 2px solid;border-right: 2px solid;" | CBST 
1378
| style="border-left: 2px solid;border-right: 2px solid;" | CBST1 
1379
| style="border-left: 2px solid;border-right: 2px solid;" | BST
1380
|-
1381
| style="border-left: 2px solid;border-right: 2px solid;" | 16 
1382
| style="border-left: 2px solid;border-right: 2px solid;" | 0.65724 
1383
| style="border-left: 2px solid;border-right: 2px solid;" | 0.91855 
1384
| style="border-left: 2px solid;border-right: 2px solid;" | 0.74161 
1385
| style="border-left: 2px solid;border-right: 2px solid;" | 0.40950 
1386
| style="border-left: 2px solid;border-right: 2px solid;" | 0.70100 
1387
| style="border-left: 2px solid;border-right: 2px solid;" | 1.35230
1388
|-
1389
| style="border-left: 2px solid;border-right: 2px solid;" | 56 
1390
| style="border-left: 2px solid;border-right: 2px solid;" | 0.53790 
1391
| style="border-left: 2px solid;border-right: 2px solid;" | 1.03331 
1392
| style="border-left: 2px solid;border-right: 2px solid;" | 0.74006 
1393
| style="border-left: 2px solid;border-right: 2px solid;" | 0.54859 
1394
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00759 
1395
| style="border-left: 2px solid;border-right: 2px solid;" | 0.75590
1396
|-
1397
| style="border-left: 2px solid;border-right: 2px solid;" | 208 
1398
| style="border-left: 2px solid;border-right: 2px solid;" | 0.89588 
1399
| style="border-left: 2px solid;border-right: 2px solid;" | 1.04374 
1400
| style="border-left: 2px solid;border-right: 2px solid;" | 0.88491 
1401
| style="border-left: 2px solid;border-right: 2px solid;" | 0.91612 
1402
| style="border-left: 2px solid;border-right: 2px solid;" | 1.02155 
1403
| style="border-left: 2px solid;border-right: 2px solid;" | 0.88269
1404
|-
1405
| style="border-left: 2px solid;border-right: 2px solid;" | 800 
1406
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99658 
1407
| style="border-left: 2px solid;border-right: 2px solid;" | 1.01391 
1408
| style="border-left: 2px solid;border-right: 2px solid;" | 0.96521 
1409
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99263 
1410
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00607 
1411
| style="border-left: 2px solid;border-right: 2px solid;" | 0.96393
1412
|- style="border-bottom: 2px solid;"
1413
| style="border-left: 2px solid;border-right: 2px solid;" | 3136 
1414
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00142 
1415
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00385 
1416
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99105 
1417
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99881 
1418
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00102 
1419
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98992
1420
1421
|}
1422
1423
1424
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
1425
|+ style="font-size: 75%;" |<span id='table-2'></span>Table. 2 Cylindrical roof under dead weigth. Normalized displacements for mesh  orientation A
1426
|- style="border-top: 2px solid;"
1427
| style="border-left: 2px solid;border-right: 2px solid;" |  
1428
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-A
1429
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-B
1430
|- style="border-top: 2px solid;"
1431
| style="border-left: 2px solid;border-right: 2px solid;" |  NDOFs 
1432
| style="border-left: 2px solid;border-right: 2px solid;" | CBST 
1433
| style="border-left: 2px solid;border-right: 2px solid;" | CBST1 
1434
| style="border-left: 2px solid;border-right: 2px solid;" | BST 
1435
| style="border-left: 2px solid;border-right: 2px solid;" | CBST 
1436
| style="border-left: 2px solid;border-right: 2px solid;" | CBST1 
1437
| style="border-left: 2px solid;border-right: 2px solid;" | BST
1438
|-
1439
| style="border-left: 2px solid;border-right: 2px solid;" | 16 
1440
| style="border-left: 2px solid;border-right: 2px solid;" | 0.26029 
1441
| style="border-left: 2px solid;border-right: 2px solid;" | 0.83917 
1442
| style="border-left: 2px solid;border-right: 2px solid;" | 0.40416 
1443
| style="border-left: 2px solid;border-right: 2px solid;" | 0.52601 
1444
| style="border-left: 2px solid;border-right: 2px solid;" | 0.86133 
1445
| style="border-left: 2px solid;border-right: 2px solid;" | 0.89778
1446
|-
1447
| style="border-left: 2px solid;border-right: 2px solid;" | 56 
1448
| style="border-left: 2px solid;border-right: 2px solid;" | 0.81274 
1449
| style="border-left: 2px solid;border-right: 2px solid;" | 1.10368 
1450
| style="border-left: 2px solid;border-right: 2px solid;" | 0.61642 
1451
| style="border-left: 2px solid;border-right: 2px solid;" | 0.67898 
1452
| style="border-left: 2px solid;border-right: 2px solid;" | 0.93931 
1453
| style="border-left: 2px solid;border-right: 2px solid;" | 0.68238
1454
|-
1455
| style="border-left: 2px solid;border-right: 2px solid;" | 208 
1456
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97651 
1457
| style="border-left: 2px solid;border-right: 2px solid;" | 1.04256 
1458
| style="border-left: 2px solid;border-right: 2px solid;" | 0.85010 
1459
| style="border-left: 2px solid;border-right: 2px solid;" | 0.93704 
1460
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00255 
1461
| style="border-left: 2px solid;border-right: 2px solid;" | 0.86366
1462
|-
1463
| style="border-left: 2px solid;border-right: 2px solid;" | 800 
1464
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00085 
1465
| style="border-left: 2px solid;border-right: 2px solid;" | 1.01195 
1466
| style="border-left: 2px solid;border-right: 2px solid;" | 0.95626 
1467
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99194 
1468
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00211 
1469
| style="border-left: 2px solid;border-right: 2px solid;" | 0.95864
1470
|- style="border-bottom: 2px solid;"
1471
| style="border-left: 2px solid;border-right: 2px solid;" | 3136 
1472
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00129 
1473
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00337 
1474
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98879 
1475
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99828 
1476
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00017 
1477
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98848
1478
1479
|}
1480
1481
1482
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
1483
|+ style="font-size: 75%;" |<span id='table-3'></span>Table. 3 Cylindrical roof under dead weigth. Normalized displacements for  non-structured mesh
1484
|- style="border-top: 2px solid;"
1485
| style="border-left: 2px solid;border-right: 2px solid;" |  
1486
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-A
1487
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Point-B
1488
|- style="border-top: 2px solid;"
1489
| style="border-left: 2px solid;border-right: 2px solid;" |  NDOFs 
1490
| style="border-left: 2px solid;border-right: 2px solid;" | CBST 
1491
| style="border-left: 2px solid;border-right: 2px solid;" | CBST1 
1492
| style="border-left: 2px solid;border-right: 2px solid;" | BST 
1493
| style="border-left: 2px solid;border-right: 2px solid;" | CBST 
1494
| style="border-left: 2px solid;border-right: 2px solid;" | CBST1 
1495
| style="border-left: 2px solid;border-right: 2px solid;" | BST
1496
|-
1497
| style="border-left: 2px solid;border-right: 2px solid;" | 851 
1498
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97546 
1499
| style="border-left: 2px solid;border-right: 2px solid;" | 0.8581 
1500
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97598 
1501
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97662 
1502
| style="border-left: 2px solid;border-right: 2px solid;" | 1.0027 
1503
| style="border-left: 2px solid;border-right: 2px solid;" | 0.97194
1504
|-
1505
| style="border-left: 2px solid;border-right: 2px solid;" | 3311 
1506
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98729 
1507
| style="border-left: 2px solid;border-right: 2px solid;" | 0.9682 
1508
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98968 
1509
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98476 
1510
| style="border-left: 2px solid;border-right: 2px solid;" | 1.0083 
1511
| style="border-left: 2px solid;border-right: 2px solid;" | 0.98598
1512
|- style="border-bottom: 2px solid;"
1513
| style="border-left: 2px solid;border-right: 2px solid;" | 13536 
1514
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99582 
1515
| style="border-left: 2px solid;border-right: 2px solid;" | 0.9992 
1516
| style="border-left: 2px solid;border-right: 2px solid;" | 1.00057 
1517
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99316 
1518
| style="border-left: 2px solid;border-right: 2px solid;" | 0.9973 
1519
| style="border-left: 2px solid;border-right: 2px solid;" | 0.99596
1520
1521
|}
1522
1523
Figure [[#img-6|6]].b shows the normalized displacement of point-B  over the structured meshes as a function of the number of degrees of freedom. An  excelent convergence the CBST element can be seen. The version with only one  integration point (CBST1) presents a behavior a little more flexible and  converges from above. Table [[#table-3|3]] shows that for non-structured meshes  the element converges to the correct value but more slowly.
1524
1525
===7.5 Open semi-espherical dome with point loads===
1526
1527
The main problem of finite elements with initially curved geometry is the so  called membrane locking. The CBST element  proposed  has a quadratic interpolation of the geometry, then it may  suffer from this problem. To assess this we resort to an example of  inextensional bending. This is an hemispherical shell of radius <math display="inline">r=10</math> and  thickness <math display="inline">h=0.04</math> with an 18<math display="inline">^{o}</math> hole in the pole and free at all  boundaries,  subjected to two inward and two outward forces 90<math display="inline">^{o}</math> apart.  Material properties are <math display="inline">E=6.825\times{10}^{7}</math> and <math display="inline">\nu=0.3</math>. Figure  [[#img-7|7]].a shows the discretized geometry (only one quarter of the geometry  is considered due to symmetry).
1528
1529
<div id='img-7'></div>
1530
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1531
|-
1532
|[[Image:Draft_Samper_340530075-test-fig7.png|600px|Pinched hemispherical shell with a hole, (a)geometry, (b)normalized  displacement]]
1533
|- style="text-align: center; font-size: 75%;"
1534
| colspan="1" | '''Figure 7:''' Pinched hemispherical shell with a hole, (a)geometry, (b)normalized  displacement
1535
|}
1536
1537
In Figure [[#img-7|7]].b the displacements of the points under the loads  have been plotted versus the number of nodes used in the discretization. Due  to the orientation of the meshes chosen, the displacement of the point under the  inward load is not the same as the displacement under the outward load, so in  the figure an average (the absolute values) has been used. Results  obtained with other elements have been included for comparison: two membrane  locking free elements namely the original linear BST and a transverse  shear-deformable quadrilateral (QUAD); a transverse shear deformable quadratic  triangle (TRIA)<sup><span id='citeF-15'></span>[[#cite-1|[1]]]</sup> that is vulnerable to locking and an  assumed strain version of this triangle (TRIA-1)<sup><span id='citeF-1'></span>[[#cite-1|[1]]]</sup> that  alleviates membrane locking but does not eliminate it.
1538
1539
From the plotted results it can be seen that the  CBST element presents  membrane locking in bending dominated problems with initially curved  geometries. This locking is much less severe than in a standard quadratic  triangle and even than for the assumed strain version used for comparison. When only  one integration point is used (CBST1 element) membrane locking disappears.
1540
1541
==8 Non linear numerical examples==
1542
1543
Results for examples with  geometric and material non-linearities are presented next using the CBST1 element. Due to the features of  the modelized problems, with strong nonlinearities associated to instabilities  and frictional contact conditions, a code with explicit integration of the dynamic  equilibrium equations has been used<sup><span id='citeF-14'></span>[[#cite-14|[14]]]</sup>. This code allows to  obtain pseudo-static solutions throught dynamic relaxation.
1544
1545
===8.1 Inflation of a sphere===
1546
1547
The example is the inflation of a spherical shell under internal pressure. An  incompressible Mooney-Rivlin constitutive material have been considered.  The Ogden parameters are <math display="inline">N=2</math>, <math display="inline">\alpha _{1}=2</math>, <math display="inline">\mu _{1}=40</math>, <math display="inline">\alpha  _{2}=-2</math>, <math display="inline">\mu _{2}=-20</math>. Due to the simple geometry an analytical solution  exists<sup><span id='citeF-15'></span>[[#cite-15|[15]]]</sup> (with <math display="inline">\gamma =R/R^{\left( 0\right) }</math>):
1548
1549
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1550
|-
1551
| 
1552
{| style="text-align: left; margin:auto;width: 100%;" 
1553
|-
1554
| style="text-align: center;" | <math>  p=\frac{h^{\left( 0\right) }}{R^{\left( 0\right) }\gamma ^{2}}\frac{dW}{d\gamma }=\frac{8h^{\left( 0\right) }}{R^{\left( 0\right) }\gamma ^{2} }\left( \gamma ^{6}-1\right) \left( \mu _{1}-\mu _{2}\gamma ^{2}\right) </math>
1555
|}
1556
|}
1557
1558
In this numerical simulation the same geometric and material parameters used  in Ref. <span id='citeF-16'></span>[[#cite-16|[16]]] have been adopted: <math display="inline">R^{\left( 0\right) }=1</math> and <math display="inline">h^{\left( 0\right) }=0.02</math>. The three meshes considered to evaluate  convergence are shown in Figure [[#img-8|8]].a. The value of the actual radius   as a function of the internal pressure is plotted in Figure  [[#img-8|8]].b for the different meshes and is also compared with the  analytical solution. It can be seen that with a few degrees of freedom it is  possible to obtain an excellent agreement for the range of strains considered.  The final value corresponds to a thickness radius ratio of <math display="inline">h/R=0.00024</math>.
1559
1560
<div id='img-8'></div>
1561
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1562
|-
1563
|[[Image:Draft_Samper_340530075-test-fig8a.png|600px|]]
1564
|[[Image:Draft_Samper_340530075-test-fig8b.png|300px|Inflation  of sphere of Mooney-Rivlin material. (a) Meshes used in the analysis (b) Change of radius as a function of the internal pressure.]]
1565
|- style="text-align: center; font-size: 75%;"
1566
| colspan="2" | '''Figure 8:''' Inflation  of sphere of Mooney-Rivlin material. (a) Meshes used in the analysis (b) Change of radius as a function of the internal pressure.
1567
|}
1568
1569
===8.2 Inflation of an air-bag===
1570
1571
This example has also been taken from Ref.<span id='citeF-16'></span>[[#cite-16|[16]]] where it is shown  that the final configuration is mesh dependent due to the strong instabilities  leading to a non-uniqueness of the solution. In <span id='citeF-16'></span>[[#cite-16|[16]]] it is also  discussed the important regularizing properties of the bending energy, that when  disregarded leads to massive wrinkling in the compressed zones.
1572
1573
The air bag geometry is initially square with an undeformed diagonal of <math display="inline">1.20</math>. The constitutive material is a linear isotropic elastic one with  modulus of elasticity <math display="inline">E=5.88\times{10}^{8}</math> and Poisson's ratio <math display="inline">\nu=0.4</math>. Only  one quarter of the geometry has been modelled due to symmetry. Only the normal  to the original plane is constrained along the boundaries. The thickness  considered is <math display="inline">h=0.001</math> and the inflation pressure is <math display="inline">5000</math>. Using a density <math display="inline">\delta=1000</math>, pressure is linearly incremented from 0 to the final value in <math display="inline">t=0.1</math>.
1574
1575
With comparative purposes and also to backup the comments in Ref. <span id='citeF-16'></span>[[#cite-16|[16]]]  two analyses have been performed, a purely membranal one and one including bending  effects. Figure [[#img-9|9]] shows the final deformed configurations for three  meshes with 289, 1089 and 4225 nodes. The top row corresponds to a full  analysis including bending and the central row is a pure  membrane  analysis.  The bottom row is also an analysis including bending where the mesh  orientation has been changed.
1576
1577
<div id='img-9'></div>
1578
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1579
|-
1580
|[[Image:Draft_Samper_340530075-test-fig9.png|500px|Inflation of a square  air-bag . Deformed configurations for three different meshes with 800, 3136  and 12416 degrees of freedom.]]
1581
|- style="text-align: center; font-size: 75%;"
1582
| colspan="1" | '''Figure 9:''' Inflation of a square  air-bag . Deformed configurations for three different meshes with 800, 3136  and 12416 degrees of freedom.
1583
|}
1584
1585
The top and bottom lines  show the final shapes change according  to the degree of discretization and mesh orientation due to instabilities and  non uniqueness of the solution. The central row shows the noteworthy increment  of wrinkles as the mesh is refined. Finally in Figure [[#img-10|10]] presents  the convergence of the maximum displacement of the central point as the mesh  is refined.
1586
1587
<div id='img-10'></div>
1588
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1589
|-
1590
|[[Image:Draft_Samper_340530075-test-fig10.png|500px|Inflation of a square  air-bag. Convergence of the maximum displacement versus the number of degrees  of freedom in the model.]]
1591
|- style="text-align: center; font-size: 75%;"
1592
| colspan="1" | '''Figure 10:''' Inflation of a square  air-bag. Convergence of the maximum displacement versus the number of degrees  of freedom in the model.
1593
|}
1594
1595
===8.3 Deep drawing of a rolled sheet===
1596
1597
The element performance in problems involving large strains and  anisotropic plastic behaviour is assesed in a benchmark proposed in a recent  NUMISHEET<sup><span id='citeF-175'></span>[[#cite-17|[17]]]</sup>> meeting. This is the deep  drawing of a circular mild steel sheet with a spherical punch of radius <math display="inline">50 mm</math> (<math display="inline">R_{p}</math>). The original radius of the sheet (<math display="inline">R_{s}</math>) is <math display="inline">100 mm</math>  (<math display="inline">\frac{R_{L}}{R_{P}}=\beta=2</math>). The drawing depth is (<math display="inline">DD</math>) is 85 mm  (<math display="inline">\frac{DD}{R_{P}}=1.7</math>) and the force over the blank holder is <math display="inline">80 kN</math>. The  constitutive material of the rolled sheet is characterized by three tensile  tests along three different directions respect to rolling direction (<math display="inline">RD</math>) (Table  [[#table-4|4]]). Note that the modellization requires to treat  the material as transversally anisotropic, as this improves the deep  drawability and if not considered leads to an early localized necking of the  material. The yield function originally proposed by Hill<sup><span id='citeF-11'></span>[[#cite-11|[11]]]</sup> has been chosen for both associative and non-associative  potential functions. For elastic-plastic problems a numerical integration along  the thickness direction is necessary. This is accomplished here using four integration points.
1598
1599
1600
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
1601
|+ style="font-size: 75%;" |<span id='table-4'></span>Table. 4 Plastic characterization of the constitutive material
1602
|- style="border-top: 2px solid;"
1603
| style="border-left: 2px solid;border-right: 2px solid;" |  Thickness 
1604
| style="border-left: 2px solid;border-right: 2px solid;" | Orientation 
1605
| style="border-left: 2px solid;border-right: 2px solid;" | Yield 
1606
| style="border-left: 2px solid;border-right: 2px solid;" | Tensile 
1607
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\varepsilon _{u}</math>
1608
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\varepsilon  _{t}</math>
1609
| style="border-left: 2px solid;border-right: 2px solid;" | n 
1610
| style="border-left: 2px solid;border-right: 2px solid;" | r
1611
|-
1612
| style="border-left: 2px solid;border-right: 2px solid;" | 
1613
| style="border-left: 2px solid;border-right: 2px solid;" | respect to RD 
1614
| style="border-left: 2px solid;border-right: 2px solid;" | stres 
1615
| style="border-left: 2px solid;border-right: 2px solid;" | strength 
1616
| style="border-left: 2px solid;border-right: 2px solid;" | (uniform) 
1617
| style="border-left: 2px solid;border-right: 2px solid;" | (total) 
1618
| style="border-left: 2px solid;border-right: 2px solid;" | 
1619
| style="border-left: 2px solid;border-right: 2px solid;" | 
1620
|- style="border-top: 2px solid;"
1621
| style="border-left: 2px solid;border-right: 2px solid;" |  [mm] 
1622
| style="border-left: 2px solid;border-right: 2px solid;" | [<math display="inline">^{o}</math>] 
1623
| style="border-left: 2px solid;border-right: 2px solid;" | [N/mm<math display="inline">^{2}</math>] 
1624
| style="border-left: 2px solid;border-right: 2px solid;" | [N/mm<math display="inline">^{2}</math>] 
1625
| style="border-left: 2px solid;border-right: 2px solid;" | [%] 
1626
| style="border-left: 2px solid;border-right: 2px solid;" | [%] 
1627
| style="border-left: 2px solid;border-right: 2px solid;" | - 
1628
| style="border-left: 2px solid;border-right: 2px solid;" | -
1629
|- style="border-top: 2px solid;"
1630
| style="border-left: 2px solid;border-right: 2px solid;" |  
1631
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
1632
| style="border-left: 2px solid;border-right: 2px solid;" | 176 
1633
| style="border-left: 2px solid;border-right: 2px solid;" | 322 
1634
| style="border-left: 2px solid;border-right: 2px solid;" | 24 
1635
| style="border-left: 2px solid;border-right: 2px solid;" | 40 
1636
| style="border-left: 2px solid;border-right: 2px solid;" | 0.214 
1637
| style="border-left: 2px solid;border-right: 2px solid;" | 1.73
1638
|- style="border-top: 2px solid;"
1639
| style="border-left: 2px solid;border-right: 2px solid;" |  0.98 
1640
| style="border-left: 2px solid;border-right: 2px solid;" | 45 
1641
| style="border-left: 2px solid;border-right: 2px solid;" | 185 
1642
| style="border-left: 2px solid;border-right: 2px solid;" | 333 
1643
| style="border-left: 2px solid;border-right: 2px solid;" | 22 
1644
| style="border-left: 2px solid;border-right: 2px solid;" | 39 
1645
| style="border-left: 2px solid;border-right: 2px solid;" | 0.203 
1646
| style="border-left: 2px solid;border-right: 2px solid;" | 1.23
1647
|- style="border-top: 2px solid;border-bottom: 2px solid;"
1648
| style="border-left: 2px solid;border-right: 2px solid;" |  
1649
| style="border-left: 2px solid;border-right: 2px solid;" | 90 
1650
| style="border-left: 2px solid;border-right: 2px solid;" | 180 
1651
| style="border-left: 2px solid;border-right: 2px solid;" | 319 
1652
| style="border-left: 2px solid;border-right: 2px solid;" | 23 
1653
| style="border-left: 2px solid;border-right: 2px solid;" | 44 
1654
| style="border-left: 2px solid;border-right: 2px solid;" | 0.206 
1655
| style="border-left: 2px solid;border-right: 2px solid;" | 2.02
1656
1657
|}
1658
1659
Only one quarter of the geometry has been considered due to symmetry. Tools  are modelized as rigid surfaces, the punch has been defined by 1439  points and 2730 triangles. For the die 744 points and 490 quadrilaterals have  been used. Finally the blank holder has been discretized with 155 points and  120 quadrilaterals. Figure [[#img-11|11]].a shows a perspective of the tools and  Figure [[#img-11|11]].a the final deformed sheet. The sheet has been modelled  with 6370 3-node triangles and 3284 nodes (9274 DOFs).
1660
1661
<div id='img-11'></div>
1662
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1663
|-
1664
|[[Image:Draft_Samper_340530075-test-fig11.png|300px|Deep drawing of a  circular sheet. (a)geometry of the tools, (b)final deformed shape of the  sheet.]]
1665
|- style="text-align: center; font-size: 75%;"
1666
| colspan="1" | '''Figure 11:''' Deep drawing of a  circular sheet. (a)geometry of the tools, (b)final deformed shape of the  sheet.
1667
|}
1668
1669
The reported results are associated to three different meridiands: '''A'''  at 90<math display="inline">^{0}</math> of the rolling direction, '''B''': at 45<math display="inline">^{0}</math> of the rolling  direction and '''C''': in the rolling direction. The numerical results are  compared with a set of experimental values reported by Thyssen Krupp Stahl AG  (who proposed the benchmark and supplied the sheet samples)<span id='citeF-17'></span>[[#cite-17|[17]]]. It must be noted  that there was a great dispersion in the experimental data send to NUMISHEET,  so it is difficult to extract conclusions from a unique comparison. In any case the  experimental data supplied  seems to be consistent enought to have an  idea if the numerical model gives reasonable results.
1670
1671
The first element of comparison associated to the planar anisotropy, are the  different displacements (draw in) of the points in the boundary of the sheet. Table [[#table-5|5]] shows the values obtained for the three reference meridians chosen.
1672
1673
1674
{|  class="floating_tableSCP wikitable" style="text-align: right; margin: 1em auto;min-width:50%;"
1675
|+ style="font-size: 75%;" |<span id='table-5'></span>Table. 5 Flange draw in at three reference meridians
1676
|- style="border-top: 2px solid;"
1677
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  &nbsp; 
1678
| colspan='3' style="text-align: center;border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" |  Draw in [mm]
1679
|- style="border-top: 2px solid;"
1680
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  Model 
1681
| style="border-left: 2px solid;border-right: 2px solid;" | Section A 
1682
| style="border-left: 2px solid;border-right: 2px solid;" | Section B 
1683
| style="border-left: 2px solid;border-right: 2px solid;" | Section C
1684
|- style="border-top: 2px solid;"
1685
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  CBST1-Non Associative 
1686
| style="border-left: 2px solid;border-right: 2px solid;" | 29.06 
1687
| style="border-left: 2px solid;border-right: 2px solid;" | 31.91 
1688
| style="border-left: 2px solid;border-right: 2px solid;" | 30.77
1689
|- style="border-top: 2px solid;"
1690
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  CBST1-Associative 
1691
| style="border-left: 2px solid;border-right: 2px solid;" | 27.08 
1692
| style="border-left: 2px solid;border-right: 2px solid;" | 31.36 
1693
| style="border-left: 2px solid;border-right: 2px solid;" | 28.95
1694
|- style="border-top: 2px solid;border-bottom: 2px solid;"
1695
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  Experimental 
1696
| style="border-left: 2px solid;border-right: 2px solid;" | 30.75 
1697
| style="border-left: 2px solid;border-right: 2px solid;" | 32.30 
1698
| style="border-left: 2px solid;border-right: 2px solid;" | 30.00
1699
1700
|}
1701
1702
The values for the non-associative model are much like the experimental ones,  those obtained with the associative model are a little lower. The largest  draw-in is at the meridian at 45<math display="inline">^{o}</math> of rolling direction ( B). In the numerial simulation the draw-in at meridian  C is larger than in meridian  A, while in the experimental results   the latter are larger than the former. It should be reminded that other  numerical results presented at NUMISHEET and most of the numerical simulations  showed the same tendency of present values.
1703
1704
The experimental data supplied are the three logarithmic principal strains  associated to the three meridians defined above. Here one strain at each  meridian has been choosen for comparison. Figure [[#img-12|12]].a shows  the meridian strain (<math display="inline">E_{1}</math>) along meridian A (direction transversal to rolling); Figure [[#img-12|12]].b shows the  circunferencial strain (<math display="inline">E_{2}</math>) along meridian  B and in Figure [[#img-12|12]].c the thickness strain (<math display="inline">E_{3}</math>)  along meridian C (rolling direction) has  been plotted.
1705
1706
The experimental data show a saw-tooth profile (specially for the thickness strain)  that is difficult to accept. These values are therefore not reliable point-wise but  as a whole. Based on this fact and on the above mentioned differences between  experimental values, it can be said that the present simulations agree quite  well with the experimental values, specially when the non-associative  plasticity model was used.
1707
1708
In the central part of the sheet the experimental data gives strains lower  than the numerical simulation. It can be said that experimentally the sheet  has better drawability. In the external zone there are less differences for in  plane strains but for thickness strains they are larger. Experimentally  thickness strains are more or less uniform between <math display="inline">-0.1</math> and <math display="inline">-0.2</math> what  differs from present numerical simulations and also from other numerical  simulations and experimental data presented at NUMISHEET <span id='citeF-17'></span>[[#cite-17|[17]]].
1709
1710
Finally Figure [[#img-12|12]] shows resistance to punch as a funtion of punch  travel. In the final part simulation forces are smaller than experimental  values. This may be due to an incorrect definition of friction with the tools.
1711
1712
<div id='img-12'></div>
1713
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1714
|-
1715
|[[Image:Draft_Samper_340530075-test-fig12.png|500px|Results from NUMISHEET  benchmark. (a) Meridional strain E₁ along transversal direction to  rolling (meridian A); (b) hoop strain E₂ along direction at 45⁰ of rolling (meridian  B); (c) Thickness strain E₃ along rolling direction  (meridian C); (d) Punch force versus Punch  travel; ]]
1716
|- style="text-align: center; font-size: 75%;"
1717
| colspan="1" | '''Figure 12:''' Results from NUMISHEET  benchmark. (a) Meridional strain <math>E_{1}</math> along transversal direction to  rolling (meridian A); (b) hoop strain <math>E_{2}</math> along direction at 45<math>^{0}</math> of rolling (meridian  B); (c) Thickness strain <math>E_{3}</math> along rolling direction  (meridian C); (d) Punch force versus Punch  travel; 
1718
|}
1719
1720
From the present results it is difficult to draw definite conclusions about what  should be improved in the numerical model due to all the factors involved,  including the constitutive model, the thin shell theory, the contact  treatment, the reliability of the experimental data of both the material  characterization and the deep drawing, etc..
1721
1722
==9 Conclusions==
1723
1724
A membrane and bending non-conforming rotation-free shell finite element has been presented.  The element pass the membrane patch test and the numerical  experiments performed do not show problems. From the bending point of view the  element is a little stiffer than the original BST element, but presents a smoother  continuity of displacement gradients. Convergence rate in membrane dominated  problems is similar to the linear strain triangle. Using three integration  points the elements is vulnerable to membrane locking for initially curved  surfaces. This locking effect dissapears when only one integration point is used, which the  usual case for elastic-plastic problems and for any large scale simulation.
1725
1726
==Acknowledgments==
1727
1728
The first author is a member of the scientific staff of the Science Research  Council of Argentina (CONICET). The support provided by grants of CONICET and  Agencia Córdoba Ciencia S.E. is gratefully acknowledged.
1729
1730
===BIBLIOGRAPHY===
1731
1732
<div id="cite-1"></div>
1733
'''[[#citeF-1|[1]]]''' F.G. Flores, E. Oñate and F. Zárate “New assumed  strain triangles for non-linear shell analysis”, ''Computational  Mechanics'', '''17''', 107-114, 1995.
1734
1735
<div id="cite-2"></div>
1736
'''[2]''' J.H. Argyris, M. Papadrakakis, C. Aportolopoulun and S. Koutsourelakis. The TRIC element. Theoretical and numerical investigation. ''Comput. Meth. Appl. Mech. Engrg.'', '''182''', 217&#8211;245, 2000.
1737
1738
<div id="cite-3"></div>
1739
'''[[#citeF-3|[3]]]'''  O.C. Zienkiewicz and R.L. Taylor. ''The finite element method. Solid Mechanics''. Vol II, Butterworth-Heinemann, 2000.
1740
1741
<div id="cite-4"></div>
1742
'''[[#citeF-4|[4]]]''' E. Oñate and F. Zárate, “Rotation-free plate and  shell triangles”, ''Int. J. Num. Meth. Engng'', '''47''', pp.  557&#8211;603, 2000.
1743
1744
<div id="cite-5"></div>
1745
'''[[#citeF-5|[5]]]''' F. Cirak and M. Ortiz, Subdivision surfaces: A new paradigm  for thin-shell finite element analysis, ''Int. J. Num. Meths in Engng'',  vol. 47, 2000, págs. 2039-2072.
1746
1747
<div id="cite-6"></div>
1748
'''[[#citeF-6|[6]]]''' D.Y. Yang, D.W. Jung, L.S. Song, D.J. Yoo and J.H. Lee,  “Comparative investigation into implicit, explicit and iterative  implic/explicit schemes for simulation of sheet metal forming processes”  ''NUMISHEET'93'', A. Makinouchi, E. Nakamachi, E. Oñate and R.H.  Wagoner (Eds.), RIKEN, pp. 35&#8211;42, Tokyo, 1993.
1749
1750
<div id="cite-7"></div>
1751
'''[7]''' M. Brunet and F. Sabourin, “Prediction of necking and  wrinkles with a simplified shell element in sheet forming”, ''Int.  Conf. of Metal Forming Simulation in Industry'', Vol. II, pp. 27&#8211;48, B.  Kröplin (Ed.), 1994.
1752
1753
<div id="cite-8"></div>
1754
'''[8]''' G. Rio, B. Tathi and H. Laurent, “A new efficient finite  element model of shell with only three degrees of freedom per node.  Applications to industrial deep drawing test”, in ''Recent Developments  in Sheet Metal Forming Technoloy'', Ed. M.J.M. Barata Marques, 18th IDDRG  Biennial Congress, Lisbon, 1994.
1755
1756
<div id="cite-9"></div>
1757
'''[[#citeF-9|[9]]]''' Rojek J., Oñate E. and Postek E '''.''',  Application of explicit FE codes to simulation of sheet and  bulk metal forming processes ''Journal of the  Materials Processing Thecnology'', '''41''', págs. 620-627, 1998.
1758
1759
<div id="cite-10"></div>
1760
'''[[#citeF-10|[10]]]''' F.G. Flores F.G. and E. Oñate A basic thin shell  triangle with only translational DOFs for large strain plasticity,  ''Int. J. Num. Meths in Engng'', vol. '''51''', pp 57-83, 2001.
1761
1762
<div id="cite-11"></div>
1763
'''[[#citeF-11|[11]]]''' R. Hill, “A Theory of the Yielding and Plastic Flow of  Anisotropic Metals”, ''Proc. Royal Society London'', vol. '''A193''',  pp. 281, 1948.
1764
1765
<div id="cite-12"></div>
1766
'''[[#citeF-12|[12]]]''' R.W. Ogden “Large deformation isotropic elasticity: on the  correlation of theory and experiments for incompressible rubberlike solids”,  ''Proceedings of the Royal Society of London'', vol. '''A326''', pp.  565-584, 1972.
1767
1768
<div id="cite-13"></div>
1769
'''[[#citeF-13|[13]]]''' H.C. Huang, ''Static and Dynamic Analysis of Plates and  Shells'', page 40, Springer-Verlag, Berlin, 1989.
1770
1771
<div id="cite-14"></div>
1772
'''[[#citeF-14|[14]]]''' STAMPACK, ''A General Finite Element System for  Sheet Stamping and Forming Problems'', Quantech ATZ, Barcelona, Spain,  2003 (www.quantech.es).
1773
1774
<div id="cite-15"></div>
1775
'''[[#citeF-15|[15]]]''' A. Needleman, Inflation of spherical rubber ballons,  ''Int. J. of Solids and Structures'', 13, 409&#8211;421, 1977.
1776
1777
<div id="cite-16"></div>
1778
'''[[#citeF-16|[16]]]''' F. Cirak and M. Ortiz, Fully <math display="inline">C^{1}</math>-conforming subdivision  elements for finite deformations thin-shell analysis , ''Int. J. Num.  Meths in Engng'', vol. 51, 2001, 813-833.
1779
1780
<div id="cite-17"></div>
1781
'''[[#citeF-17|[17]]]''' NUMISHEET'99, ''Fourth International Conference and  Workshop on Numerical Simulation of 3D Sheet Forming Processes, NUMISHEET'99'',  J.C. Gelin and P. Picart (Eds.), BURS Edition, Besancon, France, 1999.
1782

Return to Flores et al 2018c.

Back to Top

Document information

Published on 01/01/2005

DOI: 10.1016/j.cma.2003.08.012
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 42
Views 126
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?