You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
Published in ''Computer Methods in Applied Mechanics and Engineering, vol. 194, 2406-2443, 2005''
2
3
4
5
== SUMMARY ==
6
7
A family of rotation-free three node triangular shell elements is presented. The simplest element of the family is based on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of four elements and a constant membrane field computed from the standard linear interpolation of the displacements within each triangle. An enhanced version of the element is obtained by using a quadratic interpolation of the geometry in terms of the six patch nodes. This allows to compute an assumed linear membrane strain field which improves the in-plane behaviour of the original element. A simple and economic version of the element using a single integration point is presented. The efficiency of the different rotation-free shell triangles is demonstrated in many examples of application including linear and non linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
8
9
==1 INTRODUCTION==
10
11
Triangular shell elements are very useful for the solution of large scale shell problems such as those occurring in many practical engineering situations. Typical examples are the analysis of shell roofs under static and dynamic loads, sheet stamping processes, vehicle dynamics and crash-worthiness situations. Many of these problems involve high geometrical and material non linearities and time changing frictional contact conditions. These difficulties are usually increased by the need of discretizing complex geometrical shapes. Here the use of shell triangles and non-structured meshes becomes a critical necessity. Despite recent advances in the field <span id='citeF-1'></span>[[#cite-1|[1]]]&#8211;<span id='citeF-6'></span>[[#cite-6|[6]]] there are not so many simple shell triangles which are capable of accurately modelling the deformation of a shell structure under arbitrary loading conditions.
12
13
A promising line to derive simple shell triangles is to use the nodal displacements as the only unknown for describing the shell kinematics. This idea goes back to the original attempts to solve thin plate bending problems using finite difference schemes with the deflection as the only nodal variable <span id='citeF-7'></span>[[#cite-7|[7]]]&#8211;<span id='citeF-9'></span>[[#cite-9|[9]]].
14
15
In past years some authors have derived a number of thin plate and shell triangular elements free of rotational degrees of freedom (d.o.f.) based on Kirchhoff's theory [10]&#8211;<span id='citeF-27'></span>[[#cite-27|[27]]]. In essence all methods attempt to express the curvatures field over an element in terms of the displacements of a collection of nodes belonging to a patch of adjacent elements. Oñate and Cervera [14] proposed a general procedure of this kind combining finite element and finite volume concepts for deriving thin plate triangles and quadrilaterals with the deflection as the only nodal variable and presented a simple and competitive rotation-free three d.o.f. triangular element termed BPT (for Basic Plate Triangle). These ideas were extended and formalized in <span id='citeF-29'></span>[[#cite-29|29]] to derive a number of rotation-free thin plate and shell triangles. The basic ingredients of the method are a mixed Hu-Washizu formulation, a standard discretization into three node triangles, a linear finite element interpolation of the displacement field within each triangle and a finite volume type approach for computing constant curvature and bending moment fields within appropriate non-overlapping control domains. The so called cell-centered and cell-vertex triangular domains yield different families of rotation-free plate and shell triangles. Both the BPT plate element and its extension to shell analysis (termed BST for Basic Shell Triangle) can be derived from the cell-centered formulation. Here the control domain is an individual triangle. The constant curvatures field within a triangle is computed in terms of the displacements of the six nodes belonging to the four elements patch formed by the chosen triangle and the three adjacent triangles. The cell-vertex approach yields a different family of rotation-free plate and shell triangles. Details of the derivation of both rotation-free triangular shell element families can be found in <span id='citeF-29'></span>[[#cite-29|[21]]].
16
17
An extension of the BST element to the non linear analysis of shells was implemented in an explicit dynamic code by Oñate ''et al.'' [26] using an updated lagrangian formulation and a hypo-elastic constitutive model. Excellent numerical results were obtained for non linear dynamics of shells involving frictional contact situations and sheet stamping problems [18,19,20,26].
18
19
A large strain formulation for the BST element using a total lagrangian description was presented by Flores and Oñate [24]. A recent extension of this formulation is based on a quadratic interpolation of the geometry of the patch formed by the BST element and the three adjacent triangles [27]. This yields a linear displacement gradient field over the element from which linear membrane strains and  constant curvatures  can be computed within the BST element.
20
21
In this paper the formulation of the BST element is revisited using an assumed strain approach. The content of the paper is the following. First some basic concepts of the formulation of the original BST element using an assumed constant curvature field are given. Next, the basic equations of the non linear thin shell theory chosen based on a total lagrangian description are presented. Then the non linear formulation of the BST element is presented. This is based on an assumed constant membrane field derived from the linear displacement interpolation and an assumed constant curvature field expressed in terms of the displacements of the nodes of the four element patch using a finite volume type approach. An enhanced version of the BST element is derived using an assumed linear field for the membrane strains and an assumed constant curvature field. Both assumed fields are obtained from the quadratic interpolation of the patch geometry following the ideas presented in [27]. Details of the derivation of the tangent stiffness matrix needed  for a quasi-static implicit solution are given for both the BST and EBST elements. An efficient version of the  EBST element using one single quadrature point for integration of the tangent matrix is  presented. An explicit  scheme adequate for dynamic analysis is  briefly described.
22
23
The efficiency and accuracy of the standard and enhanced versions of the BST element is validated in a number of examples of application including linear and non linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
24
25
==2 FORMULATION OF THE BASIC PLATE TRIANGULAR USING AN ASSUMED CONSTANT CURVATURE FIELD==
26
27
Let us consider a patch of four plate three node triangles (Figure [[#img-1|1]]). The nodes 1, 2, and 3 in the main central triangle (M) are marked with circles while the external nodes in the patch (nodes 4, 5 and 6) are marked with squares. Mid side points in the central triangle are also marked with smaller squares. Kirchhoff's thin plate theory will be assumed to hold. The deflection is linearly interpolated within each three node triangle in the standard finite element manner as
28
29
{| class="formulaSCP" style="width: 100%; text-align: left;" 
30
|-
31
| 
32
{| style="text-align: left; margin:auto;" 
33
|-
34
| style="text-align: center;" | <math>w=\sum _{i=1}^{3}L_{i}^{e}w_{i}^{e} </math>
35
|}
36
| style="width: 5px;text-align: right;" | (1)
37
|}
38
39
where <math display="inline">L_{i}^{e}</math> are the linear shape functions of the three node triangle, <math display="inline">w_{i}^{e}</math> are nodal deflections and superindex <math display="inline">e</math> denotes element values.
40
41
<div id='img-1'></div>
42
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
43
|-
44
|[[Image:draft_Samper_226033773-fig1.png|400px|Patch of three node triangular elements including the central triangle (M) and three adjacent triangles (1, 2 and 3)]]
45
|- style="text-align: center; font-size: 75%;"
46
| colspan="1" | '''Figure 1:''' Patch of three node triangular elements including the central triangle (M) and three adjacent triangles (1, 2 and 3)
47
|}
48
49
The curvature field within the central triangle can be expressed in terms of a constant assumed curvature field as
50
51
<span id="eq-2"></span>
52
{| class="formulaSCP" style="width: 100%; text-align: left;" 
53
|-
54
| 
55
{| style="text-align: left; margin:auto;" 
56
|-
57
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\left\{ \begin{array}{c} \kappa _{xx}\\ \kappa _{yy}\\ \kappa _{xy} \end{array} \right\} =\hat{\boldsymbol \kappa } </math>
58
|}
59
| style="width: 5px;text-align: right;" | (2)
60
|}
61
62
where <math display="inline">{\boldsymbol \kappa }</math> is the curvature vector and <math display="inline">\hat{\boldsymbol \kappa }</math> is the assumed constant curvature field defined as
63
64
<span id="eq-3"></span>
65
{| class="formulaSCP" style="width: 100%; text-align: left;" 
66
|-
67
| 
68
{| style="text-align: left; margin:auto;" 
69
|-
70
| style="text-align: center;" | <math>\hat{\boldsymbol \kappa }={\frac{1}{A_{M}}}\int \int _{A_{M}}\left[ -{\frac{\partial ^{2} w}{\partial x^{2}}}-,{\frac{\partial ^{2}w}{\partial y^{2}}},-2{\frac{\partial ^{2}w}{\partial x\partial y}}\right] ^{T}dA </math>
71
|}
72
| style="width: 5px;text-align: right;" | (3)
73
|}
74
75
where <math display="inline">A_{M}</math> is the area of the central triangle in Figure [[#img-1|1]].
76
77
Integrating by parts Eq.([[#eq-3|3]]) and substituting the resulting expression for <math display="inline">\hat{\boldsymbol \kappa }</math> into Eq.([[#eq-2|2]]) gives the constant curvature field within the element as
78
79
<span id="eq-4"></span>
80
{| class="formulaSCP" style="width: 100%; text-align: left;" 
81
|-
82
| 
83
{| style="text-align: left; margin:auto;" 
84
|-
85
| style="text-align: center;" | <math>{\boldsymbol \kappa }={\frac{1}{A_{M}}}   {\displaystyle \oint _{\Gamma _{M}}}  \left[ \begin{array}{cc} -n_{x} & 0\\ 0 & -n_{y}\\ -n_{y} & -n_{x} \end{array} \right] \left\{ \begin{array}{c} \dfrac{\partial w}{\partial x}\\ \dfrac{\partial w}{\partial y} \end{array} \right\} d\Gamma </math>
86
|}
87
| style="width: 5px;text-align: right;" | (4)
88
|}
89
90
where <math display="inline">\Gamma _{M}</math> is the boundary of the central triangle.
91
92
Eq.([[#eq-4|4]]) defines the assumed constant curvature field within the central triangle in terms of the deflection gradient along the sides of the triangle. Equation (4) can be found to be equivalent to the standard conservation laws used in finite volume procedures as described in [28,29].
93
94
The computation of the line integral in Eq.([[#eq-4|4]]) poses a difficulty as the deflection gradient is discontinuous along the element sides. A simple method to overcome this problem is to compute the deflection gradient at the element sides as the average values of the gradient contributed by the two triangles sharing the side <span id='citeF-29'></span>[[#cite-29|[21,29]]]. Following this idea the constant curvature field with the element is computed as
95
96
<span id="eq-5"></span>
97
{| class="formulaSCP" style="width: 100%; text-align: left;" 
98
|-
99
| 
100
{| style="text-align: left; margin:auto;" 
101
|-
102
| style="text-align: center;" | <math>{\boldsymbol \kappa }={\frac{1}{A_{M}}}\sum _{j=1}^{3}{\frac{l_{j}^{M}}{2}}\left[ \begin{array}{cc} -n_{x}^{j} & 0\\ 0 & -n_{y}^{j}\\ -n_{y}^{j} & -n_{x}^{j} \end{array} \right] ^{M}\left[ {\nabla }L_{i}^{M}w_{i}^{M}+{\nabla }L_{i}^{j}w_{i} ^{j}\right] =\mathbf{B}_{b}\mathbf{w}^{p} </math>
103
|}
104
| style="width: 5px;text-align: right;" | (5)
105
|}
106
107
where <math display="inline">\mathbf{w}^{p}=[w_{1},w_{2},w_{3},w_{4},w_{5},w_{6}]^{T}</math> is the deflection vector of the six  nodes in the patch. In Eq.([[#eq-5|5]]) the sum extends over the three sides of the central element <math display="inline">M</math>, <math display="inline">l_{j}^{M}</math> are the lengths of the element sides and superindexes <math display="inline">M</math> and <math display="inline">j</math> refer to the central triangle and to each of the adjacent elements, respectively. The standard sum convention for repeated indexes is used.
108
109
Note that the constant curvature field is expressed in terms of the six nodes of the four element patch linked to the element <math display="inline">M</math>. The expression of the <math display="inline">3\times{6}</math> <math display="inline">\mathbf{B}_{b}</math> matrix can be found in [14,21].
110
111
The virtual work expression is written as
112
113
<span id="eq-6"></span>
114
{| class="formulaSCP" style="width: 100%; text-align: left;" 
115
|-
116
| 
117
{| style="text-align: left; margin:auto;" 
118
|-
119
| style="text-align: center;" | <math>\int \int _{A}\delta{\boldsymbol \kappa }^{T}\mathbf{m}\,dA=\int \int _{A}\delta w\,q\,dA </math>
120
|}
121
| style="width: 5px;text-align: right;" | (6)
122
|}
123
124
where '''m''' is the bending moment field related to the curvature by the standard constitutive equations
125
126
{| class="formulaSCP" style="width: 100%; text-align: left;" 
127
|-
128
| 
129
{| style="text-align: left; margin:auto;" 
130
|-
131
| style="text-align: center;" | <math>\mathbf{m}=[M_{xx},M_{yy},M_{xy}]^T = \mathbf{D}_{b}{\boldsymbol \kappa }\quad ,\quad \mathbf{D}_{b}={\frac{Eh^{3} }{(1-\nu ^{2})}}\left[ \begin{array}{ccc} 1 & \nu & 0\\ \nu & 1 & 0\\ 0 & 0 & \frac{1-\nu }{2} \end{array} \right] </math>
132
|}
133
| style="width: 5px;text-align: right;" | (7)
134
|}
135
136
In Eqs.(6) and (7) <math display="inline">h</math> is the plate thickness, <math display="inline">E</math> is the Young's modulus, <math display="inline">\nu </math> is the Poisson's ratio, <math display="inline">\delta{\boldsymbol \kappa }</math> and <math display="inline">\delta w</math> are the virtual curvatures and the virtual deflection, respectively, and <math display="inline">q</math> is a distributed vertical load.
137
138
Substituting the approximation for the vertical deflection and the assumed constant curvature field into ([[#eq-6|6]]) leads to the standard linear system of equations
139
140
{| class="formulaSCP" style="width: 100%; text-align: left;" 
141
|-
142
| 
143
{| style="text-align: left; margin:auto;" 
144
|-
145
| style="text-align: center;" | <math>\mathbf{K}\mathbf{w}=\mathbf{f}</math>
146
|}
147
| style="width: 5px;text-align: right;" | (8)
148
|}
149
150
where the stiffness matrix <math display="inline">\mathbf{K}</math> and the equivalent nodal force <math display="inline">\mathbf{f}</math> can be found by assembly of the element contributions given by
151
152
{| class="formulaSCP" style="width: 100%; text-align: left;" 
153
|-
154
| 
155
{| style="text-align: left; margin:auto;" 
156
|-
157
| style="text-align: center;" | <math>\mathbf{K}^{e}=\int \int _{A^{e}}\mathbf{B}_{b}^{T}\mathbf{D}_{b}\mathbf{B}_{b}dA </math>
158
|}
159
| style="width: 5px;text-align: right;" | (9)
160
|}
161
162
{| class="formulaSCP" style="width: 100%; text-align: left;" 
163
|-
164
| 
165
{| style="text-align: left; margin:auto;" 
166
|-
167
| style="text-align: center;" | <math>\mathbf{f}^{e}=\int \int _{A^{e}}q\left\{ \begin{array}{c} L_{1}^e\\ L_{2}^e\\ L_{3}^e \end{array} \right\} dA </math>
168
|}
169
| style="width: 5px;text-align: right;" | (10)
170
|}
171
172
Note that <math display="inline">\mathbf{K}^{e}</math> is  a <math display="inline">6\times{6}</math> matrix, whereas <math display="inline">\mathbf{f}^{e}</math> has the same structure than for the standard linear triangle.
173
174
The explicit form of <math display="inline">\mathbf{K}^{e}</math> and <math display="inline">\mathbf{f}^{e}</math> can be found in [14].
175
176
The resulting Basic Plate Triangle (BPT) has one degree of freedom per node and a wider bandwidth than the standard three node triangles as each triangular element is linked to its three neighbours through Eq.([[#eq-5|5]]).
177
178
Examples of the good performance of the BPT element for analysis of thin plates can be found in [14,21]. The extension of the BPT element to the analysis of shells yields the Basic Shell Triangle (BST) <span id='citeF-29'></span>[[#cite-29|29]]. Different applications of the BST element to linear and non linear analysis of shells are reported in 14,18&#8211;21,24,26,27].
179
180
The ideas used to derive the BPT element will now be extended to derive two families of Basic Shell Triangles using a total lagrangian description.
181
182
==3 BASIC THIN SHELL EQUATIONS USING A TOTAL LAGRANGIAN FORMULATION==
183
184
===3.1 Shell kinematics===
185
186
A summary of the most relevant hypothesis related to the kinematic behaviour of a thin shell are presented. Further details may be found in the wide literature dedicated to this field [8,9].
187
188
Consider a shell with undeformed middle surface occupying the domain <math display="inline">\Omega ^{0}</math> in <math display="inline">R^{3}</math> with a boundary <math display="inline">\Gamma ^{0}</math>. At each point of the middle surface a thickness <math display="inline">h^{0}</math> is defined. The positions <math display="inline">\mathbf{x}^{0}</math> and <math display="inline">\mathbf{x}</math> of a point in the undeformed and the deformed configurations can be respectively written as a function of the coordinates of the middle surface <math display="inline">{\boldsymbol \varphi }</math> and the normal <math display="inline">\mathbf{t}_{3}</math> at the point as
189
190
{| class="formulaSCP" style="width: 100%; text-align: left;" 
191
|-
192
| 
193
{| style="text-align: left; margin:auto;" 
194
|-
195
| style="text-align: right;" | <math>\mathbf{x}^{0}\left( \xi _{1},\xi _{2},\zeta \right)  </math>
196
| <math>  ={\boldsymbol \varphi }^{0}\left( \xi _{1},\xi _{2}\right) +\lambda \mathbf{t}_{3}^{0}</math>
197
| style="width: 5px;text-align: right;" | (11)
198
|-
199
| style="text-align: right;" | <math> \mathbf{x}\left( \xi _{1},\xi _{2},\zeta \right)  </math>
200
| <math>  ={\boldsymbol \varphi }\left( \xi  _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3} </math>
201
| style="width: 5px;text-align: right;" | (12)
202
|}
203
|}
204
205
where <math display="inline">\xi _{1},\xi _{2}</math> are curvilinear local coordinates defined over the middle surface of the shell, and <math display="inline">\zeta </math> is the distance in the undeformed configuration of the point to the middle surface. The product <math display="inline">\zeta \lambda </math> is the distance of the point to the middle surface measured on the deformed configuration. This implies a constant strain in the normal direction associated to the parameter <math display="inline">\lambda </math> relating the thickness at the present and initial configurations, i.e.
206
207
{| class="formulaSCP" style="width: 100%; text-align: left;" 
208
|-
209
| 
210
{| style="text-align: left; margin:auto;" 
211
|-
212
| style="text-align: center;" | <math>\lambda =\frac{h}{h^{0}} </math>
213
|}
214
| style="width: 5px;text-align: right;" | (13)
215
|}
216
217
A convective coordinate system is defined at each point as
218
219
{| class="formulaSCP" style="width: 100%; text-align: left;" 
220
|-
221
| 
222
{| style="text-align: left; margin:auto;" 
223
|-
224
| style="text-align: center;" | <math>\mathbf{g}_{i}\left( \mathbf{\xi }\right) =\frac{\partial \mathbf{x}}{} {\partial \xi _{i}}\qquad i=1,2,3 </math>
225
|}
226
| style="width: 5px;text-align: right;" | (14)
227
|}
228
229
{| class="formulaSCP" style="width: 100%; text-align: left;" 
230
|-
231
| 
232
{| style="text-align: left; margin:auto;" 
233
|-
234
| style="text-align: left;" | <math>\mathbf{g}_{\alpha }\left( \mathbf{\xi }\right)   =\frac{\partial \left( \mathbf{\boldsymbol \varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \xi _{\alpha }}={\boldsymbol \varphi }_{^{\prime }\alpha }+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }\alpha }\quad \alpha=1,2</math>
235
| style="width: 5px;text-align: right;" | (15)
236
|-
237
| style="text-align: left;" | <math> \mathbf{g}_{3}\left( \mathbf{\xi }\right)   =\frac{\partial \left( \mathbf{\boldsymbol \varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \zeta }=\lambda \mathbf{t}_{3} </math>
238
| style="width: 5px;text-align: right;" | (16)
239
|}
240
|}
241
242
This can be particularized for the points on the middle surface as
243
244
{| class="formulaSCP" style="width: 100%; text-align: left;" 
245
|-
246
| 
247
{| style="text-align: left; margin:auto;" 
248
|-
249
| style="text-align: left;" | <math>\mathbf{a}_{\alpha } =\mathbf{g}_{\alpha }\left( \zeta=0\right) ={\boldsymbol \varphi  }_{^{\prime }\alpha }</math>
250
| style="width: 5px;text-align: right;" | (17)
251
|-
252
| style="text-align: left;" | <math> \mathbf{a}_{3}   =\mathbf{g}_{3}\left( \zeta=0\right) =\lambda  \mathbf{t}_{3} </math>
253
| style="width: 5px;text-align: right;" | (18)
254
|}
255
|}
256
257
The covariant (first fundamental form) and contravariant metric tensors of the middle surface are
258
259
{| class="formulaSCP" style="width: 100%; text-align: left;" 
260
|-
261
| 
262
{| style="text-align: left; margin:auto;" 
263
|-
264
| style="text-align: center;" | <math>a_{\alpha \beta }=\mathbf{a}_{\alpha }\cdot \mathbf{a}_{\beta } </math>
265
|}
266
| style="width: 5px;text-align: right;" | (19)
267
|}
268
269
{| class="formulaSCP" style="width: 100%; text-align: left;" 
270
|-
271
| 
272
{| style="text-align: left; margin:auto;" 
273
|-
274
| style="text-align: center;" | <math>a^{\alpha \beta }=\mathbf{a}^{\alpha }\cdot \mathbf{a}^{\beta }={\tilde{\boldsymbol \varphi }}_{^{\prime }\alpha }\cdot{\tilde{\boldsymbol \varphi }}_{^{\prime }\beta } </math>
275
|}
276
| style="width: 5px;text-align: right;" | (20)
277
|}
278
279
The Green-Lagrange strain vector of the middle surface points (membrane strains) is defined as
280
281
{| class="formulaSCP" style="width: 100%; text-align: left;" 
282
|-
283
| 
284
{| style="text-align: left; margin:auto;" 
285
|-
286
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=[\varepsilon _{m_{11}},\varepsilon _{m_{12}},\varepsilon _{m_{12}}]^{T} </math>
287
|}
288
| style="width: 5px;text-align: right;" | (21)
289
|}
290
291
with
292
293
<span id="eq-22"></span>
294
{| class="formulaSCP" style="width: 100%; text-align: left;" 
295
|-
296
| 
297
{| style="text-align: left; margin:auto;" 
298
|-
299
| style="text-align: center;" | <math>\varepsilon _{m_{ij}}=\frac{1}{2}(a_{ij}-\delta _{ij}) </math>
300
|}
301
| style="width: 5px;text-align: right;" | (22)
302
|}
303
304
The curvatures (second fundamental form) of the middle surface are obtained by
305
306
{| class="formulaSCP" style="width: 100%; text-align: left;" 
307
|-
308
| 
309
{| style="text-align: left; margin:auto;" 
310
|-
311
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\frac{1}{2}\left( {\boldsymbol \varphi }_{^{\prime }\alpha } \cdot \mathbf{t}_{3^{\prime }\beta }+{\boldsymbol \varphi }_{^{\prime }\beta }\cdot  \mathbf{t}_{3^{\prime }\alpha }\right) =- \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{{\prime }\alpha \beta }\quad , \quad \alpha ,\beta=1,2 </math>
312
|}
313
| style="width: 5px;text-align: right;" | (23)
314
|}
315
316
The deformation gradient tensor is
317
318
{| class="formulaSCP" style="width: 100%; text-align: left;" 
319
|-
320
| 
321
{| style="text-align: left; margin:auto;" 
322
|-
323
| style="text-align: center;" | <math>\mathbf{F=} [{x}_{{\prime }1},{x}_{{\prime }2},{x}_{{\prime }3}]=\left[ \begin{array}{ccc} {\boldsymbol \varphi }_{^{\prime }1}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime  }1} & {\boldsymbol \varphi }_{^{\prime }2}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }2} & \lambda \mathbf{t}_{3} \end{array} \right] </math>
324
|}
325
| style="width: 5px;text-align: right;" | (24)
326
|}
327
328
The product <math display="inline">\mathbf{F}^{T}\mathbf{F=U}^{2}=\mathbf{C}</math> (where <math display="inline">\mathbf{U}</math> is the right stretch tensor, and <math display="inline">\mathbf{C}</math> the right Cauchy-Green deformation tensor) can be written as
329
330
<span id="eq-25"></span>
331
{| class="formulaSCP" style="width: 100%; text-align: left;" 
332
|-
333
| 
334
{| style="text-align: left; margin:auto;" 
335
|-
336
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{ccc} a_{11}+2\kappa _{11}\zeta \lambda & a_{12}+2\kappa _{12}\zeta \lambda & 0\\ a_{12}+2\kappa _{12}\zeta \lambda & a_{22}+2\kappa _{22}\zeta \lambda & 0\\ 0 & 0 & \lambda ^{2} \end{array} \right] </math>
337
|}
338
| style="width: 5px;text-align: right;" | (25)
339
|}
340
341
In the derivation of expression ([[#eq-25|25]]) the derivatives of the thickness ratio <math display="inline">\lambda _{^{\prime }a}</math> and the terms associated to <math display="inline">\zeta ^{2}</math> have been neglected.
342
343
Eq.([[#eq-25|25]]) shows that <math display="inline">\mathbf{U}^{2}</math> is not a unit tensor at the original configuration for curved surfaces (<math display="inline">\kappa _{ij}^{0}\neq{0}</math>). The changes of curvature of the middle surface are computed by
344
345
{| class="formulaSCP" style="width: 100%; text-align: left;" 
346
|-
347
| 
348
{| style="text-align: left; margin:auto;" 
349
|-
350
| style="text-align: center;" | <math>\chi _{ij}=\kappa _{ij}-\kappa _{ij}^{0} </math>
351
|}
352
| style="width: 5px;text-align: right;" | (26)
353
|}
354
355
Note that <math display="inline">\delta \chi _{ij}=\delta \kappa _{ij}</math>.
356
357
For computational convenience the following approximate expression (which is exact for initially flat surfaces) will be adopted
358
359
{| class="formulaSCP" style="width: 100%; text-align: left;" 
360
|-
361
| 
362
{| style="text-align: left; margin:auto;" 
363
|-
364
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{ccc} a_{11}+2\chi _{11}\zeta \lambda & a_{12}+2\chi _{12}\zeta \lambda & 0\\ a_{12}+2\chi _{12}\zeta \lambda & a_{22}+2\chi _{22}\zeta \lambda & 0\\ 0 & 0 & \lambda ^{2} \end{array} \right] </math>
365
|}
366
| style="width: 5px;text-align: right;" | (27)
367
|}
368
369
This expression is useful to compute different lagrangian strain measures. An advantage of these measures is that they are associated to material fibres, what makes it easy to take into account material anisotropy. It is also useful to compute the eigen decomposition of <math display="inline">\mathbf{U}</math> as
370
371
{| class="formulaSCP" style="width: 100%; text-align: left;" 
372
|-
373
| 
374
{| style="text-align: left; margin:auto;" 
375
|-
376
| style="text-align: center;" | <math>\mathbf{U=}\sum _{\alpha=1}^{3}\lambda _{\alpha } \mathbf{r}_{\alpha } \otimes \mathbf{r}_{\alpha } </math>
377
|}
378
| style="width: 5px;text-align: right;" | (28)
379
|}
380
381
where <math display="inline">\lambda _{\alpha }</math> and <math display="inline">\mathbf{r}_{\alpha }</math> are the eigenvalues and eigenvectors of <math display="inline">\mathbf{U}</math>.
382
383
The resultant stresses  (axial forces and moments) are obtained by integrating across the original thickness the second Piola-Kirchhoff stress vector <math display="inline">{ \boldsymbol \sigma }</math> using the actual distance to the middle surface for  evaluating the bending moments, i.e.
384
385
<span id="eq-29"></span>
386
{| class="formulaSCP" style="width: 100%; text-align: left;" 
387
|-
388
| 
389
{| style="text-align: left; margin:auto;" 
390
|-
391
| style="text-align: center;" | <math>{\boldsymbol \sigma }_{m}\equiv \lbrack N_{11},N_{22},N_{12}]^{T}=\int _{h^{0}}{\boldsymbol \sigma } d\zeta </math>
392
|}
393
| style="width: 5px;text-align: right;" | (29)
394
|}
395
396
<span id="eq-30"></span>
397
{| class="formulaSCP" style="width: 100%; text-align: left;" 
398
|-
399
| 
400
{| style="text-align: left; margin:auto;" 
401
|-
402
| style="text-align: center;" | <math>{\boldsymbol \sigma }_{b}\equiv \lbrack M_{11},M_{22},M_{12}]^{T}=\int _{h^{0}}{\boldsymbol \sigma  }\lambda \zeta  d\zeta </math>
403
|}
404
| style="width: 5px;text-align: right;" | (30)
405
|}
406
407
With these values the virtual work can be written as
408
409
<span id="eq-31"></span>
410
{| class="formulaSCP" style="width: 100%; text-align: left;" 
411
|-
412
| 
413
{| style="text-align: left; margin:auto;" 
414
|-
415
| style="text-align: center;" | <math>\int \int _{A^{0}}\left[ \delta{\boldsymbol \varepsilon }_{m}^{T}{\boldsymbol \sigma }_{m}+\delta{\boldsymbol \kappa  }^{T}{\boldsymbol \sigma }_{b}\right] dA=\int \int _{A^{0}}\delta \mathbf{u}^{T}\mathbf{t}dA </math>
416
|}
417
| style="width: 5px;text-align: right;" | (31)
418
|}
419
420
where <math display="inline">\delta \mathbf{u}</math> are virtual displacements, <math display="inline">\delta{\boldsymbol \varepsilon }_{m}</math> is the virtual Green-Lagrange membrane strain vector, <math display="inline">\delta{\boldsymbol \kappa }</math> are the virtual curvatures and <math display="inline">\mathbf{t}</math> are the surface loads. Other load types can be easily included into ([[#eq-31|31]]).
421
422
===3.2 Constitutive models===
423
424
In order to treat plasticity at finite strains an adequate stress-strain pair must be used. The Hencky measures will be adopted here. The (logarithmic) strains are defined as
425
426
{| class="formulaSCP" style="width: 100%; text-align: left;" 
427
|-
428
| 
429
{| style="text-align: left; margin:auto;" 
430
|-
431
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=}\left[ \begin{array}{ccc} \varepsilon _{11} & \varepsilon _{21} & 0\\ \varepsilon _{12} & \varepsilon _{22} & 0\\ 0 & 0 & \varepsilon _{33} \end{array} \right] =\sum _{\alpha=1}^{3}\ln \left( \lambda _{\alpha }\right) \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\alpha } </math>
432
|}
433
| style="width: 5px;text-align: right;" | (32)
434
|}
435
436
Two types of material models are considered here: an elastic-plastic material associated to thin rolled metal sheets and a hyper-elastic material for rubbers.
437
438
In the case of metals, where the elastic strains are small, the use of a logarithmic strain measure reasonably allows to adopt an additive decomposition of elastic and plastic components as
439
440
{| class="formulaSCP" style="width: 100%; text-align: left;" 
441
|-
442
| 
443
{| style="text-align: left; margin:auto;" 
444
|-
445
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=E}_{\ln }^{e}+\mathbf{E}_{\ln }^{p} </math>
446
|}
447
| style="width: 5px;text-align: right;" | (33)
448
|}
449
450
A constant linear relationship between the (plane) Hencky stresses and the logarithmic elastic strains is  adopted giving
451
452
{| class="formulaSCP" style="width: 100%; text-align: left;" 
453
|-
454
| 
455
{| style="text-align: left; margin:auto;" 
456
|-
457
| style="text-align: center;" | <math>\mathbf{T}=\mathbf{CE}_{\ln }^{e} </math>
458
|}
459
| style="width: 5px;text-align: right;" | (34)
460
|}
461
462
These constitutive equations are integrated using a standard return algorithm. The following Mises-Hill [30] yield function with non-linear isotropic hardening is chosen here
463
464
{| class="formulaSCP" style="width: 100%; text-align: left;" 
465
|-
466
| 
467
{| style="text-align: left; margin:auto;" 
468
|-
469
| style="text-align: center;" | <math>\left( G+H\right) \;T_{11}^{2}+\left( F+H\right) \;T_{22}^{2} -2H\;T_{11}T_{22}+2N\;T_{12}^{2}=\sigma _0\left(e_{0}+e^{p}\right) ^{n} </math>
470
|}
471
| style="width: 5px;text-align: right;" | (35)
472
|}
473
474
where <math display="inline">F, G, H</math> and <math display="inline">N</math> define the non-isotropic shape of the yield surface and the parameters <math display="inline">\sigma _{0}</math>, <math display="inline">e_{0}</math> and <math display="inline">n</math> define its size as a function of the effective plastic strain <math display="inline">e^{p}</math>.
475
476
The simple Mises-Hill yield function  allows, as a first approximation, to treat rolled thin metal sheets with planar and transversal anisotropy.
477
478
For the case of rubbers, the Ogden [31] model extended to the compressible range is considered. The material behaviour is characterized by the strain energy density per unit undeformed volume defined as
479
480
{| class="formulaSCP" style="width: 100%; text-align: left;" 
481
|-
482
| 
483
{| style="text-align: left; margin:auto;" 
484
|-
485
| style="text-align: center;" | <math>\psi =\frac{K}{2}\left( \ln J\right) ^{2}+\sum _{p=1}^{N}\frac{\mu _{p}}{} {\alpha _{p}}\left[ J^{-\frac{\alpha _{p}}{3}}\left( \sum _{i=1}^{3}\lambda  _{i}^{\alpha _{p}-1}\right) -3\right] </math>
486
|}
487
| style="width: 5px;text-align: right;" | (36)
488
|}
489
490
where <math display="inline">K</math> is the bulk modulus of the material, <math display="inline">J</math> is the determinant of <math display="inline">\mathbf{U}</math>, <math display="inline">N</math>, <math display="inline">\mu _{i}</math> and <math display="inline">\alpha _{i}</math> are material parameters, <math display="inline">\mu _{i}\,,\,\alpha _{i}</math> are real numbers such that <math display="inline">\mu _{i}\alpha _{i}>0</math> <math display="inline"> (\forall i=1,N)</math> and <math display="inline">N</math> is a positive integer.
491
492
The stress measures associated to the principal logarithmic strains are denoted by <math display="inline">\beta _{i}</math>. They can be computed noting that
493
494
{| class="formulaSCP" style="width: 100%; text-align: left;" 
495
|-
496
| 
497
{| style="text-align: left; margin:auto;" 
498
|-
499
| style="text-align: center;" | <math>\beta _{i}=\frac{\partial \psi \left( \Lambda \right) }{\partial \left( \ln \lambda _{i}\right) }=K\left( \ln J\right) +\lambda _{i}\sum _{p=1}^{N} \mu _{p}J^{-\frac{\alpha _{p}}{3}}\left( \lambda _{i}^{\alpha _{p}-1}-\frac{1}{} {3}\frac{1}{\lambda _{i}}\sum _{j=1}^{3}\lambda _{j}^{\alpha _{p}}\right) </math>
500
|}
501
| style="width: 5px;text-align: right;" | (37)
502
|}
503
504
we define now
505
506
{| class="formulaSCP" style="width: 100%; text-align: left;" 
507
|-
508
| 
509
{| style="text-align: left; margin:auto;" 
510
|-
511
| style="text-align: center;" | <math>a^{p}=\sum _{j=1}^{3}\lambda _{j}^{\alpha _{p}} </math>
512
|}
513
| style="width: 5px;text-align: right;" | (38)
514
|}
515
516
which gives
517
518
{| class="formulaSCP" style="width: 100%; text-align: left;" 
519
|-
520
| 
521
{| style="text-align: left; margin:auto;" 
522
|-
523
| style="text-align: center;" | <math>\beta _{i}=K\left( \ln J\right) +\sum _{p=1}^{N}\mu _{p}J^{-\frac{\alpha _{p} }{3}}\left( \lambda _{i}^{\alpha _{p}}-\frac{1}{3}a_{p}\right) </math>
524
|}
525
| style="width: 5px;text-align: right;" | (39)
526
|}
527
528
The values of <math display="inline">\beta _{i}</math>, expressed in the principal strains directions, allow to evaluate the Hencky stresses in the convective coordinate system as
529
530
{| class="formulaSCP" style="width: 100%; text-align: left;" 
531
|-
532
| 
533
{| style="text-align: left; margin:auto;" 
534
|-
535
| style="text-align: center;" | <math>\mathbf{T}=\sum _{i=1}^{3}\beta _{i}\;\mathbf{r}_{i}\otimes \mathbf{r}_{i} </math>
536
|}
537
| style="width: 5px;text-align: right;" | (40)
538
|}
539
540
The Hencky stress tensor <math display="inline">\mathbf{T}</math> can be easily particularized for the plane stress case.
541
542
We define the rotated Hencky and second Piola-Kirchhoff stress tensors as
543
544
{| class="formulaSCP" style="width: 100%; text-align: left;" 
545
|-
546
| 
547
{| style="text-align: left; margin:auto;" 
548
|-
549
| style="text-align: right;" | <math>\mathbf{T}_{L}  </math>
550
| <math>  =\mathbf{R}_{L}^{T}\;\mathbf{T\;R}_{L}</math>
551
| style="width: 5px;text-align: right;" | (41)
552
|-
553
| style="text-align: right;" | <math> \mathbf{S}_{L}  </math>
554
| <math>  =\mathbf{R}_{L}^{T}\;\mathbf{S\;R}_{L} </math>
555
| style="width: 5px;text-align: right;" | (42)
556
|}
557
|}
558
559
where <math display="inline">\mathbf{R}_{L}</math> is the rotation tensor obtained from the eigenvectors of <math display="inline">\mathbf{U}</math> given by
560
561
{| class="formulaSCP" style="width: 100%; text-align: left;" 
562
|-
563
| 
564
{| style="text-align: left; margin:auto;" 
565
|-
566
| style="text-align: center;" | <math>\mathbf{R}_{L}=\left[ \begin{array}{ccc} \mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} \end{array} \right] </math>
567
|}
568
| style="width: 5px;text-align: right;" | (43)
569
|}
570
571
The relationship between the rotated Hencky and Piola-Kirchhoff stresses is
572
573
{| class="formulaSCP" style="width: 100%; text-align: left;" 
574
|-
575
| 
576
{| style="text-align: left; margin:auto;" 
577
|-
578
| style="text-align: right;" | <math>\left[ S_{L}\right] _{\alpha \alpha }  </math>
579
| <math>  =\frac{1}{\lambda _{\alpha }^{2} }\left[ T_{L}\right] _{\alpha \alpha }</math>
580
|-
581
| style="text-align: right;" | <math> \left[ S_{L}\right] _{\alpha \beta }  </math>
582
| <math>  =\frac{\ln \left( \lambda _{\alpha  }/\lambda _{\beta }\right) }{\frac{1}{2}\left( \lambda _{\alpha }^{2} -\lambda _{\beta }^{2}\right) }\left[ T_{L}\right] _{\alpha \beta } </math>
583
|}
584
| style="width: 5px;text-align: right;" | (44)
585
|}
586
587
The second Piola-Kirchhoff stress tensor can be computed by
588
589
{| class="formulaSCP" style="width: 100%; text-align: left;" 
590
|-
591
| 
592
{| style="text-align: left; margin:auto;" 
593
|-
594
| style="text-align: center;" | <math>\mathbf{S}=\mathbf{R}_{L}\;\mathbf{S}_{L}\mathbf{\;R}_{L}^{T} </math>
595
|}
596
| style="width: 5px;text-align: right;" | (45)
597
|}
598
599
The second Piola-Kirchhoff stress vector <math display="inline">{\boldsymbol \sigma }</math> of Eqs.([[#eq-29|29]]&#8211;[[#eq-30|30]]) can be readily extracted from the <math display="inline">\mathbf{S}</math> tensor.
600
601
==4 TOTAL LAGRANGIAN FORMULATION OF THE BASIC SHELL TRIANGLE==
602
603
===4.1 Definition of the element geometry and discretization of the displacement field===
604
605
The rotation-free BST element has three nodes with three displacement degrees of freedom at each node. As before an element patch is defined by the central triangle  and the three adjacent elements (Figure [[#img-1|1]]). This patch helps to define the curvature field within the central triangle (the BST element) in terms of the displacement of the six patch nodes.
606
607
The node-ordering in the patch is the following (see Figure [[#img-1|1]])
608
609
* The nodes in the main element (M) are numbered locally as 1, 2 and 3. They are defined counter-clockwise around the positive normal.
610
611
* The sides in the main element are numbered locally as 1, 2, and 3. They are defined by the local node opposite to the side.
612
613
* The adjacent elements (which are part of the cell) are numbered with the number associated to the common side.
614
615
* The extra nodes of the cell are numbered locally as 4, 5 and 6, corresponding to nodes on adjacent elements opposite to sides 1, 2  and 3 respectively.
616
617
* The connectivities in the adjacent elements are defined beginning with the extra node as shown in Table 1.
618
619
620
<div class="center" style="font-size: 75%;">
621
'''Table 1'''. Element numbering and nodal connectivities of the four elements patch of Figure 1.</div>
622
623
{| class="wikitable" style="text-align: left; margin: 1em auto;"
624
|- style="border-top: 2px solid;"
625
| '''Element''' 
626
| N1 
627
| N2 
628
| N3
629
|- style="border-top: 2px solid;"
630
|  '''M''' 
631
| 1 
632
| 2 
633
| 3
634
|- style="border-top: 2px solid;"
635
|  '''1''' 
636
| 4 
637
| 3 
638
| 2
639
|- style="border-top: 2px solid;"
640
|  '''2''' 
641
| 5 
642
| 1 
643
| 3
644
|- style="border-top: 2px solid;border-bottom: 2px solid;"
645
|  '''3''' 
646
| 6 
647
| 2 
648
| 1
649
650
|}
651
652
The following local cartesian coordinate system can be defined for the patch. In the main element the unit vector <math display="inline">\mathbf{t}_{1}</math>(associated to the local coordinate <math display="inline">\xi _{1}</math>) is directed along side 3 (from node 1 to node 2), <math display="inline">\mathbf{t}_{3}</math> (associated to the coordinate <math display="inline">\zeta </math>) is the unit normal to the plane, and finally <math display="inline">\mathbf{t}_{2}=\mathbf{t}_{3}\times \mathbf{t}_{1}</math> (associated to the coordinate <math display="inline">\xi _{2}</math>).
653
654
The coordinates and the displacements are linearly interpolated within each three node triangle in the mesh in the standard manner, i.e.
655
656
{| class="formulaSCP" style="width: 100%; text-align: left;" 
657
|-
658
| 
659
{| style="text-align: left; margin:auto;" 
660
|-
661
| style="text-align: center;" | <math>{\boldsymbol \varphi } = \sum \limits _{i=1}^{3} L_{i}^e {\boldsymbol \varphi }_{i} = \sum \limits _{i=1}^{3} L_{i}^e ({\boldsymbol \varphi }^{0}_{i} + \mathbf{u}_{i}) </math>
662
|}
663
| style="width: 5px;text-align: right;" | (46)
664
|}
665
666
{| class="formulaSCP" style="width: 100%; text-align: left;" 
667
|-
668
| 
669
{| style="text-align: left; margin:auto;" 
670
|-
671
| style="text-align: center;" | <math>\mathbf{u}=\left\{ \begin{array}{c} u_{1}\\ u_{2}\\ u_{3} \end{array} \right\} =\sum \limits _{i=1}^{3}L_{i}^e\mathbf{u}_{i}\quad ,\quad \mathbf{u}_{i}=\left\{ \begin{array}{c} u_{1}\\ u_{2}\\ u_{3} \end{array} \right\} _{i} </math>
672
|}
673
| style="width: 5px;text-align: right;" | (47)
674
|}
675
676
In above <math display="inline">{\boldsymbol \varphi }_{i}</math> and <math display="inline">\mathbf{u}_{i}</math> contain respectively the three coordinates and the three displacements of node <math display="inline">i</math>.
677
678
===4.2 Computation of the membrane strains===
679
680
The Green-Lagrange membrane strains are expressed by substituting the linear displacement interpolation into Eq.([[#eq-22|22]]). This gives
681
682
{| class="formulaSCP" style="width: 100%; text-align: left;" 
683
|-
684
| 
685
{| style="text-align: left; margin:auto;" 
686
|-
687
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\frac{1}{2}\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}\cdot \boldsymbol \varphi _{^{\prime  }1}-1 \\ \boldsymbol \varphi _{^{\prime }2}\cdot \boldsymbol \varphi _{^{\prime  }2}-1 \\ 2\boldsymbol \varphi _{^{\prime }1}\cdot \boldsymbol \varphi _{^{\prime }2} \end{array}\right] </math>
688
|}
689
| style="width: 5px;text-align: right;" | (48)
690
|}
691
692
The membrane strain field is constant within each triangle similarly as in the standard CST element. The variation of the membrane strains is simply obtained by
693
694
{| class="formulaSCP" style="width: 100%; text-align: left;" 
695
|-
696
| 
697
{| style="text-align: left; margin:auto;" 
698
|-
699
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\mathbf{B}_{m}\delta \mathbf{a}^{e} </math>
700
|}
701
| style="width: 5px;text-align: right;" | (49)
702
|}
703
704
with
705
706
<span id="eq-50"></span>
707
{| class="formulaSCP" style="width: 100%; text-align: left;" 
708
|-
709
| 
710
{| style="text-align: left; margin:auto;" 
711
|-
712
| style="text-align: center;" | <math>\mathbf{B}_{m}=[\mathbf{B}_{m_{1}},\mathbf{B}_{m_{2}},\mathbf{B}_{m_{3}} ]\quad ,\quad \mathbf{a}^{e}=\left\{ \begin{array}{c} \mathbf{u}_{1}\\ \mathbf{u}_{2}\\ \mathbf{u}_{3} \end{array} \right\} </math>
713
|}
714
| style="width: 5px;text-align: right;" | (50)
715
|}
716
717
and
718
719
<span id="eq-51"></span>
720
{| class="formulaSCP" style="width: 100%; text-align: left;" 
721
|-
722
| 
723
{| style="text-align: left; margin:auto;" 
724
|-
725
| style="text-align: center;" | <math>\begin{array}{c} \\ \mathbf{B}_{m_{i}}\\ 3\times{3} \end{array} =\left[ \begin{array}{c} L_{i,1}^M\boldsymbol \varphi _{^{\prime }1}^{T}\\ L_{i,2}^M\boldsymbol \varphi _{^{\prime }2}^{T}\\ L_{i,1}^M\boldsymbol \varphi _{^{\prime }2}^{T}+L_{i,2}^M\boldsymbol \varphi _{^{\prime }1}^{T} \end{array} \right]  </math>
726
|}
727
| style="width: 5px;text-align: right;" | (51)
728
|}
729
730
===4.3 Computation of bending strains (curvatures)===
731
732
We will assume the following constant curvature field within each element
733
734
{| class="formulaSCP" style="width: 100%; text-align: left;" 
735
|-
736
| 
737
{| style="text-align: left; margin:auto;" 
738
|-
739
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\hat{\kappa }_{\alpha \beta } </math>
740
|}
741
| style="width: 5px;text-align: right;" | (52)
742
|}
743
744
where <math display="inline">\hat{\kappa }_{\alpha \beta }</math> is the assumed constant curvature field defined by
745
746
<span id="eq-53"></span>
747
{| class="formulaSCP" style="width: 100%; text-align: left;" 
748
|-
749
| 
750
{| style="text-align: left; margin:auto;" 
751
|-
752
| style="text-align: center;" | <math>\hat{\kappa }_{\alpha \beta }=-\frac{1}{A_{M}^{0}}\int _{A_{M}^{0}}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }\beta \alpha }\;dA^{0} </math>
753
|}
754
| style="width: 5px;text-align: right;" | (53)
755
|}
756
757
where <math display="inline">A_{M}^{0}</math> is the area (in the original configuration) of the central element in the patch.
758
759
Substituting Eq.(53) into (52) and integrating by parts the area integral gives the curvature vector within the element in terms of the following line integral
760
761
<span id="eq-54"></span>
762
{| class="formulaSCP" style="width: 100%; text-align: left;" 
763
|-
764
| 
765
{| style="text-align: left; margin:auto;" 
766
|-
767
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\left\{ \begin{array}{c} \kappa _{11}\\ \kappa _{22}\\ 2\kappa _{12} \end{array} \right\} =\frac{1}{A_{M}^{0}}   {\displaystyle \oint _{\Gamma _{M}^{0}}}  \left[ \begin{array}{cc} -n_{1} & 0\\ 0 & -n_{2}\\ -n_{2} & -n_{1} \end{array} \right] \left[ \begin{array}{c} \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2} \end{array} \right] d\Gamma </math>
768
|}
769
| style="width: 5px;text-align: right;" | (54)
770
|}
771
772
where <math display="inline">n_{i}</math> are the components (in the local system) of the normals to the element sides in the initial configuration <math display="inline">\Gamma _{M}^{0}</math>.
773
774
For the definition of the normal vector <math display="inline">\mathbf{t}_{3}</math>, the linear interpolation over the central element is used. In this case the tangent plane components are
775
776
{| class="formulaSCP" style="width: 100%; text-align: left;" 
777
|-
778
| 
779
{| style="text-align: left; margin:auto;" 
780
|-
781
| style="text-align: center;" | <math>{\boldsymbol \varphi }_{^{\prime }\alpha } = \sum _{i=1}^{3} L_{i,\alpha }^M {\boldsymbol \varphi }_{i} \quad ,\quad \alpha=1,2 </math>
782
|}
783
| style="width: 5px;text-align: right;" | (55)
784
|}
785
786
<span id="eq-56"></span>
787
{| class="formulaSCP" style="width: 100%; text-align: left;" 
788
|-
789
| 
790
{| style="text-align: left; margin:auto;" 
791
|-
792
| style="text-align: center;" | <math>\mathbf{t}_{3}=\frac{{\boldsymbol \varphi }_{\prime{1}}\times{\boldsymbol \varphi }_{\prime{2}}}{\left\vert {\boldsymbol \varphi }_{\prime{1}}\times{\boldsymbol \varphi }_{\prime{2}}\right\vert }=\lambda \;_{1}\times{\boldsymbol \varphi }_{2} </math>
793
|}
794
| style="width: 5px;text-align: right;" | (56)
795
|}
796
797
From these expressions it is also possible to compute in the original configuration the element area <math display="inline">A^{0}_{M}</math>, the outer normals <math display="inline">\left( n_{1} ,n_{2}\right) ^{i}</math> at each side and the side lengths <math display="inline">l_{i}^{M}</math>. Eq.([[#eq-56|56]]) also allows to evaluate the thickness ratio <math display="inline">\lambda </math> in the deformed configuration and the actual normal <math display="inline">\mathbf{t}_{3}</math>.
798
799
In order to compute the line integral of equation ([[#eq-54|54]]) the averaging procedure described in Section 2 is used. Hence along each side of the triangle the average value of <math display="inline">{\boldsymbol \varphi }_{^{\prime }\alpha }</math> between the main triangle and the adjacent one is taken leading to
800
801
{| class="formulaSCP" style="width: 100%; text-align: left;" 
802
|-
803
| 
804
{| style="text-align: left; margin:auto;" 
805
|-
806
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\frac{1}{A^{0}_{M}}\sum _{I=1}^{3}\left[ \begin{array}{cc} -n_{1}^{i} & 0\\ 0 & n_{2}^{i}\\ n_{2}^{i} & -n_{1}^{i} \end{array} \right] \left[ \begin{array}{c} \mathbf{t}_{3}\cdot \frac{1}{2}\left( \mathbf{\boldsymbol \varphi }_{^{\prime }1} ^{M}+\mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\right)\\ \mathbf{t}_{3}\cdot \frac{1}{2}\left( \mathbf{\boldsymbol \varphi }_{^{\prime }2} ^{M}+\mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\right) \end{array} \right] </math>
807
|}
808
| style="width: 5px;text-align: right;" | (57)
809
|}
810
811
where the sum extends over the three elements adjacent to the central triangle <math display="inline">M</math>.
812
813
Noting that <math display="inline">\mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }\alpha }^{M}=0</math> in the main triangle it can be found <span id='citeF-24'></span>[[#cite-24|[24]]]
814
815
<span id="eq-58"></span>
816
{| class="formulaSCP" style="width: 100%; text-align: left;" 
817
|-
818
| 
819
{| style="text-align: left; margin:auto;" 
820
|-
821
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\sum _{i=1}^{3}\left[ \begin{array}{cc} L_{i,1}^M & 0 \\         0 & L_{i,2}^M \\ L_{i,2}^M & L_{i,1}^M  \end{array} \right] \left[ \begin{array}{c} \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i} \end{array} \right] </math>
822
|}
823
| style="width: 5px;text-align: right;" | (58)
824
|}
825
826
This can be seen as the projection of the local derivatives in the adjacent triangles <math display="inline">\mathbf{\boldsymbol \varphi }_{^{\prime }\alpha }^{i}</math> (where index <math display="inline">i</math> denotes values associated to the adjacent elements) over the normal to the main triangle <math display="inline">\mathbf{t}_{3}</math>. As the triangles have a common side, <math display="inline">\mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }s}^{i}=0</math>, where <math display="inline">\mathbf{\boldsymbol \varphi }_{^{\prime } s}^{i}</math> is the derivative along the side. Hence only the derivative along the side normal (<math display="inline">\mathbf{\boldsymbol \varphi }_{^{\prime }n}^{i}</math>) has non-zero component over <math display="inline">\mathbf{t}_{3}</math>. This gives
827
828
<span id="eq-59"></span>
829
{| class="formulaSCP" style="width: 100%; text-align: left;" 
830
|-
831
| 
832
{| style="text-align: left; margin:auto;" 
833
|-
834
| style="text-align: center;" | <math>\left[ \begin{array}{c} \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i} \end{array} \right] =\left( \mathbf{t}_{3}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime  }n}^{i}\right)\mathbf{n}^{i} </math>
835
|}
836
| style="width: 5px;text-align: right;" | (59)
837
|}
838
839
An alternative form to express the curvatures, which is useful when their variations are needed, is to define the vectors
840
841
<span id="eq-60"></span>
842
{| class="formulaSCP" style="width: 100%; text-align: left;" 
843
|-
844
| 
845
{| style="text-align: left; margin:auto;" 
846
|-
847
| style="text-align: center;" | <math>\mathbf{h}_{ij}=\sum _{k=1}^{3}\frac{1}{2}\left( L_{k,i}^{M}{\boldsymbol \varphi  }_{^{\prime }j}^{k}+L_{k,j}^{M}{\boldsymbol \varphi }_{\prime i}^{k}\right) </math>
848
|}
849
| style="width: 5px;text-align: right;" | (60)
850
|}
851
852
This gives
853
854
<span id="eq-61"></span>
855
{| class="formulaSCP" style="width: 100%; text-align: left;" 
856
|-
857
| 
858
{| style="text-align: left; margin:auto;" 
859
|-
860
| style="text-align: center;" | <math>\kappa _{ij}=\mathbf{h}_{ij}\cdot \mathbf{t}_{3}</math>
861
|}
862
| style="width: 5px;text-align: right;" | (61)
863
|}
864
865
The last expression allows to interpret the curvatures as the projections of the vectors <math display="inline">\mathbf{h}_{ij}</math> over the normal of the central element. The variation of the curvatures can be obtained as
866
867
<span id="eq-62"></span>
868
{| class="formulaSCP" style="width: 100%; text-align: left;" 
869
|-
870
| 
871
{| style="text-align: left; margin:auto;" 
872
|-
873
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }=\sum _{i=1}^{3}\left\{ \left[ \begin{array}{cc} L_{i,1}^{M} & 0\\ 0 & L_{i,2}^{M}\\ L_{i,2}^{M} & L_{i,1}^{M} \end{array} \right] \sum _{J=1}^{3}\left[ \begin{array}{c} L_{j,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}^{i})\\ N_{j,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}^{i}) \end{array} \right] -2\left[ \begin{array}{c} (L_{i,1}^{M}\rho _{11}^{1}+L_{i,2}^{M}\rho _{11}^{2})\\ (L_{i,1}^{M}\rho _{22}^{1}+L_{i,2}^{M}\rho _{22}^{2})\\ (L_{i,1}^{M}\rho _{12}^{1}+L_{i,2}^{M}\rho _{12}^{2}) \end{array} \right] (\mathbf{t}_{3}\cdot \delta \mathbf{u}_{i}^{M})\right\} </math>
874
|}
875
| style="width: 5px;text-align: right;" | (62)
876
|}
877
878
where the projections of the vectors <math display="inline">\mathbf{h}_{ij}</math> over the contravariant base vectors <math display="inline">\tilde{\boldsymbol \varphi }_{^{\prime }\alpha }</math> have been included
879
880
<span id="eq-63"></span>
881
{| class="formulaSCP" style="width: 100%; text-align: left;" 
882
|-
883
| 
884
{| style="text-align: left; margin:auto;" 
885
|-
886
| style="text-align: center;" | <math>\rho _{ij}^{\alpha }=\mathbf{h}_{ij}\cdot \tilde{\boldsymbol \varphi }_{^{\prime }\alpha } \quad ,\quad \alpha ,i,j=1,2</math>
887
|}
888
| style="width: 5px;text-align: right;" | (63)
889
|}
890
891
with
892
893
{| class="formulaSCP" style="width: 100%; text-align: left;" 
894
|-
895
| 
896
{| style="text-align: left; margin:auto;" 
897
|-
898
| style="text-align: right;" | <math>\mathbf{\tilde{\boldsymbol \varphi }}_{^{\prime }1}  </math>
899
| <math>  =\lambda \;\mathbf{\boldsymbol \varphi }_{^{\prime }2}\times \mathbf{t}_{3}</math>
900
| style="width: 5px;text-align: right;" | (64)
901
|-
902
| style="text-align: right;" | <math> \mathbf{\tilde{\boldsymbol \varphi }}_{^{\prime }2}  </math>
903
| <math>  =-\lambda \;\mathbf{\boldsymbol \varphi  }_{^{\prime }1}\times \mathbf{t}_{3} </math>
904
| style="width: 5px;text-align: right;" | (65)
905
|}
906
|}
907
908
In above expressions superindexes in <math display="inline">L_{j}^k</math> and <math display="inline">\delta \mathbf{u}_{j}^k</math> refer to element numbers whereas subscripts denote node numbers. As usual the superindex <math display="inline">M</math> denotes values in the central triangle (Figure [[#img-1|1]]). Note that as expected the curvatures (and their variations) in the central element are a function of the nodal displacements of the six nodes in the four elements patch. Note also that
909
910
{| class="formulaSCP" style="width: 100%; text-align: left;" 
911
|-
912
| 
913
{| style="text-align: left; margin:auto;" 
914
|-
915
| style="text-align: center;" | <math>\lambda ={\frac{h}{h^{0}}}={\frac{A_{M}^{0}}{A_{M}}} </math>
916
|}
917
| style="width: 5px;text-align: right;" | (66)
918
|}
919
920
Details of the derivation of Eq.([[#eq-62|62]]) can be found in [27].
921
922
Eq.([[#eq-62|62]]) can be rewritten in the form
923
924
{| class="formulaSCP" style="width: 100%; text-align: left;" 
925
|-
926
| 
927
{| style="text-align: left; margin:auto;" 
928
|-
929
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }=\mathbf{B}_{b}\delta \mathbf{a}^{p} </math>
930
|}
931
| style="width: 5px;text-align: right;" | (67)
932
|}
933
934
where
935
936
<span id="eq-68"></span>
937
{| class="formulaSCP" style="width: 100%; text-align: left;" 
938
|-
939
| 
940
{| style="text-align: left; margin:auto;" 
941
|-
942
| style="text-align: center;" | <math>\begin{array}{c} \\ \delta \mathbf{a}^{p}\\ 18\times{1} \end{array} =[\delta \mathbf{u}_{1}^{T},\delta \mathbf{u}_{2}^{T},\delta \mathbf{u}_{3} ^{T},\delta \mathbf{u}_{4}^{T},\delta \mathbf{u}_{5}^{T},\delta \mathbf{u}_{6}^{T}]^{T}</math>
943
|}
944
| style="width: 5px;text-align: right;" | (68)
945
|}
946
947
is the virtual displacement vector of the patch
948
949
<span id="eq-69"></span>
950
{| class="formulaSCP" style="width: 100%; text-align: left;" 
951
|-
952
| 
953
{| style="text-align: left; margin:auto;" 
954
|-
955
| style="text-align: center;" | <math>\mathbf{B}_{b}=[\mathbf{B}_{b1},\mathbf{B}_{b2}\cdots ,\mathbf{B}_{b6}]</math>
956
|}
957
| style="width: 5px;text-align: right;" | (69)
958
|}
959
960
is the curvature matrix relating the virtual curvatures within the central element and the 18 virtual displacements of the six nodes in the patch.
961
962
The form of matrix <math display="inline">\mathbf{B}_{b}</math> is given in the Appendix.
963
964
==5 ENHANCED BASIC SHELL TRIANGLE==
965
966
An enhanced version of the BST element (termed EBST) has been recently proposed by Flores and Oñate [27]. The main features of the element formulation are the following:
967
968
<ol>
969
970
<li>The geometry of the patch formed by the central element and the three adjacent elements is ''quadratically interpolated'' from the position of the six nodes in the patch. </li>
971
972
<li>The membrane strains are assumed to vary ''linearly'' within the central triangle and are expressed in terms of the (continuous) values of the deformation gradient at the mid side points of the triangle. </li>
973
974
<li>The assumed ''constant curvature'' field within the central triangle is obtained by expression ([[#eq-54|54]]) using now twice the values of the (continuous) deformation gradient at the mid side points. </li>
975
976
</ol>
977
978
Details of the derivation of the EBST element are given below.
979
980
===5.1 Definition of the element geometry and computation of membrane strains===
981
982
As mentioned above a quadratic approximation of the geometry of the four elements patch is chosen using the position of the six nodes in the patch. It is useful to define the patch in the isoparametric space using the nodal positions given in the Table 2 (see also Figure 2).
983
984
985
{| class="wikitable" style="text-align: left; margin: 1em auto;"
986
|+ Table. 2 Isoparametric coordinates of the six nodes in the patch of Figure 2.
987
|- style="border-top: 2px solid;"
988
| [c]|c|c|c|c|c|c|c| 
989
| 1 
990
| 2 
991
| 3 
992
| 4 
993
| 5 
994
| 6
995
|- style="border-top: 2px solid;"
996
| <math display="inline">\xi </math> 
997
| 0 
998
| 1 
999
| 0 
1000
| 1 
1001
| -1 
1002
| 1
1003
|- style="border-top: 2px solid;border-bottom: 2px solid;"
1004
| <math display="inline">\eta </math> 
1005
| 0 
1006
| 0 
1007
| 1 
1008
| 1 
1009
| 1 
1010
| -1
1011
1012
|}
1013
1014
The quadratic interpolation is defined by
1015
1016
<span id="eq-70"></span>
1017
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1018
|-
1019
| 
1020
{| style="text-align: left; margin:auto;" 
1021
|-
1022
| style="text-align: center;" | <math>{\boldsymbol \varphi }=\sum _{i=1}^{6}N_{i}{\boldsymbol \varphi }_{i}</math>
1023
|}
1024
| style="width: 5px;text-align: right;" | (70)
1025
|}
1026
1027
with (<math display="inline">\zeta=1-\xi-\eta</math>)
1028
1029
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1030
|-
1031
| 
1032
{| style="text-align: left; margin:auto;" 
1033
|-
1034
| style="text-align: center;" | <math>\begin{array}{ccc} N_{1}=\zeta{+\xi}\eta &  & N_{4}=\frac{\zeta }{2}\left( \zeta{-1}\right) \\ N_{2}=\xi{+\eta}\zeta &  & N_{5}=\frac{\xi }{2}\left( \xi{-1}\right) \\ N_{3}=\eta{+\zeta}\xi &  & N_{6}=\frac{\eta }{2}\left( \eta{-1}\right) \end{array} </math>
1035
|}
1036
| style="width: 5px;text-align: right;" | (71)
1037
|}
1038
1039
This interpolation allows to compute the displacement gradients at selected points in order to use an assumed strain approach. The computation of the gradients is performed at the mid side points of the central element of the patch denoted by <math display="inline">G_{1}</math>, <math display="inline">G_{2}</math> and <math display="inline">G_{3}</math> in Figure [[#img-2|2]]. This choice has the following advantages.
1040
1041
<div id='img-2'></div>
1042
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1043
|-
1044
|[[Image:draft_Samper_226033773-fig2.png|600px|Patch of elements in the isoparametric space.]]
1045
|- style="text-align: center; font-size: 75%;"
1046
| colspan="1" | '''Figure 2:''' Patch of elements in the isoparametric space.
1047
|}
1048
1049
* Gradients at the three mid side points depend only on the nodes belonging to the two elements adjacent to each side. This can be easily verified by sampling the derivatives of the shape functions at each mid-side point.
1050
1051
* When gradients are computed at the common mid-side point of two adjacent elements, the same values are obtained, as the coordinates of the same four points are used. This in practice means that the gradients at the mid-side points are independent of the element where they are computed. A side-oriented implementation of the finite element will therefore lead to a unique evaluation of the gradients per side.
1052
1053
The cartesian derivatives of the shape functions are computed at the original configuration by the standard expression
1054
1055
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1056
|-
1057
| 
1058
{| style="text-align: left; margin:auto;" 
1059
|-
1060
| style="text-align: center;" | <math>\left[ \begin{array}{c} N_{i,1}\\ N_{i,2} \end{array} \right] =\mathbf{J}^{-1}\left[ \begin{array}{c} N_{i,\xi } \\ N_{i,\eta } \end{array} \right] </math>
1061
|}
1062
| style="width: 5px;text-align: right;" | (72)
1063
|}
1064
1065
where the Jacobian matrix at the original configuration is
1066
1067
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1068
|-
1069
| 
1070
{| style="text-align: left; margin:auto;" 
1071
|-
1072
| style="text-align: center;" | <math>\mathbf{J=}\left[ \begin{array}{cc} \mathbf{\boldsymbol \varphi }_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{1} & \mathbf{\boldsymbol \varphi  }_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{1}\\ \mathbf{\boldsymbol \varphi }_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{2} & \mathbf{\boldsymbol \varphi  }_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{2} \end{array} \right] </math>
1073
|}
1074
| style="width: 5px;text-align: right;" | (73)
1075
|}
1076
1077
The deformation gradients on the middle surface, associated to an arbitrary spatial cartesian system and to the material cartesian system defined on the middle surface are related by
1078
1079
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1080
|-
1081
| 
1082
{| style="text-align: left; margin:auto;" 
1083
|-
1084
| style="text-align: center;" | <math>\left[ {\boldsymbol \varphi }_{^{\prime }1},\mathbf{\boldsymbol \varphi }_{^{\prime }2}\right] =\left[ \mathbf{\boldsymbol \varphi }_{^{\prime }\xi },\mathbf{\boldsymbol \varphi }_{^{\prime }\eta }\right]  \mathbf{J}^{-1} </math>
1085
|}
1086
| style="width: 5px;text-align: right;" | (74)
1087
|}
1088
1089
The Green-Lagrange membrane strains within the central triangle are now obtained using a linear assumed membrane strain field <math display="inline">\hat{\boldsymbol \varepsilon }_{m}</math>, i.e.
1090
1091
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1092
|-
1093
| 
1094
{| style="text-align: left; margin:auto;" 
1095
|-
1096
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\hat{\boldsymbol \varepsilon }_{m} </math>
1097
|}
1098
| style="width: 5px;text-align: right;" | (75)
1099
|}
1100
1101
with
1102
1103
<span id="eq-76"></span>
1104
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1105
|-
1106
| 
1107
{| style="text-align: left; margin:auto;" 
1108
|-
1109
| style="text-align: center;" | <math>\hat{\boldsymbol \varepsilon }_{m}=(1-2\zeta ){\boldsymbol \varepsilon }_{m}^{1}+(1-2\xi ){\boldsymbol \varepsilon  }_{m}^{2}+(1-2\eta ){\boldsymbol \varepsilon }_{m}^{3}=\sum _{i=1}^{3}\bar{N}_{i} {\boldsymbol \varepsilon }_{m}^{i}</math>
1110
|}
1111
| style="width: 5px;text-align: right;" | (76)
1112
|}
1113
1114
where <math display="inline">{\boldsymbol \varepsilon }_{m}^{i}</math> are the membrane strains computed at the three mid side points <math display="inline">G_{i}</math> (<math display="inline">i=1,2,3</math>  see Figure [[#img-2|2]]). In Eq.([[#eq-76|76]]) <math display="inline">\bar{N}_{1}=(1-2\zeta )</math>, etc.
1115
1116
The gradient at each mid side point is computed from the quadratic interpolation ([[#eq-70|70]]):
1117
1118
<span id="eq-77"></span>
1119
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1120
|-
1121
| 
1122
{| style="text-align: left; margin:auto;" 
1123
|-
1124
| style="text-align: center;" | <math>\left( {\boldsymbol \varphi }_{^{\prime }\alpha }\right) _{G_{i}}={\boldsymbol \varphi }_{^{\prime  }\alpha }^{i}=\left[ \sum _{j=1}^{3}N_{j,\alpha }^{i}{\boldsymbol \varphi }_{j}\right] +N_{i+3,\alpha }^{i}{\boldsymbol \varphi }_{i+3}\quad ,\quad \alpha=1,2\quad ,\quad  i=1,2,3</math>
1125
|}
1126
| style="width: 5px;text-align: right;" | (77)
1127
|}
1128
1129
Substituting Eq.([[#eq-22|22]]) into ([[#eq-76|76]]) and using Eq.([[#eq-22|22]]) gives the membrane strain vector as
1130
1131
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1132
|-
1133
| 
1134
{| style="text-align: left; margin:auto;" 
1135
|-
1136
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\sum _{i=1}^{3}\frac{1}{2}\bar{N}_{i}\left\{ \begin{array}{c} {\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}-1\\ {\boldsymbol \varphi }_{^{\prime }2}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}-1\\ 2{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i} \end{array} \right\} </math>
1137
|}
1138
| style="width: 5px;text-align: right;" | (78)
1139
|}
1140
1141
and the virtual membrane strains as
1142
1143
<span id="eq-79"></span>
1144
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1145
|-
1146
| 
1147
{| style="text-align: left; margin:auto;" 
1148
|-
1149
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\sum _{i=1}^{3}\bar{N}_{i}\left\{ \begin{array}{c} {\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ {\boldsymbol \varphi }_{2}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\\ \delta{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2} ^{i}+{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{2}^{i} \end{array} \right\} </math>
1150
|}
1151
| style="width: 5px;text-align: right;" | (79)
1152
|}
1153
1154
We note that the gradient at each mid side point <math display="inline">G_{i}</math> depends only on the coordinates of the three nodes of the central triangle and on those of an additional node in the patch, associated to the side <math display="inline">i</math> where the gradient is computed.
1155
1156
Combining Eqs.([[#eq-79|79]]) and ([[#eq-77|77]]) gives
1157
1158
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1159
|-
1160
| 
1161
{| style="text-align: left; margin:auto;" 
1162
|-
1163
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\mathbf{B}_{m}\delta \mathbf{a}^{p} </math>
1164
|}
1165
| style="width: 5px;text-align: right;" | (80)
1166
|}
1167
1168
where <math display="inline">\delta \mathbf{a}^{p}</math> is the patch displacement vector (see Eq.([[#eq-68|68]])) and <math display="inline">\mathbf{B}_{m}</math> is the membrane strain matrix. An explicit form of this matrix is given in the Appendix.
1169
1170
Differently from the original BST element the membrane strains within the EBST element are now a function of the displacements of the six patch nodes.
1171
1172
===5.2 Computation of curvatures===
1173
1174
The constant curvature field assumed for the BST element is chosen again here. The numerical evaluation of the line  integral in Eq.([[#eq-54|54]]) results in a sum over the integration points at the element boundary which are, in fact, the same points used for evaluating the gradients when computing the membrane strains. As one integration point is used over each side, it is not necessary to distinguish between sides (<math display="inline">i</math>) and integration points (<math display="inline">G_{i}</math>). In this way the curvatures can be computed by
1175
1176
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1177
|-
1178
| 
1179
{| style="text-align: left; margin:auto;" 
1180
|-
1181
| style="text-align: center;" | <math>{\boldsymbol \kappa }=2\sum _{i=1}^{3}\left[ \begin{array}{cc} L_{i,1}^M & 0\\ 0         & L_{i,2}^M \\ L_{i,2}^M & L_{i,1}^M  \end{array} \right] \left[ \begin{array}{c} \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2}^{i} \end{array} \right] </math>
1182
|}
1183
| style="width: 5px;text-align: right;" | (81)
1184
|}
1185
1186
In the standard BST element <span id='citeF-21'></span><span id='citeF-24'></span>[[#cite-21|[21,24]]] the gradient <math display="inline">\mathbf{\boldsymbol \varphi  }_{\prime \alpha }^{i}</math> is computed as the average of the linear approximations over the two adjacent elements (see Section 4.3). In the enhanced version, the gradient is evaluated at each side <math display="inline">G_{i}</math> from the quadratic interpolation
1187
1188
<span id="eq-82"></span>
1189
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1190
|-
1191
| 
1192
{| style="text-align: left; margin:auto;" 
1193
|-
1194
| style="text-align: center;" | <math>\left[ \begin{array}{c} {\boldsymbol \varphi }_{\prime{1}}^{i}\\ {\boldsymbol \varphi }_{\prime{2}}^{i} \end{array} \right] =\left[ \begin{array}{cccc} N_{1,1}^{i} & N_{2,1}^{i} & N_{3,1}^{i} & N_{i+3,1}^{i}\\ N_{1,2}^{i} & N_{2,2}^{i} & N_{3,2}^{i} & N_{i+3,2}^{i} \end{array} \right] \left[ \begin{array}{c} {\boldsymbol \varphi }_{1}\\ {\boldsymbol \varphi }_{2}\\ {\boldsymbol \varphi }_{3}\\ {\boldsymbol \varphi }_{i+3} \end{array} \right]  </math>
1195
|}
1196
| style="width: 5px;text-align: right;" | (82)
1197
|}
1198
1199
Note again than at each side the gradients depend only on the positions of the three nodes of the central triangle and of an extra node (<math display="inline">i+3</math>), associated precisely to the side (<math display="inline">G_{i}</math>) where the gradient is computed.
1200
1201
Direction '''t'''<math display="inline">_{3}</math> in Eq.([[#eq-82|82]]) can be seen as a reference direction. If a different direction than that given by Eq.([[#eq-56|56]]) is chosen, at an angle <math display="inline">\theta </math> with the former, this has an influence of order <math display="inline">\theta ^{2}</math> in the projection. This justifies Eq.([[#eq-56|56]]) for the definition of '''t'''<math display="inline">_{3}</math> as a function exclusively of the three nodes of the central triangle, instead of using the 6-node isoparametric interpolation.
1202
1203
The variation of the curvatures can be obtained as
1204
1205
<span id="eq-89"></span>
1206
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1207
|-
1208
| 
1209
{| style="text-align: left; margin:auto;" 
1210
|-
1211
| style="text-align: right;" | <math>\delta{\boldsymbol \kappa } </math>
1212
| <math>  =2\sum _{i=1}^{3}\left[ \begin{array}{cc} L_{i,1}^M & 0\\ 0         & L_{i,2}^M\\ L_{i,2}^M & L_{i,1}^M \end{array} \right] \left\{ \sum _{i=1}^{3}\left[ \begin{array}{c} N_{j,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j})\\ N_{j,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}) \end{array} \right] +\left[ \begin{array}{c} N_{i+3,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}^{i+3})\\ N_{i+3,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}^{i+3}) \end{array} \right] \right\} -</math>
1213
|-
1214
| style="text-align: right;" | 
1215
| <math>  -\sum _{i=1}^{3}\left[ \begin{array}{c} (L_{i,1}^M\rho _{11}^{1}+L_{i,2}^M\rho _{11}^{2})\\ (L_{i,1}^M\rho _{22}^{1}+L_{i,2}^M\rho _{22}^{2})\\ (L_{i,1}^M\rho _{12}^{1}+L_{i,2}^M\rho _{12}^{2}) \end{array} \right] (\mathbf{t}_{3}\cdot \delta \mathbf{u}_{i})=\mathbf{B}_{b} \delta \mathbf{a}^{p}</math>
1216
|}
1217
| style="width: 5px;text-align: right;" | (89)
1218
|}
1219
1220
where the definitions ([[#eq-61|61]]) and ([[#eq-63|63]]) still hold but with the new definition of <math display="inline">\mathbf{h}_{ij}</math> given by <span id='citeF-27'></span>[[#cite-27|[27]]]
1221
1222
<span id="eq-90"></span>
1223
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1224
|-
1225
| 
1226
{| style="text-align: left; margin:auto;" 
1227
|-
1228
| style="text-align: center;" | <math>\mathbf{h}_{ij}=\sum _{k=1}^{3}\left( L_{k,i}^M{\boldsymbol \varphi }_{\prime j}^{k} +L_{k,j}^M{\boldsymbol \varphi }_{^{\prime }i}^{k}\right) </math>
1229
|}
1230
| style="width: 5px;text-align: right;" | (90)
1231
|}
1232
1233
In Eq.([[#eq-89|89]])
1234
1235
<span id="eq-91"></span>
1236
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1237
|-
1238
| 
1239
{| style="text-align: left; margin:auto;" 
1240
|-
1241
| style="text-align: center;" | <math>\mathbf{B}_{b}=[\mathbf{B}_{b_{1}},\mathbf{B}_{b_{2}},\cdots ,\mathbf{B}_{b_{6}}]</math>
1242
|}
1243
| style="width: 5px;text-align: right;" | (91)
1244
|}
1245
1246
The expression of the curvature matrix <math display="inline">\mathbf{B}_b</math> is given in the Appendix. Details of the derivation of Eq.([[#eq-89|89]]) can be found in [27].
1247
1248
===5.3 The EBST1 element===
1249
1250
A simplified and yet very effective version of the EBST element can be obtained by using ''one point quadrature'' for the computation of all the element integrals. This element is termed EBST1. Note that this only affects the membrane stiffness matrices and it is equivalent to using a assumed constant membrane strain field defined by an average of the metric tensors computed at each side.
1251
1252
Numerical experiments have shown that both the EBST and the EBST1 elements are free of spurious energy modes.
1253
1254
==6 BOUNDARY CONDITIONS==
1255
1256
Elements at the domain boundary, where an adjacent element does not exist, deserve a special attention. The treatment of essential boundary conditions associated to translational constraints is straightforward, as they are the natural degrees of freedom of the element. The conditions associated to the normal vector are crucial in this formulation for bending. For clamped sides or symmetry planes, the normal vector <math display="inline">\mathbf{t}_{3}</math> must be kept fixed (clamped case), or constrained to move in the plane of symmetry (symmetry case). The former case can be seen as a special case of the latter, so we will consider symmetry planes only. This restriction can be imposed through the definition of the tangent plane at the boundary, including the normal to the plane of symmetry <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{0}</math> that does not change during the process.
1257
1258
<div id='img-3'></div>
1259
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1260
|-
1261
|
1262
[[File:Draft_Samper_226033773_5749_Fig3.jpeg|600px|Local cartesian system for the treatment of symmetry boundary conditions]]
1263
|- style="text-align: center; font-size: 75%;"
1264
| colspan="1" | '''Figure 3:''' Local cartesian system for the treatment of symmetry boundary conditions
1265
|}
1266
1267
The tangent plane at the boundary (mid-side point) is expressed in terms of two orthogonal unit vectors referred to a local-to-the-boundary Cartesian system (see Figure [[#img-3|3]]) defined as
1268
1269
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1270
|-
1271
| 
1272
{| style="text-align: left; margin:auto;" 
1273
|-
1274
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }n}^{0},\;\bar{\boldsymbol \varphi }_{^{\prime }s}\right] </math>
1275
|}
1276
| style="width: 5px;text-align: right;" | (92)
1277
|}
1278
1279
where vector <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{0}</math> is fixed during the process while direction <math display="inline">\bar{\boldsymbol \varphi }_{^{\prime }s}</math> emerges from the intersection of the symmetry plane with the plane defined by the central element (<math display="inline">M</math>). The plane (gradient) defined by the central element in the selected original convective Cartesian system (<math display="inline">\mathbf{t}_{1},\mathbf{t}_{2} </math>) is
1280
1281
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1282
|-
1283
| 
1284
{| style="text-align: left; margin:auto;" 
1285
|-
1286
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }1}^{M},\;\boldsymbol \varphi _{^{\prime  }2}^{M}\right] </math>
1287
|}
1288
| style="width: 5px;text-align: right;" | (93)
1289
|}
1290
1291
the intersection line (side <math display="inline">i</math>) of this plane with the plane of symmetry can be written in terms of the position of the nodes that define the side (<math display="inline">j </math> and <math display="inline">k</math>) and the original length of the side <math display="inline">l_{i}^{M}</math>, i.e.
1292
1293
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1294
|-
1295
| 
1296
{| style="text-align: left; margin:auto;" 
1297
|-
1298
| style="text-align: center;" | <math>\boldsymbol \varphi _{^{\prime }s}^{i}=\frac{1}{l_{i}^{M}}\left(\boldsymbol  \varphi _{k}-\boldsymbol \varphi _{j}\right) </math>
1299
|}
1300
| style="width: 5px;text-align: right;" | (94)
1301
|}
1302
1303
That together with the outer normal to the side <math display="inline">\mathbf{n}^{i} = \left[n_{1},n_{2}\right]^{T}=\left[\mathbf{n\cdot t}_{1},\mathbf{n\cdot t}_{2}\right]^{T}</math> (resolved in the selected original convective Cartesian system) leads to
1304
1305
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1306
|-
1307
| 
1308
{| style="text-align: left; margin:auto;" 
1309
|-
1310
| style="text-align: center;" | <math>\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}^{iT} \\ \boldsymbol \varphi _{^{\prime }2}^{iT} \end{array}\right]=\left[ \begin{array}{cc}n_{1} & -n_{2} \\ n_{2} & n_{1} \end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }n}^{iT} \\ \boldsymbol \varphi _{^{\prime }s}^{iT} \end{array}\right] </math>
1311
|}
1312
| style="width: 5px;text-align: right;" | (95)
1313
|}
1314
1315
where, noting  that <math display="inline">\lambda </math> is the determinant of the gradient, the normal component of the gradient <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{i}</math> can be approximated by
1316
1317
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1318
|-
1319
| 
1320
{| style="text-align: left; margin:auto;" 
1321
|-
1322
| style="text-align: center;" | <math>\boldsymbol \varphi _{^{\prime }n}^{i}=\frac{\boldsymbol \varphi _{^{\prime }n}^{0} }{\lambda |\boldsymbol \varphi _{^{\prime }s}^{i}|} </math>
1323
|}
1324
| style="width: 5px;text-align: right;" | (96)
1325
|}
1326
1327
In this way the contribution of the gradient at side <math display="inline">i</math> to vectors <math display="inline">\mathbf{ h}_{\alpha \beta }</math> (equations [[#eq-60|60]] and [[#eq-90|90]]) results in
1328
1329
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1330
|-
1331
| 
1332
{| style="text-align: left; margin:auto;" 
1333
|-
1334
| style="text-align: center;" | <math>\left[ \begin{array}{c}\mathbf{h}_{11}^{T} \\ \mathbf{h}_{22}^{T} \\ 2\mathbf{h}_{12}^{T} \end{array}\right]^{i}=2\left[ \begin{array}{cc}L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M} \end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}^{iT} \\ \boldsymbol \varphi _{^{\prime }2}^{iT} \end{array}\right]=2\left[ \begin{array}{cc}L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M} \end{array}\right]\left[ \begin{array}{cc}n_{1} & -n_{2} \\ n_{2} & n_{1} \end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }n}^{iT} \\ \boldsymbol \varphi _{^{\prime }s}^{iT} \end{array}\right] </math>
1335
|}
1336
| style="width: 5px;text-align: right;" | (97)
1337
|}
1338
1339
For the computation of the curvature variations, the contribution from the gradient at side <math display="inline">i</math> is now (see Ref. <span id='citeF-27'></span>[[#cite-27|[27]]])
1340
1341
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1342
|-
1343
| 
1344
{| style="text-align: left; margin:auto;" 
1345
|-
1346
| style="text-align: center;" | <math> \delta \left[ \begin{array}{c} \mathbf{h}_{11}^{T} \\ \mathbf{h}_{22}^{T} \\ 2\mathbf{h}_{12}^{T} \end{array} \right]^{i} =2\left[ \begin{array}{cc} L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M} \end{array} \right]\left[ \begin{array}{cc} n_{1} & -n_{2} \\ n_{2} & n_{1} \end{array} \right]\left[ \begin{array}{c} \mathbf{0} \\ \frac{1}{L_{o}}\left[\delta \mathbf{u}_{k}-\delta \mathbf{u}_{j}\right]^{T} \end{array} \right]</math>
1347
|}
1348
| style="width: 5px;text-align: right;" |  (92a)
1349
|}
1350
1351
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1352
|-
1353
| 
1354
{| style="text-align: left; margin:auto;" 
1355
|-
1356
| style="text-align: center;" | <math> =\frac{2}{l_{i}^{M}}\left[ \begin{array}{c} -L_{i,1}^{M}n_{2} \\ L_{i,2}^{M}n_{1} \\ L_{i,1}^{M}n_{1}-L_{i,2}^{M}n_{2} \end{array} \right]\left[\delta \mathbf{u}_{k}-\delta \mathbf{u}_{j}\right]^{T}</math>
1357
|}
1358
| style="width: 5px;text-align: right;" |  %
1359
(92b)
1360
|}
1361
1362
where the influence of variations in the length of vector <math display="inline">\boldsymbol \varphi  _{^{\prime }n}</math> has been neglected.
1363
1364
For a simple supported (hinged) side, the problem is not completely defined. The simplest choice is to neglect the contribution to the side rotations from the adjacent element missing in the patch in the evaluation of the curvatures via eq.([[#eq-54|54]]) <span id='citeF-29'></span>[[#cite-29|29]]. This is equivalent to assume that the gradient at the side is equal to the gradient in the central element, i.e.
1365
1366
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1367
|-
1368
| 
1369
{| style="text-align: left; margin:auto;" 
1370
|-
1371
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }1}^{i},\;\boldsymbol \varphi _{^{\prime }2}^{i} \right]=\left[\boldsymbol \varphi _{^{\prime }1}^{M},\;\boldsymbol \varphi  _{^{\prime }2}^{M}\right] </math>
1372
|}
1373
|}
1374
1375
More precise changes can be however introduced to account for the different natural boundary conditions. One may assume that the curvature normal to the side is zero, and consider a contribution of the missing side to introduce this constraint. As the change of curvature parallel to the side is zero along the hinged side, both things lead to zero curvatures in both directions. Denoting the contribution to curvatures of the existing sides (<math display="inline">j </math> and <math display="inline">k</math>) by
1376
1377
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1378
|-
1379
| 
1380
{| style="text-align: left; margin:auto;" 
1381
|-
1382
| style="text-align: center;" | <math>\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12} \end{array} \right]^{j-k} </math>
1383
|}
1384
|}
1385
1386
It can be easily shown that to set the normal curvature to zero the contribution of the simple supported side (<math display="inline">i</math>) should be
1387
1388
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1389
|-
1390
| 
1391
{| style="text-align: left; margin:auto;" 
1392
|-
1393
| style="text-align: center;" | <math>\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12} \end{array} \right]^{i}=-\left[ \begin{array}{ccc}\left(n_{1}\right)^{4} & \left(n_{1}\right)^{2}\left(n_{2}\right)^{2} & \left(n_{1}\right)^{3}n_{2} \\ \left(n_{1}\right)^{2}\left(n_{2}\right)^{2} & \left(n_{2}\right)^{4} & n_{1}\left(n_{2}\right)^{3} \\ 2\left(n_{1}\right)^{3}n_{2} & 2n_{1}\left(n_{2}\right)^{3} & 2\left( n_{1}\right)^{2}\left(n_{2}\right)^{2} \end{array} \right]\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12} \end{array} \right]^{j-k} </math>
1394
|}
1395
| style="width: 5px;text-align: right;" | (93)
1396
|}
1397
1398
For the case of a triangle with two sides associated to hinged sides, the normal curvatures to both sides must be zero. Denoting by <math display="inline">\mathbf{n}^{i}</math> and <math display="inline">\mathbf{n}^{j}</math> the normal to the sides, and by <math display="inline">\mathbf{m}^{i}</math> and <math display="inline"> \mathbf{m}^{j}</math> the dual base (associated to base <math display="inline">\mathbf{n}^{i}-</math> <math display="inline">\mathbf{ n}^{j}</math>), the contribution from the hinged sides (<math display="inline">i</math> and <math display="inline">j</math>) can be written as a function of the contribution of the only existing side (<math display="inline">k</math>):
1399
1400
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1401
|-
1402
| 
1403
{| style="text-align: left; margin:auto;" 
1404
|-
1405
| style="text-align: center;" | <math>\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12} \end{array} \right]^{i-j}=-\left[ \begin{array}{c}m_{1}^{i}m_{1}^{j} \\ m_{2}^{i}m_{2}^{j} \\ m_{1}^{i}m_{2}^{j}+m_{2}^{i}m_{1}^{j} \end{array} \right]\left[ \begin{array}{ccc}2n_{1}^{i}n_{1}^{j} & 2n_{2}^{i}n_{2}^{j} & n_{1}^{i}n_{2}^{j}+n_{2}^{i}n_{1}^{j} \end{array} \right]\left[ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ \kappa _{12} \end{array} \right]^{k} </math>
1406
|}
1407
| style="width: 5px;text-align: right;" | (94)
1408
|}
1409
1410
For a free edge the same approximation can be used but due to Poisson's effect this will lead to some error. The curvature variations of these contributions can be easily computed.
1411
1412
For the membrane formulation of element EBST, the gradient at the mid-side point of the boundary is assumed equal to the gradient of the main triangle.
1413
1414
==7 IMPLICIT SOLUTION SCHEME==
1415
1416
For a step <math display="inline">n</math> the configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n}</math> and the plastic strains <math display="inline">{\boldsymbol \varepsilon }_{p}^{n}</math> are known. The configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n}</math> is obtained by adding the total displacements to the original configuration <math display="inline"> \mathbf{\boldsymbol \varphi }^{n}=\mathbf{\boldsymbol \varphi }^{0} +\mathbf{u}^{n}</math>. The stresses are computed at each triangle using a single sampling (integration) point at the center and <math display="inline">N_{L}</math> integration points (layers) through the thickness. The plane stress state condition of the classical thin shell theory is assumed, so that for every layer three stress components are computed, (<math display="inline">\sigma _{11}</math>,<math display="inline">\sigma _{22}</math>, and <math display="inline">\sigma _{12}</math>) referred to the local cartesian system.
1417
1418
The computation of the incremental stresses is as follows:
1419
1420
<ol>
1421
1422
<li>Evaluate the incremental displacements: <math display="inline">\Delta \mathbf{u}^{n}=\mathbf{K}_{T}^{n}\mathbf{r}^{n}</math> where <math display="inline">\mathbf{K}_{T}</math> is the tangent stiffness matrix and '''r''' is the residual force vector  defined by for each element
1423
1424
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1425
|-
1426
| 
1427
{| style="text-align: left; margin:auto;" 
1428
|-
1429
| style="text-align: center;" | <math>\mathbf{r}^e_i =\int \int _A L_i {t}\, dA - \int \int _{A^\circ } ({B}_{m_i}^T {\boldsymbol \sigma }_m + {B}_{b_i}^T {\boldsymbol \sigma }_b)dA </math>
1430
|}
1431
| style="width: 5px;text-align: right;" | (95)
1432
|}</li>
1433
1434
The expression of the tangent stiffness matrix for the element is given below. Details of the derivation can be found in <span id='citeF-24'></span>[[#cite-24|[24]]],<span id='citeF-27'></span>[[#cite-27|[27]]].
1435
1436
<li>Generate the actual configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n+1} =\mathbf{\boldsymbol \varphi }^{n}+\Delta \mathbf{u}^{n}</math> </li>
1437
1438
<li>Compute the metric tensor <math display="inline">a_{\alpha \beta }^{n+1}\mathbf{ }</math>and the curvatures <math display="inline">\kappa _{\alpha \beta }^{n+1}</math> </li>
1439
1440
<li>Compute the total and elastic deformations at each layer <math display="inline">k</math> </li>
1441
1442
<span id="eq-96"></span>
1443
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1444
|-
1445
| 
1446
{| style="text-align: left; margin:auto;" 
1447
|-
1448
| style="text-align: right;" | <math>{\boldsymbol \varepsilon }_{k}^{n+1} </math>
1449
| <math>  ={\boldsymbol \varepsilon }_{m}^{n+1}+z_{k}{\boldsymbol \chi } ^{n+1}</math>
1450
| style="width: 5px;text-align: right;" | (96)
1451
|-
1452
| style="text-align: right;" | <math> \left[ {\boldsymbol \varepsilon }_{e}\right] _{k}^{n+1} </math>
1453
| <math>  ={\boldsymbol \varepsilon  }_{k}^{n+1}-\left[ {\boldsymbol \varepsilon }_{p}\right] _{k}^{n} </math>
1454
|}
1455
|}
1456
1457
<li>Compute the trial elastic stresses at each layer <math display="inline">k</math>
1458
1459
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1460
|-
1461
| 
1462
{| style="text-align: left; margin:auto;" 
1463
|-
1464
| style="text-align: center;" | <math>{\boldsymbol \sigma } _{k}^{n+1}=\mathbf{C}\left[ {\boldsymbol \varepsilon }_{e}\right] _{k}^{n+1} </math>
1465
|}
1466
| style="width: 5px;text-align: right;" | (97)
1467
|}</li>
1468
1469
<li>Check the plasticity condition and return to the plasticity surface. If necessary correct the plastic strains <math display="inline">\left[{\boldsymbol \varepsilon } _{p}\right] _{k}^{n+1}</math> at each layer (small strain plasticity) </li>
1470
1471
<li>Compute the generalized stresses
1472
1473
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1474
|-
1475
| 
1476
{| style="text-align: left; margin:auto;" 
1477
|-
1478
| style="text-align: right;" | <math>{\boldsymbol \sigma }^{n+1}_{m}  </math>
1479
| <math>  =\frac{h^{0}}{N_{L}}\sum _{k=1}^{N_{L}}\boldsymbol \sigma _{k} ^{n+1} w_{k}</math>
1480
|-
1481
| style="text-align: right;" | <math> {\boldsymbol \sigma }^{n+1}_{b}  </math>
1482
| <math>  =\frac{h^{0}}{N_{L}}\sum _{k=1}^{N_{L}}\boldsymbol \sigma _{k} ^{n+1}z_{k} w_{k} </math>
1483
|}
1484
| style="width: 5px;text-align: right;" | (98)
1485
|}</li>
1486
1487
Where <math display="inline"> w_{k}</math> is the weight of the through-the-thickness integration point. Recall that <math display="inline">z_{k}</math> is the current distance of the layer to the mid-surface and not the original distance. However, for small strain plasticity this distinction is not important.
1488
1489
This computation of stresses is adequate for an implicit scheme independent of the step size and it is exact for an elastic problem.
1490
1491
<li>Compute the residual force vector. The contribution for the <math display="inline">M</math>th element is given by
1492
1493
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1494
|-
1495
| 
1496
{| style="text-align: left; margin:auto;" 
1497
|-
1498
| style="text-align: center;" | <math>(\mathbf{r}^{M})^{n+1}=-A_{M}^{0}\left[ \begin{array}{cc} \mathbf{B}_{m}^{T} & \mathbf{B}_{b}^{T} \end{array} \right] ^{n+1}\left[ \begin{array}{c} \boldsymbol \sigma _{m}\\ \boldsymbol \sigma _{b} \end{array} \right] ^{n+1} </math>
1499
|}
1500
| style="width: 5px;text-align: right;" | (99)
1501
|}</li>
1502
1503
</ol>
1504
1505
===7.1 Tangent stiffness matrix===
1506
1507
As usual the tangent stiffness matrix is split into material and geometric components. The material tangent stiffness matrix is simply computed from the integral
1508
1509
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1510
|-
1511
| 
1512
{| style="text-align: left; margin:auto;" 
1513
|-
1514
| style="text-align: center;" | <math>\mathbf{K}^{M}=\int \int _{A^{M}}\mathbf{B}^{T}\mathbf{C}\mathbf{B}dA </math>
1515
|}
1516
| style="width: 5px;text-align: right;" | (100)
1517
|}
1518
1519
where <math display="inline">\mathbf{B}=\mathbf{B}_{m}+\mathbf{B}_{b}</math> includes:<br/>
1520
1521
* '''-'''  a membrane contribution <math display="inline">\mathbf{B}_{m}</math> given by Eq.([[#eq-51|51]]) or Eq.(80).
1522
1523
* '''-'''  a bending contribution <math display="inline">\mathbf{B}_{b}</math> given by Eq.([[#eq-69|69]]) or Eq.([[#eq-91|91]])  which is constant over the element.
1524
1525
<br/>
1526
1527
A three point quadrature is used for integrating the stiffness terms <math display="inline">\mathbf{B}_{m}^{T}\mathbf{C}\mathbf{B}_{m}</math> (recall that for the EBST element the membrane strains vary linearly within the element) whereas one point quadrature is chosen for the rest of the terms in <math display="inline">\mathbf{K}^{M}</math>.
1528
1529
===7.2 Geometric tangent stiffness matrix===
1530
1531
The geometric stiffness is written as
1532
1533
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1534
|-
1535
| 
1536
{| style="text-align: left; margin:auto;" 
1537
|-
1538
| style="text-align: center;" | <math>\mathbf{K}^{G}=\mathbf{K}_{m}^{G}+\mathbf{K}_{b}^{G} </math>
1539
|}
1540
| style="width: 5px;text-align: right;" | (101)
1541
|}
1542
1543
where subscripts <math display="inline">m</math> and <math display="inline">b</math> denote as usual membrane and bending contributions. For the BST element the membrane part is the same than for the standard constant strain triangle, leading to
1544
1545
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1546
|-
1547
| 
1548
{| style="text-align: left; margin:auto;" 
1549
|-
1550
| style="text-align: right;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{m}^{G}\mathbf{\;}\Delta \mathbf{u} </math>
1551
| <math> =A^{M}\sum _{i=1}^{3}\sum _{j=1}^{3}\left\{ \delta \mathbf{u}_{i}\;\left[ \begin{array}{cc} L_{i,1}^{M} & L_{i,2}^{M} \end{array} \right] \left[ \begin{array}{cc} N_{11} & N_{12}\\ N_{21} & N_{22} \end{array} \right] \left[ \begin{array}{c} L_{j,1}^{M}\\ L_{j,2}^{M} \end{array} \right] \Delta \mathbf{u}_{j}\right\} </math>
1552
|-
1553
| style="text-align: right;" | 
1554
| 
1555
|}
1556
| style="width: 5px;text-align: right;" | (104)
1557
|}
1558
1559
While for the EBST element the membrane part is computed as the sum of the contributions of the three sides, i.e.
1560
1561
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1562
|-
1563
| 
1564
{| style="text-align: left; margin:auto;" 
1565
|-
1566
| style="text-align: right;" | <math>\delta \mathbf{u}^{T}\mathbf{K}_{m}^{G}\mathbf{\;}\Delta \mathbf{u} </math>
1567
| <math> =\frac{A^{M}}{3}\sum _{k=1}^{3}\sum _{i=1}^{6}\sum _{j=1}^{6}\left\{ \delta \mathbf{u}_{i}\;\left[ \begin{array}{cc} N_{i,1}^{k} & N_{i,2}^{k} \end{array} \right] \left[ \begin{array}{cc} N_{11}^{k} & N_{12}^{k}\\ N_{21}^{k} & N_{22}^{k} \end{array} \right] \left[ \begin{array}{c} N_{j,1}^{k}\\ N_{j,2}^{k} \end{array} \right] \Delta \mathbf{u}_{j}\right\} </math>
1568
|-
1569
| style="text-align: right;" | 
1570
| 
1571
|}
1572
| style="width: 5px;text-align: right;" | (107)
1573
|}
1574
1575
where <math display="inline">N_{ij}={\sigma _{m}}_{ij}</math> are the axial forces defined in Eq.(29).
1576
1577
The geometric stiffness associated to bending moments is much more involved and can be found in  [27]. Numerical experiments have shown that the bending part of the geometric stiffness is not so important and can be disregarded in the iterative process.
1578
1579
Again three and one point quadratures are used for computing the membrane and bending contributions to the geometric stiffness matrix. We note that for elastic-plastic problems a uniform one point quadrature has been chosen for integration of both the membrane and bending stiffness matrices.
1580
1581
==8 EXPLICIT SOLUTION SCHEME==
1582
1583
For simulations including large non-linearities, such as frictional contact conditions on complex geometries or large instabilities in membranes, convergence is difficult to achieve with implicit schemes. In those cases an explicit solution algorithm is typically most advantageous. This scheme provides the solution for dynamic problems and also for static problems if an adequate damping is chosen.
1584
1585
The dynamic equations of motion to solve are of the form
1586
1587
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1588
|-
1589
| 
1590
{| style="text-align: left; margin:auto;" 
1591
|-
1592
| style="text-align: center;" | <math>\mathbf{r}(\mathbf{u}) + \mathbf{C} \dot{\mathbf{u}} + \mathbf{M} \ddot{\mathbf{u}} = 0 </math>
1593
|}
1594
| style="width: 5px;text-align: right;" | (108)
1595
|}
1596
1597
where <math display="inline">\mathbf{M}</math> is the mass matrix, <math display="inline">\mathbf{C}</math> is the damping matrix and the dot means the time derivative. The solution is performed using the ''central difference method''. To make the method competitive a diagonal (lumped) <math display="inline">\mathbf{M}</math> matrix is typically used and <math display="inline">\mathbf{C}</math> is taken proportional to <math display="inline">\mathbf{M}</math>. As usual, mass lumping is performed by assigning, one third of the triangular element mass to each node in the central element.
1598
1599
The explicit solution scheme can be summarized as follows. At each time step <math display="inline">n</math> where displacements have been computed:
1600
1601
<ol>
1602
1603
<li>Compute the internal forces <math display="inline">\mathbf{r}^{n}</math>. This simply follows the same steps (2-8) described for the implicit scheme in the previous section. </li>
1604
1605
<li>Compute the accelerations at time <math display="inline">t_{n}</math>
1606
1607
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1608
|-
1609
| 
1610
{| style="text-align: left; margin:auto;" 
1611
|-
1612
| style="text-align: center;" | <math>\ddot{\mathbf{u}}^{n} = {M}_d^{-1} [ \mathbf{r}^{n} - \mathbf{C} \dot{\mathbf{u}}^{n-1/2} ]  </math>
1613
|}
1614
|}</li>
1615
1616
where <math display="inline">{M}_d</math> is the diagonal (lumped) mass matrix.
1617
1618
<li>Compute the velocities at time <math display="inline">t_{n+1/2}</math>
1619
1620
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1621
|-
1622
| 
1623
{| style="text-align: left; margin:auto;" 
1624
|-
1625
| style="text-align: center;" | <math>\dot{\mathbf{u}}^{n+1/2} = \dot{\mathbf{u}}^{n-1/2} \ddot{\mathbf{u}}^{n} \delta t  </math>
1626
|}
1627
|}</li>
1628
1629
<li>Compute the displacements at  time <math display="inline">t_{n+1}</math>
1630
1631
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1632
|-
1633
| 
1634
{| style="text-align: left; margin:auto;" 
1635
|-
1636
| style="text-align: center;" | <math>\mathbf{u}^{n+1} = \mathbf{u}^{n} +\dot{\mathbf{u}}^{n+1/2} \delta t  </math>
1637
|}
1638
|}</li>
1639
<li>Update the shell geometry </li>
1640
<li>Check frictional contact conditions </li>
1641
1642
</ol>
1643
1644
Further details of the implementation of the standard BST element within an explicit solution scheme can be found in [26].
1645
1646
==9 EXAMPLES==
1647
1648
In this section several examples are presented to show the good performance of the rotation-free shell elements (BST, EBST and EBST1). The first five static examples are solved using an implicit code. The rest of the examples are computed using the explicit dynamic scheme. For the explicit scheme the  EBST element is always integrated using one integration point per element (EBST1 version) although not indicated.
1649
1650
===9.1 Patch tests===
1651
1652
The three elements considered (BST, EBST and EBST1) satisfy the membrane patch test defined in Figure [[#img-4|4]]. A uniform axial tensile stress is obtained in all cases.
1653
1654
<div id='img-4'></div>
1655
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1656
|-
1657
|
1658
[[File:Draft_Samper_226033773_1361_Fig4.jpeg|300px|Patch test for uniform tensile stress]]
1659
|- style="text-align: center; font-size: 75%;"
1660
| colspan="1" | '''Figure 4:''' Patch test for uniform tensile stress
1661
|}
1662
1663
<div id='img-5'></div>
1664
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1665
|-
1666
|
1667
[[File:Draft_Samper_226033773_8502_Fig5.jpeg|400px|Patch test for uniform torsion]]
1668
|- style="text-align: center; font-size: 75%;"
1669
| colspan="1" | '''Figure 5:''' Patch test for uniform torsion
1670
|}
1671
1672
The element bending formulation does not allow to apply external bending moments (there are not rotational DOFs). Hence it is not possible to analyse a patch of elements under loads leading to a uniform bending moment. A uniform torsion can be considered if a point load is applied at the corner of a rectangular plate with two consecutive free sides and two simple supported sides. Figure [[#img-5|5]] shows three patches leading to correct results both in displacements and stresses. All three patches are structured meshes. When the central node in the third patch is shifted from the center, the results obtained with the EBST and EBST1 elements are not correct. This however does not seems to preclude the excellent performance of these elements, as proved in the rest of the examples analyzed. On the other hand, the BST element  gives correct results in all torsion patch tests if natural boundary conditions are imposed in the formulation. If this is not the case, incorrect results are obtained even with structured meshes.
1673
1674
===9.2 Cook's membrane problem===
1675
1676
This example is used to assess the membrane performance of the EBST and EBST1 elements and to compare it with the standard linear triangle (constant strain) and the quadratic triangle (linear strain). This example involves important shear energy and was proposed to assess the distortion capability of elements. Figure [[#img-6|6]].a shows the geometry and the applied load. Figure [[#img-6|6]].b plots the vertical displacement of the upper vertex as a function of the number of nodes in the mesh. Results obtained with other isoparametric elements have also been  plotted for comparison. They include the constant strain triangle (CST), the bilinear quadrilateral (QUAD4) and the linear strain triangle (LST). Note that as this is a pure  membrane problem  the BST and the CST elements give identical results.
1677
1678
<div id='img-6'></div>
1679
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1680
|-
1681
|[[Image:draft_Samper_226033773-fig6a.png|300px|]]
1682
|
1683
[[File:Draft_Samper_226033773_1597_Fig6b.jpg|300px|Cook membrane problem (a) Geometry (b) Results]]
1684
|-
1685
|style="text-align: center; font-size: 75%;padding:10px;"|(a)
1686
|style="text-align: center; font-size: 75%;padding:10px;"|(b)
1687
|- style="text-align: center; font-size: 75%;"
1688
| colspan="2" | '''Figure 6:''' Cook membrane problem (a) Geometry (b) Results
1689
|}
1690
1691
From the plot shown it can be seen that the enhanced element with three integration points (EBST) gives values slightly better that the constant strain triangle for the most coarse mesh (only two elements). However, when the mesh is refined, a performance similar to the linear strain triangle is obtained that is dramatically superior that the former. On the other hand, if a one point quadrature is used (EBST1) the convergence in the reported displacement is notably better that for the rest of the elements.
1692
1693
===9.3 Cylindrical roof===
1694
1695
In this example an effective membrane interpolation is of primary importance. The geometry is a cylindrical roof supported by a rigid diaphragm at both ends and it is loaded by a uniform dead weight (see Figure [[#img-7|7]].a.). Only one quarter of the structure is modelled due to symmetry conditions. Unstructured and structured meshes are considered. In the latter case two orientations are possible (Figure [[#img-7|7]] shows orientation B).
1696
1697
Tables [[#table-3|3]], [[#table-4|4]] and [[#table-5|5]] present the normalized vertical displacements at the crown (point A) and at the midpoint of the free side (point B) for the two orientations of the structured meshes and for the non-structured mesh. Values used for normalization are <math display="inline">u_{A}=0.5407</math> y <math display="inline">u_{B}=-3.610</math> that are quoted in reference [32].
1698
1699
<div id='img-7'></div>
1700
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1701
|-
1702
|
1703
[[File:Draft_Samper_226033773_7308_Fig7a.jpeg|400px|]]
1704
|[[Image:draft_Samper_226033773-fig7b.png|400px|]]
1705
|- style="text-align: center; font-size: 75%;"
1706
| colspan="2" | '''Figure 7:''' Cylindrical roof under dead weight. <math>E=3 \times 10^{6}</math>, <math>\nu=0.0</math>, Thickness =3.0, shell weight =0.625 per unit area.
1707
|}
1708
1709
1710
{| class="wikitable" style="text-align: left; margin: 1em auto;"
1711
|+ <span id='table-3'></span>Table. 3 Cylindrical roof under dead weight. Normalized vertical displacements for mesh orientation A
1712
|- style="border-top: 2px solid;"
1713
| [c]|r|r|r|r|r|r|r| 
1714
| colspan='3' style="text-align: (null);border-left: 2px solid;border-right: 2px solid;" | Point-A
1715
| colspan='3' style="text-align: (null);border-left: 2px solid;border-right: 2px solid;" | Point-B
1716
|- style="border-top: 2px solid;"
1717
|  NDOFs 
1718
| EBST 
1719
| EBST1 
1720
| BST 
1721
| CBST 
1722
| EBST1 
1723
| BST
1724
|-
1725
| 16 
1726
| 0.65724 
1727
| 0.91855 
1728
| 0.74161 
1729
| 0.40950 
1730
| 0.70100 
1731
| 1.35230
1732
|-
1733
| 56 
1734
| 0.53790 
1735
| 1.03331 
1736
| 0.74006 
1737
| 0.54859 
1738
| 1.00759 
1739
| 0.75590
1740
|-
1741
| 208 
1742
| 0.89588 
1743
| 1.04374 
1744
| 0.88491 
1745
| 0.91612 
1746
| 1.02155 
1747
| 0.88269
1748
|-
1749
| 800 
1750
| 0.99658 
1751
| 1.01391 
1752
| 0.96521 
1753
| 0.99263 
1754
| 1.00607 
1755
| 0.96393
1756
|- style="border-bottom: 2px solid;"
1757
| 3136 
1758
| 1.00142 
1759
| 1.00385 
1760
| 0.99105 
1761
| 0.99881 
1762
| 1.00102 
1763
| 0.98992
1764
1765
|}
1766
1767
1768
{| class="wikitable" style="text-align: left; margin: 1em auto;"
1769
|+ <span id='table-4'></span>Table. 4 Cylindrical roof under dead weight. Normalized vertical displacements for mesh orientation B
1770
|- style="border-top: 2px solid;"
1771
| [c]|r|r|r|r|r|r|r| 
1772
| colspan='3' style="text-align: (null);border-left: 2px solid;border-right: 2px solid;" | Point-A
1773
| colspan='3' style="text-align: (null);border-left: 2px solid;border-right: 2px solid;" | Point-B
1774
|- style="border-top: 2px solid;"
1775
|  NDOFs 
1776
| EBST 
1777
| EBST1 
1778
| BST 
1779
| CBST 
1780
| EBST1 
1781
| BST
1782
|-
1783
| 16 
1784
| 0.26029 
1785
| 0.83917 
1786
| 0.40416 
1787
| 0.52601 
1788
| 0.86133 
1789
| 0.89778
1790
|-
1791
| 56 
1792
| 0.81274 
1793
| 1.10368 
1794
| 0.61642 
1795
| 0.67898 
1796
| 0.93931 
1797
| 0.68238
1798
|-
1799
| 208 
1800
| 0.97651 
1801
| 1.04256 
1802
| 0.85010 
1803
| 0.93704 
1804
| 1.00255 
1805
| 0.86366
1806
|-
1807
| 800 
1808
| 1.00085 
1809
| 1.01195 
1810
| 0.95626 
1811
| 0.99194 
1812
| 1.00211 
1813
| 0.95864
1814
|- style="border-bottom: 2px solid;"
1815
| 3136 
1816
| 1.00129 
1817
| 1.00337 
1818
| 0.98879 
1819
| 0.99828 
1820
| 1.00017 
1821
| 0.98848
1822
1823
|}
1824
1825
1826
{| class="wikitable" style="text-align: left; margin: 1em auto;"
1827
|+ <span id='table-5'></span>Table. 5 Cylindrical roof under dead weight. Normalized vertical displacements for non-structured mesh
1828
|- style="border-top: 2px solid;"
1829
| [c]|r|r|r|r|r|r|r| 
1830
| colspan='3' style="text-align: (null);border-left: 2px solid;border-right: 2px solid;" | Point-A
1831
| colspan='3' style="text-align: (null);border-left: 2px solid;border-right: 2px solid;" | Point-B
1832
|- style="border-top: 2px solid;"
1833
|  NDOFs 
1834
| EBST 
1835
| EBST1 
1836
| BST 
1837
| EBST 
1838
| EBST1 
1839
| BST
1840
|-
1841
| 851 
1842
| 0.97546 
1843
| 0.8581 
1844
| 0.97598 
1845
| 0.97662 
1846
| 1.0027 
1847
| 0.97194
1848
|-
1849
| 3311 
1850
| 0.98729 
1851
| 0.9682 
1852
| 0.98968 
1853
| 0.98476 
1854
| 1.0083 
1855
| 0.98598
1856
|- style="border-bottom: 2px solid;"
1857
| 13536 
1858
| 0.99582 
1859
| 0.9992 
1860
| 1.00057 
1861
| 0.99316 
1862
| 0.9973 
1863
| 0.99596
1864
1865
|}
1866
1867
Plots in Figure [[#img-7|7]].b show the normalized displacement of point-B for structured meshes as a function of the number of degrees of freedom for each case studied. An excellent convergence for the EBST element can be seen. The version with only one integration point (EBST1) presents a behavior a little more flexible and converges from above for structured meshes. Table [[#table-5|5]] shows that both the EBST and the EBST1 elements have an excellent behavior for non structured meshes.
1868
1869
===9.4 Open semi-spherical dome with point loads===
1870
1871
The main problem of finite elements with initially curved geometry is the so called membrane locking. The EBST element  has a quadratic interpolation of the geometry, then it may suffer from this problem. To assess this we resort to an example of inextensional bending. This is an hemispherical shell of radius <math display="inline">r=10</math> and thickness <math display="inline">h=0.04</math> with an 18<math display="inline">^{o}</math> hole in the pole and free at all boundaries, subjected to two inward and two outward forces 90<math display="inline">^{o}</math> apart. Material properties are <math display="inline">E=6.825\times{10}^{7}</math> and <math display="inline">\nu=0.3</math>. Figure [[#img-8|8]].a shows the discretized geometry (only one quarter of the geometry is considered due to symmetry).
1872
1873
<div id='img-8'></div>
1874
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1875
|-
1876
|
1877
[[File:Draft_Samper_226033773_7798_Fig8a.jpeg|400px|]]
1878
|[[Image:draft_Samper_226033773-fig8b.png|400px|Pinched hemispherical shell with a hole, (a)geometry, (b)normalized displacement]]
1879
|- style="text-align: center; font-size: 75%;"
1880
| colspan="2" | '''Figure 8:''' Pinched hemispherical shell with a hole, (a)geometry, (b)normalized displacement
1881
|}
1882
1883
In Figure [[#img-8|8]].b the displacements of the points under the loads have been plotted versus the number of nodes used in the discretization. Due to the orientation of the meshes chosen, the displacement of the point under the inward load is not the same as the displacement under the outward load, so in the figure an average (the absolute values) has been used. Results obtained with other elements have been included for comparison: two membrane locking free elements, namely the original linear BST element and a transverse shear-deformable quadrilateral (QUAD) [33]; a transverse shear deformable quadratic triangle (TRIA) [2] that is vulnerable to locking and an assumed strain quadratic triangle (TRIC) [3] that does not exhibit membrane locking.
1884
1885
From the plotted results it can be seen that the EBST element presents slight membrane locking in bending dominated problems with initially curved geometries. This locking is much less severe than in a standard quadratic triangle. Membrane locking disappears when only one integration point is used (EBST1 element).
1886
1887
===9.5 Inflation of a sphere===
1888
1889
The example is the inflation of a spherical shell under internal pressure. An incompressible Mooney-Rivlin constitutive material has been considered. The Ogden parameters are <math display="inline">N=2</math>, <math display="inline">\alpha _{1}=2</math>, <math display="inline">\mu _{1}=40</math>, <math display="inline">\alpha _{2}=-2</math>, <math display="inline">\mu _{2}=-20</math>. Due to the simple geometry an analytical solution exists [34] (with <math display="inline">\gamma =R/R^{0}</math>):
1890
1891
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1892
|-
1893
| 
1894
{| style="text-align: left; margin:auto;" 
1895
|-
1896
| style="text-align: center;" | <math> p=\frac{h^{0}}{R^{0}\gamma ^{2}}\frac{dW}{d\gamma }=\frac{8h^{0} }{R^{0}\gamma ^{2}} \left( \gamma ^{6}-1\right) \left( \mu _{1}-\mu _{2}\gamma ^{2}\right) </math>
1897
|}
1898
|}
1899
1900
In this numerical simulation the same geometric and material parameters used in Ref. <span id='citeF-23'></span>[[#cite-23|[23]]] have been adopted: <math display="inline">R^{0}=1</math> and <math display="inline">h^{0}=0.02</math>. The three meshes of EBST1 element considered to evaluate convergence are shown in Figure [[#img-9|9]].a. The value of the actual radius as a function of the internal pressure is plotted in Figure [[#img-9|9]].b for the different meshes and is also compared with the analytical solution. It can be seen that with a few degrees of freedom it is possible to obtain an excellent agreement for the range of strains considered. The final value corresponds to a  ratio of <math display="inline">h/R=0.00024</math>.
1901
1902
<div id='img-9'></div>
1903
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1904
|-
1905
|[[File:Draft_Samper_226033773_5233_Fig9.jpeg|500px|]]
1906
|-
1907
|[[File:Draft_Samper_226033773_9697_Fig9b.jpeg|300px|Inflation of sphere of Mooney-Rivlin material. (a) Meshes of EBST1 elements used in the analysis (b) Change of radius as a function of the internal pressure.]]
1908
|- style="text-align: center; font-size: 75%;"
1909
| '''Figure 9:''' Inflation of sphere of Mooney-Rivlin material. (a) Meshes of EBST1 elements used in the analysis (b) Change of radius as a function of the internal pressure.
1910
|}
1911
1912
===9.6 Clamped spherical dome under impulse pressure loading===
1913
1914
The geometry of the dome and the material properties chosen are shown in Figure [[#img-10|10]]. A uniform pressure load of 600 psi is applied to the upper surface of the dome. The different meshes used in the analysis are shown in Figure [[#img-11|11]]. One fourth of the dome is considered only due to symmetry. Two different analyses under elastic and elastic-plastic conditions were carried out. The number of thickness layers in eq.([[#eq-96|96]]) is four. Numerical experiments show that this suffice to provide an accurate solution for large elastic-plastic problems [26]. Results are obtained using the explicit scheme.
1915
1916
<div id='img-10'></div>
1917
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1918
|-
1919
|[[Image:draft_Samper_226033773-fig10.png|400px|Spherical dome under impulse pressure. Geometry and material]]
1920
|- style="text-align: center; font-size: 75%;"
1921
| colspan="1" | '''Figure 10:''' Spherical dome under impulse pressure. Geometry and material
1922
|}
1923
1924
<div id='img-11'></div>
1925
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1926
|-
1927
|
1928
[[File:Draft_Samper_226033773_1877_Fig11.jpeg|600px|Spherical dome under impulse pressure. Meshes used in the analysis. Mesh-1 with 338 elements, Mesh-2 with 1250 elements, and Mesh-3 with 2888 elements]]
1929
|- style="text-align: center; font-size: 75%;"
1930
| colspan="1" | '''Figure 11:''' Spherical dome under impulse pressure. Meshes used in the analysis. Mesh-1 with 338 elements, Mesh-2 with 1250 elements, and Mesh-3 with 2888 elements
1931
|}
1932
1933
<div id='img-12'></div>
1934
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1935
|-
1936
|[[Image:draft_Samper_226033773-fig12.png|600px|Spherical dome under impulse pressure. History of central deflection for elastic material]]
1937
|- style="text-align: center; font-size: 75%;"
1938
| colspan="1" | '''Figure 12:''' Spherical dome under impulse pressure. History of central deflection for elastic material
1939
|}
1940
1941
<div id='img-13'></div>
1942
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1943
|-
1944
|[[Image:draft_Samper_226033773-fig13.png|600px|Spherical dome under impulse pressure. History of central deflection for elastic-plastic material]]
1945
|- style="text-align: center; font-size: 75%;"
1946
| colspan="1" | '''Figure 13:''' Spherical dome under impulse pressure. History of central deflection for elastic-plastic material
1947
|}
1948
1949
Figure [[#img-12|12]] shows results for the time history of the central deflection using different meshes and ''elastic material properties'' for both  BST and EBST1 elements. Results are almost identical for mesh-2 and mesh-3, showing the excellent convergence properties. The coarsest mesh shows some differences between both elements, but for the finer meshes the results are almost identical. Figure [[#img-13|13]] shows similar results but now for an ''elastic-plastic material''. The excellent convergence  of the BST and EBST elements is again noticeable.
1950
1951
Results obtained with the present elements compare very well with published results using fine meshes. See for example ABAQUS Explicit example problems manual <span id='citeF-35'></span>[[#cite-35|[35]]] and WHAMS-3D manual [36], showing plots comparing results using different shell elements.
1952
1953
A summary of results for the central deflection at significant times is given in Tables [[#table-6|6]] and [[#table-7|7]]. Further details on the solution of this problem with the standard  BST element can be found in [26].
1954
1955
1956
{| class="wikitable" style="text-align: right; margin: 1em auto;"
1957
|+ <span id='table-6'></span>Table. 6 Spherical dome. Elastic material. Comparison of the central deflection values at the mid point obtained with the BST and EBST1  elements for different meshes
1958
|- style="border-top: 2px solid;"
1959
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  Element/mesh 
1960
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.2 ms</math>
1961
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.4 ms</math>
1962
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.6 ms</math>
1963
| style="border-left: 2px solid;border-right: 2px solid;" | <math>t = 0.8 ms</math>
1964
|- style="border-top: 2px solid;"
1965
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |   BST Coarse  
1966
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05155 
1967
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09130 
1968
| style="border-left: 2px solid;border-right: 2px solid;" | 0.04414 
1969
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08945 
1970
|-
1971
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST Medium  
1972
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04542 
1973
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09177 
1974
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03863 
1975
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08052 
1976
|-
1977
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | BST Fine    
1978
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04460 
1979
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09022 
1980
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03514 
1981
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08132 
1982
|- style="border-top: 2px solid;"
1983
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  EBST1 Coarse  
1984
| style="border-left: 2px solid;border-right: 2px solid;" | -0.05088 
1985
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08929 
1986
| style="border-left: 2px solid;border-right: 2px solid;" | 0.04348 
1987
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08708 
1988
|-
1989
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 Medium  
1990
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04527 
1991
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09134 
1992
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03865 
1993
| style="border-left: 2px solid;border-right: 2px solid;" | -0.07979 
1994
|- style="border-bottom: 2px solid;"
1995
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | EBST1 Fine    
1996
| style="border-left: 2px solid;border-right: 2px solid;" | -0.04453 
1997
| style="border-left: 2px solid;border-right: 2px solid;" | -0.09004 
1998
| style="border-left: 2px solid;border-right: 2px solid;" | 0.03510 
1999
| style="border-left: 2px solid;border-right: 2px solid;" | -0.08099 
2000
2001
|}
2002
2003
2004
{| class="wikitable" style="text-align: left; margin: 1em auto;"
2005
|+ <span id='table-7'></span>Table. 7 Spherical dome. Elastic-plastic material. Comparison of the central deflection values at the mid point obtained with the BST and EBST1  elements for different meshes
2006
|- style="border-top: 2px solid;"
2007
| [c]|l|r|r|r|r| Element/mesh 
2008
| <math>t = 0.2 ms</math>
2009
| <math>t = 0.4 ms</math>
2010
| <math>t = 0.6 ms</math>
2011
| <math>t = 0.8 ms</math>
2012
|- style="border-top: 2px solid;"
2013
|   BST Coarse  
2014
| -0.05888 
2015
| -0.05869 
2016
| -0.02938 
2017
| -0.06521 
2018
|-
2019
| BST Medium  
2020
| -0.05376 
2021
| -0.06000 
2022
| -0.02564 
2023
| -0.06098 
2024
|-
2025
| BST Fine    
2026
| -0.05312 
2027
| -0.05993 
2028
| -0.02464 
2029
| -0.06105 
2030
|- style="border-top: 2px solid;"
2031
|  EBST1 Coarse  
2032
| -0.05827 
2033
| -0.05478 
2034
| -0.02792 
2035
| -0.06187 
2036
|-
2037
| EBST1 Medium  
2038
| -0.05374 
2039
| -0.05884 
2040
| -0.02543 
2041
| -0.06080 
2042
|- style="border-bottom: 2px solid;"
2043
| EBST1 Fine    
2044
| -0.05317 
2045
| -0.05935 
2046
| -0.02458 
2047
| -0.06085 
2048
2049
|}
2050
2051
===9.7 Cylindrical panel under impulse loading===
2052
2053
The geometry of the cylinder and the material properties are shown in Figure [[#img-14|14]]. A prescribed initial normal velocity of <math display="inline">v_{o}=-5650</math> in/sec is applied to the points in the region shown modelling the effect of the detonation of an explosive layer. The panel is assumed clamped along all the boundary. One half of the cylinder is discretized only due to symmetry conditions. Three different meshes of <math display="inline">6\times{12}</math>, <math display="inline">12\times{32}</math> and <math display="inline">18\times{48}</math>  BST elements were used for the analysis. The deformed configurations for <math display="inline">time =1 msec</math> are shown for the three meshes in Figure [[#img-15|15]].
2054
2055
<div id='img-14'></div>
2056
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2057
|-
2058
|[[Image:draft_Samper_226033773-fig14.png|600px|Cylindrical panel under impulse loading. Geometry and material properties]]
2059
|- style="text-align: center; font-size: 75%;"
2060
| colspan="1" | '''Figure 14:''' Cylindrical panel under impulse loading. Geometry and material properties
2061
|}
2062
2063
<div id='img-15'></div>
2064
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2065
|-
2066
|[[Image:draft_Samper_226033773-fig15.png|600px|Impulsively loaded cylindrical panel. Deformed meshes for time =1 msec]]
2067
|- style="text-align: center; font-size: 75%;"
2068
| colspan="1" | '''Figure 15:''' Impulsively loaded cylindrical panel. Deformed meshes for <math>time =1 msec</math>
2069
|}
2070
2071
<div id='img-16'></div>
2072
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2073
|-
2074
|[[Image:draft_Samper_226033773-fig16.png|600px|Cylindrical panel under impulse loading. Time evolution of the displacement of two points along the crown line. Comparison of results obtained with BST and EBST1 elements (mesh 1: 6×12 elements and mesh 3: 18×48 elements) and experimental values ]]
2075
|- style="text-align: center; font-size: 75%;"
2076
| colspan="1" | '''Figure 16:''' Cylindrical panel under impulse loading. Time evolution of the displacement of two points along the crown line. Comparison of results obtained with BST and EBST1 elements (mesh 1: <math>6\times{12}</math> elements and mesh 3: <math>18\times{48}</math> elements) and experimental values 
2077
|}
2078
2079
The analysis was performed assuming an elastic-perfect plastic material behaviour (<math display="inline">\sigma _y = k</math> <math display="inline">k'=0</math>). A study of the convergence of the solution with the number of thickness layers showed again that four layers suffice to capture accurately the non linear material response [26].
2080
2081
A comparison of the results obtained with both elements using the coarse mesh and the finer mesh is shown in Figure [[#img-16|16]] where experimental results reported in <span id='citeF-37'></span>[[#cite-37|[37]]] have also been plotted for comparison purposes. Good agreement between the numerical and experimental results is obtained. Figures [[#img-16|16]] show the time evolution of the vertical displacement of two reference points along the center line located at <math display="inline">y=6.28</math>in and <math display="inline">y=9.42</math>in, respectively. For the finer mesh results between both elements are almost identical. For the coarse mesh it can been seen again that the element BST is more flexible than element EBST1.
2082
2083
The numerical values of the vertical displacement at the two reference points obtained with the BST and EBST1  elements after a time of 0.4 ms using the <math display="inline">16\times{32}</math> mesh are compared in Table [[#table-8|8]]  with a numerical solution obtained by Stolarski ''et al.'' [38] using a curved triangular shell element and the <math display="inline">16\times{32}</math> mesh. Experimental results reported in [37] are also given for comparison. It is interesting to note the reasonable agreement of the results for <math display="inline">y=6.28</math>in. and the discrepancy of present and other published numerical solutions with the experimental value for <math display="inline">y=9.42</math>in.
2084
2085
2086
{| class="wikitable" style="text-align: left; margin: 1em auto;"
2087
|+ <span id='table-8'></span>Table. 8 Cylindrical panel under impulse load. Comparison of vertical displacement values of two central points for <math>t=0.4</math> ms
2088
|- style="border-top: 2px solid;"
2089
| [c]|l|r|r|r|r| 
2090
| colspan='2' style="text-align: left;border-left: 2px solid;border-right: 2px solid;" | Vertical displacement (in.)
2091
|- style="border-top: 2px solid;"
2092
|  element/mesh                
2093
| <math>y=6.28</math>in 
2094
| <math>y=9.42</math>in 
2095
|- style="border-top: 2px solid;"
2096
|  BST  (<math display="inline"> 6\times 12</math> el.)    
2097
| -1.310     
2098
| -0.679      
2099
|-
2100
| BST  (<math display="inline">18\times 48</math> el.)    
2101
| -1.181     
2102
| -0.587      
2103
|-
2104
| EBST1 (<math display="inline"> 6\times 12</math> el.)    
2105
| -1.147     
2106
| -0.575      
2107
|-
2108
| EBST1 (<math display="inline">18\times 48</math> el.)    
2109
| -1.171     
2110
| -0.584      
2111
|-
2112
| Stolarski ''et al.'' [38] 
2113
| -1.183     
2114
| -0.530      
2115
|- style="border-bottom: 2px solid;"
2116
| Experimental [37] 
2117
| -1.280     
2118
| -0.700      
2119
2120
|}
2121
2122
<div id='img-17'></div>
2123
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2124
|-
2125
|[[Image:draft_Samper_226033773-fig17.png|600px|Cylindrical panel under impulse loading. Final deformation (t=1 msec) of the panel at the cross section y=6.28 in Comparison with experimental values. ]]
2126
|- style="text-align: center; font-size: 75%;"
2127
| colspan="1" | '''Figure 17:''' Cylindrical panel under impulse loading. Final deformation (<math>t=1 msec</math>) of the panel at the cross section <math>y=6.28 in</math> Comparison with experimental values. 
2128
|}
2129
2130
<div id='img-18'></div>
2131
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2132
|-
2133
|[[Image:draft_Samper_226033773-fig18.png|600px|Cylindrical panel under impulse loading. Final deformation (t=1 msec) of the panel at the crown line (x=0.00 in). Comparison with experimental values. ]]
2134
|- style="text-align: center; font-size: 75%;"
2135
| colspan="1" | '''Figure 18:''' Cylindrical panel under impulse loading. Final deformation (<math>t=1 msec</math>) of the panel at the crown line (<math>x=0.00 in</math>). Comparison with experimental values. 
2136
|}
2137
2138
The deformed shapes of the transverse section for <math display="inline">y=6.28</math>in. and the longitudinal section for <math display="inline">x=0</math> obtained with the both elements for the coarse and the fine meshes after 1ms. are compared with the experimental results in Figures [[#img-17|17]] and [[#img-18|18]].  Excellent agreement is observed for the fine mesh for both elements.
2139
2140
===9.8 Airbag Membranes===
2141
2142
===Inflation/deflation of a circular airbag===
2143
2144
This example has been taken from Ref.[23] where it is shown that the final configuration is mesh dependent due to the strong instabilities leading to a non-uniqueness of the solution. In [23]  it is also discussed the important regularizing properties of the bending energy, that when disregarded leads to massive wrinkling in the compressed zones.
2145
2146
The airbag geometry is initially circular with an undeformed radius of <math display="inline">0.35</math>.  The constitutive material is a linear isotropic elastic one with modulus of elasticity <math display="inline">E=6\times 10^{7}</math>Pa, Poisson's ratio <math display="inline">\nu =0.3</math> and density <math display="inline">\rho = 2000</math>kg/m<math display="inline">^3</math>.  Arbitrarily only one quarter of the geometry has been modelled.  Only the normal displacement to the original plane is constrained along the boundaries.  The thickness considered is <math display="inline">h=0.0004</math>m and the inflation pressure is <math display="inline">5000</math>Pa. Pressure is linearly increased from 0 to the final value in <math display="inline">t=0.15</math> sec.
2147
2148
Figure 19 shows the final deformed configurations for a mesh with 10201 nodes and 20000 EBST1 elements.  The figure on the left (a) corresponds to an analysis including full bending effects and the right figure (b) is a pure membrane analysis.
2149
2150
We note that when the bending energy is included a more regular final pattern is obtained.  Also the final pattern is rather independent of the discretization (note that the solution is non unique due to the strong instabilities), and a massive wrinkling appears in the center of the modelled region.  On the other hand, the pure membrane solution shows a wrinkling pattern where the width of the wrinkle is the length of the element.
2151
2152
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2153
|-
2154
|
2155
[[File:Draft_Samper_226033773_2615_Fig19.jpeg|600px|Inflation of a circular airbag. Deformed configurations for final pressure. (a) bending formulation; (b) membrane formulation.]]
2156
|- style="text-align: center; font-size: 75%;"
2157
| colspan="1" | '''Figure 19:''' Inflation of a circular airbag. Deformed configurations for final pressure. (a) bending formulation; (b) membrane formulation.
2158
|}
2159
2160
<div id='img-20'></div>
2161
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2162
|-
2163
|
2164
[[File:Draft_Samper_226033773_9407_Fig20.jpeg|600px|Inflation and deflation of a circular air-bag.]]
2165
|- style="text-align: center; font-size: 75%;"
2166
| colspan="1" | '''Figure 20:''' Inflation and deflation of a circular air-bag.
2167
|}
2168
2169
<div id='img-21'></div>
2170
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2171
|-
2172
|
2173
[[File:Draft_Samper_226033773_9850_Fig21.jpeg|600px|Inflation and deflation of a closed  tube. L=5, D=1, h=5×10⁻³.]]
2174
|- style="text-align: center; font-size: 75%;"
2175
| colspan="1" | '''Figure 21:''' Inflation and deflation of a closed  tube. <math>L=5</math>, <math>D=1</math>, <math>h=5\times 10^{-3}</math>.
2176
|}
2177
2178
<div id='img-22'></div>
2179
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2180
|-
2181
|
2182
[[File:Draft_Samper_226033773_8861_Fig22.jpeg|600px|Inflation and deflation of a closed  tube. L=6, D=1, h=3×10⁻³.]]
2183
|- style="text-align: center; font-size: 75%;"
2184
| colspan="1" | '''Figure 22:''' Inflation and deflation of a closed  tube. <math>L=6</math>, <math>D=1</math>, <math>h=3\times 10^{-3}</math>.
2185
|}
2186
2187
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2188
|-
2189
|
2190
[[File:Draft_Samper_226033773_6495_fig23.jpg|600px|Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution.]]
2191
|- style="text-align: center; font-size: 75%;"
2192
| colspan="1" | '''Figure 23:''' Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution.
2193
|}
2194
2195
Figure 20 shows the results obtained for the de-inflation process.  Note that the spherical membrane falls down due to the self weight.  The final configuration is of course non-unique.
2196
2197
The next problem is the study of the inflating and de-inflating of a tube with a semi-spherical end cap.  The tube diameter is <math display="inline">D=1</math>, its total length is <math display="inline">L=5</math>m and the thickness <math display="inline">h=5\times 10^{-3}</math>m.  The material has the following properties <math display="inline">E=4\times 10^{8}</math>Pa, <math display="inline">\nu =0.35 </math>, <math display="inline">\rho =5\times 10^{4}</math>kg/m<math display="inline">^3</math>.  The tube is inflated fast until a pressure of <math display="inline">10^4</math> and then is de-inflated under self weight.  The analysis is performed with a mesh of 4176 EBST1 elements and 2163 nodes modelling a quarter of the geometry.  The evolution of the tube walls during the de-inflating process can be seen in Figure 21.  Note that the central part collapses as expected, while the semi-spherical cap remains unaltered.
2198
2199
The same analysis is repeated for a longer and thinner tube (<math display="inline">L=6</math>m and <math display="inline">h=3\times 10^{-3}</math>m).  The same material than in the previous case was chosen with a higher density (<math display="inline">\rho =7.5\times 10^{4}</math>kg/m<math display="inline">^3</math>).  The evolution of the tube walls is shown in Figure 22.  Note that the central part collapses again but in a less smoother manner due to the smaller thickness.
2200
2201
The last example of this kind is the inflation of a square airbag supporting a spherical object.  This example resembles a problem studied (numerically and experimentally) in Ref.[39], where fluid-structure interaction is the main subject.  Here the fluid is not modelled, and a uniform pressure is applied over all the internal surfaces.  The lower surface part of the airbag is limited by a rigid plane and on the upper part a spherical dummy object is set to study the interaction between the airbag and the object.
2202
2203
The airbag geometry is initially square with an undeformed side length of 0.643m.  The constitutive material chosen is a linear isotropic elastic one with <math display="inline">E=5.88\times 10^8</math>Pa, <math display="inline">\nu =0.4</math> and a density of <math display="inline">\rho = 1000</math> kg/m<math display="inline">^3</math>.  Only one quarter of the geometry has been modelled due to symmetry.  The thickness <math display="inline">h=0.00075</math>m and the inflation pressure is 250000Pa.  Pressure is linearly incremented from 0 to the final value in <math display="inline">t=0.15</math>sec.  The spherical object has a radius <math display="inline">r=0.08</math>m and a mass of 4.8kg (one quarter), and is subjected to gravity load during all the process.
2204
2205
The mesh includes 8192 EBST1 elements and 4225 nodes on each surface of the airbag.  Figure 23 shows the deformed configurations for three different times.  The sequence on the left of the figure corresponds to an analysis including full bending effects and the sequence on the right is the result of a pure membrane analysis.  A standard penalty formulation is used for frictionless contact.
2206
2207
===9.9 S-rail sheet stamping===
2208
2209
The final problem corresponds to one of the sheet stamping benchmark tests proposed in NUMISHEET'96 <span id='citeF-40'></span>[[#cite-40|[40]]].  The analysis comprises two parts, namely, stamping of a S-rail sheet component and springback computations once the stamping tools are removed.  Figure [[#img-24|24]] shows the deformed sheet after springback.
2210
2211
<div id='img-24'></div>
2212
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2213
|-
2214
|[[Image:draft_Samper_226033773-fig_n1.png|600px|Stamping of a S-rail. Final deformation of the sheet after springback obtained in the simulation. The triangular mesh of the deformed sheet is also shown]]
2215
|- style="text-align: center; font-size: 75%;"
2216
| colspan="1" | '''Figure 24:''' Stamping of a S-rail. Final deformation of the sheet after springback obtained in the simulation. The triangular mesh of the deformed sheet is also shown
2217
|}
2218
2219
The detailed geometry and material data can be found in the proceedings of the conference <span id='citeF-40'></span>[[#cite-40|[40]]] or in the web <span id='citeF-41'></span>[[#cite-41|[41]]]. The mesh used for the sheet has 6000 three  node triangular elements and 3111 points (Figure 24). The tools are treated as rigid bodies. The meshes used for the sheet and the tools are those provided by the  benchmark organizers. The material considered here is a mild steel (IF) with Young Modulus <math display="inline">E=2.06 GPa</math> and Poisson ratio <math display="inline">\nu=0.3</math>. Mises yield criterion was used for plasticity behaviour with non-linear isotropic hardening defined by <math display="inline">k(e^p) = 545(0.13+e^p)^{0.267} [MPa]</math>. A uniform friction of 0.15 was used for all the tools. A low (10kN) blank holder force was considered in this simulation.
2220
2221
Figure [[#img-25|25]] compares the punch force during the stamping stage obtained with both BST and EBST1 elements for the simulation and experimental values. Also for reference the average values of the simulations presented in the conference are included. Explicit and implicit simulations are considered as different curves. There is a remarkable coincidence between the experimental values and the results obtained with BST and EBST1 elements.
2222
2223
<div id='img-25'></div>
2224
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2225
|-
2226
|[[Image:draft_Samper_226033773-fig_n2.png|600px|Stamping of a S-rail. Punch force versus punch travel. Average of explicit and implicit results reported at the benchmark are also shown. ]]
2227
|- style="text-align: center; font-size: 75%;"
2228
| colspan="1" | '''Figure 25:''' Stamping of a S-rail. Punch force versus punch travel. Average of explicit and implicit results reported at the benchmark are also shown. 
2229
|}
2230
2231
Figure [[#img-26|26]] plots the <math display="inline">Z</math> coordinate along line B"&#8211;G" after springback stage. The top surface of the sheet does not remain plane due to some instabilities for the low blank holder force used. Results obtained with the simulations compare very well with the experimental results.
2232
2233
<div id='img-26'></div>
2234
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
2235
|-
2236
|[[Image:draft_Samper_226033773-fig_n3.png|600px|Stamping of a S-rail. Z-coordinate along line B''&#8211;-G'' after springback. Average of explicit and implicit results reported at the benchmark are also shown. ]]
2237
|- style="text-align: center; font-size: 75%;"
2238
| colspan="1" | '''Figure 26:''' Stamping of a S-rail. Z-coordinate along line B''&#8211;-G'' after springback. Average of explicit and implicit results reported at the benchmark are also shown. 
2239
|}
2240
2241
==10 CONCLUDING REMARKS==
2242
2243
We have presented in the paper two alternative formulations for the rotation-free basic shell triangle (BST) using an assumed strain approach.  The simplest element of the family is based on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of four elements and a constant membrane field computed from the standard linear interpolation of the displacements within each triangle. An enhanced version of the element is obtained by using a quadratic interpolation of the geometry in terms of the six patch nodes.  This allows to compute an assumed linear membrane strain field which improves the in-plane behaviour of the original element.  A simple and economic version of the element using a single integration point has been presented.  The efficiency of the different rotation-free shell triangles has been demonstrated in many examples of application including linear and non linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
2244
2245
The enhanced rotation-free basic shell triangle element with a single integration point (the EBST1 element) has proven to be an excellent candidate for solving practical engineering shell and membrane problems involving complex geometry, dynamics, material non linearity and frictional contact conditions.
2246
2247
==ACKNOWLEDGEMENTS==
2248
2249
The problems analyzed with the explicit formulation were solved with the computer code STAMPACK <span id='citeF-42'></span>[[#cite-42|[42]]] where the rotation-free elements here presented have been implemented.  The support of the company QUANTECH (www.quantech.es) providing the code STAMPACK is gratefully acknowledged.
2250
2251
===BIBLIOGRAPHY===
2252
2253
<div id="cite-1"></div>
2254
'''[[#citeF-1|[1]]]''' E. Oñate. A review of some finite element families for thick and thin plate and shell analysis. Publication CIMNE N.53, May 1994.
2255
2256
<div id="cite-2"></div>
2257
'''[2]''' F.G. Flores, E. Oñate and F. Zárate. New assumed strain triangles for non-linear shell analysis. ''Computational Mechanics'', '''17''', 107&#8211;114, 1995.
2258
2259
<div id="cite-3"></div>
2260
'''[3]''' J.H. Argyris, M. Papadrakakis, C. Aportolopoulun and S. Koutsourelakis. The TRIC element. Theoretical and numerical investigation. ''Comput. Meth. Appl. Mech. Engrg.'', '''182''', 217&#8211;245, 2000.
2261
2262
<div id="cite-4"></div>
2263
'''[4]''' O.C. Zienkiewicz and R.L. Taylor. ''The finite element method. Solid Mechanics''. Vol II, Butterworth-Heinemann, 2000.
2264
2265
<div id="cite-5"></div>
2266
'''[5]'''  H. Stolarski, T. Belytschko and S.-H. Lee. A review of shell finite elements and corotational theories. ''Computational Mechanics Advances'', Vol. 2 N.2, North-Holland, 1995.
2267
2268
<div id="cite-6"></div>
2269
'''[[#citeF-6|[6]]]'''  E. Ramm and W.A. Wall. Shells in advanced computational environment. In ''V World Congress on Computational Mechanics'', J. Eberhardsteiner, H. Mang and F. Rammerstorfer (Eds.), Vienna, Austria, July 7&#8211;12, 2002. http://wccm.tuwien.ac.at.
2270
2271
<div id="cite-7"></div>
2272
'''[[#citeF-7|[7]]]'''  D. Bushnell and B.O. Almroth, “Finite difference energy method for non linear shell analysis”, ''J. Computers and Structures'', Vol. '''1''', 361, 1971.
2273
2274
<div id="cite-8"></div>
2275
'''[8]''' S.P. Timoshenko. ''Theory of Plates and Shells'', McGraw Hill, New York, 1971.
2276
2277
<div id="cite-9"></div>
2278
'''[[#citeF-9|[9]]]''' A.C. Ugural. ''Stresses in  Plates and Shells'', McGraw Hill, New York, 1981.
2279
2280
<div id="cite-10"></div>
2281
'''[10]''' R.A. Nay and S. Utku. An alternative to the finite element method. ''Variational Methods Eng.'', Vol. 1, 1972.
2282
2283
<div id="cite-11"></div>
2284
'''[11]''' J.K. Hampshire, B.H.V. Topping and H.C.  Chan. Three node triangular elements with one degree of freedom per node. ''Engng. Comput''. Vol. '''9''', pp. 49&#8211;62, 1992.
2285
2286
<div id="cite-12"></div>
2287
'''[12]''' R. Phaal and C.R. Calladine. A simple class of finite elements for plate and shell problems. I: Elements for beams and thin plates. ''Int. J. Num. Meth. Engng.'', Vol. '''35''', pp. 955&#8211;977, 1992.
2288
2289
<div id="cite-13"></div>
2290
'''[13]''' R. Phaal and C.R.  Calladine. A simple class of finite elements for plate and shell problems. II: An element for thin shells with only translational degrees of freedom. ''Int. J. Num. Meth. Engng.'', Vol. '''35''',  pp. 979&#8211;996, 1992.
2291
2292
<div id="cite-14"></div>
2293
'''[14]''' E. Oñate and Cervera M. Derivation of thin plate bending elements with one degree of freedom per node. ''Engineering Computations'', Vol. '''10''', pp 553&#8211;561, 1993.
2294
2295
<div id="cite-15"></div>
2296
'''[15]''' M. Brunet and F. Sabourin. Prediction of necking and wrinkles with a simplified shell element in sheet forming. ''Int. Conf. of Metal Forming Simulation in Industry'', Vol. II, pp. 27&#8211;48, B. Kröplin (Ed.), 1994.
2297
2298
<div id="cite-16"></div>
2299
'''[16]''' G. Rio, B. Tathi and H. Laurent. A new efficient finite element model of shell with only three degrees of freedom per node. Applications to industrial deep drawing test. in ''Recent Developments in Sheet Metal Forming Technology'', Ed. M.J.M. Barata Marques, 18th IDDRG Biennial Congress, Lisbon, 1994.
2300
2301
<div id="cite-17"></div>
2302
'''[17]''' G. Rio, B. Tathi and  H. Laurent. A new efficient finite element model of shell with only three degrees of freedom per node. Applications to industrial deep drawing test. in ''Recent Developments in Sheet Metal Forming Technology'', Ed. M.J.M. Barata Marques, 18th IDDRG Biennial Congress, Lisbon, 1994.
2303
2304
<div id="cite-18"></div>
2305
'''[18]'''  J. Rojek and E. Oñate. Sheet springback analysis using a simple shell triangle with translational degrees of freedom only. ''Int. J. of Forming Processes'', Vol. '''1''', No. 3, 275&#8211;296, 1998.
2306
2307
<div id="cite-19"></div>
2308
'''[19]'''  J. Rojek, E. Oñate and E. Postek. Application of explicit FE codes to simulation of sheet and bulk forming processes. ''J. of Materials Processing Technology'', Vols. '''80-81''', 620&#8211;627, 1998.
2309
2310
<div id="cite-20"></div>
2311
'''[20]'''  J. Jovicevic and E. Oñate. ''Analysis of beams and shells using a rotation-free finite element-finite volume formulation'', Monograph 43, CIMNE, Barcelona, 1999.
2312
2313
<div id="cite-21"></div>
2314
'''[[#citeF-21|[21]]]''' E. Oñate and F. Zárate. Rotation-free plate and shell triangles. ''Int. J. Num. Meth. Engng.'', '''47''', pp. 557&#8211;603, 2000.
2315
2316
<div id="cite-22"></div>
2317
'''[22]''' F. Cirak and M. Ortiz. Subdivision surfaces: A new paradigm for thin-shell finite element analysis. ''Int. J. Num. Meths in Engng'',  Vol. 47, 2000, 2039-2072.
2318
2319
<div id="cite-23"></div>
2320
'''[[#citeF-23|[23]]]''' F. Cirak and M. Ortiz. Fully <math display="inline">C^{1}</math>-conforming subdivision elements for finite deformations thin-shell analysis. ''Int. J. Num. Meths in Engng'', vol. 51, 2001, 813-833.
2321
2322
<div id="cite-24"></div>
2323
'''[[#citeF-24|[24]]]''' F.G. Flores and E. Oñate. A basic thin shell triangle with only translational DOFs for large strain plasticity. ''Int. J. Num. Meths in Engng'', Vol. '''51''', pp 57-83, 2001.
2324
2325
<div id="cite-25"></div>
2326
'''[25]''' G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei and R.L. Taylor. Continuous/discontinuous finite element approximation of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. ''Comput. Methods Appl. Mech. Engrg.'', Vol. 191, 3669&#8211;3750, 2002.
2327
2328
<div id="cite-26"></div>
2329
'''[26]'''  E. Oñate, P. Cendoya and J. Miquel. Non linear explicit dynamic analysis of shells using the BST rotation-free triangle. ''Engineering Computations'', '''19''' (6), 662&#8211;706, 2002.
2330
2331
<div id="cite-27"></div>
2332
'''[[#citeF-27|[27]]]''' F.G. Flores and E. Oñate. Improvements in the membrane behaviour of the three node rotation-free BST shell triangle  using an assumed strain approach. ''Computer Methods in Applied Mechanics and Engineering'', in press, 2003.
2333
2334
<div id="cite-28"></div>
2335
'''[28]'''  O.C. Zienkiewicz and E. Oñate. Finite Elements vs. Finite Volumes. Is there really a choice?. ''Nonlinear Computational Mechanics''. State of the Art. (Eds. P. Wriggers and R. Wagner). Springer Verlag, Heidelberg, 1991.
2336
2337
<div id="cite-29"></div>
2338
'''[[#citeF-29|[29]]]''' E. Oñate, M.  Cervera  and O.C. Zienkiewicz. A finite volume format for structural mechanics. ''Int. J. Num. Meth. Engng.'', '''37''', pp. 181&#8211;201, 1994.
2339
2340
<div id="cite-30"></div>
2341
'''[30]''' R. Hill. A Theory of the Yielding and Plastic Flow of Anisotropic Metals. ''Proc. Royal Society London'', Vol. '''A193''', pp. 281, 1948.
2342
2343
<div id="cite-31"></div>
2344
'''[31]''' R.W. Ogden. Large deformation isotropic elasticity: on the correlation of theory and experiments for incompressible rubberlike solids. ''Proceedings of the Royal Society of London'', Vol. '''A326''', pp. 565&#8211;584, 1972.
2345
2346
<div id="cite-32"></div>
2347
'''[32]''' H.C. Huang, ''Static and Dynamic Analysis of Plates and Shells'', page 40, Springer-Verlag, Berlin, 1989.
2348
2349
<div id="cite-33"></div>
2350
'''[33]''' E.N. Dvorkin and K.J. Bathe. A continuum mechanics based four node shell element for general non-linear analysis. ''Eng. Comp.'', '''1''', 77&#8211;88, 1984.
2351
2352
<div id="cite-34"></div>
2353
'''[34]''' A. Needleman. Inflation of spherical rubber ballons. ''Int. J. of Solids and Structures'', '''13''', 409&#8211;421, 1977.
2354
2355
<div id="cite-35"></div>
2356
'''[[#citeF-35|[35]]]'''  Hibbit, Karlson and Sorensen Inc. ABAQUS, version 5.8, Pawtucket, USA, 1998.
2357
2358
<div id="cite-36"></div>
2359
'''[36]''' WHAMS-3D. An explicit 3D finite element program. KBS2  Inc., Willow Springs, Illinois 60480, USA.
2360
2361
<div id="cite-37"></div>
2362
'''[[#citeF-37|[37]]]'''  H.A. Balmer and E.A. Witmer. Theoretical experimental correlation of large dynamic and permanent deformation of impulsively loaded simple structures. ''Air force flight Dynamic Lab. Rep. FDQ-TDR-64-108'', Wright-Patterson AFB, Ohio, USA, 1964.
2363
2364
<div id="cite-38"></div>
2365
'''[38]'''  H. Stolarski, T. Belytschko and N. Carpenter. A simple triangular curved shell element. ''Eng. Comput.'', Vol. 1, 210&#8211;218, 1984.
2366
2367
<div id="cite-39"></div>
2368
'''[39]'''  P.O. Marklund and L. Nilsson. Simulation of airbag inflation processes using a coupled fluid structure approach. ''Computational Mechanics'', '''29''', 289&#8211;297, 2002.
2369
2370
<div id="cite-40"></div>
2371
'''[[#citeF-40|[40]]]''' NUMISHEET'96, ''Third International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, NUMISHEET'96'', E.H. Lee, G.L. Kinzel and R.H. Wagoner (Eds.), Dearbon-Michigan, USA, 1996.
2372
2373
<div id="cite-41"></div>
2374
'''[[#citeF-41|[41]]]'''  <code>http://rclsgi.eng.ohio-state.edu/%Elee-j-k/numisheet96/</code>
2375
2376
<div id="cite-42"></div>
2377
'''[[#citeF-42|[42]]]''' STAMPACK. ''A General Finite Element System for Sheet Stamping and Forming Problems'', Quantech ATZ, Barcelona, Spain, 2003 (www.quantech.es).
2378
2379
==APPENDIX==
2380
2381
==11 Curvature matrix for the BST element==
2382
2383
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2384
|-
2385
| 
2386
{| style="text-align: left; margin:auto;" 
2387
|-
2388
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }=\mathbf{B}_{b} \times \mathbf{t}_3 \delta \mathbf{a}^{p}  </math>
2389
|}
2390
|}
2391
2392
with
2393
2394
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2395
|-
2396
| 
2397
{| style="text-align: left; margin:auto;" 
2398
|-
2399
| style="text-align: center;" | <math>\begin{array}{c} \\ \delta \mathbf{a}^{p}\\ 18\times{1} \end{array} =[\delta \mathbf{u}_{1}^{T},\delta \mathbf{u}_{2}^{T},\delta \mathbf{u}_{3} ^{T},\delta \mathbf{u}_{4}^{T},\delta \mathbf{u}_{5}^{T},\delta \mathbf{u}_{6}^{T}]^{T}  </math>
2400
|}
2401
|}
2402
2403
and 
2404
2405
<math>\mathbf{B}_{b}^{T}=</math>
2406
2407
2408
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2409
|- style="border-top: 2px solid;"
2410
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">+L^{M}_{2,1} L^{2}_{2,1}    +L^{M}_{3,1} L^{3}_{3,1} </math> 
2411
| style="border-left: 2px solid;border-right: 2px solid;" | <math>+L^{M}_{2,2} L^{2}_{2,2}    +L^{M}_{3,2} L^{3}_{3,2} </math>
2412
| style="border-left: 2px solid;border-right: 2px solid;" | <math>+L^{M}_{2,2} L^{2}_{2,1} +L^{M}_{2,1} L^{2}_{2,2}    +L^{M}_{3,2} L^{3}_{3,1} +L^{M}_{3,1} L^{3}_{3,2} </math>
2413
|- style="border-top: 2px solid;"
2414
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{1,1} L^{1}_{3,1}    +L^{M}_{3,1} L^{3}_{2,1} </math> 
2415
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{3,2}    +L^{M}_{3,2} L^{3}_{2,2} </math>
2416
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{3,1} +L^{M}_{1,1} L^{1}_{3,2}    +L^{M}_{3,2} L^{3}_{2,1} +L^{M}_{3,1} L^{3}_{2,2} </math>
2417
|- style="border-top: 2px solid;"
2418
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{1,1} L^{1}_{2,1}    +L^{M}_{2,1} L^{2}_{3,1} </math> 
2419
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{2,2}    +L^{M}_{2,2} L^{2}_{3,2} </math>
2420
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,2} L^{1}_{2,1} +L^{M}_{1,1} L^{1}_{j,3}    +L^{M}_{2,2} L^{2}_{3,1} +L^{M}_{2,1} L^{2}_{3,2} </math>
2421
|- style="border-top: 2px solid;"
2422
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L^{M}_{1,1} L^{1}_{1,1} </math> 
2423
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{1,2} L^{1}_{1,2} </math>
2424
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{1,2} L^{1}_{1,1} +L^{M}_{1,1} L^{1}_{1,3} </math>
2425
|- style="border-top: 2px solid;"
2426
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L^{M}_{2,1} L^{2}_{1,1} </math> 
2427
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{2,2} L^{2}_{1,2} </math>
2428
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{2,2} L^{2}_{1,1} +L^{M}_{2,1} L^{2}_{1,3} </math>
2429
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2430
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L^{M}_{3,1} L^{3}_{1,1} </math> 
2431
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{3,2} L^{3}_{1,2} </math>
2432
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L^{M}_{3,2} L^{3}_{1,1} +L^{M}_{3,1} L^{3}_{1,3} </math>
2433
2434
|}
2435
2436
<math display="inline">-2</math> 
2437
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2438
|- style="border-top: 2px solid;"
2439
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{1,1}\rho _{11}^{1}+L^{M}_{1,2}\rho _{11}^{2} </math> 
2440
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,1}\rho _{22}^{1}+L^{M}_{i,2}\rho _{22}^{2} </math>
2441
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{1,1}\rho _{12}^{1}+L^{M}_{1,2}\rho _{12}^{2} </math>
2442
|- style="border-top: 2px solid;"
2443
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{2,1}\rho _{11}^{1}+L^{M}_{2,2}\rho _{11}^{2} </math> 
2444
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{2,1}\rho _{22}^{1}+L^{M}_{2,2}\rho _{22}^{2} </math>
2445
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{2,1}\rho _{12}^{1}+L^{M}_{2,2}\rho _{12}^{2} </math>
2446
|- style="border-top: 2px solid;"
2447
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> L^{M}_{3,1}\rho _{11}^{1}+L^{M}_{3,2}\rho _{11}^{2} </math> 
2448
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{3,1}\rho _{22}^{1}+L^{M}_{3,2}\rho _{22}^{2} </math>
2449
| style="border-left: 2px solid;border-right: 2px solid;" | <math> L^{M}_{3,1}\rho _{12}^{1}+L^{M}_{3,2}\rho _{12}^{2} </math>
2450
|- style="border-top: 2px solid;"
2451
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2452
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2453
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2454
|- style="border-top: 2px solid;"
2455
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2456
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2457
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2458
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2459
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2460
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2461
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2462
2463
|}
2464
2465
<br/><br/>
2466
2467
==12 Membrane strain matrix and curvature matrix for the EBST element==
2468
2469
===12.1 Membrane strain matrix===
2470
2471
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2472
|-
2473
| 
2474
{| style="text-align: left; margin:auto;" 
2475
|-
2476
| style="text-align: center;" | <math>\delta {\boldsymbol \varepsilon }_m ={B}_m \delta {a}^p  </math>
2477
|}
2478
|}
2479
2480
<math>\mathbf{B}_{m}^{T}=\frac{1}{3}</math>
2481
2482
2483
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2484
|- style="border-top: 2px solid;"
2485
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{1,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}   + N^{2}_{1,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}   + N^{3}_{1,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2486
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{1,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{1,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{1,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2487
|- style="border-top: 2px solid;"
2488
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{2,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}   + N^{2}_{2,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}   + N^{3}_{2,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2489
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{2,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{2,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{2,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2490
|- style="border-top: 2px solid;"
2491
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{3,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}   + N^{2}_{3,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}   + N^{3}_{3,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2492
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{3,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{3,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{3,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2493
|- style="border-top: 2px solid;"
2494
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{4,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1} </math> 
2495
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{1}_{4,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2} </math>
2496
|- style="border-top: 2px solid;"
2497
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{2}_{5,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1} </math> 
2498
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{2}_{5,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2} </math>
2499
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2500
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{3}_{6,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1} </math> 
2501
| style="border-left: 2px solid;border-right: 2px solid;" | <math> N^{3}_{6,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math>
2502
2503
|}
2504
2505
2506
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2507
|- style="border-top: 2px solid;"
2508
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{1,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{1,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}    +N^{2}_{1,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{1,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}    +N^{3}_{1,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{1,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2509
|- style="border-top: 2px solid;"
2510
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{2,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{2,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}   + N^{2}_{2,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{2,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}   + N^{3}_{2,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{2,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2511
|- style="border-top: 2px solid;"
2512
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{3,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{3,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2}    +N^{2}_{3,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{3,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2}    +N^{3}_{3,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{3,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2513
|- style="border-top: 2px solid;"
2514
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{1}_{4,2}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }1}    +N^{1}_{4,1}\mathbf{\boldsymbol \varphi }^{1}_{^{\prime }2} </math> 
2515
|- style="border-top: 2px solid;"
2516
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{2}_{5,2}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }1}    +N^{2}_{5,1}\mathbf{\boldsymbol \varphi }^{2}_{^{\prime }2} </math> 
2517
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2518
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline"> N^{3}_{6,2}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }1}    +N^{3}_{6,1}\mathbf{\boldsymbol \varphi }^{3}_{^{\prime }2} </math> 
2519
2520
|}
2521
2522
===12.2 Curvature matrix===
2523
2524
{| class="formulaSCP" style="width: 100%; text-align: left;" 
2525
|-
2526
| 
2527
{| style="text-align: left; margin:auto;" 
2528
|-
2529
| style="text-align: center;" | <math>\delta {\boldsymbol \kappa } ={B}_b \times \mathbf{t}_3 \delta {a}^p  </math>
2530
|}
2531
|}
2532
2533
<math>\mathbf{B}_{b}^{T}=2</math>
2534
2535
2536
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2537
|- style="border-top: 2px solid;"
2538
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{1,1}\right)_{G_{1}}   +L_{2,1}\left(N_{1,1}\right)_{G_{2}}   +L_{3,1}\left(N_{1,1}\right)_{G_{3}}</math> 
2539
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{1,2}\right)_{G_{1}}   +L_{2,2}\left(N_{1,2}\right)_{G_{2}}   +L_{3,2}\left(N_{1,2}\right)_{G_{3}}</math>
2540
|- style="border-top: 2px solid;"
2541
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{2,1}\right)_{G_{1}}   +L_{2,1}\left(N_{2,1}\right)_{G_{2}}   +L_{3,1}\left(N_{2,1}\right)_{G_{3}}</math> 
2542
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{2,2}\right)_{G_{1}}   +L_{2,2}\left(N_{2,2}\right)_{G_{2}}   +L_{3,2}\left(N_{2,2}\right)_{G_{3}}</math>
2543
|- style="border-top: 2px solid;"
2544
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{3,1}\right)_{G_{1}}   +L_{2,1}\left(N_{3,1}\right)_{G_{2}}   +L_{3,1}\left(N_{3,1}\right)_{G_{3}}</math> 
2545
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{3,2}\right)_{G_{1}}   +L_{2,2}\left(N_{3,2}\right)_{G_{2}}   +L_{3,2}\left(N_{3,2}\right)_{G_{3}}</math>
2546
|- style="border-top: 2px solid;"
2547
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,1}\left(N_{4,1}\right)_{G_{1}}</math> 
2548
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{1,2}\left(N_{4,2}\right)_{G_{1}}</math>
2549
|- style="border-top: 2px solid;"
2550
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{2,1}\left(N_{5,1}\right)_{G_{2}}</math> 
2551
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{2,2}\left(N_{5,2}\right)_{G_{2}}</math>
2552
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2553
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{3,1}\left(N_{6,1}\right)_{G_{3}}</math> 
2554
| style="border-left: 2px solid;border-right: 2px solid;" | <math>L_{3,2}\left(N_{6,2}\right)_{G_{3}}</math>
2555
2556
|}
2557
2558
2559
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2560
|- style="border-top: 2px solid;"
2561
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{1,1}\right)_{G_{1}}+L_{1,1}\left(N_{1,2}\right)_{G_{1}}   +L_{2,2}\left(N_{1,1}\right)_{G_{2}}+L_{2,1}\left(N_{1,2}\right)_{G_{2}}   +L_{3,2}\left(N_{1,1}\right)_{G_{3}}+L_{3,1}\left(N_{1,2}\right)_{G_{3}}</math> 
2562
|- style="border-top: 2px solid;"
2563
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{2,1}\right)_{G_{1}}+L_{1,1}\left(N_{2,2}\right)_{G_{1}}   +L_{2,2}\left(N_{2,1}\right)_{G_{2}}+L_{2,1}\left(N_{2,2}\right)_{G_{2}}   +L_{3,2}\left(N_{2,1}\right)_{G_{3}}+L_{3,1}\left(N_{2,2}\right)_{G_{3}}</math> 
2564
|- style="border-top: 2px solid;"
2565
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{3,1}\right)_{G_{1}}+L_{1,1}\left(N_{j,3}\right)_{G_{1}}   +L_{2,2}\left(N_{3,1}\right)_{G_{2}}+L_{2,1}\left(N_{j,3}\right)_{G_{2}}   +L_{3,2}\left(N_{3,1}\right)_{G_{3}}+L_{3,1}\left(N_{j,3}\right)_{G_{3}}</math> 
2566
|- style="border-top: 2px solid;"
2567
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{1,2}\left(N_{4,1}\right)_{G_{1}}+L_{1,1}\left(N_{4,3}\right)_{G_{1}}</math> 
2568
|- style="border-top: 2px solid;"
2569
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{2,2}\left(N_{5,1}\right)_{G_{2}}+L_{2,1}\left(N_{5,3}\right)_{G_{2}}</math> 
2570
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2571
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">L_{3,2}\left(N_{6,1}\right)_{G_{3}}+L_{3,1}\left(N_{6,3}\right)_{G_{6}}</math> 
2572
2573
|}
2574
2575
<math>-2</math>
2576
2577
2578
{| class="wikitable" style="text-align: center; margin: 1em auto;"
2579
|- style="border-top: 2px solid;"
2580
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\left(L_{1,1}\rho _{11}^{1}+L_{1,2}\rho _{11}^{2}\right)</math> 
2581
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{1,1}\rho _{22}^{1}+L_{i,2}\rho _{22}^{2}\right)</math>
2582
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{1,1}\rho _{12}^{1}+L_{1,2}\rho _{12}^{2}\right)</math>
2583
|- style="border-top: 2px solid;"
2584
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\left(L_{2,1}\rho _{11}^{1}+L_{2,2}\rho _{11}^{2}\right)</math> 
2585
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{2,1}\rho _{22}^{1}+L_{2,2}\rho _{22}^{2}\right)</math>
2586
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{2,1}\rho _{12}^{1}+L_{2,2}\rho _{12}^{2}\right)</math>
2587
|- style="border-top: 2px solid;"
2588
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\left(L_{3,1}\rho _{11}^{1}+L_{3,2}\rho _{11}^{2}\right)</math> 
2589
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{3,1}\rho _{22}^{1}+L_{3,2}\rho _{22}^{2}\right)</math>
2590
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\left(L_{3,1}\rho _{12}^{1}+L_{3,2}\rho _{12}^{2}\right)</math>
2591
|- style="border-top: 2px solid;"
2592
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2593
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2594
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2595
|- style="border-top: 2px solid;"
2596
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2597
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2598
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2599
|- style="border-top: 2px solid;border-bottom: 2px solid;"
2600
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">0</math> 
2601
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2602
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0</math>
2603
2604
|}
2605
2606
In this last expression <math display="inline">L_{i,j} =L_{i,j}^{M}</math>
2607

Return to Onate Flores 2003a.

Back to Top

Document information

Published on 01/01/2005

DOI: 10.1016/j.cma.2004.07.039
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 43
Views 80
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?