You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
Published in ''Computer Methods in Applied Mechanics and Engineering, vol. 194, 2406-2443, 2005''
2
3
4
5
== SUMMARY ==
6
7
A family of rotation-free three node triangular shell elements is presented. The simplest element of the family is based on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of four elements and a constant membrane field computed from the standard linear interpolation of the displacements within each triangle. An enhanced version of the element is obtained by using a quadratic interpolation of the geometry in terms of the six patch nodes. This allows to compute an assumed linear membrane strain field which improves the in-plane behaviour of the original element. A simple and economic version of the element using a single integration point is presented. The efficiency of the different rotation-free shell triangles is demonstrated in many examples of application including linear and non linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
8
9
==1 INTRODUCTION==
10
11
Triangular shell elements are very useful for the solution of large scale shell problems such as those occurring in many practical engineering situations. Typical examples are the analysis of shell roofs under static and dynamic loads, sheet stamping processes, vehicle dynamics and crash-worthiness situations. Many of these problems involve high geometrical and material non linearities and time changing frictional contact conditions. These difficulties are usually increased by the need of discretizing complex geometrical shapes. Here the use of shell triangles and non-structured meshes becomes a critical necessity. Despite recent advances in the field <span id='citeF-1'></span>[[#cite-1|[1]]]&#8211;<span id='citeF-6'></span>[[#cite-6|[6]]] there are not so many simple shell triangles which are capable of accurately modelling the deformation of a shell structure under arbitrary loading conditions.
12
13
A promising line to derive simple shell triangles is to use the nodal displacements as the only unknown for describing the shell kinematics. This idea goes back to the original attempts to solve thin plate bending problems using finite difference schemes with the deflection as the only nodal variable <span id='citeF-7'></span>[[#cite-7|[7]]]&#8211;<span id='citeF-9'></span>[[#cite-9|[9]]].
14
15
In past years some authors have derived a number of thin plate and shell triangular elements free of rotational degrees of freedom (d.o.f.) based on Kirchhoff's theory [10]&#8211;<span id='citeF-27'></span>[[#cite-27|[27]]]. In essence all methods attempt to express the curvatures field over an element in terms of the displacements of a collection of nodes belonging to a patch of adjacent elements. Oñate and Cervera [14] proposed a general procedure of this kind combining finite element and finite volume concepts for deriving thin plate triangles and quadrilaterals with the deflection as the only nodal variable and presented a simple and competitive rotation-free three d.o.f. triangular element termed BPT (for Basic Plate Triangle). These ideas were extended and formalized in <span id='citeF-29'></span>[[#cite-29|29]] to derive a number of rotation-free thin plate and shell triangles. The basic ingredients of the method are a mixed Hu-Washizu formulation, a standard discretization into three node triangles, a linear finite element interpolation of the displacement field within each triangle and a finite volume type approach for computing constant curvature and bending moment fields within appropriate non-overlapping control domains. The so called cell-centered and cell-vertex triangular domains yield different families of rotation-free plate and shell triangles. Both the BPT plate element and its extension to shell analysis (termed BST for Basic Shell Triangle) can be derived from the cell-centered formulation. Here the control domain is an individual triangle. The constant curvatures field within a triangle is computed in terms of the displacements of the six nodes belonging to the four elements patch formed by the chosen triangle and the three adjacent triangles. The cell-vertex approach yields a different family of rotation-free plate and shell triangles. Details of the derivation of both rotation-free triangular shell element families can be found in <span id='citeF-29'></span>[[#cite-29|[21]]].
16
17
An extension of the BST element to the non linear analysis of shells was implemented in an explicit dynamic code by Oñate ''et al.'' [26] using an updated lagrangian formulation and a hypo-elastic constitutive model. Excellent numerical results were obtained for non linear dynamics of shells involving frictional contact situations and sheet stamping problems [18,19,20,26].
18
19
A large strain formulation for the BST element using a total lagrangian description was presented by Flores and Oñate [24]. A recent extension of this formulation is based on a quadratic interpolation of the geometry of the patch formed by the BST element and the three adjacent triangles [27]. This yields a linear displacement gradient field over the element from which linear membrane strains and  constant curvatures  can be computed within the BST element.
20
21
In this paper the formulation of the BST element is revisited using an assumed strain approach. The content of the paper is the following. First some basic concepts of the formulation of the original BST element using an assumed constant curvature field are given. Next, the basic equations of the non linear thin shell theory chosen based on a total lagrangian description are presented. Then the non linear formulation of the BST element is presented. This is based on an assumed constant membrane field derived from the linear displacement interpolation and an assumed constant curvature field expressed in terms of the displacements of the nodes of the four element patch using a finite volume type approach. An enhanced version of the BST element is derived using an assumed linear field for the membrane strains and an assumed constant curvature field. Both assumed fields are obtained from the quadratic interpolation of the patch geometry following the ideas presented in [27]. Details of the derivation of the tangent stiffness matrix needed  for a quasi-static implicit solution are given for both the BST and EBST elements. An efficient version of the  EBST element using one single quadrature point for integration of the tangent matrix is  presented. An explicit  scheme adequate for dynamic analysis is  briefly described.
22
23
The efficiency and accuracy of the standard and enhanced versions of the BST element is validated in a number of examples of application including linear and non linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
24
25
==2 FORMULATION OF THE BASIC PLATE TRIANGULAR USING AN ASSUMED CONSTANT CURVATURE FIELD==
26
27
Let us consider a patch of four plate three node triangles (Figure [[#img-1|1]]). The nodes 1, 2, and 3 in the main central triangle (M) are marked with circles while the external nodes in the patch (nodes 4, 5 and 6) are marked with squares. Mid side points in the central triangle are also marked with smaller squares. Kirchhoff's thin plate theory will be assumed to hold. The deflection is linearly interpolated within each three node triangle in the standard finite element manner as
28
29
{| class="formulaSCP" style="width: 100%; text-align: left;" 
30
|-
31
| 
32
{| style="text-align: left; margin:auto;" 
33
|-
34
| style="text-align: center;" | <math>w=\sum _{i=1}^{3}L_{i}^{e}w_{i}^{e} </math>
35
|}
36
| style="width: 5px;text-align: right;" | (1)
37
|}
38
39
where <math display="inline">L_{i}^{e}</math> are the linear shape functions of the three node triangle, <math display="inline">w_{i}^{e}</math> are nodal deflections and superindex <math display="inline">e</math> denotes element values.
40
41
<div id='img-1'></div>
42
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
43
|-
44
|[[Image:draft_Samper_226033773-fig1.png|400px|Patch of three node triangular elements including the central triangle (M) and three adjacent triangles (1, 2 and 3)]]
45
|- style="text-align: center; font-size: 75%;"
46
| colspan="1" | '''Figure 1:''' Patch of three node triangular elements including the central triangle (M) and three adjacent triangles (1, 2 and 3)
47
|}
48
49
The curvature field within the central triangle can be expressed in terms of a constant assumed curvature field as
50
51
<span id="eq-2"></span>
52
{| class="formulaSCP" style="width: 100%; text-align: left;" 
53
|-
54
| 
55
{| style="text-align: left; margin:auto;" 
56
|-
57
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\left\{ \begin{array}{c} \kappa _{xx}\\ \kappa _{yy}\\ \kappa _{xy} \end{array} \right\} =\hat{\boldsymbol \kappa } </math>
58
|}
59
| style="width: 5px;text-align: right;" | (2)
60
|}
61
62
where <math display="inline">{\boldsymbol \kappa }</math> is the curvature vector and <math display="inline">\hat{\boldsymbol \kappa }</math> is the assumed constant curvature field defined as
63
64
<span id="eq-3"></span>
65
{| class="formulaSCP" style="width: 100%; text-align: left;" 
66
|-
67
| 
68
{| style="text-align: left; margin:auto;" 
69
|-
70
| style="text-align: center;" | <math>\hat{\boldsymbol \kappa }={\frac{1}{A_{M}}}\int \int _{A_{M}}\left[ -{\frac{\partial ^{2} w}{\partial x^{2}}}-,{\frac{\partial ^{2}w}{\partial y^{2}}},-2{\frac{\partial ^{2}w}{\partial x\partial y}}\right] ^{T}dA </math>
71
|}
72
| style="width: 5px;text-align: right;" | (3)
73
|}
74
75
where <math display="inline">A_{M}</math> is the area of the central triangle in Figure [[#img-1|1]].
76
77
Integrating by parts Eq.([[#eq-3|3]]) and substituting the resulting expression for <math display="inline">\hat{\boldsymbol \kappa }</math> into Eq.([[#eq-2|2]]) gives the constant curvature field within the element as
78
79
<span id="eq-4"></span>
80
{| class="formulaSCP" style="width: 100%; text-align: left;" 
81
|-
82
| 
83
{| style="text-align: left; margin:auto;" 
84
|-
85
| style="text-align: center;" | <math>{\boldsymbol \kappa }={\frac{1}{A_{M}}}   {\displaystyle \oint _{\Gamma _{M}}}  \left[ \begin{array}{cc} -n_{x} & 0\\ 0 & -n_{y}\\ -n_{y} & -n_{x} \end{array} \right] \left\{ \begin{array}{c} \dfrac{\partial w}{\partial x}\\ \dfrac{\partial w}{\partial y} \end{array} \right\} d\Gamma </math>
86
|}
87
| style="width: 5px;text-align: right;" | (4)
88
|}
89
90
where <math display="inline">\Gamma _{M}</math> is the boundary of the central triangle.
91
92
Eq.([[#eq-4|4]]) defines the assumed constant curvature field within the central triangle in terms of the deflection gradient along the sides of the triangle. Equation (4) can be found to be equivalent to the standard conservation laws used in finite volume procedures as described in [28,29].
93
94
The computation of the line integral in Eq.([[#eq-4|4]]) poses a difficulty as the deflection gradient is discontinuous along the element sides. A simple method to overcome this problem is to compute the deflection gradient at the element sides as the average values of the gradient contributed by the two triangles sharing the side <span id='citeF-29'></span>[[#cite-29|[21,29]]]. Following this idea the constant curvature field with the element is computed as
95
96
<span id="eq-5"></span>
97
{| class="formulaSCP" style="width: 100%; text-align: left;" 
98
|-
99
| 
100
{| style="text-align: left; margin:auto;" 
101
|-
102
| style="text-align: center;" | <math>{\boldsymbol \kappa }={\frac{1}{A_{M}}}\sum _{j=1}^{3}{\frac{l_{j}^{M}}{2}}\left[ \begin{array}{cc} -n_{x}^{j} & 0\\ 0 & -n_{y}^{j}\\ -n_{y}^{j} & -n_{x}^{j} \end{array} \right] ^{M}\left[ {\nabla }L_{i}^{M}w_{i}^{M}+{\nabla }L_{i}^{j}w_{i} ^{j}\right] =\mathbf{B}_{b}\mathbf{w}^{p} </math>
103
|}
104
| style="width: 5px;text-align: right;" | (5)
105
|}
106
107
where <math display="inline">\mathbf{w}^{p}=[w_{1},w_{2},w_{3},w_{4},w_{5},w_{6}]^{T}</math> is the deflection vector of the six  nodes in the patch. In Eq.([[#eq-5|5]]) the sum extends over the three sides of the central element <math display="inline">M</math>, <math display="inline">l_{j}^{M}</math> are the lengths of the element sides and superindexes <math display="inline">M</math> and <math display="inline">j</math> refer to the central triangle and to each of the adjacent elements, respectively. The standard sum convention for repeated indexes is used.
108
109
Note that the constant curvature field is expressed in terms of the six nodes of the four element patch linked to the element <math display="inline">M</math>. The expression of the <math display="inline">3\times{6}</math> <math display="inline">\mathbf{B}_{b}</math> matrix can be found in [14,21].
110
111
The virtual work expression is written as
112
113
<span id="eq-6"></span>
114
{| class="formulaSCP" style="width: 100%; text-align: left;" 
115
|-
116
| 
117
{| style="text-align: left; margin:auto;" 
118
|-
119
| style="text-align: center;" | <math>\int \int _{A}\delta{\boldsymbol \kappa }^{T}\mathbf{m}\,dA=\int \int _{A}\delta w\,q\,dA </math>
120
|}
121
| style="width: 5px;text-align: right;" | (6)
122
|}
123
124
where '''m''' is the bending moment field related to the curvature by the standard constitutive equations
125
126
{| class="formulaSCP" style="width: 100%; text-align: left;" 
127
|-
128
| 
129
{| style="text-align: left; margin:auto;" 
130
|-
131
| style="text-align: center;" | <math>\mathbf{m}=[M_{xx},M_{yy},M_{xy}]^T = \mathbf{D}_{b}{\boldsymbol \kappa }\quad ,\quad \mathbf{D}_{b}={\frac{Eh^{3} }{(1-\nu ^{2})}}\left[ \begin{array}{ccc} 1 & \nu & 0\\ \nu & 1 & 0\\ 0 & 0 & \frac{1-\nu }{2} \end{array} \right] </math>
132
|}
133
| style="width: 5px;text-align: right;" | (7)
134
|}
135
136
In Eqs.(6) and (7) <math display="inline">h</math> is the plate thickness, <math display="inline">E</math> is the Young's modulus, <math display="inline">\nu </math> is the Poisson's ratio, <math display="inline">\delta{\boldsymbol \kappa }</math> and <math display="inline">\delta w</math> are the virtual curvatures and the virtual deflection, respectively, and <math display="inline">q</math> is a distributed vertical load.
137
138
Substituting the approximation for the vertical deflection and the assumed constant curvature field into ([[#eq-6|6]]) leads to the standard linear system of equations
139
140
{| class="formulaSCP" style="width: 100%; text-align: left;" 
141
|-
142
| 
143
{| style="text-align: left; margin:auto;" 
144
|-
145
| style="text-align: center;" | <math>\mathbf{K}\mathbf{w}=\mathbf{f}</math>
146
|}
147
| style="width: 5px;text-align: right;" | (8)
148
|}
149
150
where the stiffness matrix <math display="inline">\mathbf{K}</math> and the equivalent nodal force <math display="inline">\mathbf{f}</math> can be found by assembly of the element contributions given by
151
152
{| class="formulaSCP" style="width: 100%; text-align: left;" 
153
|-
154
| 
155
{| style="text-align: left; margin:auto;" 
156
|-
157
| style="text-align: center;" | <math>\mathbf{K}^{e}=\int \int _{A^{e}}\mathbf{B}_{b}^{T}\mathbf{D}_{b}\mathbf{B}_{b}dA </math>
158
|}
159
| style="width: 5px;text-align: right;" | (9)
160
|}
161
162
{| class="formulaSCP" style="width: 100%; text-align: left;" 
163
|-
164
| 
165
{| style="text-align: left; margin:auto;" 
166
|-
167
| style="text-align: center;" | <math>\mathbf{f}^{e}=\int \int _{A^{e}}q\left\{ \begin{array}{c} L_{1}^e\\ L_{2}^e\\ L_{3}^e \end{array} \right\} dA </math>
168
|}
169
| style="width: 5px;text-align: right;" | (10)
170
|}
171
172
Note that <math display="inline">\mathbf{K}^{e}</math> is  a <math display="inline">6\times{6}</math> matrix, whereas <math display="inline">\mathbf{f}^{e}</math> has the same structure than for the standard linear triangle.
173
174
The explicit form of <math display="inline">\mathbf{K}^{e}</math> and <math display="inline">\mathbf{f}^{e}</math> can be found in [14].
175
176
The resulting Basic Plate Triangle (BPT) has one degree of freedom per node and a wider bandwidth than the standard three node triangles as each triangular element is linked to its three neighbours through Eq.([[#eq-5|5]]).
177
178
Examples of the good performance of the BPT element for analysis of thin plates can be found in [14,21]. The extension of the BPT element to the analysis of shells yields the Basic Shell Triangle (BST) <span id='citeF-29'></span>[[#cite-29|29]]. Different applications of the BST element to linear and non linear analysis of shells are reported in 14,18&#8211;21,24,26,27].
179
180
The ideas used to derive the BPT element will now be extended to derive two families of Basic Shell Triangles using a total lagrangian description.
181
182
==3 BASIC THIN SHELL EQUATIONS USING A TOTAL LAGRANGIAN FORMULATION==
183
184
===3.1 Shell kinematics===
185
186
A summary of the most relevant hypothesis related to the kinematic behaviour of a thin shell are presented. Further details may be found in the wide literature dedicated to this field [8,9].
187
188
Consider a shell with undeformed middle surface occupying the domain <math display="inline">\Omega ^{0}</math> in <math display="inline">R^{3}</math> with a boundary <math display="inline">\Gamma ^{0}</math>. At each point of the middle surface a thickness <math display="inline">h^{0}</math> is defined. The positions <math display="inline">\mathbf{x}^{0}</math> and <math display="inline">\mathbf{x}</math> of a point in the undeformed and the deformed configurations can be respectively written as a function of the coordinates of the middle surface <math display="inline">{\boldsymbol \varphi }</math> and the normal <math display="inline">\mathbf{t}_{3}</math> at the point as
189
190
{| class="formulaSCP" style="width: 100%; text-align: left;" 
191
|-
192
| 
193
{| style="text-align: left; margin:auto;" 
194
|-
195
| style="text-align: right;" | <math>\mathbf{x}^{0}\left( \xi _{1},\xi _{2},\zeta \right)  </math>
196
| <math>  ={\boldsymbol \varphi }^{0}\left( \xi _{1},\xi _{2}\right) +\lambda \mathbf{t}_{3}^{0}</math>
197
| style="width: 5px;text-align: right;" | (11)
198
|-
199
| style="text-align: right;" | <math> \mathbf{x}\left( \xi _{1},\xi _{2},\zeta \right)  </math>
200
| <math>  ={\boldsymbol \varphi }\left( \xi  _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3} </math>
201
| style="width: 5px;text-align: right;" | (12)
202
|}
203
|}
204
205
where <math display="inline">\xi _{1},\xi _{2}</math> are curvilinear local coordinates defined over the middle surface of the shell, and <math display="inline">\zeta </math> is the distance in the undeformed configuration of the point to the middle surface. The product <math display="inline">\zeta \lambda </math> is the distance of the point to the middle surface measured on the deformed configuration. This implies a constant strain in the normal direction associated to the parameter <math display="inline">\lambda </math> relating the thickness at the present and initial configurations, i.e.
206
207
{| class="formulaSCP" style="width: 100%; text-align: left;" 
208
|-
209
| 
210
{| style="text-align: left; margin:auto;" 
211
|-
212
| style="text-align: center;" | <math>\lambda =\frac{h}{h^{0}} </math>
213
|}
214
| style="width: 5px;text-align: right;" | (13)
215
|}
216
217
A convective coordinate system is defined at each point as
218
219
{| class="formulaSCP" style="width: 100%; text-align: left;" 
220
|-
221
| 
222
{| style="text-align: left; margin:auto;" 
223
|-
224
| style="text-align: center;" | <math>\mathbf{g}_{i}\left( \mathbf{\xi }\right) =\frac{\partial \mathbf{x}}{} {\partial \xi _{i}}\qquad i=1,2,3 </math>
225
|}
226
| style="width: 5px;text-align: right;" | (14)
227
|}
228
229
{| class="formulaSCP" style="width: 100%; text-align: left;" 
230
|-
231
| 
232
{| style="text-align: left; margin:auto;" 
233
|-
234
| style="text-align: left;" | <math>\mathbf{g}_{\alpha }\left( \mathbf{\xi }\right)   =\frac{\partial \left( \mathbf{\boldsymbol \varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \xi _{\alpha }}={\boldsymbol \varphi }_{^{\prime }\alpha }+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }\alpha }\quad \alpha=1,2</math>
235
| style="width: 5px;text-align: right;" | (15)
236
|-
237
| style="text-align: left;" | <math> \mathbf{g}_{3}\left( \mathbf{\xi }\right)   =\frac{\partial \left( \mathbf{\boldsymbol \varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \zeta }=\lambda \mathbf{t}_{3} </math>
238
| style="width: 5px;text-align: right;" | (16)
239
|}
240
|}
241
242
This can be particularized for the points on the middle surface as
243
244
{| class="formulaSCP" style="width: 100%; text-align: left;" 
245
|-
246
| 
247
{| style="text-align: left; margin:auto;" 
248
|-
249
| style="text-align: left;" | <math>\mathbf{a}_{\alpha } =\mathbf{g}_{\alpha }\left( \zeta=0\right) ={\boldsymbol \varphi  }_{^{\prime }\alpha }</math>
250
| style="width: 5px;text-align: right;" | (17)
251
|-
252
| style="text-align: left;" | <math> \mathbf{a}_{3}   =\mathbf{g}_{3}\left( \zeta=0\right) =\lambda  \mathbf{t}_{3} </math>
253
| style="width: 5px;text-align: right;" | (18)
254
|}
255
|}
256
257
The covariant (first fundamental form) and contravariant metric tensors of the middle surface are
258
259
{| class="formulaSCP" style="width: 100%; text-align: left;" 
260
|-
261
| 
262
{| style="text-align: left; margin:auto;" 
263
|-
264
| style="text-align: center;" | <math>a_{\alpha \beta }=\mathbf{a}_{\alpha }\cdot \mathbf{a}_{\beta } </math>
265
|}
266
| style="width: 5px;text-align: right;" | (19)
267
|}
268
269
{| class="formulaSCP" style="width: 100%; text-align: left;" 
270
|-
271
| 
272
{| style="text-align: left; margin:auto;" 
273
|-
274
| style="text-align: center;" | <math>a^{\alpha \beta }=\mathbf{a}^{\alpha }\cdot \mathbf{a}^{\beta }={\tilde{\boldsymbol \varphi }}_{^{\prime }\alpha }\cdot{\tilde{\boldsymbol \varphi }}_{^{\prime }\beta } </math>
275
|}
276
| style="width: 5px;text-align: right;" | (20)
277
|}
278
279
The Green-Lagrange strain vector of the middle surface points (membrane strains) is defined as
280
281
{| class="formulaSCP" style="width: 100%; text-align: left;" 
282
|-
283
| 
284
{| style="text-align: left; margin:auto;" 
285
|-
286
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=[\varepsilon _{m_{11}},\varepsilon _{m_{12}},\varepsilon _{m_{12}}]^{T} </math>
287
|}
288
| style="width: 5px;text-align: right;" | (21)
289
|}
290
291
with
292
293
<span id="eq-22"></span>
294
{| class="formulaSCP" style="width: 100%; text-align: left;" 
295
|-
296
| 
297
{| style="text-align: left; margin:auto;" 
298
|-
299
| style="text-align: center;" | <math>\varepsilon _{m_{ij}}=\frac{1}{2}(a_{ij}-\delta _{ij}) </math>
300
|}
301
| style="width: 5px;text-align: right;" | (22)
302
|}
303
304
The curvatures (second fundamental form) of the middle surface are obtained by
305
306
{| class="formulaSCP" style="width: 100%; text-align: left;" 
307
|-
308
| 
309
{| style="text-align: left; margin:auto;" 
310
|-
311
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\frac{1}{2}\left( {\boldsymbol \varphi }_{^{\prime }\alpha } \cdot \mathbf{t}_{3^{\prime }\beta }+{\boldsymbol \varphi }_{^{\prime }\beta }\cdot  \mathbf{t}_{3^{\prime }\alpha }\right) =- \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{{\prime }\alpha \beta }\quad , \quad \alpha ,\beta=1,2 </math>
312
|}
313
| style="width: 5px;text-align: right;" | (23)
314
|}
315
316
The deformation gradient tensor is
317
318
{| class="formulaSCP" style="width: 100%; text-align: left;" 
319
|-
320
| 
321
{| style="text-align: left; margin:auto;" 
322
|-
323
| style="text-align: center;" | <math>\mathbf{F=} [{x}_{{\prime }1},{x}_{{\prime }2},{x}_{{\prime }3}]=\left[ \begin{array}{ccc} {\boldsymbol \varphi }_{^{\prime }1}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime  }1} & {\boldsymbol \varphi }_{^{\prime }2}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }2} & \lambda \mathbf{t}_{3} \end{array} \right] </math>
324
|}
325
| style="width: 5px;text-align: right;" | (24)
326
|}
327
328
The product <math display="inline">\mathbf{F}^{T}\mathbf{F=U}^{2}=\mathbf{C}</math> (where <math display="inline">\mathbf{U}</math> is the right stretch tensor, and <math display="inline">\mathbf{C}</math> the right Cauchy-Green deformation tensor) can be written as
329
330
<span id="eq-25"></span>
331
{| class="formulaSCP" style="width: 100%; text-align: left;" 
332
|-
333
| 
334
{| style="text-align: left; margin:auto;" 
335
|-
336
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{ccc} a_{11}+2\kappa _{11}\zeta \lambda & a_{12}+2\kappa _{12}\zeta \lambda & 0\\ a_{12}+2\kappa _{12}\zeta \lambda & a_{22}+2\kappa _{22}\zeta \lambda & 0\\ 0 & 0 & \lambda ^{2} \end{array} \right] </math>
337
|}
338
| style="width: 5px;text-align: right;" | (25)
339
|}
340
341
In the derivation of expression ([[#eq-25|25]]) the derivatives of the thickness ratio <math display="inline">\lambda _{^{\prime }a}</math> and the terms associated to <math display="inline">\zeta ^{2}</math> have been neglected.
342
343
Eq.([[#eq-25|25]]) shows that <math display="inline">\mathbf{U}^{2}</math> is not a unit tensor at the original configuration for curved surfaces (<math display="inline">\kappa _{ij}^{0}\neq{0}</math>). The changes of curvature of the middle surface are computed by
344
345
{| class="formulaSCP" style="width: 100%; text-align: left;" 
346
|-
347
| 
348
{| style="text-align: left; margin:auto;" 
349
|-
350
| style="text-align: center;" | <math>\chi _{ij}=\kappa _{ij}-\kappa _{ij}^{0} </math>
351
|}
352
| style="width: 5px;text-align: right;" | (26)
353
|}
354
355
Note that <math display="inline">\delta \chi _{ij}=\delta \kappa _{ij}</math>.
356
357
For computational convenience the following approximate expression (which is exact for initially flat surfaces) will be adopted
358
359
{| class="formulaSCP" style="width: 100%; text-align: left;" 
360
|-
361
| 
362
{| style="text-align: left; margin:auto;" 
363
|-
364
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{ccc} a_{11}+2\chi _{11}\zeta \lambda & a_{12}+2\chi _{12}\zeta \lambda & 0\\ a_{12}+2\chi _{12}\zeta \lambda & a_{22}+2\chi _{22}\zeta \lambda & 0\\ 0 & 0 & \lambda ^{2} \end{array} \right] </math>
365
|}
366
| style="width: 5px;text-align: right;" | (27)
367
|}
368
369
This expression is useful to compute different lagrangian strain measures. An advantage of these measures is that they are associated to material fibres, what makes it easy to take into account material anisotropy. It is also useful to compute the eigen decomposition of <math display="inline">\mathbf{U}</math> as
370
371
{| class="formulaSCP" style="width: 100%; text-align: left;" 
372
|-
373
| 
374
{| style="text-align: left; margin:auto;" 
375
|-
376
| style="text-align: center;" | <math>\mathbf{U=}\sum _{\alpha=1}^{3}\lambda _{\alpha } \mathbf{r}_{\alpha } \otimes \mathbf{r}_{\alpha } </math>
377
|}
378
| style="width: 5px;text-align: right;" | (28)
379
|}
380
381
where <math display="inline">\lambda _{\alpha }</math> and <math display="inline">\mathbf{r}_{\alpha }</math> are the eigenvalues and eigenvectors of <math display="inline">\mathbf{U}</math>.
382
383
The resultant stresses  (axial forces and moments) are obtained by integrating across the original thickness the second Piola-Kirchhoff stress vector <math display="inline">{ \boldsymbol \sigma }</math> using the actual distance to the middle surface for  evaluating the bending moments, i.e.
384
385
<span id="eq-29"></span>
386
{| class="formulaSCP" style="width: 100%; text-align: left;" 
387
|-
388
| 
389
{| style="text-align: left; margin:auto;" 
390
|-
391
| style="text-align: center;" | <math>{\boldsymbol \sigma }_{m}\equiv \lbrack N_{11},N_{22},N_{12}]^{T}=\int _{h^{0}}{\boldsymbol \sigma } d\zeta </math>
392
|}
393
| style="width: 5px;text-align: right;" | (29)
394
|}
395
396
<span id="eq-30"></span>
397
{| class="formulaSCP" style="width: 100%; text-align: left;" 
398
|-
399
| 
400
{| style="text-align: left; margin:auto;" 
401
|-
402
| style="text-align: center;" | <math>{\boldsymbol \sigma }_{b}\equiv \lbrack M_{11},M_{22},M_{12}]^{T}=\int _{h^{0}}{\boldsymbol \sigma  }\lambda \zeta  d\zeta </math>
403
|}
404
| style="width: 5px;text-align: right;" | (30)
405
|}
406
407
With these values the virtual work can be written as
408
409
<span id="eq-31"></span>
410
{| class="formulaSCP" style="width: 100%; text-align: left;" 
411
|-
412
| 
413
{| style="text-align: left; margin:auto;" 
414
|-
415
| style="text-align: center;" | <math>\int \int _{A^{0}}\left[ \delta{\boldsymbol \varepsilon }_{m}^{T}{\boldsymbol \sigma }_{m}+\delta{\boldsymbol \kappa  }^{T}{\boldsymbol \sigma }_{b}\right] dA=\int \int _{A^{0}}\delta \mathbf{u}^{T}\mathbf{t}dA </math>
416
|}
417
| style="width: 5px;text-align: right;" | (31)
418
|}
419
420
where <math display="inline">\delta \mathbf{u}</math> are virtual displacements, <math display="inline">\delta{\boldsymbol \varepsilon }_{m}</math> is the virtual Green-Lagrange membrane strain vector, <math display="inline">\delta{\boldsymbol \kappa }</math> are the virtual curvatures and <math display="inline">\mathbf{t}</math> are the surface loads. Other load types can be easily included into ([[#eq-31|31]]).
421
422
===3.2 Constitutive models===
423
424
In order to treat plasticity at finite strains an adequate stress-strain pair must be used. The Hencky measures will be adopted here. The (logarithmic) strains are defined as
425
426
{| class="formulaSCP" style="width: 100%; text-align: left;" 
427
|-
428
| 
429
{| style="text-align: left; margin:auto;" 
430
|-
431
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=}\left[ \begin{array}{ccc} \varepsilon _{11} & \varepsilon _{21} & 0\\ \varepsilon _{12} & \varepsilon _{22} & 0\\ 0 & 0 & \varepsilon _{33} \end{array} \right] =\sum _{\alpha=1}^{3}\ln \left( \lambda _{\alpha }\right) \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\alpha } </math>
432
|}
433
| style="width: 5px;text-align: right;" | (32)
434
|}
435
436
Two types of material models are considered here: an elastic-plastic material associated to thin rolled metal sheets and a hyper-elastic material for rubbers.
437
438
In the case of metals, where the elastic strains are small, the use of a logarithmic strain measure reasonably allows to adopt an additive decomposition of elastic and plastic components as
439
440
{| class="formulaSCP" style="width: 100%; text-align: left;" 
441
|-
442
| 
443
{| style="text-align: left; margin:auto;" 
444
|-
445
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=E}_{\ln }^{e}+\mathbf{E}_{\ln }^{p} </math>
446
|}
447
| style="width: 5px;text-align: right;" | (33)
448
|}
449
450
A constant linear relationship between the (plane) Hencky stresses and the logarithmic elastic strains is  adopted giving
451
452
{| class="formulaSCP" style="width: 100%; text-align: left;" 
453
|-
454
| 
455
{| style="text-align: left; margin:auto;" 
456
|-
457
| style="text-align: center;" | <math>\mathbf{T}=\mathbf{CE}_{\ln }^{e} </math>
458
|}
459
| style="width: 5px;text-align: right;" | (34)
460
|}
461
462
These constitutive equations are integrated using a standard return algorithm. The following Mises-Hill [30] yield function with non-linear isotropic hardening is chosen here
463
464
{| class="formulaSCP" style="width: 100%; text-align: left;" 
465
|-
466
| 
467
{| style="text-align: left; margin:auto;" 
468
|-
469
| style="text-align: center;" | <math>\left( G+H\right) \;T_{11}^{2}+\left( F+H\right) \;T_{22}^{2} -2H\;T_{11}T_{22}+2N\;T_{12}^{2}=\sigma _0\left(e_{0}+e^{p}\right) ^{n} </math>
470
|}
471
| style="width: 5px;text-align: right;" | (35)
472
|}
473
474
where <math display="inline">F, G, H</math> and <math display="inline">N</math> define the non-isotropic shape of the yield surface and the parameters <math display="inline">\sigma _{0}</math>, <math display="inline">e_{0}</math> and <math display="inline">n</math> define its size as a function of the effective plastic strain <math display="inline">e^{p}</math>.
475
476
The simple Mises-Hill yield function  allows, as a first approximation, to treat rolled thin metal sheets with planar and transversal anisotropy.
477
478
For the case of rubbers, the Ogden [31] model extended to the compressible range is considered. The material behaviour is characterized by the strain energy density per unit undeformed volume defined as
479
480
{| class="formulaSCP" style="width: 100%; text-align: left;" 
481
|-
482
| 
483
{| style="text-align: left; margin:auto;" 
484
|-
485
| style="text-align: center;" | <math>\psi =\frac{K}{2}\left( \ln J\right) ^{2}+\sum _{p=1}^{N}\frac{\mu _{p}}{} {\alpha _{p}}\left[ J^{-\frac{\alpha _{p}}{3}}\left( \sum _{i=1}^{3}\lambda  _{i}^{\alpha _{p}-1}\right) -3\right] </math>
486
|}
487
| style="width: 5px;text-align: right;" | (36)
488
|}
489
490
where <math display="inline">K</math> is the bulk modulus of the material, <math display="inline">J</math> is the determinant of <math display="inline">\mathbf{U}</math>, <math display="inline">N</math>, <math display="inline">\mu _{i}</math> and <math display="inline">\alpha _{i}</math> are material parameters, <math display="inline">\mu _{i}\,,\,\alpha _{i}</math> are real numbers such that <math display="inline">\mu _{i}\alpha _{i}>0</math> <math display="inline"> (\forall i=1,N)</math> and <math display="inline">N</math> is a positive integer.
491
492
The stress measures associated to the principal logarithmic strains are denoted by <math display="inline">\beta _{i}</math>. They can be computed noting that
493
494
{| class="formulaSCP" style="width: 100%; text-align: left;" 
495
|-
496
| 
497
{| style="text-align: left; margin:auto;" 
498
|-
499
| style="text-align: center;" | <math>\beta _{i}=\frac{\partial \psi \left( \Lambda \right) }{\partial \left( \ln \lambda _{i}\right) }=K\left( \ln J\right) +\lambda _{i}\sum _{p=1}^{N} \mu _{p}J^{-\frac{\alpha _{p}}{3}}\left( \lambda _{i}^{\alpha _{p}-1}-\frac{1}{} {3}\frac{1}{\lambda _{i}}\sum _{j=1}^{3}\lambda _{j}^{\alpha _{p}}\right) </math>
500
|}
501
| style="width: 5px;text-align: right;" | (37)
502
|}
503
504
we define now
505
506
{| class="formulaSCP" style="width: 100%; text-align: left;" 
507
|-
508
| 
509
{| style="text-align: left; margin:auto;" 
510
|-
511
| style="text-align: center;" | <math>a^{p}=\sum _{j=1}^{3}\lambda _{j}^{\alpha _{p}} </math>
512
|}
513
| style="width: 5px;text-align: right;" | (38)
514
|}
515
516
which gives
517
518
{| class="formulaSCP" style="width: 100%; text-align: left;" 
519
|-
520
| 
521
{| style="text-align: left; margin:auto;" 
522
|-
523
| style="text-align: center;" | <math>\beta _{i}=K\left( \ln J\right) +\sum _{p=1}^{N}\mu _{p}J^{-\frac{\alpha _{p} }{3}}\left( \lambda _{i}^{\alpha _{p}}-\frac{1}{3}a_{p}\right) </math>
524
|}
525
| style="width: 5px;text-align: right;" | (39)
526
|}
527
528
The values of <math display="inline">\beta _{i}</math>, expressed in the principal strains directions, allow to evaluate the Hencky stresses in the convective coordinate system as
529
530
{| class="formulaSCP" style="width: 100%; text-align: left;" 
531
|-
532
| 
533
{| style="text-align: left; margin:auto;" 
534
|-
535
| style="text-align: center;" | <math>\mathbf{T}=\sum _{i=1}^{3}\beta _{i}\;\mathbf{r}_{i}\otimes \mathbf{r}_{i} </math>
536
|}
537
| style="width: 5px;text-align: right;" | (40)
538
|}
539
540
The Hencky stress tensor <math display="inline">\mathbf{T}</math> can be easily particularized for the plane stress case.
541
542
We define the rotated Hencky and second Piola-Kirchhoff stress tensors as
543
544
{| class="formulaSCP" style="width: 100%; text-align: left;" 
545
|-
546
| 
547
{| style="text-align: left; margin:auto;" 
548
|-
549
| style="text-align: right;" | <math>\mathbf{T}_{L}  </math>
550
| <math>  =\mathbf{R}_{L}^{T}\;\mathbf{T\;R}_{L}</math>
551
| style="width: 5px;text-align: right;" | (41)
552
|}
553
|}
554
{| class="formulaSCP" style="width: 100%; text-align: left;" 
555
|-
556
| 
557
{| style="text-align: left; margin:auto;" 
558
|-
559
| style="text-align: right;" | <math> \mathbf{S}_{L}  </math>
560
| <math>  =\mathbf{R}_{L}^{T}\;\mathbf{S\;R}_{L} </math>
561
| style="width: 5px;text-align: right;" | (42)
562
|}
563
|}
564
565
where <math display="inline">\mathbf{R}_{L}</math> is the rotation tensor obtained from the eigenvectors of <math display="inline">\mathbf{U}</math> given by
566
567
{| class="formulaSCP" style="width: 100%; text-align: left;" 
568
|-
569
| 
570
{| style="text-align: left; margin:auto;" 
571
|-
572
| style="text-align: center;" | <math>\mathbf{R}_{L}=\left[ \begin{array}{ccc} \mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} \end{array} \right] </math>
573
|}
574
| style="width: 5px;text-align: right;" | (43)
575
|}
576
577
The relationship between the rotated Hencky and Piola-Kirchhoff stresses is
578
579
{| class="formulaSCP" style="width: 100%; text-align: left;" 
580
|-
581
| 
582
{| style="text-align: left; margin:auto;" 
583
|-
584
| style="text-align: right;" | <math>\left[ S_{L}\right] _{\alpha \alpha }  </math>
585
| <math>  =\frac{1}{\lambda _{\alpha }^{2} }\left[ T_{L}\right] _{\alpha \alpha }</math>
586
|-
587
| style="text-align: right;" | <math> \left[ S_{L}\right] _{\alpha \beta }  </math>
588
| <math>  =\frac{\ln \left( \lambda _{\alpha  }/\lambda _{\beta }\right) }{\frac{1}{2}\left( \lambda _{\alpha }^{2} -\lambda _{\beta }^{2}\right) }\left[ T_{L}\right] _{\alpha \beta } </math>
589
|}
590
| style="width: 5px;text-align: right;" | (44)
591
|}
592
593
The second Piola-Kirchhoff stress tensor can be computed by
594
595
{| class="formulaSCP" style="width: 100%; text-align: left;" 
596
|-
597
| 
598
{| style="text-align: left; margin:auto;" 
599
|-
600
| style="text-align: center;" | <math>\mathbf{S}=\mathbf{R}_{L}\;\mathbf{S}_{L}\mathbf{\;R}_{L}^{T} </math>
601
|}
602
| style="width: 5px;text-align: right;" | (45)
603
|}
604
605
The second Piola-Kirchhoff stress vector <math display="inline">{\boldsymbol \sigma }</math> of Eqs.([[#eq-29|29]]&#8211;[[#eq-30|30]]) can be readily extracted from the <math display="inline">\mathbf{S}</math> tensor.
606
607
==4 TOTAL LAGRANGIAN FORMULATION OF THE BASIC SHELL TRIANGLE==
608
609
===4.1 Definition of the element geometry and discretization of the displacement field===
610
611
The rotation-free BST element has three nodes with three displacement degrees of freedom at each node. As before an element patch is defined by the central triangle  and the three adjacent elements (Figure [[#img-1|1]]). This patch helps to define the curvature field within the central triangle (the BST element) in terms of the displacement of the six patch nodes.
612
613
The node-ordering in the patch is the following (see Figure [[#img-1|1]])
614
615
* The nodes in the main element (M) are numbered locally as 1, 2 and 3. They are defined counter-clockwise around the positive normal.
616
617
* The sides in the main element are numbered locally as 1, 2, and 3. They are defined by the local node opposite to the side.
618
619
* The adjacent elements (which are part of the cell) are numbered with the number associated to the common side.
620
621
* The extra nodes of the cell are numbered locally as 4, 5 and 6, corresponding to nodes on adjacent elements opposite to sides 1, 2  and 3 respectively.
622
623
* The connectivities in the adjacent elements are defined beginning with the extra node as shown in Table 1.
624
625
626
<div class="center" style="font-size: 75%;">
627
'''Table 1'''. Element numbering and nodal connectivities of the four elements patch of Figure 1.</div>
628
629
{| class="wikitable" style="text-align: left; margin: 1em auto;"
630
|- style="border-top: 2px solid;"
631
| '''Element''' 
632
| N1 
633
| N2 
634
| N3
635
|- style="border-top: 2px solid;"
636
|  '''M''' 
637
| 1 
638
| 2 
639
| 3
640
|- style="border-top: 2px solid;"
641
|  '''1''' 
642
| 4 
643
| 3 
644
| 2
645
|- style="border-top: 2px solid;"
646
|  '''2''' 
647
| 5 
648
| 1 
649
| 3
650
|- style="border-top: 2px solid;border-bottom: 2px solid;"
651
|  '''3''' 
652
| 6 
653
| 2 
654
| 1
655
656
|}
657
658
The following local cartesian coordinate system can be defined for the patch. In the main element the unit vector <math display="inline">\mathbf{t}_{1}</math>(associated to the local coordinate <math display="inline">\xi _{1}</math>) is directed along side 3 (from node 1 to node 2), <math display="inline">\mathbf{t}_{3}</math> (associated to the coordinate <math display="inline">\zeta </math>) is the unit normal to the plane, and finally <math display="inline">\mathbf{t}_{2}=\mathbf{t}_{3}\times \mathbf{t}_{1}</math> (associated to the coordinate <math display="inline">\xi _{2}</math>).
659
660
The coordinates and the displacements are linearly interpolated within each three node triangle in the mesh in the standard manner, i.e.
661
662
{| class="formulaSCP" style="width: 100%; text-align: left;" 
663
|-
664
| 
665
{| style="text-align: left; margin:auto;" 
666
|-
667
| style="text-align: center;" | <math>{\boldsymbol \varphi } = \sum \limits _{i=1}^{3} L_{i}^e {\boldsymbol \varphi }_{i} = \sum \limits _{i=1}^{3} L_{i}^e ({\boldsymbol \varphi }^{0}_{i} + \mathbf{u}_{i}) </math>
668
|}
669
| style="width: 5px;text-align: right;" | (46)
670
|}
671
672
{| class="formulaSCP" style="width: 100%; text-align: left;" 
673
|-
674
| 
675
{| style="text-align: left; margin:auto;" 
676
|-
677
| style="text-align: center;" | <math>\mathbf{u}=\left\{ \begin{array}{c} u_{1}\\ u_{2}\\ u_{3} \end{array} \right\} =\sum \limits _{i=1}^{3}L_{i}^e\mathbf{u}_{i}\quad ,\quad \mathbf{u}_{i}=\left\{ \begin{array}{c} u_{1}\\ u_{2}\\ u_{3} \end{array} \right\} _{i} </math>
678
|}
679
| style="width: 5px;text-align: right;" | (47)
680
|}
681
682
In above <math display="inline">{\boldsymbol \varphi }_{i}</math> and <math display="inline">\mathbf{u}_{i}</math> contain respectively the three coordinates and the three displacements of node <math display="inline">i</math>.
683
684
===4.2 Computation of the membrane strains===
685
686
The Green-Lagrange membrane strains are expressed by substituting the linear displacement interpolation into Eq.([[#eq-22|22]]). This gives
687
688
{| class="formulaSCP" style="width: 100%; text-align: left;" 
689
|-
690
| 
691
{| style="text-align: left; margin:auto;" 
692
|-
693
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\frac{1}{2}\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}\cdot \boldsymbol \varphi _{^{\prime  }1}-1 \\ \boldsymbol \varphi _{^{\prime }2}\cdot \boldsymbol \varphi _{^{\prime  }2}-1 \\ 2\boldsymbol \varphi _{^{\prime }1}\cdot \boldsymbol \varphi _{^{\prime }2} \end{array}\right] </math>
694
|}
695
| style="width: 5px;text-align: right;" | (48)
696
|}
697
698
The membrane strain field is constant within each triangle similarly as in the standard CST element. The variation of the membrane strains is simply obtained by
699
700
{| class="formulaSCP" style="width: 100%; text-align: left;" 
701
|-
702
| 
703
{| style="text-align: left; margin:auto;" 
704
|-
705
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\mathbf{B}_{m}\delta \mathbf{a}^{e} </math>
706
|}
707
| style="width: 5px;text-align: right;" | (49)
708
|}
709
710
with
711
712
<span id="eq-50"></span>
713
{| class="formulaSCP" style="width: 100%; text-align: left;" 
714
|-
715
| 
716
{| style="text-align: left; margin:auto;" 
717
|-
718
| style="text-align: center;" | <math>\mathbf{B}_{m}=[\mathbf{B}_{m_{1}},\mathbf{B}_{m_{2}},\mathbf{B}_{m_{3}} ]\quad ,\quad \mathbf{a}^{e}=\left\{ \begin{array}{c} \mathbf{u}_{1}\\ \mathbf{u}_{2}\\ \mathbf{u}_{3} \end{array} \right\} </math>
719
|}
720
| style="width: 5px;text-align: right;" | (50)
721
|}
722
723
and
724
725
<span id="eq-51"></span>
726
{| class="formulaSCP" style="width: 100%; text-align: left;" 
727
|-
728
| 
729
{| style="text-align: left; margin:auto;" 
730
|-
731
| style="text-align: center;" | <math>\begin{array}{c} \\ \mathbf{B}_{m_{i}}\\ 3\times{3} \end{array} =\left[ \begin{array}{c} L_{i,1}^M\boldsymbol \varphi _{^{\prime }1}^{T}\\ L_{i,2}^M\boldsymbol \varphi _{^{\prime }2}^{T}\\ L_{i,1}^M\boldsymbol \varphi _{^{\prime }2}^{T}+L_{i,2}^M\boldsymbol \varphi _{^{\prime }1}^{T} \end{array} \right]  </math>
732
|}
733
| style="width: 5px;text-align: right;" | (51)
734
|}
735
736
===4.3 Computation of bending strains (curvatures)===
737
738
We will assume the following constant curvature field within each element
739
740
{| class="formulaSCP" style="width: 100%; text-align: left;" 
741
|-
742
| 
743
{| style="text-align: left; margin:auto;" 
744
|-
745
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\hat{\kappa }_{\alpha \beta } </math>
746
|}
747
| style="width: 5px;text-align: right;" | (52)
748
|}
749
750
where <math display="inline">\hat{\kappa }_{\alpha \beta }</math> is the assumed constant curvature field defined by
751
752
<span id="eq-53"></span>
753
{| class="formulaSCP" style="width: 100%; text-align: left;" 
754
|-
755
| 
756
{| style="text-align: left; margin:auto;" 
757
|-
758
| style="text-align: center;" | <math>\hat{\kappa }_{\alpha \beta }=-\frac{1}{A_{M}^{0}}\int _{A_{M}^{0}}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }\beta \alpha }\;dA^{0} </math>
759
|}
760
| style="width: 5px;text-align: right;" | (53)
761
|}
762
763
where <math display="inline">A_{M}^{0}</math> is the area (in the original configuration) of the central element in the patch.
764
765
Substituting Eq.(53) into (52) and integrating by parts the area integral gives the curvature vector within the element in terms of the following line integral
766
767
<span id="eq-54"></span>
768
{| class="formulaSCP" style="width: 100%; text-align: left;" 
769
|-
770
| 
771
{| style="text-align: left; margin:auto;" 
772
|-
773
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\left\{ \begin{array}{c} \kappa _{11}\\ \kappa _{22}\\ 2\kappa _{12} \end{array} \right\} =\frac{1}{A_{M}^{0}}   {\displaystyle \oint _{\Gamma _{M}^{0}}}  \left[ \begin{array}{cc} -n_{1} & 0\\ 0 & -n_{2}\\ -n_{2} & -n_{1} \end{array} \right] \left[ \begin{array}{c} \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2} \end{array} \right] d\Gamma </math>
774
|}
775
| style="width: 5px;text-align: right;" | (54)
776
|}
777
778
where <math display="inline">n_{i}</math> are the components (in the local system) of the normals to the element sides in the initial configuration <math display="inline">\Gamma _{M}^{0}</math>.
779
780
For the definition of the normal vector <math display="inline">\mathbf{t}_{3}</math>, the linear interpolation over the central element is used. In this case the tangent plane components are
781
782
{| class="formulaSCP" style="width: 100%; text-align: left;" 
783
|-
784
| 
785
{| style="text-align: left; margin:auto;" 
786
|-
787
| style="text-align: center;" | <math>{\boldsymbol \varphi }_{^{\prime }\alpha } = \sum _{i=1}^{3} L_{i,\alpha }^M {\boldsymbol \varphi }_{i} \quad ,\quad \alpha=1,2 </math>
788
|}
789
| style="width: 5px;text-align: right;" | (55)
790
|}
791
792
<span id="eq-56"></span>
793
{| class="formulaSCP" style="width: 100%; text-align: left;" 
794
|-
795
| 
796
{| style="text-align: left; margin:auto;" 
797
|-
798
| style="text-align: center;" | <math>\mathbf{t}_{3}=\frac{{\boldsymbol \varphi }_{\prime{1}}\times{\boldsymbol \varphi }_{\prime{2}}}{\left\vert {\boldsymbol \varphi }_{\prime{1}}\times{\boldsymbol \varphi }_{\prime{2}}\right\vert }=\lambda \;_{1}\times{\boldsymbol \varphi }_{2} </math>
799
|}
800
| style="width: 5px;text-align: right;" | (56)
801
|}
802
803
From these expressions it is also possible to compute in the original configuration the element area <math display="inline">A^{0}_{M}</math>, the outer normals <math display="inline">\left( n_{1} ,n_{2}\right) ^{i}</math> at each side and the side lengths <math display="inline">l_{i}^{M}</math>. Eq.([[#eq-56|56]]) also allows to evaluate the thickness ratio <math display="inline">\lambda </math> in the deformed configuration and the actual normal <math display="inline">\mathbf{t}_{3}</math>.
804
805
In order to compute the line integral of equation ([[#eq-54|54]]) the averaging procedure described in Section 2 is used. Hence along each side of the triangle the average value of <math display="inline">{\boldsymbol \varphi }_{^{\prime }\alpha }</math> between the main triangle and the adjacent one is taken leading to
806
807
{| class="formulaSCP" style="width: 100%; text-align: left;" 
808
|-
809
| 
810
{| style="text-align: left; margin:auto;" 
811
|-
812
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\frac{1}{A^{0}_{M}}\sum _{I=1}^{3}\left[ \begin{array}{cc} -n_{1}^{i} & 0\\ 0 & n_{2}^{i}\\ n_{2}^{i} & -n_{1}^{i} \end{array} \right] \left[ \begin{array}{c} \mathbf{t}_{3}\cdot \frac{1}{2}\left( \mathbf{\boldsymbol \varphi }_{^{\prime }1} ^{M}+\mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\right)\\ \mathbf{t}_{3}\cdot \frac{1}{2}\left( \mathbf{\boldsymbol \varphi }_{^{\prime }2} ^{M}+\mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\right) \end{array} \right] </math>
813
|}
814
| style="width: 5px;text-align: right;" | (57)
815
|}
816
817
where the sum extends over the three elements adjacent to the central triangle <math display="inline">M</math>.
818
819
Noting that <math display="inline">\mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }\alpha }^{M}=0</math> in the main triangle it can be found <span id='citeF-24'></span>[[#cite-24|[24]]]
820
821
<span id="eq-58"></span>
822
{| class="formulaSCP" style="width: 100%; text-align: left;" 
823
|-
824
| 
825
{| style="text-align: left; margin:auto;" 
826
|-
827
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\sum _{i=1}^{3}\left[ \begin{array}{cc} L_{i,1}^M & 0 \\         0 & L_{i,2}^M \\ L_{i,2}^M & L_{i,1}^M  \end{array} \right] \left[ \begin{array}{c} \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i} \end{array} \right] </math>
828
|}
829
| style="width: 5px;text-align: right;" | (58)
830
|}
831
832
This can be seen as the projection of the local derivatives in the adjacent triangles <math display="inline">\mathbf{\boldsymbol \varphi }_{^{\prime }\alpha }^{i}</math> (where index <math display="inline">i</math> denotes values associated to the adjacent elements) over the normal to the main triangle <math display="inline">\mathbf{t}_{3}</math>. As the triangles have a common side, <math display="inline">\mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }s}^{i}=0</math>, where <math display="inline">\mathbf{\boldsymbol \varphi }_{^{\prime } s}^{i}</math> is the derivative along the side. Hence only the derivative along the side normal (<math display="inline">\mathbf{\boldsymbol \varphi }_{^{\prime }n}^{i}</math>) has non-zero component over <math display="inline">\mathbf{t}_{3}</math>. This gives
833
834
<span id="eq-59"></span>
835
{| class="formulaSCP" style="width: 100%; text-align: left;" 
836
|-
837
| 
838
{| style="text-align: left; margin:auto;" 
839
|-
840
| style="text-align: center;" | <math>\left[ \begin{array}{c} \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i} \end{array} \right] =\left( \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime  }n}^{i}\right)\mathbf{n}^{i} </math>
841
|}
842
| style="width: 5px;text-align: right;" | (59)
843
|}
844
845
An alternative form to express the curvatures, which is useful when their variations are needed, is to define the vectors
846
847
<span id="eq-60"></span>
848
{| class="formulaSCP" style="width: 100%; text-align: left;" 
849
|-
850
| 
851
{| style="text-align: left; margin:auto;" 
852
|-
853
| style="text-align: center;" | <math>\mathbf{h}_{ij}=\sum _{k=1}^{3}\frac{1}{2}\left( L_{k,i}^{M}{\boldsymbol \varphi  }_{^{\prime }j}^{k}+L_{k,j}^{M}{\boldsymbol \varphi }_{\prime i}^{k}\right) </math>
854
|}
855
| style="width: 5px;text-align: right;" | (60)
856
|}
857
858
This gives
859
860
<span id="eq-61"></span>
861
{| class="formulaSCP" style="width: 100%; text-align: left;" 
862
|-
863
| 
864
{| style="text-align: left; margin:auto;" 
865
|-
866
| style="text-align: center;" | <math>\kappa _{ij}=\mathbf{h}_{ij}\cdot \mathbf{t}_{3}</math>
867
|}
868
| style="width: 5px;text-align: right;" | (61)
869
|}
870
871
The last expression allows to interpret the curvatures as the projections of the vectors <math display="inline">\mathbf{h}_{ij}</math> over the normal of the central element. The variation of the curvatures can be obtained as
872
873
<span id="eq-62"></span>
874
{| class="formulaSCP" style="width: 100%; text-align: left;" 
875
|-
876
| 
877
{| style="text-align: left; margin:auto;" 
878
|-
879
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }=\sum _{i=1}^{3}\left\{ \left[ \begin{array}{cc} L_{i,1}^{M} & 0\\ 0 & L_{i,2}^{M}\\ L_{i,2}^{M} & L_{i,1}^{M} \end{array} \right] \sum _{J=1}^{3}\left[ \begin{array}{c} L_{j,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}^{i})\\ N_{j,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}^{i}) \end{array} \right] -2\left[ \begin{array}{c} (L_{i,1}^{M}\rho _{11}^{1}+L_{i,2}^{M}\rho _{11}^{2})\\ (L_{i,1}^{M}\rho _{22}^{1}+L_{i,2}^{M}\rho _{22}^{2})\\ (L_{i,1}^{M}\rho _{12}^{1}+L_{i,2}^{M}\rho _{12}^{2}) \end{array} \right] (\mathbf{t}_{3}\cdot \delta \mathbf{u}_{i}^{M})\right\} </math>
880
|}
881
| style="width: 5px;text-align: right;" | (62)
882
|}
883
884
where the projections of the vectors <math display="inline">\mathbf{h}_{ij}</math> over the contravariant base vectors <math display="inline">\tilde{\boldsymbol \varphi }_{^{\prime }\alpha }</math> have been included
885
886
<span id="eq-63"></span>
887
{| class="formulaSCP" style="width: 100%; text-align: left;" 
888
|-
889
| 
890
{| style="text-align: left; margin:auto;" 
891
|-
892
| style="text-align: center;" | <math>\rho _{ij}^{\alpha }=\mathbf{h}_{ij}\cdot \tilde{\boldsymbol \varphi }_{^{\prime }\alpha } \quad ,\quad \alpha ,i,j=1,2</math>
893
|}
894
| style="width: 5px;text-align: right;" | (63)
895
|}
896
897
with
898
899
{| class="formulaSCP" style="width: 100%; text-align: left;" 
900
|-
901
| 
902
{| style="text-align: left; margin:auto;" 
903
|-
904
| style="text-align: right;" | <math>\mathbf{\tilde{\boldsymbol \varphi }}_{^{\prime }1}  </math>
905
| <math>  =\lambda \;\mathbf{\boldsymbol \varphi }_{^{\prime }2}\times \mathbf{t}_{3}</math>
906
|}
907
| style="width: 5px;text-align: right;" | (64)
908
|}
909
910
{| class="formulaSCP" style="width: 100%; text-align: left;" 
911
|-
912
| 
913
{| style="text-align: left; margin:auto;" 
914
|-
915
| style="text-align: right;" | <math> \mathbf{\tilde{\boldsymbol \varphi }}_{^{\prime }2}  </math>
916
| <math>  =-\lambda \;\mathbf{\boldsymbol \varphi  }_{^{\prime }1}\times \mathbf{t}_{3} </math>
917
|}
918
| style="width: 5px;text-align: right;" | (65)
919
|}
920
921
922
In above expressions superindexes in <math display="inline">L_{j}^k</math> and <math display="inline">\delta \mathbf{u}_{j}^k</math> refer to element numbers whereas subscripts denote node numbers. As usual the superindex <math display="inline">M</math> denotes values in the central triangle (Figure [[#img-1|1]]). Note that as expected the curvatures (and their variations) in the central element are a function of the nodal displacements of the six nodes in the four elements patch. Note also that
923
924
{| class="formulaSCP" style="width: 100%; text-align: left;" 
925
|-
926
| 
927
{| style="text-align: left; margin:auto;" 
928
|-
929
| style="text-align: center;" | <math>\lambda ={\frac{h}{h^{0}}}={\frac{A_{M}^{0}}{A_{M}}} </math>
930
|}
931
| style="width: 5px;text-align: right;" | (66)
932
|}
933
934
Details of the derivation of Eq.([[#eq-62|62]]) can be found in [27].
935
936
Eq.([[#eq-62|62]]) can be rewritten in the form
937
938
{| class="formulaSCP" style="width: 100%; text-align: left;" 
939
|-
940
| 
941
{| style="text-align: left; margin:auto;" 
942
|-
943
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }=\mathbf{B}_{b}\delta \mathbf{a}^{p} </math>
944
|}
945
| style="width: 5px;text-align: right;" | (67)
946
|}
947
948
where
949
950
<span id="eq-68"></span>
951
{| class="formulaSCP" style="width: 100%; text-align: left;" 
952
|-
953
| 
954
{| style="text-align: left; margin:auto;" 
955
|-
956
| style="text-align: center;" | <math>\begin{array}{c} \\ \delta \mathbf{a}^{p}\\ 18\times{1} \end{array} =[\delta \mathbf{u}_{1}^{T},\delta \mathbf{u}_{2}^{T},\delta \mathbf{u}_{3} ^{T},\delta \mathbf{u}_{4}^{T},\delta \mathbf{u}_{5}^{T},\delta \mathbf{u}_{6}^{T}]^{T}</math>
957
|}
958
| style="width: 5px;text-align: right;" | (68)
959
|}
960
961
is the virtual displacement vector of the patch
962
963
<span id="eq-69"></span>
964
{| class="formulaSCP" style="width: 100%; text-align: left;" 
965
|-
966
| 
967
{| style="text-align: left; margin:auto;" 
968
|-
969
| style="text-align: center;" | <math>\mathbf{B}_{b}=[\mathbf{B}_{b1},\mathbf{B}_{b2}\cdots ,\mathbf{B}_{b6}]</math>
970
|}
971
| style="width: 5px;text-align: right;" | (69)
972
|}
973
974
is the curvature matrix relating the virtual curvatures within the central element and the 18 virtual displacements of the six nodes in the patch.
975
976
The form of matrix <math display="inline">\mathbf{B}_{b}</math> is given in the Appendix.
977
978
==5 ENHANCED BASIC SHELL TRIANGLE==
979
980
An enhanced version of the BST element (termed EBST) has been recently proposed by Flores and Oñate [27]. The main features of the element formulation are the following:
981
982
<ol>
983
984
<li>The geometry of the patch formed by the central element and the three adjacent elements is ''quadratically interpolated'' from the position of the six nodes in the patch. </li>
985
986
<li>The membrane strains are assumed to vary ''linearly'' within the central triangle and are expressed in terms of the (continuous) values of the deformation gradient at the mid side points of the triangle. </li>
987
988
<li>The assumed ''constant curvature'' field within the central triangle is obtained by expression ([[#eq-54|54]]) using now twice the values of the (continuous) deformation gradient at the mid side points. </li>
989
990
</ol>
991
992
Details of the derivation of the EBST element are given below.
993
994
===5.1 Definition of the element geometry and computation of membrane strains===
995
996
As mentioned above a quadratic approximation of the geometry of the four elements patch is chosen using the position of the six nodes in the patch. It is useful to define the patch in the isoparametric space using the nodal positions given in the Table 2 (see also Figure 2).
997
998
999
<div class="center" style="font-size: 75%;">
1000
'''Table 2'''. Isoparametric coordinates of the six nodes in the patch of Figure 2.</div>
1001
1002
{| class="wikitable" style="text-align: left; margin: 1em auto;"
1003
|- style="border-top: 2px solid;"
1004
|
1005
| 1 
1006
| 2 
1007
| 3 
1008
| 4 
1009
| 5 
1010
| 6
1011
|- style="border-top: 2px solid;"
1012
| <math display="inline">\xi </math> 
1013
| 0 
1014
| 1 
1015
| 0 
1016
| 1 
1017
| -1 
1018
| 1
1019
|- style="border-top: 2px solid;border-bottom: 2px solid;"
1020
| <math display="inline">\eta </math> 
1021
| 0 
1022
| 0 
1023
| 1 
1024
| 1 
1025
| 1 
1026
| -1
1027
1028
|}
1029
1030
The quadratic interpolation is defined by
1031
1032
<span id="eq-70"></span>
1033
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1034
|-
1035
| 
1036
{| style="text-align: left; margin:auto;" 
1037
|-
1038
| style="text-align: center;" | <math>{\boldsymbol \varphi }=\sum _{i=1}^{6}N_{i}{\boldsymbol \varphi }_{i}</math>
1039
|}
1040
| style="width: 5px;text-align: right;" | (70)
1041
|}
1042
1043
with (<math display="inline">\zeta=1-\xi-\eta</math>)
1044
1045
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1046
|-
1047
| 
1048
{| style="text-align: left; margin:auto;" 
1049
|-
1050
| style="text-align: center;" | <math>\begin{array}{ccc} N_{1}=\zeta{+\xi}\eta &  & N_{4}=\frac{\zeta }{2}\left( \zeta{-1}\right) \\ N_{2}=\xi{+\eta}\zeta &  & N_{5}=\frac{\xi }{2}\left( \xi{-1}\right) \\ N_{3}=\eta{+\zeta}\xi &  & N_{6}=\frac{\eta }{2}\left( \eta{-1}\right) \end{array} </math>
1051
|}
1052
| style="width: 5px;text-align: right;" | (71)
1053
|}
1054
1055
This interpolation allows to compute the displacement gradients at selected points in order to use an assumed strain approach. The computation of the gradients is performed at the mid side points of the central element of the patch denoted by <math display="inline">G_{1}</math>, <math display="inline">G_{2}</math> and <math display="inline">G_{3}</math> in Figure [[#img-2|2]]. This choice has the following advantages.
1056
1057
<div id='img-2'></div>
1058
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1059
|-
1060
|[[Image:draft_Samper_226033773-fig2.png|600px|Patch of elements in the isoparametric space.]]
1061
|- style="text-align: center; font-size: 75%;"
1062
| colspan="1" | '''Figure 2:''' Patch of elements in the isoparametric space.
1063
|}
1064
1065
* Gradients at the three mid side points depend only on the nodes belonging to the two elements adjacent to each side. This can be easily verified by sampling the derivatives of the shape functions at each mid-side point.
1066
1067
* When gradients are computed at the common mid-side point of two adjacent elements, the same values are obtained, as the coordinates of the same four points are used. This in practice means that the gradients at the mid-side points are independent of the element where they are computed. A side-oriented implementation of the finite element will therefore lead to a unique evaluation of the gradients per side.
1068
1069
The cartesian derivatives of the shape functions are computed at the original configuration by the standard expression
1070
1071
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1072
|-
1073
| 
1074
{| style="text-align: left; margin:auto;" 
1075
|-
1076
| style="text-align: center;" | <math>\left[ \begin{array}{c} N_{i,1}\\ N_{i,2} \end{array} \right] =\mathbf{J}^{-1}\left[ \begin{array}{c} N_{i,\xi } \\ N_{i,\eta } \end{array} \right] </math>
1077
|}
1078
| style="width: 5px;text-align: right;" | (72)
1079
|}
1080
1081
where the Jacobian matrix at the original configuration is
1082
1083
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1084
|-
1085
| 
1086
{| style="text-align: left; margin:auto;" 
1087
|-
1088
| style="text-align: center;" | <math>\mathbf{J=}\left[ \begin{array}{cc} \mathbf{\boldsymbol \varphi }_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{1} & \mathbf{\boldsymbol \varphi  }_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{1}\\ \mathbf{\boldsymbol \varphi }_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{2} & \mathbf{\boldsymbol \varphi  }_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{2} \end{array} \right] </math>
1089
|}
1090
| style="width: 5px;text-align: right;" | (73)
1091
|}
1092
1093
The deformation gradients on the middle surface, associated to an arbitrary spatial cartesian system and to the material cartesian system defined on the middle surface are related by
1094
1095
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1096
|-
1097
| 
1098
{| style="text-align: left; margin:auto;" 
1099
|-
1100
| style="text-align: center;" | <math>\left[ {\boldsymbol \varphi }_{^{\prime }1},\mathbf{\boldsymbol \varphi }_{^{\prime }2}\right] =\left[ \mathbf{\boldsymbol \varphi }_{^{\prime }\xi },\mathbf{\boldsymbol \varphi }_{^{\prime }\eta }\right]  \mathbf{J}^{-1} </math>
1101
|}
1102
| style="width: 5px;text-align: right;" | (74)
1103
|}
1104
1105
The Green-Lagrange membrane strains within the central triangle are now obtained using a linear assumed membrane strain field <math display="inline">\hat{\boldsymbol \varepsilon }_{m}</math>, i.e.
1106
1107
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1108
|-
1109
| 
1110
{| style="text-align: left; margin:auto;" 
1111
|-
1112
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\hat{\boldsymbol \varepsilon }_{m} </math>
1113
|}
1114
| style="width: 5px;text-align: right;" | (75)
1115
|}
1116
1117
with
1118
1119
<span id="eq-76"></span>
1120
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1121
|-
1122
| 
1123
{| style="text-align: left; margin:auto;" 
1124
|-
1125
| style="text-align: center;" | <math>\hat{\boldsymbol \varepsilon }_{m}=(1-2\zeta ){\boldsymbol \varepsilon }_{m}^{1}+(1-2\xi ){\boldsymbol \varepsilon  }_{m}^{2}+(1-2\eta ){\boldsymbol \varepsilon }_{m}^{3}=\sum _{i=1}^{3}\bar{N}_{i} {\boldsymbol \varepsilon }_{m}^{i}</math>
1126
|}
1127
| style="width: 5px;text-align: right;" | (76)
1128
|}
1129
1130
where <math display="inline">{\boldsymbol \varepsilon }_{m}^{i}</math> are the membrane strains computed at the three mid side points <math display="inline">G_{i}</math> (<math display="inline">i=1,2,3</math>  see Figure [[#img-2|2]]). In Eq.([[#eq-76|76]]) <math display="inline">\bar{N}_{1}=(1-2\zeta )</math>, etc.
1131
1132
The gradient at each mid side point is computed from the quadratic interpolation ([[#eq-70|70]]):
1133
1134
<span id="eq-77"></span>
1135
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1136
|-
1137
| 
1138
{| style="text-align: left; margin:auto;" 
1139
|-
1140
| style="text-align: center;" | <math>\left( {\boldsymbol \varphi }_{^{\prime }\alpha }\right) _{G_{i}}={\boldsymbol \varphi }_{^{\prime  }\alpha }^{i}=\left[ \sum _{j=1}^{3}N_{j,\alpha }^{i}{\boldsymbol \varphi }_{j}\right] +N_{i+3,\alpha }^{i}{\boldsymbol \varphi }_{i+3}\quad ,\quad \alpha=1,2\quad ,\quad  i=1,2,3</math>
1141
|}
1142
| style="width: 5px;text-align: right;" | (77)
1143
|}
1144
1145
Substituting Eq.([[#eq-22|22]]) into ([[#eq-76|76]]) and using Eq.([[#eq-22|22]]) gives the membrane strain vector as
1146
1147
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1148
|-
1149
| 
1150
{| style="text-align: left; margin:auto;" 
1151
|-
1152
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\sum _{i=1}^{3}\frac{1}{2}\bar{N}_{i}\left\{ \begin{array}{c} {\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}-1\\ {\boldsymbol \varphi }_{^{\prime }2}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}-1\\ 2{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i} \end{array} \right\} </math>
1153
|}
1154
| style="width: 5px;text-align: right;" | (78)
1155
|}
1156
1157
and the virtual membrane strains as
1158
1159
<span id="eq-79"></span>
1160
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1161
|-
1162
| 
1163
{| style="text-align: left; margin:auto;" 
1164
|-
1165
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\sum _{i=1}^{3}\bar{N}_{i}\left\{ \begin{array}{c} {\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ {\boldsymbol \varphi }_{2}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\\ \delta{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2} ^{i}+{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{2}^{i} \end{array} \right\} </math>
1166
|}
1167
| style="width: 5px;text-align: right;" | (79)
1168
|}
1169
1170
We note that the gradient at each mid side point <math display="inline">G_{i}</math> depends only on the coordinates of the three nodes of the central triangle and on those of an additional node in the patch, associated to the side <math display="inline">i</math> where the gradient is computed.
1171
1172
Combining Eqs.([[#eq-79|79]]) and ([[#eq-77|77]]) gives
1173
1174
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1175
|-
1176
| 
1177
{| style="text-align: left; margin:auto;" 
1178
|-
1179
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\mathbf{B}_{m}\delta \mathbf{a}^{p} </math>
1180
|}
1181
| style="width: 5px;text-align: right;" | (80)
1182
|}
1183
1184
where <math display="inline">\delta \mathbf{a}^{p}</math> is the patch displacement vector (see Eq.([[#eq-68|68]])) and <math display="inline">\mathbf{B}_{m}</math> is the membrane strain matrix. An explicit form of this matrix is given in the Appendix.
1185
1186
Differently from the original BST element the membrane strains within the EBST element are now a function of the displacements of the six patch nodes.
1187
1188
===5.2 Computation of curvatures===
1189
1190
The constant curvature field assumed for the BST element is chosen again here. The numerical evaluation of the line  integral in Eq.([[#eq-54|54]]) results in a sum over the integration points at the element boundary which are, in fact, the same points used for evaluating the gradients when computing the membrane strains. As one integration point is used over each side, it is not necessary to distinguish between sides (<math display="inline">i</math>) and integration points (<math display="inline">G_{i}</math>). In this way the curvatures can be computed by
1191
1192
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1193
|-
1194
| 
1195
{| style="text-align: left; margin:auto;" 
1196
|-
1197
| style="text-align: center;" | <math>{\boldsymbol \kappa }=2\sum _{i=1}^{3}\left[ \begin{array}{cc} L_{i,1}^M & 0\\ 0         & L_{i,2}^M \\ L_{i,2}^M & L_{i,1}^M  \end{array} \right] \left[ \begin{array}{c} \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2}^{i} \end{array} \right] </math>
1198
|}
1199
| style="width: 5px;text-align: right;" | (81)
1200
|}
1201
1202
In the standard BST element <span id='citeF-21'></span><span id='citeF-24'></span>[[#cite-21|[21,24]]] the gradient <math display="inline">\mathbf{\boldsymbol \varphi  }_{\prime \alpha }^{i}</math> is computed as the average of the linear approximations over the two adjacent elements (see Section 4.3). In the enhanced version, the gradient is evaluated at each side <math display="inline">G_{i}</math> from the quadratic interpolation
1203
1204
<span id="eq-82"></span>
1205
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1206
|-
1207
| 
1208
{| style="text-align: left; margin:auto;" 
1209
|-
1210
| style="text-align: center;" | <math>\left[ \begin{array}{c} {\boldsymbol \varphi }_{\prime{1}}^{i}\\ {\boldsymbol \varphi }_{\prime{2}}^{i} \end{array} \right] =\left[ \begin{array}{cccc} N_{1,1}^{i} & N_{2,1}^{i} & N_{3,1}^{i} & N_{i+3,1}^{i}\\ N_{1,2}^{i} & N_{2,2}^{i} & N_{3,2}^{i} & N_{i+3,2}^{i} \end{array} \right] \left[ \begin{array}{c} {\boldsymbol \varphi }_{1}\\ {\boldsymbol \varphi }_{2}\\ {\boldsymbol \varphi }_{3}\\ {\boldsymbol \varphi }_{i+3} \end{array} \right]  </math>
1211
|}
1212
| style="width: 5px;text-align: right;" | (82)
1213
|}
1214
1215
Note again than at each side the gradients depend only on the positions of the three nodes of the central triangle and of an extra node (<math display="inline">i+3</math>), associated precisely to the side (<math display="inline">G_{i}</math>) where the gradient is computed.
1216
1217
Direction '''t'''<math display="inline">_{3}</math> in Eq.([[#eq-82|82]]) can be seen as a reference direction. If a different direction than that given by Eq.([[#eq-56|56]]) is chosen, at an angle <math display="inline">\theta </math> with the former, this has an influence of order <math display="inline">\theta ^{2}</math> in the projection. This justifies Eq.([[#eq-56|56]]) for the definition of '''t'''<math display="inline">_{3}</math> as a function exclusively of the three nodes of the central triangle, instead of using the 6-node isoparametric interpolation.
1218
1219
The variation of the curvatures can be obtained as
1220
1221
<span id="eq-89"></span>
1222
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1223
|-
1224
| 
1225
{| style="text-align: left; margin:auto;" 
1226
|-
1227
| style="text-align: right;" | <math>\delta{\boldsymbol \kappa } </math>
1228
| <math>  =2\sum _{i=1}^{3}\left[ \begin{array}{cc} L_{i,1}^M & 0\\ 0         & L_{i,2}^M\\ L_{i,2}^M & L_{i,1}^M \end{array} \right] \left\{ \sum _{i=1}^{3}\left[ \begin{array}{c} N_{j,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j})\\ N_{j,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}) \end{array} \right] +\left[ \begin{array}{c} N_{i+3,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}^{i+3})\\ N_{i+3,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}^{i+3}) \end{array} \right] \right\} -</math>
1229
|-
1230
| style="text-align: right;" | 
1231
| <math>  -\sum _{i=1}^{3}\left[ \begin{array}{c} (L_{i,1}^M\rho _{11}^{1}+L_{i,2}^M\rho _{11}^{2})\\ (L_{i,1}^M\rho _{22}^{1}+L_{i,2}^M\rho _{22}^{2})\\ (L_{i,1}^M\rho _{12}^{1}+L_{i,2}^M\rho _{12}^{2}) \end{array} \right] (\mathbf{t}_{3}\cdot \delta \mathbf{u}_{i})=\mathbf{B}_{b} \delta \mathbf{a}^{p}</math>
1232
|}
1233
| style="width: 5px;text-align: right;" | (89)
1234
|}
1235
1236
where the definitions ([[#eq-61|61]]) and ([[#eq-63|63]]) still hold but with the new definition of <math display="inline">\mathbf{h}_{ij}</math> given by <span id='citeF-27'></span>[[#cite-27|[27]]]
1237
1238
<span id="eq-90"></span>
1239
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1240
|-
1241
| 
1242
{| style="text-align: left; margin:auto;" 
1243
|-
1244
| style="text-align: center;" | <math>\mathbf{h}_{ij}=\sum _{k=1}^{3}\left( L_{k,i}^M{\boldsymbol \varphi }_{\prime j}^{k} +L_{k,j}^M{\boldsymbol \varphi }_{^{\prime }i}^{k}\right) </math>
1245
|}
1246
| style="width: 5px;text-align: right;" | (90)
1247
|}
1248
1249
In Eq.([[#eq-89|89]])
1250
1251
<span id="eq-91"></span>
1252
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1253
|-
1254
| 
1255
{| style="text-align: left; margin:auto;" 
1256
|-
1257
| style="text-align: center;" | <math>\mathbf{B}_{b}=[\mathbf{B}_{b_{1}},\mathbf{B}_{b_{2}},\cdots ,\mathbf{B}_{b_{6}}]</math>
1258
|}
1259
| style="width: 5px;text-align: right;" | (91)
1260
|}
1261
1262
The expression of the curvature matrix <math display="inline">\mathbf{B}_b</math> is given in the Appendix. Details of the derivation of Eq.([[#eq-89|89]]) can be found in [27].
1263
1264
===5.3 The EBST1 element===
1265
1266
A simplified and yet very effective version of the EBST element can be obtained by using ''one point quadrature'' for the computation of all the element integrals. This element is termed EBST1. Note that this only affects the membrane stiffness matrices and it is equivalent to using a assumed constant membrane strain field defined by an average of the metric tensors computed at each side.
1267
1268
Numerical experiments have shown that both the EBST and the EBST1 elements are free of spurious energy modes.
1269
1270
==6 BOUNDARY CONDITIONS==
1271
1272
Elements at the domain boundary, where an adjacent element does not exist, deserve a special attention. The treatment of essential boundary conditions associated to translational constraints is straightforward, as they are the natural degrees of freedom of the element. The conditions associated to the normal vector are crucial in this formulation for bending. For clamped sides or symmetry planes, the normal vector <math display="inline">\mathbf{t}_{3}</math> must be kept fixed (clamped case), or constrained to move in the plane of symmetry (symmetry case). The former case can be seen as a special case of the latter, so we will consider symmetry planes only. This restriction can be imposed through the definition of the tangent plane at the boundary, including the normal to the plane of symmetry <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{0}</math> that does not change during the process.
1273
1274
<div id='img-3'></div>
1275
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1276
|-
1277
|
1278
[[File:Draft_Samper_226033773_5749_Fig3.jpeg|600px|Local cartesian system for the treatment of symmetry boundary conditions]]
1279
|- style="text-align: center; font-size: 75%;"
1280
| colspan="1" | '''Figure 3:''' Local cartesian system for the treatment of symmetry boundary conditions
1281
|}
1282
1283
The tangent plane at the boundary (mid-side point) is expressed in terms of two orthogonal unit vectors referred to a local-to-the-boundary Cartesian system (see Figure [[#img-3|3]]) defined as
1284
1285
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1286
|-
1287
| 
1288
{| style="text-align: left; margin:auto;" 
1289
|-
1290
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }n}^{0},\;\bar{\boldsymbol \varphi }_{^{\prime }s}\right] </math>
1291
|}
1292
| style="width: 5px;text-align: right;" | (92)
1293
|}
1294
1295
where vector <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{0}</math> is fixed during the process while direction <math display="inline">\bar{\boldsymbol \varphi }_{^{\prime }s}</math> emerges from the intersection of the symmetry plane with the plane defined by the central element (<math display="inline">M</math>). The plane (gradient) defined by the central element in the selected original convective Cartesian system (<math display="inline">\mathbf{t}_{1},\mathbf{t}_{2} </math>) is
1296
1297
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1298
|-
1299
| 
1300
{| style="text-align: left; margin:auto;" 
1301
|-
1302
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }1}^{M},\;\boldsymbol \varphi _{^{\prime  }2}^{M}\right] </math>
1303
|}
1304
| style="width: 5px;text-align: right;" | (93)
1305
|}
1306
1307
the intersection line (side <math display="inline">i</math>) of this plane with the plane of symmetry can be written in terms of the position of the nodes that define the side (<math display="inline">j </math> and <math display="inline">k</math>) and the original length of the side <math display="inline">l_{i}^{M}</math>, i.e.
1308
1309
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1310
|-
1311
| 
1312
{| style="text-align: left; margin:auto;" 
1313
|-
1314
| style="text-align: center;" | <math>\boldsymbol \varphi _{^{\prime }s}^{i}=\frac{1}{l_{i}^{M}}\left(\boldsymbol  \varphi _{k}-\boldsymbol \varphi _{j}\right) </math>
1315
|}
1316
| style="width: 5px;text-align: right;" | (94)
1317
|}
1318
1319
That together with the outer normal to the side <math display="inline">\mathbf{n}^{i} = \left[n_{1},n_{2}\right]^{T}=\left[\mathbf{n\cdot t}_{1},\mathbf{n\cdot t}_{2}\right]^{T}</math> (resolved in the selected original convective Cartesian system) leads to
1320
1321
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1322
|-
1323
| 
1324
{| style="text-align: left; margin:auto;" 
1325
|-
1326
| style="text-align: center;" | <math>\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}^{iT} \\ \boldsymbol \varphi _{^{\prime }2}^{iT} \end{array}\right]=\left[ \begin{array}{cc}n_{1} & -n_{2} \\ n_{2} & n_{1} \end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }n}^{iT} \\ \boldsymbol \varphi _{^{\prime }s}^{iT} \end{array}\right] </math>
1327
|}
1328
| style="width: 5px;text-align: right;" | (95)
1329
|}
1330
1331
where, noting  that <math display="inline">\lambda </math> is the determinant of the gradient, the normal component of the gradient <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{i}</math> can be approximated by
1332
1333
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1334
|-
1335
| 
1336
{| style="text-align: left; margin:auto;" 
1337
|-
1338
| style="text-align: center;" | <math>\boldsymbol \varphi _{^{\prime }n}^{i}=\frac{\boldsymbol \varphi _{^{\prime }n}^{0} }{\lambda |\boldsymbol \varphi _{^{\prime }s}^{i}|} </math>
1339
|}
1340
| style="width: 5px;text-align: right;" | (96)
1341
|}
1342
1343
In this way the contribution of the gradient at side <math display="inline">i</math> to vectors <math display="inline">\mathbf{ h}_{\alpha \beta }</math> (equations [[#eq-60|60]] and [[#eq-90|90]]) results in
1344
1345
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1346
|-
1347
| 
1348
{| style="text-align: left; margin:auto;" 
1349
|-
1350
| style="text-align: center;" | <math>\left[ \begin{array}{c}\mathbf{h}_{11}^{T} \\ \mathbf{h}_{22}^{T} \\ 2\mathbf{h}_{12}^{T} \end{array}\right]^{i}=2\left[ \begin{array}{cc}L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M} \end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}^{iT} \\ \boldsymbol \varphi _{^{\prime }2}^{iT} \end{array}\right]=2\left[ \begin{array}{cc}L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M} \end{array}\right]\left[ \begin{array}{cc}n_{1} & -n_{2} \\ n_{2} & n_{1} \end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }n}^{iT} \\ \boldsymbol \varphi _{^{\prime }s}^{iT} \end{array}\right] </math>
1351
|}
1352
| style="width: 5px;text-align: right;" | (97)
1353
|}
1354
1355
For the computation of the curvature variations, the contribution from the gradient at side <math display="inline">i</math> is now (see Ref. <span id='citeF-27'></span>[[#cite-27|[27]]])
1356
1357
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1358
|-
1359
| 
1360
{| style="text-align: left; margin:auto;" 
1361
|-
1362
| style="text-align: center;" | <math> \delta \left[ \begin{array}{c} \mathbf{h}_{11}^{T} \\ \mathbf{h}_{22}^{T} \\ 2\mathbf{h}_{12}^{T} \end{array} \right]^{i} =2\left[ \begin{array}{cc} L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M} \end{array} \right]\left[ \begin{array}{cc} n_{1} & -n_{2} \\ n_{2} & n_{1} \end{array} \right]\left[ \begin{array}{c} \mathbf{0} \\ \frac{1}{L_{o}}\left[\delta \mathbf{u}_{k}-\delta \mathbf{u}_{j}\right]^{T} \end{array} \right]</math>
1363
|}
1364
| style="width: 5px;text-align: right;" |  (92a)
1365
|}
1366
1367
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1368
|-
1369
| 
1370
{| style="text-align: left; margin:auto;" 
1371
|-
1372
| style="text-align: center;" | <math> =\frac{2}{l_{i}^{M}}\left[ \begin{array}{c} -L_{i,1}^{M}n_{2} \\ L_{i,2}^{M}n_{1} \\ L_{i,1}^{M}n_{1}-L_{i,2}^{M}n_{2} \end{array} \right]\left[\delta \mathbf{u}_{k}-\delta \mathbf{u}_{j}\right]^{T}</math>
1373
|}
1374
| style="width: 5px;text-align: right;" |  %
1375
(92b)
1376
|}
1377
1378
where the influence of variations in the length of vector <math display="inline">\boldsymbol \varphi  _{^{\prime }n}</math> has been neglected.
1379
1380
For a simple supported (hinged) side, the problem is not completely defined. The simplest choice is to neglect the contribution to the side rotations from the adjacent element missing in the patch in the evaluation of the curvatures via eq.([[#eq-54|54]]) <span id='citeF-29'></span>[[#cite-29|29]]. This is equivalent to assume that the gradient at the side is equal to the gradient in the central element, i.e.
1381
1382
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1383
|-
1384
| 
1385
{| style="text-align: left; margin:auto;" 
1386
|-
1387
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }1}^{i},\;\boldsymbol \varphi _{^{\prime }2}^{i} \right]=\left[\boldsymbol \varphi _{^{\prime }1}^{M},\;\boldsymbol \varphi  _{^{\prime }2}^{M}\right] </math>
1388
|}
1389
|}
1390
1391
More precise changes can be however introduced to account for the different natural boundary conditions. One may assume that the curvature normal to the side is zero, and consider a contribution of the missing side to introduce this constraint. As the change of curvature parallel to the side is zero along the hinged side, both things lead to zero curvatures in both directions. Denoting the contribution to curvatures of the existing sides (<math display="inline">j </math> and <math display="inline">k</math>) by
1392
1393
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1394
|-
1395
| 
1396
{| style="text-align: left; margin:auto;" 
1397
|-
1398
| style="text-align: center;" | <math>\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12} \end{array} \right]^{j-k} </math>
1399
|}
1400
|}
1401
1402
It can be easily shown that to set the normal curvature to zero the contribution of the simple supported side (<math display="inline">i</math>) should be
1403
1404
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1405
|-
1406
| 
1407
{| style="text-align: left; margin:auto;" 
1408
|-
1409
| style="text-align: center;" | <math>\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12} \end{array} \right]^{i}=-\left[ \begin{array}{ccc}\left(n_{1}\right)^{4} & \left(n_{1}\right)^{2}\left(n_{2}\right)^{2} & \left(n_{1}\right)^{3}n_{2} \\ \left(n_{1}\right)^{2}\left(n_{2}\right)^{2} & \left(n_{2}\right)^{4} & n_{1}\left(n_{2}\right)^{3} \\ 2\left(n_{1}\right)^{3}n_{2} & 2n_{1}\left(n_{2}\right)^{3} & 2\left( n_{1}\right)^{2}\left(n_{2}\right)^{2} \end{array} \right]\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12} \end{array} \right]^{j-k} </math>
1410
|}
1411
| style="width: 5px;text-align: right;" | (93)
1412
|}
1413
1414
For the case of a triangle with two sides associated to hinged sides, the normal curvatures to both sides must be zero. Denoting by <math display="inline">\mathbf{n}^{i}</math> and <math display="inline">\mathbf{n}^{j}</math> the normal to the sides, and by <math display="inline">\mathbf{m}^{i}</math> and <math display="inline"> \mathbf{m}^{j}</math> the dual base (associated to base <math display="inline">\mathbf{n}^{i}-</math> <math display="inline">\mathbf{ n}^{j}</math>), the contribution from the hinged sides (<math display="inline">i</math> and <math display="inline">j</math>) can be written as a function of the contribution of the only existing side (<math display="inline">k</math>):
1415
1416
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1417
|-
1418
| 
1419
{| style="text-align: left; margin:auto;" 
1420
|-
1421
| style="text-align: center;" | <math>\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12} \end{array} \right]^{i-j}=-\left[ \begin{array}{c}m_{1}^{i}m_{1}^{j} \\ m_{2}^{i}m_{2}^{j} \\ m_{1}^{i}m_{2}^{j}+m_{2}^{i}m_{1}^{j} \end{array} \right]\left[ \begin{array}{ccc}2n_{1}^{i}n_{1}^{j} & 2n_{2}^{i}n_{2}^{j} & n_{1}^{i}n_{2}^{j}+n_{2}^{i}n_{1}^{j} \end{array} \right]\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12} \end{array} \right]^{k} </math>
1422
|}
1423
| style="width: 5px;text-align: right;" | (94)
1424
|}
1425
1426
For a free edge the same approximation can be used but due to Poisson's effect this will lead to some error. The curvature variations of these contributions can be easily computed.
1427
1428
For the membrane formulation of element EBST, the gradient at the mid-side point of the boundary is assumed equal to the gradient of the main triangle.
1429
1430
==7 IMPLICIT SOLUTION SCHEME==
1431
1432
For a step <math display="inline">n</math> the configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n}</math> and the plastic strains <math display="inline">{\boldsymbol \varepsilon }_{p}^{n}</math> are known. The configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n}</math> is obtained by adding the total displacements to the original configuration <math display="inline"> \mathbf{\boldsymbol \varphi }^{n}=\mathbf{\boldsymbol \varphi }^{0} +\mathbf{u}^{n}</math>. The stresses are computed at each triangle using a single sampling (integration) point at the center and <math display="inline">N_{L}</math> integration points (layers) through the thickness. The plane stress state condition of the classical thin shell theory is assumed, so that for every layer three stress components are computed, (<math display="inline">\sigma _{11}</math>,<math display="inline">\sigma _{22}</math>, and <math display="inline">\sigma _{12}</math>) referred to the local cartesian system.
1433
1434
The computation of the incremental stresses is as follows:
1435
1436
<ol>
1437
1438
<li>Evaluate the incremental displacements: <math display="inline">\Delta \mathbf{u}^{n}=\mathbf{K}_{T}^{n}\mathbf{r}^{n}</math> where <math display="inline">\mathbf{K}_{T}</math> is the tangent stiffness matrix and '''r''' is the residual force vector  defined by for each element
1439
1440
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1441
|-
1442
| 
1443
{| style="text-align: left; margin:auto;" 
1444
|-
1445
| style="text-align: center;" | <math>\mathbf{r}^e_i =\int \int _A L_i {t}\, dA - \int \int _{A^\circ } ({B}_{m_i}^T {\boldsymbol \sigma }_m + {B}_{b_i}^T {\boldsymbol \sigma }_b)dA </math>
1446
|}
1447
| style="width: 5px;text-align: right;" | (95)
1448
|}</li>
1449
1450
The expression of the tangent stiffness matrix for the element is given below. Details of the derivation can be found in <span id='citeF-24'></span>[[#cite-24|[24]]],<span id='citeF-27'></span>[[#cite-27|[27]]].
1451
1452
<li>Generate the actual configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n+1} =\mathbf{\boldsymbol \varphi }^{n}+\Delta \mathbf{u}^{n}</math> </li>
1453
1454
<li>Compute the metric tensor <math display="inline">a_{\alpha \beta }^{n+1}\mathbf{ }</math>and the curvatures <math display="inline">\kappa _{\alpha \beta }^{n+1}</math> </li>
1455
1456
<li>Compute the total and elastic deformations at each layer <math display="inline">k</math> </li>
1457
1458
<span id="eq-96"></span>
1459
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1460
|-
1461
| 
1462
{| style="text-align: left; margin:auto;" 
1463
|-
1464
| style="text-align: right;" | <math>{\boldsymbol \varepsilon }_{k}^{n+1} </math>
1465
| <math>  ={\boldsymbol \varepsilon }_{m}^{n+1}+z_{k}{\boldsymbol \chi } ^{n+1}</math>
1466
| style="width: 5px;text-align: right;" | (96)
1467
|-
1468
| style="text-align: right;" | <math> \left[ {\boldsymbol \varepsilon }_{e}\right] _{k}^{n+1} </math>
1469
| <math>  ={\boldsymbol \varepsilon  }_{k}^{n+1}-\left[ {\boldsymbol \varepsilon }_{p}\right] _{k}^{n} </math>
1470
|}
1471
|}
1472
1473
<li>Compute the trial elastic stresses at each layer <math display="inline">k</math>
1474
1475
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1476
|-
1477
| 
1478
{| style="text-align: left; margin:auto;" 
1479
|-
1480
| style="text-align: center;" | <math>{\boldsymbol \sigma } _{k}^{n+1}=\mathbf{C}\left[ {\boldsymbol \varepsilon }_{e}\right] _{k}^{n+1} </math>
1481
|}
1482
| style="width: 5px;text-align: right;" | (97)
1483
|}</li>
1484
1485
<li>Check the plasticity condition and return to the plasticity surface. If necessary correct the plastic strains <math display="inline">\left[{\boldsymbol \varepsilon } _{p}\right] _{k}^{n+1}</math> at each layer (small strain plasticity) </li>
1486
1487
<li>Compute the generalized stresses
1488
1489
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1490
|-
1491
| 
1492
{| style="text-align: left; margin:auto;" 
1493
|-
1494
| style="text-align: right;" | <math>{\boldsymbol \sigma }^{n+1}_{m}  </math>
1495
| <math>  =\frac{h^{0}}{N_{L}}\sum _{k=1}^{N_{L}}\boldsymbol \sigma _{k} ^{n+1} w_{k}</math>
1496
|-
1497
| style="text-align: right;" | <math> {\boldsymbol \sigma }^{n+1}_{b}  </math>
1498
| <math>  =\frac{h^{0}}{N_{L}}\sum _{k=1}^{N_{L}}\boldsymbol \sigma _{k} ^{n+1}z_{k} w_{k} </math>
1499
|}
1500
| style="width: 5px;text-align: right;" | (98)
1501
|}</li>
1502
1503
Where <math display="inline"> w_{k}</math> is the weight of the through-the-thickness integration point. Recall that <math display="inline">z_{k}</math> is the current distance of the layer to the mid-surface and not the original distance. However, for small strain plasticity this distinction is not important.
1504
1505
This computation of stresses is adequate for an implicit scheme independent of the step size and it is exact for an elastic problem.
1506
1507
<li>Compute the residual force vector. The contribution for the <math display="inline">M</math>th element is given by
1508
1509
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1510
|-
1511
| 
1512
{| style="text-align: left; margin:auto;" 
1513
|-
1514
| style="text-align: center;" | <math>(\mathbf{r}^{M})^{n+1}=-A_{M}^{0}\left[ \begin{array}{cc} \mathbf{B}_{m}^{T} & \mathbf{B}_{b}^{T} \end{array} \right] ^{n+1}\left[ \begin{array}{c} \boldsymbol \sigma _{m}\\ \boldsymbol \sigma _{b} \end{array} \right] ^{n+1} </math>
1515
|}
1516
| style="width: 5px;text-align: right;" | (99)
1517
|}</li>
1518
1519
</ol>
1520
1521
===7.1 Tangent stiffness matrix===
1522
1523
As usual the tangent stiffness matrix is split into material and geometric components. The material tangent stiffness matrix is simply computed from the integral
1524
1525
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1526
|-
1527
| 
1528
{| style="text-align: left; margin:auto;" 
1529
|-
1530
| style="text-align: center;" | <math>\mathbf{K}^{M}=\int \int _{A^{M}}\mathbf{B}^{T}\mathbf{C}\mathbf{B}dA </math>
1531
|}
1532
| style="width: 5px;text-align: right;" | (100)
1533
|}
1534
1535
where <math display="inline">\mathbf{B}=\mathbf{B}_{m}+\mathbf{B}_{b}</math> includes:<br/>
1536
1537
* '''-'''  a membrane contribution <math display="inline">\mathbf{B}_{m}</math> given by Eq.([[#eq-51|51]]) or Eq.(80).
1538
1539
* '''-'''  a bending contribution <math display="inline">\mathbf{B}_{b}</math> given by Eq.([[#eq-69|69]]) or Eq.([[#eq-91|91]])  which is constant over the element.
1540
1541
<br/>
1542
1543
A three point quadrature is used for integrating the stiffness terms <math display="inline">\mathbf{B}_{m}^{T}\mathbf{C}\mathbf{B}_{m}</math> (recall that for the EBST element the membrane strains vary linearly within the element) whereas one point quadrature is chosen for the rest of the terms in <math display="inline">\mathbf{K}^{M}</math>.
1544
1545
===7.2 Geometric tangent stiffness matrix===
1546
1547
The geometric stiffness is written as
1548
1549
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1550
|-
1551
| 
1552
{| style="text-align: left; margin:auto;" 
1553
|-
1554
| style="text-align: center;" | <math>\mathbf{K}^{G}=\mathbf{K}_{m}^{G}+\mathbf{K}_{b}^{G} </math>
1555
|}
1556
| style="width: 5px;text-align: right;" | (101)
1557
|}
1558
1559
where subscripts <math display="inline">m</math> and <math display="inline">b</math> denote as usual membrane and bending contributions. For the BST element the membrane part is the same than for the standard constant strain triangle, leading to
1560
1561
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1562
|-
1563
| 
1564
{| style="text-align: left; margin:auto;" 
1565
|-
1566
| style="text-align: right;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{m}^{G}\mathbf{\;}\Delta \mathbf{u} </math>
1567
| <math> =A^{M}\sum _{i=1}^{3}\sum _{j=1}^{3}\left\{ \delta \mathbf{u}_{i}\;\left[ \begin{array}{cc} L_{i,1}^{M} & L_{i,2}^{M} \end{array} \right] \left[ \begin{array}{cc} N_{11} & N_{12}\\ N_{21} & N_{22} \end{array} \right] \left[ \begin{array}{c} L_{j,1}^{M}\\ L_{j,2}^{M} \end{array} \right] \Delta \mathbf{u}_{j}\right\} </math>
1568
|-
1569
| style="text-align: right;" | 
1570
| 
1571
|}
1572
| style="width: 5px;text-align: right;" | (104)
1573
|}
1574
1575
While for the EBST element the membrane part is computed as the sum of the contributions of the three sides, i.e.
1576
1577
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1578
|-
1579
| 
1580
{| style="text-align: left; margin:auto;" 
1581
|-
1582
| style="text-align: right;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{m}^{G}\mathbf{\;}\Delta \mathbf{u} </math>
1583
| <math> =\frac{A^{M}}{3}\sum _{k=1}^{3}\sum _{i=1}^{6}\sum _{j=1}^{6}\left\{ \delta \mathbf{u}_{i}\;\left[ \begin{array}{cc} N_{i,1}^{k} & N_{i,2}^{k} \end{array} \right] \left[ \begin{array}{cc} N_{11}^{k} & N_{12}^{k}\\ N_{21}^{k} & N_{22}^{k} \end{array} \right] \left[ \begin{array}{c} N_{j,1}^{k}\\ N_{j,2}^{k} \end{array} \right] \Delta \mathbf{u}_{j}\right\} </math>
1584
|-
1585
| style="text-align: right;" | 
1586
| 
1587
|}
1588
| style="width: 5px;text-align: right;" | (107)
1589
|}
1590
1591
where <math display="inline">N_{ij}={\sigma _{m}}_{ij}</math> are the axial forces defined in Eq.(29).
1592
1593
The geometric stiffness associated to bending moments is much more involved and can be found in  [27]. Numerical experiments have shown that the bending part of the geometric stiffness is not so important and can be disregarded in the iterative process.
1594
1595
Again three and one point quadratures are used for computing the membrane and bending contributions to the geometric stiffness matrix. We note that for elastic-plastic problems a uniform one point quadrature has been chosen for integration of both the membrane and bending stiffness matrices.
1596
1597
==8 EXPLICIT SOLUTION SCHEME==
1598
1599
For simulations including large non-linearities, such as frictional contact conditions on complex geometries or large instabilities in membranes, convergence is difficult to achieve with implicit schemes. In those cases an explicit solution algorithm is typically most advantageous. This scheme provides the solution for dynamic problems and also for static problems if an adequate damping is chosen.
1600
1601
The dynamic equations of motion to solve are of the form
1602
1603
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1604
|-
1605
| 
1606
{| style="text-align: left; margin:auto;" 
1607
|-
1608
| style="text-align: center;" | <math>\mathbf{r}(\mathbf{u}) + \mathbf{C} \dot{\mathbf{u}} + \mathbf{M} \ddot{\mathbf{u}} = 0 </math>
1609
|}
1610
| style="width: 5px;text-align: right;" | (108)
1611
|}
1612
1613
where <math display="inline">\mathbf{M}</math> is the mass matrix, <math display="inline">\mathbf{C}</math> is the damping matrix and the dot means the time derivative. The solution is performed using the ''central difference method''. To make the method competitive a diagonal (lumped) <math display="inline">\mathbf{M}</math> matrix is typically used and <math display="inline">\mathbf{C}</math> is taken proportional to <math display="inline">\mathbf{M}</math>. As usual, mass lumping is performed by assigning, one third of the triangular element mass to each node in the central element.
1614
1615
The explicit solution scheme can be summarized as follows. At each time step <math display="inline">n</math> where displacements have been computed:
1616
1617
<ol>
1618
1619
<li>Compute the internal forces <math display="inline">\mathbf{r}^{n}</math>. This simply follows the same steps (2-8) described for the implicit scheme in the previous section. </li>
1620
1621
<li>Compute the accelerations at time <math display="inline">t_{n}</math>
1622
1623
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1624
|-
1625
| 
1626
{| style="text-align: left; margin:auto;" 
1627
|-
1628
| style="text-align: center;" | <math>\ddot{\mathbf{u}}^{n} = {M}_d^{-1} [ \mathbf{r}^{n} - \mathbf{C} \dot{\mathbf{u}}^{n-1/2} ]  </math>
1629
|}
1630
|}</li>
1631
1632
where <math display="inline">{M}_d</math> is the diagonal (lumped) mass matrix.
1633
1634
<li>Compute the velocities at time <math display="inline">t_{n+1/2}</math>
1635
1636
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1637
|-
1638
| 
1639
{| style="text-align: left; margin:auto;" 
1640
|-
1641
| style="text-align: center;" | <math>\dot{\mathbf{u}}^{n+1/2} = \dot{\mathbf{u}}^{n-1/2} \ddot{\mathbf{u}}^{n} \delta t  </math>
1642
|}
1643
|}</li>
1644
1645
<li>Compute the displacements at  time <math display="inline">t_{n+1}</math>
1646
1647
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1648
|-
1649
| 
1650
{| style="text-align: left; margin:auto;" 
1651
|-
1652
| style="text-align: center;" | <math>\mathbf{u}^{n+1} = \mathbf{u}^{n} +\dot{\mathbf{u}}^{n+1/2} \delta t  </math>
1653
|}
1654
|}</li>
1655
<li>Update the shell geometry </li>
1656
<li>Check frictional contact conditions </li>
1657
1658
</ol>
1659
1660
Further details of the implementation of the standard BST element within an explicit solution scheme can be found in [26].
1661
1662
==9 EXAMPLES==
1663
1664
In this section several examples are presented to show the good performance of the rotation-free shell elements (BST, EBST and EBST1). The first five static examples are solved using an implicit code. The rest of the examples are computed using the explicit dynamic scheme. For the explicit scheme the  EBST element is always integrated using one integration point per element (EBST1 version) although not indicated.
1665
1666
===9.1 Patch tests===
1667
1668
The three elements considered (BST, EBST and EBST1) satisfy the membrane patch test defined in Figure [[#img-4|4]]. A uniform axial tensile stress is obtained in all cases.
1669
1670
<div id='img-4'></div>
1671
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1672
|-
1673
|
1674
[[File:Draft_Samper_226033773_1361_Fig4.jpeg|300px|Patch test for uniform tensile stress]]
1675
|- style="text-align: center; font-size: 75%;"
1676
| colspan="1" | '''Figure 4:''' Patch test for uniform tensile stress
1677
|}
1678
1679
<div id='img-5'></div>
1680
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1681
|-
1682
|
1683
[[File:Draft_Samper_226033773_8502_Fig5.jpeg|400px|Patch test for uniform torsion]]
1684
|- style="text-align: center; font-size: 75%;"
1685
| colspan="1" | '''Figure 5:''' Patch test for uniform torsion
1686
|}
1687
1688
The element bending formulation does not allow to apply external bending moments (there are not rotational DOFs). Hence it is not possible to analyse a patch of elements under loads leading to a uniform bending moment. A uniform torsion can be considered if a point load is applied at the corner of a rectangular plate with two consecutive free sides and two simple supported sides. Figure [[#img-5|5]] shows three patches leading to correct results both in displacements and stresses. All three patches are structured meshes. When the central node in the third patch is shifted from the center, the results obtained with the EBST and EBST1 elements are not correct. This however does not seems to preclude the excellent performance of these elements, as proved in the rest of the examples analyzed. On the other hand, the BST element  gives correct results in all torsion patch tests if natural boundary conditions are imposed in the formulation. If this is not the case, incorrect results are obtained even with structured meshes.
1689
1690
===9.2 Cook's membrane problem===
1691
1692
This example is used to assess the membrane performance of the EBST and EBST1 elements and to compare it with the standard linear triangle (constant strain) and the quadratic triangle (linear strain). This example involves important shear energy and was proposed to assess the distortion capability of elements. Figure [[#img-6|6]].a shows the geometry and the applied load. Figure [[#img-6|6]].b plots the vertical displacement of the upper vertex as a function of the number of nodes in the mesh. Results obtained with other isoparametric elements have also been  plotted for comparison. They include the constant strain triangle (CST), the bilinear quadrilateral (QUAD4) and the linear strain triangle (LST). Note that as this is a pure  membrane problem  the BST and the CST elements give identical results.
1693
1694
<div id='img-6'></div>
1695
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1696
|-
1697
|[[Image:draft_Samper_226033773-fig6a.png|300px|]]
1698
|
1699
[[File:Draft_Samper_226033773_1597_Fig6b.jpg|300px|Cook membrane problem (a) Geometry (b) Results]]
1700
|-
1701
|style="text-align: center; font-size: 75%;padding:10px;"|(a)
1702
|style="text-align: center; font-size: 75%;padding:10px;"|(b)
1703
|- style="text-align: center; font-size: 75%;"
1704
| colspan="2" | '''Figure 6:''' Cook membrane problem (a) Geometry (b) Results
1705
|}
1706
1707
From the plot shown it can be seen that the enhanced element with three integration points (EBST) gives values slightly better that the constant strain triangle for the most coarse mesh (only two elements). However, when the mesh is refined, a performance similar to the linear strain triangle is obtained that is dramatically superior that the former. On the other hand, if a one point quadrature is used (EBST1) the convergence in the reported displacement is notably better that for the rest of the elements.
1708
1709
===9.3 Cylindrical roof===
1710
1711
In this example an effective membrane interpolation is of primary importance. The geometry is a cylindrical roof supported by a rigid diaphragm at both ends and it is loaded by a uniform dead weight (see Figure [[#img-7|7]].a.). Only one quarter of the structure is modelled due to symmetry conditions. Unstructured and structured meshes are considered. In the latter case two orientations are possible (Figure [[#img-7|7]] shows orientation B).
1712
1713
Tables [[#table-3|3]], [[#table-4|4]] and [[#table-5|5]] present the normalized vertical displacements at the crown (point A) and at the midpoint of the free side (point B) for the two orientations of the structured meshes and for the non-structured mesh. Values used for normalization are <math display="inline">u_{A}=0.5407</math> y <math display="inline">u_{B}=-3.610</math> that are quoted in reference [32].
1714
1715
<div id='img-7'></div>
1716
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1717
|-
1718
|
1719
[[File:Draft_Samper_226033773_7308_Fig7a.jpeg|400px|]]
1720
|[[Image:draft_Samper_226033773-fig7b.png|400px|]]
1721
|- style="text-align: center; font-size: 75%;"
1722
| colspan="2" | '''Figure 7:''' Cylindrical roof under dead weight. <math>E=3 \times 10^{6}</math>, <math>\nu=0.0</math>, Thickness =3.0, shell weight =0.625 per unit area.
1723
|}
1724
1725
1726
{| class="wikitable" style="text-align: left; margin: 1em auto;"
1727
|+ <span id='table-3'></span>Table. 3 Cylindrical roof under dead weight. Normalized vertical displacements for mesh orientation A
1728
|- style="border-top: 2px solid;"
1729
| [c]|r|r|r|r|r|r|r| 
1730
| colspan='3' style="text-align: (null);border-left: 2px solid;border-right: 2px solid;" | Point-A
1731
| colspan='3' style="text-align: (null);border-left: 2px solid;border-right: 2px solid;" | Point-B
1732
|- style="border-top: 2px solid;"
1733
|  NDOFs 
1734
| EBST 
1735
| EBST1 
1736
| BST 
1737
| CBST 
1738
| EBST1 
1739
| BST
1740
|-
1741
| 16 
1742
| 0.65724 
1743
| 0.91855 
1744
| 0.74161 
1745
| 0.40950 
1746
| 0.70100 
1747
| 1.35230
1748
|-
1749
| 56 
1750
| 0.53790 
1751
| 1.03331 
1752
| 0.74006 
1753
| 0.54859 
1754
| 1.00759 
1755
| 0.75590
1756
|-
1757
| 208 
1758
| 0.89588 
1759
| 1.04374 
1760
| 0.88491 
1761
| 0.91612 
1762
| 1.02155 
1763
| 0.88269
1764
|-
1765
| 800 
1766
| 0.99658 
1767
| 1.01391 
1768
| 0.96521 
1769
| 0.99263 
1770
| 1.00607 
1771
| 0.96393
1772
|- style="border-bottom: 2px solid;"
1773
| 3136 
1774
| 1.00142 
1775
| 1.00385 
1776
| 0.99105 
1777
| 0.99881 
1778
| 1.00102 
1779
| 0.98992
1780
1781
|}
1782
1783
1784
{| class="wikitable" style="text-align: left; margin: 1em auto;"
1785
|+ <span id='table-4'></span>Table. 4 Cylindrical roof under dead weight. Normalized vertical displacements for mesh orientation B
1786
|- style="border-top: 2px solid;"
1787
| [c]|r|r|r|r|r|r|r| 
1788
| colspan='3' style="text-align: (null);border-left: 2px solid;border-right: 2px solid;" | Point-A
1789
| colspan='3' style="text-align: (null);border-left: 2px solid;border-right: 2px solid;" | Point-B
1790
|- style="border-top: 2px solid;"
1791
|  NDOFs 
1792
| EBST 
1793
| EBST1 
1794
| BST 
1795
| CBST 
1796
| EBST1 
1797
| BST
1798
|-
1799
| 16 
1800
| 0.26029 
1801
| 0.83917 
1802
| 0.40416 
1803
| 0.52601 
1804
| 0.86133 
1805
| 0.89778
1806
|-
1807
| 56 
1808
| 0.81274 
1809
| 1.10368 
1810
| 0.61642 
1811
| 0.67898 
1812
| 0.93931 
1813
| 0.68238
1814
|-
1815
| 208 
1816
| 0.97651 
1817
| 1.04256 
1818
| 0.85010 
1819
| 0.93704 
1820
| 1.00255 
1821
| 0.86366
1822
|-
1823
| 800 
1824
| 1.00085 
1825
| 1.01195 
1826
| 0.95626 
1827
| 0.99194 
1828
| 1.00211 
1829
| 0.95864
1830
|- style="border-bottom: 2px solid;"
1831
| 3136 
1832
| 1.00129 
1833
| 1.00337 
1834
| 0.98879 
1835
| 0.99828 
1836
| 1.00017 
1837
| 0.98848
1838
1839
|}
1840
1841
1842
{| class="wikitable" style="text-align: left; margin: 1em auto;"
1843
|+ <span id='table-5'></span>Table. 5 Cylindrical roof under dead weight. Normalized vertical displacements for non-structured mesh
1844
|- style="border-top: 2px solid;"
1845
| [c]|r|r|r|r|r|r|r| 
1846
| colspan='3' style="text-align: (null);border-left: 2px solid;border-right: 2px solid;" | Point-A
1847
| colspan='3' style="text-align: (null);border-left: 2px solid;border-right: 2px solid;" | Point-B
1848
|- style="border-top: 2px solid;"
1849
|  NDOFs 
1850
| EBST 
1851
| EBST1 
1852
| BST 
1853
| EBST 
1854
| EBST1 
1855
| BST
1856
|-
1857
| 851 
1858
| 0.97546 
1859
| 0.8581 
1860
| 0.97598 
1861
| 0.97662 
1862
| 1.0027 
1863
| 0.97194
1864
|-
1865
| 3311 
1866
| 0.98729 
1867
| 0.9682 
1868
| 0.98968 
1869
| 0.98476 
1870
| 1.0083 
1871
| 0.98598
1872
|- style="border-bottom: 2px solid;"
1873
| 13536 
1874
| 0.99582 
1875
| 0.9992 
1876
| 1.00057 
1877
| 0.99316 
1878
| 0.9973 
1879
| 0.99596
1880
1881
|}
1882
1883
Plots in Figure [[#img-7|7]].b show the normalized displacement of point-B for structured meshes as a function of the number of degrees of freedom for each case studied. An excellent convergence for the EBST element can be seen. The version with only one integration point (EBST1) presents a behavior a little more flexible and converges from above for structured meshes. Table [[#table-5|5]] shows that both the EBST and the EBST1 elements have an excellent behavior for non structured meshes.
1884
1885
===9.4 Open semi-spherical dome with point loads===
1886
1887
The main problem of finite elements with initially curved geometry is the so called membrane locking. The EBST element  has a quadratic interpolation of the geometry, then it may suffer from this problem. To assess this we resort to an example of inextensional bending. This is an hemispherical shell of radius <math display="inline">r=10</math> and thickness <math display="inline">h=0.04</math> with an 18<math display="inline">^{o}</math> hole in the pole and free at all boundaries, subjected to two inward and two outward forces 90<math display="inline">^{o}</math> apart. Material properties are <math display="inline">E=6.825\times{10}^{7}</math> and <math display="inline">\nu=0.3</math>. Figure [[#img-8|8]].a shows the discretized geometry (only one quarter of the geometry is considered due to symmetry).
1888
1889
<div id='img-8'></div>
1890
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1891
|-
1892
|
1893
[[File:Draft_Samper_226033773_7798_Fig8a.jpeg|400px|]]
1894
|[[Image:draft_Samper_226033773-fig8b.png|400px|Pinched hemispherical shell with a hole, (a)geometry, (b)normalized displacement]]
1895
|- style="text-align: center; font-size: 75%;"
1896
| colspan="2" | '''Figure 8:''' Pinched hemispherical shell with a hole, (a)geometry, (b)normalized displacement
1897
|}
1898
1899
In Figure [[#img-8|8]].b the displacements of the points under the loads have been plotted versus the number of nodes used in the discretization. Due to the orientation of the meshes chosen, the displacement of the point under the inward load is not the same as the displacement under the outward load, so in the figure an average (the absolute values) has been used. Results obtained with other elements have been included for comparison: two membrane locking free elements, namely the original linear BST element and a transverse shear-deformable quadrilateral (QUAD) [33]; a transverse shear deformable quadratic triangle (TRIA) [2] that is vulnerable to locking and an assumed strain quadratic triangle (TRIC) [3] that does not exhibit membrane locking.
1900
1901
From the plotted results it can be seen that the EBST element presents slight membrane locking in bending dominated problems with initially curved geometries. This locking is much less severe than in a standard quadratic triangle. Membrane locking disappears when only one integration point is used (EBST1 element).
1902
1903
===9.5 Inflation of a sphere===
1904
1905
The example is the inflation of a spherical shell under internal pressure. An incompressible Mooney-Rivlin constitutive material has been considered. The Ogden parameters are <math display="inline">N=2</math>, <math display="inline">\alpha _{1}=2</math>, <math display="inline">\mu _{1}=40</math>, <math display="inline">\alpha _{2}=-2</math>, <math display="inline">\mu _{2}=-20</math>. Due to the simple geometry an analytical solution exists [34] (with <math display="inline">\gamma =R/R^{0}</math>):
1906
1907
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1908
|-
1909
| 
1910
{| style="text-align: left; margin:auto;" 
1911
|-
1912
| style="text-align: center;" | <math> p=\frac{h^{0}}{R^{0}\gamma ^{2}}\frac{dW}{d\gamma }=\frac{8h^{0} }{R^{0}\gamma ^{2}} \left( \gamma ^{6}-1\right) \left( \mu _{1}-\mu _{2}\gamma ^{2}\right) </math>
1913
|}
1914
|}
1915
1916
In this numerical simulation the same geometric and material parameters used in Ref. <span id='citeF-23'></span>[[#cite-23|[23]]] have been adopted: <math display="inline">R^{0}=1</math> and <math display="inline">h^{0}=0.02</math>. The three meshes of EBST1 element considered to evaluate convergence are shown in Figure [[#img-9|9]].a. The value of the actual radius as a function of the internal pressure is plotted in Figure [[#img-9|9]].b for the different meshes and is also compared with the analytical solution. It can be seen that with a few degrees of freedom it is possible to obtain an excellent agreement for the range of strains considered. The final value corresponds to a  ratio of <math display="inline">h/R=0.00024</math>.
1917
1918
<div id='img-9'></div>
1919
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1920
|-
1921
|[[File:Draft_Samper_226033773_5233_Fig9.jpeg|500px|]]
1922
|-
1923
|[[File:Draft_Samper_226033773_9697_Fig9b.jpeg|300px|Inflation of sphere of Mooney-Rivlin material. (a) Meshes of EBST1 elements used in the analysis (b) Change of radius as a function of the internal pressure.]]
1924
|- style="text-align: center; font-size: 75%;"
1925
| '''Figure 9:''' Inflation of sphere of Mooney-Rivlin material. (a) Meshes of EBST1 elements used in the analysis (b) Change of radius as a function of the internal pressure.
1926
|}
1927
1928
===9.6 Clamped spherical dome under impulse pressure loading===
1929
1930
The geometry of the dome and the material properties chosen are shown in Figure [[#img-10|10]]. A uniform pressure load of 600 psi is applied to the upper surface of the dome. The different meshes used in the analysis are shown in Figure [[#img-11|11]]. One fourth of the dome is considered only due to symmetry. Two different analyses under elastic and elastic-plastic conditions were carried out. The number of thickness layers in eq.([[#eq-96|96]]) is four. Numerical experiments show that this suffice to provide an accurate solution for large elastic-plastic problems [26]. Results are obtained using the explicit scheme.
1931
1932
<div id='img-10'></div>
1933
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1934
|-
1935
|[[Image:draft_Samper_226033773-fig10.png|400px|Spherical dome under impulse pressure. Geometry and material]]
1936
|- style="text-align: center; font-size: 75%;"
1937
| colspan="1" | '''Figure 10:''' Spherical dome under impulse pressure. Geometry and material
1938
|}
1939
1940
<div id='img-11'></div>
1941
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1942
|-
1943
|
1944
[[File:Draft_Samper_226033773_1877_Fig11.jpeg|600px|Spherical dome under impulse pressure. Meshes used in the analysis. Mesh-1 with 338 elements, Mesh-2 with 1250 elements, and Mesh-3 with 2888 elements]]
1945
|- style="text-align: center; font-size: 75%;"
1946
| colspan="1" | '''Figure 11:''' Spherical dome under impulse pressure. Meshes used in the analysis. Mesh-1 with 338 elements, Mesh-2 with 1250 elements, and Mesh-3 with 2888 elements
1947
|}
1948
1949
<div id='img-12'></div>
1950
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1951
|-
1952
|[[Image:draft_Samper_226033773-fig12.png|600px|Spherical dome under impulse pressure. History of central deflection for elastic material]]
1953
|- style="text-align: center; font-size: 75%;"
1954
| colspan="1" | '''Figure 12:''' Spherical dome under impulse pressure. History of central deflection for elastic material
1955
|}
1956
1957
<div id='img-13'></div>
1958
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1959
|-
1960
|[[Image:draft_Samper_226033773-fig13.png|600px|Spherical dome under impulse pressure. History of central deflection for elastic-plastic material]]
1961
|- style="text-align: center; font-size: 75%;"
1962
| colspan="1" | '''Figure 13:''' Spherical dome under impulse pressure. History of central deflection for elastic-plastic material
1963
|}
1964
1965
Figure [[#img-12|12]] shows results for the time history of the central deflection using different meshes and ''elastic material properties'' for both  BST and EBST1 elements. Results are almost identical for mesh-2 and mesh-3, showing the excellent convergence properties. The coarsest mesh shows some differences between both elements, but for the finer meshes the results are almost identical. Figure [[#img-13|13]] shows similar results but now for an ''elastic-plastic material''. The excellent convergence  of the BST and EBST elements is again noticeable.
1966
1967
Results obtained with the present elements compare very well with published results using fine meshes. See for example ABAQUS Explicit example problems manual <span id='citeF-35'></span>[[#cite-35|[35]]] and WHAMS-3D manual [36], showing plots comparing results using different shell elements.
1968
1969
A summary of results for the central deflection at significant times is given in Tables [[#table-6|6]] and [[#table-7|7]]. Further details on the solution of this problem with the standard  BST element can be found in [26].
1970
1971
1972
{| class="wikitable" style="text-align: right; margin: 1em auto;"
1973
|+ <span id='table-6'></span>Table. 6 Spherical dome. Elastic material. Comparison of the central deflection values at the mid point obtained with the BST and EBST1  elements for different meshes
1974
|- style="border-top: 2px solid;"
1975
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  Element/mesh 
1976
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.2 ms</math>
1977
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.4 ms</math>
1978
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.6 ms</math>
1979
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.8 ms</math>
1980
|- style="border-top: 2px solid;"
1981
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |   BST Coarse  
1982
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05155 
1983
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09130 
1984
| style="border-left: 2px solid;border-right: 2px solid;" | 0.04414 
1985
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08945 
1986
|-
1987
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST Medium  
1988
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04542 
1989
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09177 
1990
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03863 
1991
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08052 
1992
|-
1993
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST Fine    
1994
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04460 
1995
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09022 
1996
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03514 
1997
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08132 
1998
|- style="border-top: 2px solid;"
1999
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  EBST1 Coarse  
2000
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05088 
2001
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08929 
2002
| style="border-left: 2px solid;border-right: 2px solid;" | 0.04348 
2003
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08708 
2004
|-
2005
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 Medium  
2006
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04527 
2007
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09134 
2008
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03865 
2009
| style="border-left: 2px solid;border-right: 2px solid;" | -0.07979 
2010
|- style="border-bottom: 2px solid;"
2011
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 Fine    
2012
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04453 
2013
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09004 
2014
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03510 
2015
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08099 
2016
2017
|}
2018
2019
2020
{| class="wikitable" style="text-align: left; margin: 1em auto;"
2021
|+ <span id='table-7'></span>Table. 7 Spherical dome. Elastic-plastic material. Comparison of the central deflection values at the mid point obtained with the BST and EBST1  elements for different meshes
2022
|- style="border-top: 2px solid;"
2023
| [c]|l|r|r|r|r| Element/mesh 
2024
| <math>t = 0.2 ms</math>
2025
| <math>t = 0.4 ms</math>
2026
| <math>t = 0.6 ms</math>
2027
| <math>t = 0.8 ms</math>
2028
|- style="border-top: 2px solid;"
2029
|   BST Coarse  
2030
| -0.05888 
2031
| -0.05869 
2032
| -0.02938 
2033
| -0.06521 
2034
|-
2035
| BST Medium  
2036
| -0.05376 
2037
| -0.06000 
2038
| -0.02564 
2039
| -0.06098 
2040
|-
2041
| BST Fine    
2042
| -0.05312 
2043
| -0.05993 
2044
| -0.02464 
2045
| -0.06105 
2046
|- style="border-top: 2px solid;"
2047
|  EBST1 Coarse  
2048
| -0.05827 
2049
| -0.05478 
2050
| -0.02792 
2051
| -0.06187 
2052
|-
2053
| EBST1 Medium  
2054
| -0.05374 
2055
| -0.05884 
2056
| -0.02543 
2057
| -0.06080 
2058
|- style="border-bottom: 2px solid;"
2059
| EBST1 Fine    
2060
| -0.05317 
2061
| -0.05935 
2062
| -0.02458 
2063
| -0.06085 
2064
2065
|}
2066
2067
===9.7 Cylindrical panel under impulse loading===
2068
2069
The geometry of the cylinder and the material properties are shown in Figure [[#img-14|14]]. A prescribed initial normal velocity of <math display="inline">v_{o}=-5650</math> in/sec is applied to the points in the region shown modelling the effect of the detonation of an explosive layer. The panel is assumed clamped along all the boundary. One half of the cylinder is discretized only due to symmetry conditions. Three different meshes of <math display="inline">6\times{12}</math>, <math display="inline">12\times{32}</math> and <math display="inline">18\times{48}</math>  BST elements were used for the analysis. The deformed configurations for <math display="inline">time =1 msec</math> are shown for the three meshes in Figure [[#img-15|15]].
2070
2071
<div id='img-14'></div>
2072
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2073
|-
2074
|[[Image:draft_Samper_226033773-fig14.png|600px|Cylindrical panel under impulse loading. Geometry and material properties]]
2075
|- style="text-align: center; font-size: 75%;"
2076
| colspan="1" | '''Figure 14:''' Cylindrical panel under impulse loading. Geometry and material properties
2077
|}
2078
2079
<div id='img-15'></div>
2080
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2081
|-
2082
|[[Image:draft_Samper_226033773-fig15.png|600px|Impulsively loaded cylindrical panel. Deformed meshes for time =1 msec]]
2083
|- style="text-align: center; font-size: 75%;"
2084
| colspan="1" | '''Figure 15:''' Impulsively loaded cylindrical panel. Deformed meshes for <math>time =1 msec</math>
2085
|}
2086
2087
<div id='img-16'></div>
2088
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2089
|-
2090
|[[Image:draft_Samper_226033773-fig16.png|600px|Cylindrical panel under impulse loading. Time evolution of the displacement of two points along the crown line. Comparison of results obtained with BST and EBST1 elements (mesh 1: 6×12 elements and mesh 3: 18×48 elements) and experimental values ]]
2091
|- style="text-align: center; font-size: 75%;"
2092
| colspan="1" | '''Figure 16:''' Cylindrical panel under impulse loading. Time evolution of the displacement of two points along the crown line. Comparison of results obtained with BST and EBST1 elements (mesh 1: <math>6\times{12}</math> elements and mesh 3: <math>18\times{48}</math> elements) and experimental values 
2093
|}
2094
2095
The analysis was performed assuming an elastic-perfect plastic material behaviour (<math display="inline">\sigma _y = k</math> <math display="inline">k'=0</math>). A study of the convergence of the solution with the number of thickness layers showed again that four layers suffice to capture accurately the non linear material response [26].
2096
2097
A comparison of the results obtained with both elements using the coarse mesh and the finer mesh is shown in Figure [[#img-16|16]] where experimental results reported in <span id='citeF-37'></span>[[#cite-37|[37]]] have also been plotted for comparison purposes. Good agreement between the numerical and experimental results is obtained. Figures [[#img-16|16]] show the time evolution of the vertical displacement of two reference points along the center line located at <math display="inline">y=6.28</math>in and <math display="inline">y=9.42</math>in, respectively. For the finer mesh results between both elements are almost identical. For the coarse mesh it can been seen again that the element BST is more flexible than element EBST1.
2098
2099
The numerical values of the vertical displacement at the two reference points obtained with the BST and EBST1  elements after a time of 0.4 ms using the <math display="inline">16\times{32}</math> mesh are compared in Table [[#table-8|8]]  with a numerical solution obtained by Stolarski ''et al.'' [38] using a curved triangular shell element and the <math display="inline">16\times{32}</math> mesh. Experimental results reported in [37] are also given for comparison. It is interesting to note the reasonable agreement of the results for <math display="inline">y=6.28</math>in. and the discrepancy of present and other published numerical solutions with the experimental value for <math display="inline">y=9.42</math>in.
2100
2101
2102
{| class="wikitable" style="text-align: left; margin: 1em auto;"
2103
|+ <span id='table-8'></span>Table. 8 Cylindrical panel under impulse load. Comparison of vertical displacement values of two central points for <math>t=0.4</math> ms
2104
|- style="border-top: 2px solid;"
2105
| [c]|l|r|r|r|r| 
2106
| colspan='2' style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | Vertical displacement (in.)
2107
|- style="border-top: 2px solid;"
2108
|  element/mesh                
2109
| <math>y=6.28</math>in 
2110
| <math>y=9.42</math>in 
2111
|- style="border-top: 2px solid;"
2112
|  BST  (<math display="inline"> 6\times 12</math> el.)    
2113
| -1.310     
2114
| -0.679      
2115
|-
2116
| BST  (<math display="inline">18\times 48</math> el.)    
2117
| -1.181     
2118
| -0.587      
2119
|-
2120
| EBST1 (<math display="inline"> 6\times 12</math> el.)    
2121
| -1.147     
2122
| -0.575      
2123
|-
2124
| EBST1 (<math display="inline">18\times 48</math> el.)    
2125
| -1.171     
2126
| -0.584      
2127
|-
2128
| Stolarski ''et al.'' [38] 
2129
| -1.183     
2130
| -0.530      
2131
|- style="border-bottom: 2px solid;"
2132
| Experimental [37] 
2133
| -1.280     
2134
| -0.700      
2135
2136
|}
2137
2138
<div id='img-17'></div>
2139
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2140
|-
2141
|[[Image:draft_Samper_226033773-fig17.png|600px|Cylindrical panel under impulse loading. Final deformation (t=1 msec) of the panel at the cross section y=6.28 in Comparison with experimental values. ]]
2142
|- style="text-align: center; font-size: 75%;"
2143
| colspan="1" | '''Figure 17:''' Cylindrical panel under impulse loading. Final deformation (<math>t=1 msec</math>) of the panel at the cross section <math>y=6.28 in</math> Comparison with experimental values. 
2144
|}
2145
2146
<div id='img-18'></div>
2147
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2148
|-
2149
|[[Image:draft_Samper_226033773-fig18.png|600px|Cylindrical panel under impulse loading. Final deformation (t=1 msec) of the panel at the crown line (x=0.00 in). Comparison with experimental values. ]]
2150
|- style="text-align: center; font-size: 75%;"
2151
| colspan="1" | '''Figure 18:''' Cylindrical panel under impulse loading. Final deformation (<math>t=1 msec</math>) of the panel at the crown line (<math>x=0.00 in</math>). Comparison with experimental values. 
2152
|}
2153
2154
The deformed shapes of the transverse section for <math display="inline">y=6.28</math>in. and the longitudinal section for <math display="inline">x=0</math> obtained with the both elements for the coarse and the fine meshes after 1ms. are compared with the experimental results in Figures [[#img-17|17]] and [[#img-18|18]].  Excellent agreement is observed for the fine mesh for both elements.
2155
2156
===9.8 Airbag Membranes===
2157
2158
===Inflation/deflation of a circular airbag===
2159
2160
This example has been taken from Ref.[23] where it is shown that the final configuration is mesh dependent due to the strong instabilities leading to a non-uniqueness of the solution. In [23]  it is also discussed the important regularizing properties of the bending energy, that when disregarded leads to massive wrinkling in the compressed zones.
2161
2162
The airbag geometry is initially circular with an undeformed radius of <math display="inline">0.35</math>.  The constitutive material is a linear isotropic elastic one with modulus of elasticity <math display="inline">E=6\times 10^{7}</math>Pa, Poisson's ratio <math display="inline">\nu =0.3</math> and density <math display="inline">\rho = 2000</math>kg/m<math display="inline">^3</math>.  Arbitrarily only one quarter of the geometry has been modelled.  Only the normal displacement to the original plane is constrained along the boundaries.  The thickness considered is <math display="inline">h=0.0004</math>m and the inflation pressure is <math display="inline">5000</math>Pa. Pressure is linearly increased from 0 to the final value in <math display="inline">t=0.15</math> sec.
2163
2164
Figure 19 shows the final deformed configurations for a mesh with 10201 nodes and 20000 EBST1 elements.  The figure on the left (a) corresponds to an analysis including full bending effects and the right figure (b) is a pure membrane analysis.
2165
2166
We note that when the bending energy is included a more regular final pattern is obtained.  Also the final pattern is rather independent of the discretization (note that the solution is non unique due to the strong instabilities), and a massive wrinkling appears in the center of the modelled region.  On the other hand, the pure membrane solution shows a wrinkling pattern where the width of the wrinkle is the length of the element.
2167
2168
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2169
|-
2170
|
2171
[[File:Draft_Samper_226033773_2615_Fig19.jpeg|600px|Inflation of a circular airbag. Deformed configurations for final pressure. (a) bending formulation; (b) membrane formulation.]]
2172
|- style="text-align: center; font-size: 75%;"
2173
| colspan="1" | '''Figure 19:''' Inflation of a circular airbag. Deformed configurations for final pressure. (a) bending formulation; (b) membrane formulation.
2174
|}
2175
2176
<div id='img-20'></div>
2177
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2178
|-
2179
|
2180
[[File:Draft_Samper_226033773_9407_Fig20.jpeg|600px|Inflation and deflation of a circular air-bag.]]
2181
|- style="text-align: center; font-size: 75%;"
2182
| colspan="1" | '''Figure 20:''' Inflation and deflation of a circular air-bag.
2183
|}
2184
2185
<div id='img-21'></div>
2186
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2187
|-
2188
|
2189
[[File:Draft_Samper_226033773_9850_Fig21.jpeg|600px|Inflation and deflation of a closed  tube. L=5, D=1, h=5×10⁻³.]]
2190
|- style="text-align: center; font-size: 75%;"
2191
| colspan="1" | '''Figure 21:''' Inflation and deflation of a closed  tube. <math>L=5</math>, <math>D=1</math>, <math>h=5\times 10^{-3}</math>.
2192
|}
2193
2194
<div id='img-22'></div>
2195
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2196
|-
2197
|
2198
[[File:Draft_Samper_226033773_8861_Fig22.jpeg|600px|Inflation and deflation of a closed  tube. L=6, D=1, h=3×10⁻³.]]
2199
|- style="text-align: center; font-size: 75%;"
2200
| colspan="1" | '''Figure 22:''' Inflation and deflation of a closed  tube. <math>L=6</math>, <math>D=1</math>, <math>h=3\times 10^{-3}</math>.
2201
|}
2202
2203
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2204
|-
2205
|
2206
[[File:Draft_Samper_226033773_6495_fig23.jpg|600px|Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution.]]
2207
|- style="text-align: center; font-size: 75%;"
2208
| colspan="1" | '''Figure 23:''' Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution.
2209
|}
2210
2211
Figure 20 shows the results obtained for the de-inflation process.  Note that the spherical membrane falls down due to the self weight.  The final configuration is of course non-unique.
2212
2213
The next problem is the study of the inflating and de-inflating of a tube with a semi-spherical end cap.  The tube diameter is <math display="inline">D=1</math>, its total length is <math display="inline">L=5</math>m and the thickness <math display="inline">h=5\times 10^{-3}</math>m.  The material has the following properties <math display="inline">E=4\times 10^{8}</math>Pa, <math display="inline">\nu =0.35 </math>, <math display="inline">\rho =5\times 10^{4}</math>kg/m<math display="inline">^3</math>.  The tube is inflated fast until a pressure of <math display="inline">10^4</math> and then is de-inflated under self weight.  The analysis is performed with a mesh of 4176 EBST1 elements and 2163 nodes modelling a quarter of the geometry.  The evolution of the tube walls during the de-inflating process can be seen in Figure 21.  Note that the central part collapses as expected, while the semi-spherical cap remains unaltered.
2214
2215
The same analysis is repeated for a longer and thinner tube (<math display="inline">L=6</math>m and <math display="inline">h=3\times 10^{-3}</math>m).  The same material than in the previous case was chosen with a higher density (<math display="inline">\rho =7.5\times 10^{4}</math>kg/m<math display="inline">^3</math>).  The evolution of the tube walls is shown in Figure 22.  Note that the central part collapses again but in a less smoother manner due to the smaller thickness.
2216
2217
The last example of this kind is the inflation of a square airbag supporting a spherical object.  This example resembles a problem studied (numerically and experimentally) in Ref.[39], where fluid-structure interaction is the main subject.  Here the fluid is not modelled, and a uniform pressure is applied over all the internal surfaces.  The lower surface part of the airbag is limited by a rigid plane and on the upper part a spherical dummy object is set to study the interaction between the airbag and the object.
2218
2219
The airbag geometry is initially square with an undeformed side length of 0.643m.  The constitutive material chosen is a linear isotropic elastic one with <math display="inline">E=5.88\times 10^8</math>Pa, <math display="inline">\nu =0.4</math> and a density of <math display="inline">\rho = 1000</math> kg/m<math display="inline">^3</math>.  Only one quarter of the geometry has been modelled due to symmetry.  The thickness <math display="inline">h=0.00075</math>m and the inflation pressure is 250000Pa.  Pressure is linearly incremented from 0 to the final value in <math display="inline">t=0.15</math>sec.  The spherical object has a radius <math display="inline">r=0.08</math>m and a mass of 4.8kg (one quarter), and is subjected to gravity load during all the process.
2220
2221
The mesh includes 8192 EBST1 elements and 4225 nodes on each surface of the airbag.  Figure 23 shows the deformed configurations for three different times.  The sequence on the left of the figure corresponds to an analysis including full bending effects and the sequence on the right is the result of a pure membrane analysis.  A standard penalty formulation is used for frictionless contact.
2222
2223
===9.9 S-rail sheet stamping===
2224
2225
The final problem corresponds to one of the sheet stamping benchmark tests proposed in NUMISHEET'96 <span id='citeF-40'></span>[[#cite-40|[40]]].  The analysis comprises two parts, namely, stamping of a S-rail sheet component and springback computations once the stamping tools are removed.  Figure [[#img-24|24]] shows the deformed sheet after springback.
2226
2227
<div id='img-24'></div>
2228
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2229
|-
2230
|[[Image:draft_Samper_226033773-fig_n1.png|600px|Stamping of a S-rail. Final deformation of the sheet after springback obtained in the simulation. The triangular mesh of the deformed sheet is also shown]]
2231
|- style="text-align: center; font-size: 75%;"
2232
| colspan="1" | '''Figure 24:''' Stamping of a S-rail. Final deformation of the sheet after springback obtained in the simulation. The triangular mesh of the deformed sheet is also shown
2233
|}
2234
2235
The detailed geometry and material data can be found in the proceedings of the conference <span id='citeF-40'></span>[[#cite-40|[40]]] or in the web <span id='citeF-41'></span>[[#cite-41|[41]]]. The mesh used for the sheet has 6000 three  node triangular elements and 3111 points (Figure 24). The tools are treated as rigid bodies. The meshes used for the sheet and the tools are those provided by the  benchmark organizers. The material considered here is a mild steel (IF) with Young Modulus <math display="inline">E=2.06 GPa</math> and Poisson ratio <math display="inline">\nu=0.3</math>. Mises yield criterion was used for plasticity behaviour with non-linear isotropic hardening defined by <math display="inline">k(e^p) = 545(0.13+e^p)^{0.267} [MPa]</math>. A uniform friction of 0.15 was used for all the tools. A low (10kN) blank holder force was considered in this simulation.
2236
2237
Figure [[#img-25|25]] compares the punch force during the stamping stage obtained with both BST and EBST1 elements for the simulation and experimental values. Also for reference the average values of the simulations presented in the conference are included. Explicit and implicit simulations are considered as different curves. There is a remarkable coincidence between the experimental values and the results obtained with BST and EBST1 elements.
2238
2239
<div id='img-25'></div>
2240
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2241
|-
2242
|[[Image:draft_Samper_226033773-fig_n2.png|600px|Stamping of a S-rail. Punch force versus punch travel. Average of explicit and implicit results reported at the benchmark are also shown. ]]
2243
|- style="text-align: center; font-size: 75%;"
2244
| colspan="1" | '''Figure 25:''' Stamping of a S-rail. Punch force versus punch travel. Average of explicit and implicit results reported at the benchmark are also shown. 
2245
|}
2246
2247
Figure [[#img-26|26]] plots the <math display="inline">Z</math> coordinate along line B"&#8211;G" after springback stage. The top surface of the sheet does not remain plane due to some instabilities for the low blank holder force used. Results obtained with the simulations compare very well with the experimental results.
2248
2249
<div id='img-26'></div>
2250
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2251
|-
2252
|[[Image:draft_Samper_226033773-fig_n3.png|600px|Stamping of a S-rail. Z-coordinate along line B''&#8211;-G'' after springback. Average of explicit and implicit results reported at the benchmark are also shown. ]]
2253
|- style="text-align: center; font-size: 75%;"
2254
| colspan="1" | '''Figure 26:''' Stamping of a S-rail. Z-coordinate along line B''&#8211;-G'' after springback. Average of explicit and implicit results reported at the benchmark are also shown. 
2255
|}
2256
2257
==10 CONCLUDING REMARKS==
2258
2259
We have presented in the paper two alternative formulations for the rotation-free basic shell triangle (BST) using an assumed strain approach.  The simplest element of the family is based on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of four elements and a constant membrane field computed from the standard linear interpolation of the displacements within each triangle. An enhanced version of the element is obtained by using a quadratic interpolation of the geometry in terms of the six patch nodes.  This allows to compute an assumed linear membrane strain field which improves the in-plane behaviour of the original element.  A simple and economic version of the element using a single integration point has been presented.  The efficiency of the different rotation-free shell triangles has been demonstrated in many examples of application including linear and non linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
2260
2261
The enhanced rotation-free basic shell triangle element with a single integration point (the EBST1 element) has proven to be an excellent candidate for solving practical engineering shell and membrane problems involving complex geometry, dynamics, material non linearity and frictional contact conditions.
2262
2263
==ACKNOWLEDGEMENTS==
2264
2265
The problems analyzed with the explicit formulation were solved with the computer code STAMPACK <span id='citeF-42'></span>[[#cite-42|[42]]] where the rotation-free elements here presented have been implemented.  The support of the company QUANTECH (www.quantech.es) providing the code STAMPACK is gratefully acknowledged.
2266
2267
===BIBLIOGRAPHY===
2268
2269
<div id="cite-1"></div>
2270
'''[[#citeF-1|[1]]]''' E. Oñate. A review of some finite element families for thick and thin plate and shell analysis. Publication CIMNE N.53, May 1994.
2271
2272
<div id="cite-2"></div>
2273
'''[2]''' F.G. Flores, E. Oñate and F. Zárate. New assumed strain triangles for non-linear shell analysis. ''Computational Mechanics'', '''17''', 107&#8211;114, 1995.
2274
2275
<div id="cite-3"></div>
2276
'''[3]''' J.H. Argyris, M. Papadrakakis, C. Aportolopoulun and S. Koutsourelakis. The TRIC element. Theoretical and numerical investigation. ''Comput. Meth. Appl. Mech. Engrg.'', '''182''', 217&#8211;245, 2000.
2277
2278
<div id="cite-4"></div>
2279
'''[4]''' O.C. Zienkiewicz and R.L. Taylor. ''The finite element method. Solid Mechanics''. Vol II, Butterworth-Heinemann, 2000.
2280
2281
<div id="cite-5"></div>
2282
'''[5]'''  H. Stolarski, T. Belytschko and S.-H. Lee. A review of shell finite elements and corotational theories. ''Computational Mechanics Advances'', Vol. 2 N.2, North-Holland, 1995.
2283
2284
<div id="cite-6"></div>
2285
'''[[#citeF-6|[6]]]'''  E. Ramm and W.A. Wall. Shells in advanced computational environment. In ''V World Congress on Computational Mechanics'', J. Eberhardsteiner, H. Mang and F. Rammerstorfer (Eds.), Vienna, Austria, July 7&#8211;12, 2002. http://wccm.tuwien.ac.at.
2286
2287
<div id="cite-7"></div>
2288
'''[[#citeF-7|[7]]]'''  D. Bushnell and B.O. Almroth, “Finite difference energy method for non linear shell analysis”, ''J. Computers and Structures'', Vol. '''1''', 361, 1971.
2289
2290
<div id="cite-8"></div>
2291
'''[8]''' S.P. Timoshenko. ''Theory of Plates and Shells'', McGraw Hill, New York, 1971.
2292
2293
<div id="cite-9"></div>
2294
'''[[#citeF-9|[9]]]''' A.C. Ugural. ''Stresses in  Plates and Shells'', McGraw Hill, New York, 1981.
2295
2296
<div id="cite-10"></div>
2297
'''[10]''' R.A. Nay and S. Utku. An alternative to the finite element method. ''Variational Methods Eng.'', Vol. 1, 1972.
2298
2299
<div id="cite-11"></div>
2300
'''[11]''' J.K. Hampshire, B.H.V. Topping and H.C.  Chan. Three node triangular elements with one degree of freedom per node. ''Engng. Comput''. Vol. '''9''', pp. 49&#8211;62, 1992.
2301
2302
<div id="cite-12"></div>
2303
'''[12]''' R. Phaal and C.R. Calladine. A simple class of finite elements for plate and shell problems. I: Elements for beams and thin plates. ''Int. J. Num. Meth. Engng.'', Vol. '''35''', pp. 955&#8211;977, 1992.
2304
2305
<div id="cite-13"></div>
2306
'''[13]''' R. Phaal and C.R.  Calladine. A simple class of finite elements for plate and shell problems. II: An element for thin shells with only translational degrees of freedom. ''Int. J. Num. Meth. Engng.'', Vol. '''35''',  pp. 979&#8211;996, 1992.
2307
2308
<div id="cite-14"></div>
2309
'''[14]''' E. Oñate and Cervera M. Derivation of thin plate bending elements with one degree of freedom per node. ''Engineering Computations'', Vol. '''10''', pp 553&#8211;561, 1993.
2310
2311
<div id="cite-15"></div>
2312
'''[15]''' M. Brunet and F. Sabourin. Prediction of necking and wrinkles with a simplified shell element in sheet forming. ''Int. Conf. of Metal Forming Simulation in Industry'', Vol. II, pp. 27&#8211;48, B. Kröplin (Ed.), 1994.
2313
2314
<div id="cite-16"></div>
2315
'''[16]''' G. Rio, B. Tathi and H. Laurent. A new efficient finite element model of shell with only three degrees of freedom per node. Applications to industrial deep drawing test. in ''Recent Developments in Sheet Metal Forming Technology'', Ed. M.J.M. Barata Marques, 18th IDDRG Biennial Congress, Lisbon, 1994.
2316
2317
<div id="cite-17"></div>
2318
'''[17]''' G. Rio, B. Tathi and  H. Laurent. A new efficient finite element model of shell with only three degrees of freedom per node. Applications to industrial deep drawing test. in ''Recent Developments in Sheet Metal Forming Technology'', Ed. M.J.M. Barata Marques, 18th IDDRG Biennial Congress, Lisbon, 1994.
2319
2320
<div id="cite-18"></div>
2321
'''[18]'''  J. Rojek and E. Oñate. Sheet springback analysis using a simple shell triangle with translational degrees of freedom only. ''Int. J. of Forming Processes'', Vol. '''1''', No. 3, 275&#8211;296, 1998.
2322
2323
<div id="cite-19"></div>
2324
'''[19]'''  J. Rojek, E. Oñate and E. Postek. Application of explicit FE codes to simulation of sheet and bulk forming processes. ''J. of Materials Processing Technology'', Vols. '''80-81''', 620&#8211;627, 1998.
2325
2326
<div id="cite-20"></div>
2327
'''[20]'''  J. Jovicevic and E. Oñate. ''Analysis of beams and shells using a rotation-free finite element-finite volume formulation'', Monograph 43, CIMNE, Barcelona, 1999.
2328
2329
<div id="cite-21"></div>
2330
'''[[#citeF-21|[21]]]''' E. Oñate and F. Zárate. Rotation-free plate and shell triangles. ''Int. J. Num. Meth. Engng.'', '''47''', pp. 557&#8211;603, 2000.
2331
2332
<div id="cite-22"></div>
2333
'''[22]''' F. Cirak and M. Ortiz. Subdivision surfaces: A new paradigm for thin-shell finite element analysis. ''Int. J. Num. Meths in Engng'',  Vol. 47, 2000, 2039-2072.
2334
2335
<div id="cite-23"></div>
2336
'''[[#citeF-23|[23]]]''' F. Cirak and M. Ortiz. Fully <math display="inline">C^{1}</math>-conforming subdivision elements for finite deformations thin-shell analysis. ''Int. J. Num. Meths in Engng'', vol. 51, 2001, 813-833.
2337
2338
<div id="cite-24"></div>
2339
'''[[#citeF-24|[24]]]''' F.G. Flores and E. Oñate. A basic thin shell triangle with only translational DOFs for large strain plasticity. ''Int. J. Num. Meths in Engng'', Vol. '''51''', pp 57-83, 2001.
2340
2341
<div id="cite-25"></div>
2342
'''[25]''' G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei and R.L. Taylor. Continuous/discontinuous finite element approximation of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. ''Comput. Methods Appl. Mech. Engrg.'', Vol. 191, 3669&#8211;3750, 2002.
2343
2344
<div id="cite-26"></div>
2345
'''[26]'''  E. Oñate, P. Cendoya and J. Miquel. Non linear explicit dynamic analysis of shells using the BST rotation-free triangle. ''Engineering Computations'', '''19''' (6), 662&#8211;706, 2002.
2346
2347
<div id="cite-27"></div>
2348
'''[[#citeF-27|[27]]]''' F.G. Flores and E. Oñate. Improvements in the membrane behaviour of the three node rotation-free BST shell triangle  using an assumed strain approach. ''Computer Methods in Applied Mechanics and Engineering'', in press, 2003.
2349
2350
<div id="cite-28"></div>
2351
'''[28]'''  O.C. Zienkiewicz and E. Oñate. Finite Elements vs. Finite Volumes. Is there really a choice?. ''Nonlinear Computational Mechanics''. State of the Art. (Eds. P. Wriggers and R. Wagner). Springer Verlag, Heidelberg, 1991.
2352
2353
<div id="cite-29"></div>
2354
'''[[#citeF-29|[29]]]''' E. Oñate, M.  Cervera  and O.C. Zienkiewicz. A finite volume format for structural mechanics. ''Int. J. Num. Meth. Engng.'', '''37''', pp. 181&#8211;201, 1994.
2355
2356
<div id="cite-30"></div>
2357
'''[30]''' R. Hill. A Theory of the Yielding and Plastic Flow of Anisotropic Metals. ''Proc. Royal Society London'', Vol. '''A193''', pp. 281, 1948.
2358
2359
<div id="cite-31"></div>
2360
'''[31]''' R.W. Ogden. Large deformation isotropic elasticity: on the correlation of theory and experiments for incompressible rubberlike solids. ''Proceedings of the Royal Society of London'', Vol. '''A326''', pp. 565&#8211;584, 1972.
2361
2362
<div id="cite-32"></div>
2363
'''[32]''' H.C. Huang, ''Static and Dynamic Analysis of Plates and Shells'', page 40, Springer-Verlag, Berlin, 1989.
2364
2365
<div id="cite-33"></div>
2366
'''[33]''' E.N. Dvorkin and K.J. Bathe. A continuum mechanics based four node shell element for general non-linear analysis. ''Eng. Comp.'', '''1''', 77&#8211;88, 1984.
2367
2368
<div id="cite-34"></div>
2369
'''[34]''' A. Needleman. Inflation of spherical rubber ballons. ''Int. J. of Solids and Structures'', '''13''', 409&#8211;421, 1977.
2370
2371
<div id="cite-35"></div>
2372
'''[[#citeF-35|[35]]]'''  Hibbit, Karlson and Sorensen Inc. ABAQUS, version 5.8, Pawtucket, USA, 1998.
2373
2374
<div id="cite-36"></div>
2375
'''[36]''' WHAMS-3D. An explicit 3D finite element program. KBS2  Inc., Willow Springs, Illinois 60480, USA.
2376
2377
<div id="cite-37"></div>
2378
'''[[#citeF-37|[37]]]'''  H.A. Balmer and E.A. Witmer. Theoretical experimental correlation of large dynamic and permanent deformation of impulsively loaded simple structures. ''Air force flight Dynamic Lab. Rep. FDQ-TDR-64-108'', Wright-Patterson AFB, Ohio, USA, 1964.
2379
2380
<div id="cite-38"></div>
2381
'''[38]'''  H. Stolarski, T. Belytschko and N. Carpenter. A simple triangular curved shell element. ''Eng. Comput.'', Vol. 1, 210&#8211;218, 1984.
2382
2383
<div id="cite-39"></div>
2384
'''[39]'''  P.O. Marklund and L. Nilsson. Simulation of airbag inflation processes using a coupled fluid structure approach. ''Computational Mechanics'', '''29''', 289&#8211;297, 2002.
2385
2386
<div id="cite-40"></div>
2387
'''[[#citeF-40|[40]]]''' NUMISHEET'96, ''Third International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, NUMISHEET'96'', E.H. Lee, G.L. Kinzel and R.H. Wagoner (Eds.), Dearbon-Michigan, USA, 1996.
2388
2389
<div id="cite-41"></div>
2390
'''[[#citeF-41|[41]]]'''  <code>http://rclsgi.eng.ohio-state.edu/%Elee-j-k/numisheet96/</code>
2391
2392
<div id="cite-42"></div>
2393
'''[[#citeF-42|[42]]]''' STAMPACK. ''A General Finite Element System for Sheet Stamping and Forming Problems'', Quantech ATZ, Barcelona, Spain, 2003 (www.quantech.es).
2394
2395
==APPENDIX==
2396
2397
==11 Curvature matrix for the BST element==
2398
2399
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2400
|-
2401
| 
2402
{| style="text-align: left; margin:auto;" 
2403
|-
2404
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }=\mathbf{B}_{b} \times \mathbf{t}_3 \delta \mathbf{a}^{p}  </math>
2405
|}
2406
|}
2407
2408
with
2409
2410
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2411
|-
2412
| 
2413
{| style="text-align: left; margin:auto;" 
2414
|-
2415
| style="text-align: center;" | <math>\begin{array}{c} \\ \delta \mathbf{a}^{p}\\ 18\times{1} \end{array} =[\delta \mathbf{u}_{1}^{T},\delta \mathbf{u}_{2}^{T},\delta \mathbf{u}_{3} ^{T},\delta \mathbf{u}_{4}^{T},\delta \mathbf{u}_{5}^{T},\delta \mathbf{u}_{6}^{T}]^{T}  </math>
2416
|}
2417
|}
2418
2419
and 
2420
2421
<math>\mathbf{B}_{b}^{T}=</math>
2422
2423
2424
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2425
|- style="border-top: 2px solid;"
2426
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">+L^{M}_{2,1} L^{2}_{2,1}    +L^{M}_{3,1} L^{3}_{3,1} </math> 
2427
| style="border-left: 2px solid;border-right: 2px solid;" | <math>+L^{M}_{2,2} L^{2}_{2,2}    +L^{M}_{3,2} L^{3}_{3,2} </math>
2428
| style="border-left: 2px solid;border-right: 2px solid;" | <math>+L^{M}_{2,2} L^{2}_{2,1} +L^{M}_{2,1} L^{2}_{2,2}    +L^{M}_{3,2} L^{3}_{3,1} +L^{M}_{3,1} L^{3}_{3,2} </math>
2429
|- style="border-top: 2px solid;"
2430
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{1,1} L^{1}_{3,1}    +L^{M}_{3,1} L^{3}_{2,1} </math> 
2431
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{3,2}    +L^{M}_{3,2} L^{3}_{2,2} </math>
2432
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{3,1} +L^{M}_{1,1} L^{1}_{3,2}    +L^{M}_{3,2} L^{3}_{2,1} +L^{M}_{3,1} L^{3}_{2,2} </math>
2433
|- style="border-top: 2px solid;"
2434
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{1,1} L^{1}_{2,1}    +L^{M}_{2,1} L^{2}_{3,1} </math> 
2435
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{2,2}    +L^{M}_{2,2} L^{2}_{3,2} </math>
2436
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{2,1} +L^{M}_{1,1} L^{1}_{j,3}    +L^{M}_{2,2} L^{2}_{3,1} +L^{M}_{2,1} L^{2}_{3,2} </math>
2437
|- style="border-top: 2px solid;"
2438
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L^{M}_{1,1} L^{1}_{1,1} </math> 
2439
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{1,2} L^{1}_{1,2} </math>
2440
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{1,2} L^{1}_{1,1} +L^{M}_{1,1} L^{1}_{1,3} </math>
2441
|- style="border-top: 2px solid;"
2442
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L^{M}_{2,1} L^{2}_{1,1} </math> 
2443
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{2,2} L^{2}_{1,2} </math>
2444
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{2,2} L^{2}_{1,1} +L^{M}_{2,1} L^{2}_{1,3} </math>
2445
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2446
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L^{M}_{3,1} L^{3}_{1,1} </math> 
2447
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{3,2} L^{3}_{1,2} </math>
2448
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{3,2} L^{3}_{1,1} +L^{M}_{3,1} L^{3}_{1,3} </math>
2449
2450
|}
2451
2452
<math display="inline">-2</math> 
2453
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2454
|- style="border-top: 2px solid;"
2455
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{1,1}\rho _{11}^{1}+L^{M}_{1,2}\rho _{11}^{2} </math> 
2456
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,1}\rho _{22}^{1}+L^{M}_{i,2}\rho _{22}^{2} </math>
2457
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,1}\rho _{12}^{1}+L^{M}_{1,2}\rho _{12}^{2} </math>
2458
|- style="border-top: 2px solid;"
2459
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{2,1}\rho _{11}^{1}+L^{M}_{2,2}\rho _{11}^{2} </math> 
2460
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{2,1}\rho _{22}^{1}+L^{M}_{2,2}\rho _{22}^{2} </math>
2461
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{2,1}\rho _{12}^{1}+L^{M}_{2,2}\rho _{12}^{2} </math>
2462
|- style="border-top: 2px solid;"
2463
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{3,1}\rho _{11}^{1}+L^{M}_{3,2}\rho _{11}^{2} </math> 
2464
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{3,1}\rho _{22}^{1}+L^{M}_{3,2}\rho _{22}^{2} </math>
2465
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{3,1}\rho _{12}^{1}+L^{M}_{3,2}\rho _{12}^{2} </math>
2466
|- style="border-top: 2px solid;"
2467
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2468
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2469
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2470
|- style="border-top: 2px solid;"
2471
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2472
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2473
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2474
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2475
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2476
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2477
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2478
2479
|}
2480
2481
<br/><br/>
2482
2483
==12 Membrane strain matrix and curvature matrix for the EBST element==
2484
2485
===12.1 Membrane strain matrix===
2486
2487
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2488
|-
2489
| 
2490
{| style="text-align: left; margin:auto;" 
2491
|-
2492
| style="text-align: center;" | <math>\delta {\boldsymbol \varepsilon }_m ={B}_m \delta {a}^p  </math>
2493
|}
2494
|}
2495
2496
<math>\mathbf{B}_{m}^{T}=\frac{1}{3}</math>
2497
2498
2499
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2500
|- style="border-top: 2px solid;"
2501
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{1,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}   + N^{2}_{1,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}   + N^{3}_{1,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2502
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{1,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{1,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{1,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2503
|- style="border-top: 2px solid;"
2504
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{2,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}   + N^{2}_{2,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}   + N^{3}_{2,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2505
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{2,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{2,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{2,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2506
|- style="border-top: 2px solid;"
2507
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{3,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}   + N^{2}_{3,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}   + N^{3}_{3,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2508
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{3,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{3,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{3,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2509
|- style="border-top: 2px solid;"
2510
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{4,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1} </math> 
2511
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{4,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2} </math>
2512
|- style="border-top: 2px solid;"
2513
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{2}_{5,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1} </math> 
2514
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{2}_{5,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2} </math>
2515
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2516
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{3}_{6,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2517
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{3}_{6,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2518
2519
|}
2520
2521
2522
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2523
|- style="border-top: 2px solid;"
2524
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{1,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{1,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}    +N^{2}_{1,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{1,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}    +N^{3}_{1,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{1,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2525
|- style="border-top: 2px solid;"
2526
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{2,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{2,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{2,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{2,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{2,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{2,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2527
|- style="border-top: 2px solid;"
2528
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{3,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{3,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}    +N^{2}_{3,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{3,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}    +N^{3}_{3,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{3,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2529
|- style="border-top: 2px solid;"
2530
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{4,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{4,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2} </math> 
2531
|- style="border-top: 2px solid;"
2532
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{2}_{5,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{5,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2} </math> 
2533
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2534
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{3}_{6,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{6,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2535
2536
|}
2537
2538
===12.2 Curvature matrix===
2539
2540
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2541
|-
2542
| 
2543
{| style="text-align: left; margin:auto;" 
2544
|-
2545
| style="text-align: center;" | <math>\delta {\boldsymbol \kappa } ={B}_b \times \mathbf{t}_3 \delta {a}^p  </math>
2546
|}
2547
|}
2548
2549
<math>\mathbf{B}_{b}^{T}=2</math>
2550
2551
2552
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2553
|- style="border-top: 2px solid;"
2554
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{1,1}\right)_{G_{1}}   +L_{2,1}\left(N_{1,1}\right)_{G_{2}}   +L_{3,1}\left(N_{1,1}\right)_{G_{3}}</math> 
2555
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{1,2}\right)_{G_{1}}   +L_{2,2}\left(N_{1,2}\right)_{G_{2}}   +L_{3,2}\left(N_{1,2}\right)_{G_{3}}</math>
2556
|- style="border-top: 2px solid;"
2557
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{2,1}\right)_{G_{1}}   +L_{2,1}\left(N_{2,1}\right)_{G_{2}}   +L_{3,1}\left(N_{2,1}\right)_{G_{3}}</math> 
2558
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{2,2}\right)_{G_{1}}   +L_{2,2}\left(N_{2,2}\right)_{G_{2}}   +L_{3,2}\left(N_{2,2}\right)_{G_{3}}</math>
2559
|- style="border-top: 2px solid;"
2560
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{3,1}\right)_{G_{1}}   +L_{2,1}\left(N_{3,1}\right)_{G_{2}}   +L_{3,1}\left(N_{3,1}\right)_{G_{3}}</math> 
2561
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{3,2}\right)_{G_{1}}   +L_{2,2}\left(N_{3,2}\right)_{G_{2}}   +L_{3,2}\left(N_{3,2}\right)_{G_{3}}</math>
2562
|- style="border-top: 2px solid;"
2563
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{4,1}\right)_{G_{1}}</math> 
2564
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{4,2}\right)_{G_{1}}</math>
2565
|- style="border-top: 2px solid;"
2566
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{2,1}\left(N_{5,1}\right)_{G_{2}}</math> 
2567
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{2,2}\left(N_{5,2}\right)_{G_{2}}</math>
2568
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2569
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{3,1}\left(N_{6,1}\right)_{G_{3}}</math> 
2570
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{3,2}\left(N_{6,2}\right)_{G_{3}}</math>
2571
2572
|}
2573
2574
2575
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2576
|- style="border-top: 2px solid;"
2577
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{1,1}\right)_{G_{1}}+L_{1,1}\left(N_{1,2}\right)_{G_{1}}   +L_{2,2}\left(N_{1,1}\right)_{G_{2}}+L_{2,1}\left(N_{1,2}\right)_{G_{2}}   +L_{3,2}\left(N_{1,1}\right)_{G_{3}}+L_{3,1}\left(N_{1,2}\right)_{G_{3}}</math> 
2578
|- style="border-top: 2px solid;"
2579
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{2,1}\right)_{G_{1}}+L_{1,1}\left(N_{2,2}\right)_{G_{1}}   +L_{2,2}\left(N_{2,1}\right)_{G_{2}}+L_{2,1}\left(N_{2,2}\right)_{G_{2}}   +L_{3,2}\left(N_{2,1}\right)_{G_{3}}+L_{3,1}\left(N_{2,2}\right)_{G_{3}}</math> 
2580
|- style="border-top: 2px solid;"
2581
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{3,1}\right)_{G_{1}}+L_{1,1}\left(N_{j,3}\right)_{G_{1}}   +L_{2,2}\left(N_{3,1}\right)_{G_{2}}+L_{2,1}\left(N_{j,3}\right)_{G_{2}}   +L_{3,2}\left(N_{3,1}\right)_{G_{3}}+L_{3,1}\left(N_{j,3}\right)_{G_{3}}</math> 
2582
|- style="border-top: 2px solid;"
2583
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{4,1}\right)_{G_{1}}+L_{1,1}\left(N_{4,3}\right)_{G_{1}}</math> 
2584
|- style="border-top: 2px solid;"
2585
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{2,2}\left(N_{5,1}\right)_{G_{2}}+L_{2,1}\left(N_{5,3}\right)_{G_{2}}</math> 
2586
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2587
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{3,2}\left(N_{6,1}\right)_{G_{3}}+L_{3,1}\left(N_{6,3}\right)_{G_{6}}</math> 
2588
2589
|}
2590
2591
<math>-2</math>
2592
2593
2594
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2595
|- style="border-top: 2px solid;"
2596
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\left(L_{1,1}\rho _{11}^{1}+L_{1,2}\rho _{11}^{2}\right)</math> 
2597
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{1,1}\rho _{22}^{1}+L_{i,2}\rho _{22}^{2}\right)</math>
2598
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{1,1}\rho _{12}^{1}+L_{1,2}\rho _{12}^{2}\right)</math>
2599
|- style="border-top: 2px solid;"
2600
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\left(L_{2,1}\rho _{11}^{1}+L_{2,2}\rho _{11}^{2}\right)</math> 
2601
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{2,1}\rho _{22}^{1}+L_{2,2}\rho _{22}^{2}\right)</math>
2602
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{2,1}\rho _{12}^{1}+L_{2,2}\rho _{12}^{2}\right)</math>
2603
|- style="border-top: 2px solid;"
2604
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\left(L_{3,1}\rho _{11}^{1}+L_{3,2}\rho _{11}^{2}\right)</math> 
2605
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{3,1}\rho _{22}^{1}+L_{3,2}\rho _{22}^{2}\right)</math>
2606
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{3,1}\rho _{12}^{1}+L_{3,2}\rho _{12}^{2}\right)</math>
2607
|- style="border-top: 2px solid;"
2608
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2609
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2610
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2611
|- style="border-top: 2px solid;"
2612
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2613
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2614
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2615
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2616
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2617
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2618
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2619
2620
|}
2621
2622
In this last expression <math display="inline">L_{i,j} =L_{i,j}^{M}</math>
2623

Return to Onate Flores 2003a.

Back to Top