You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
''Published in "Numerical Simulations of Coupled problems in Engineering", S.R. Idelsohn (Ed.). Computational Methods in Applied Sciences 33, pp. 129-156, Springer 2014''
2
3
4
==Abstract==
5
6
We present a Lagrangian formulation for coupled thermal analysis of quasi and fully incompressible flows and fluid-structure interaction (FSI) problems that has excellent mass preservation features. The success of the formulation lays on  a  residual-based stabilized expression of the mass balance equation obtained using the Finite Calculus (FIC) method. The  governing equations are discretized with the FEM using simplicial elements with equal linear interpolation for the velocities, the pressure and the temperature. The merits of the formulation in terms of reduced mass loss and overall accuracy are verified in the solution of 2D and 3D adiabatic and thermally-coupled quasi-incompressible free-surface flow problems using the Particle Finite Element Method (PFEM). Examples include the sloshing of water in a tank and the falling  of a water sphere and a cylinder into a  tank containing water.
7
8
'''keywords''' Particle Finite Element Method, Coupled Thermal Analysis, Quasi and Fully Incompressible
9
10
==1 INTRODUCTION==
11
12
The analysis of thermally coupled flows and their interaction with structures is relevant in many fields of engineering. In this work we present a Lagrangian numerical technique for solving this kind of problems for quasi and fully incompressible fluids using the Particle Finite Element Method (PFEM, www.cimne.com/pfem).
13
14
The PFEM treats the mesh nodes in the analysis domain as particles which can freely move and even separate from the  domain representing, for instance, the effect of water drops or cutting particles in drilling problems. A mesh connects the nodes discretizing the domain where the governing equations are solved using a stabilized FEM. Examples of application of PFEM to problems in fluid and solid mechanics including fluid-structure interaction (FSI) situations can be found in <span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-6'></span><span id='citeF-8'></span><span id='citeF-9'></span><span id='citeF-10'></span><span id='citeF-11'></span><span id='citeF-12'></span><span id='citeF-13'></span><span id='citeF-14'></span><span id='citeF-15'></span><span id='citeF-16'></span><span id='citeF-17'></span><span id='citeF-18'></span><span id='citeF-19'></span><span id='citeF-28'></span><span id='citeF-29'></span><span id='citeF-35'></span><span id='citeF-36'></span><span id='citeF-39'></span><span id='citeF-40'></span><span id='citeF-41'></span><span id='citeF-42'></span><span id='citeF-43'></span>[[#cite-4|[4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,28,29,35,36,39,40,41,42,43]]]. Early attempts of the PFEM for solving thermally coupled flows were reported in <span id='citeF-1'></span><span id='citeF-2'></span>[[#cite-1|[1,2]]].
15
16
In Lagrangian analysis procedures (such as  PFEM) the motion of the fluid particles is tracked during the transient solution. Hence, the convective terms vanish in the momentum and heat transfer equations and no numerical stabilization is needed for treating those terms. Two other sources of mass loss, however, remain in the numerical solution of Lagrangian flows, i.e. that due to the treatment of the incompressibility constraint by a stabilized numerical method, and that induced by the inaccuracies in tracking the flow particles and, in particular, the free surface.
17
18
In this work the PFEM equations for analysis of thermally coupled flows and FSI problems are derived using the stabilized formulation based in the Finite Calculus (FIC) method proposed by Oñate et al. <span id='citeF-20'></span><span id='citeF-21'></span><span id='citeF-22'></span><span id='citeF-23'></span><span id='citeF-24'></span><span id='citeF-25'></span><span id='citeF-26'></span><span id='citeF-27'></span><span id='citeF-30'></span><span id='citeF-31'></span><span id='citeF-32'></span><span id='citeF-37'></span><span id='citeF-38'></span><span id='citeF-39'></span>[[#cite-20|[20,21,22,23,24,25,26,27,30,31,32,37,38,39]]] that has excellent mass preservation features.
19
20
The lay-out of the paper is the following. In the next section we present the basic equations for conservation of linear momentum, mass and heat transfer for a quasi-incompressible fluid in a Lagrangian framework. A full incompressible fluid can be considered as a particular limit case of the former. Next we derive the stabilized FIC form of the mass balance equation. Then the finite element discretization using simplicial element with equal order approximation for the velocity,  the pressure and the temperature is presented and the relevant matrices and vectors of the discretized problem are given.  Details of the implicit solution of the Lagrangian FEM equations in time using a Newton iterative scheme are presented. The relevance of the bulk stiffness terms in the tangent matrix  for enhancing the convergence and accuracy of the iterative solution scheme is discussed. The basic steps of the PFEM for solving coupled free-surface FSI problems are described.
21
22
The efficiency and accuracy of the PFEM  technique are verified by solving a set of adiabatic and thermally coupled quasi-incompressible free surface flow problems in two (2D) and three (3D) dimensions with the PFEM. The adiabatic problems are the sloshing of water in a tank and the penetration of a water sphere into a cylindrical tank containing water. The thermally coupled problems considered are the extended 2D version of the adiabatic cases. The excellent performance of the numerical method proposed in terms of mass conservation and general accuracy is highlighted.
23
24
==2 GOVERNING EQUATIONS==
25
26
We write the governing equations for a quasi-incompressible Newtonian flow problem in the Lagrangian description as follows <span id='citeF-3'></span><span id='citeF-46'></span>[[#cite-3|[3,46]]].
27
28
===Momentum equations===
29
30
<span id="eq-1"></span>
31
{| class="formulaSCP" style="width: 100%; text-align: left;" 
32
|-
33
| 
34
{| style="text-align: left; margin:auto;" 
35
|-
36
| style="text-align: center;" | <math>\rho \frac{Dv_i}{Dt}-{\partial \sigma _{ij} \over \partial x_j}-b_i=0\quad , \quad i,j=1,n_s \quad  \hbox{in } \Omega  </math>
37
|}
38
| style="width: 5px;text-align: right;" | (1)
39
|}
40
41
In Eq.([[#eq-1|1]]), <math display="inline">\Omega </math> is the analysis domain with boundary <math display="inline">\Gamma </math>, <math display="inline">v_i</math> and <math display="inline">b_i</math> are the velocity and body force components  along the <math display="inline">i</math>th Cartesian axis, <math display="inline">\rho </math> is the density, <math display="inline">n_s</math> is the number of space dimensions (i.e. <math display="inline">n_s=3</math> for 3D problems) and <math display="inline">\sigma _{ij}</math> are the Cauchy stresses that are split in the deviatoric (<math display="inline">s_{ij}</math>) and pressure (<math display="inline">p</math>) components as
42
43
<span id="eq-2"></span>
44
{| class="formulaSCP" style="width: 100%; text-align: left;" 
45
|-
46
| 
47
{| style="text-align: left; margin:auto;" 
48
|-
49
| style="text-align: center;" | <math>\sigma _{ij} = s_{ij}+ p \delta _{ij} </math>
50
|}
51
| style="width: 5px;text-align: right;" | (2)
52
|}
53
54
where <math display="inline">\delta _{ij}</math> is the Kronecker delta. Note that the pressure is assumed to be positive for a tension state. Summation of terms with repeated indices  is assumed in Eq.([[#eq-1|1]]) and in  the following, unless otherwise specified.
55
56
The relationship between the deviatoric stresses <math display="inline">s_{ij}</math> and the strain rates <math display="inline">\varepsilon _{ij}</math> has the standard form for a Newtonian fluid,
57
58
<span id="eq-3"></span>
59
{| class="formulaSCP" style="width: 100%; text-align: left;" 
60
|-
61
| 
62
{| style="text-align: left; margin:auto;" 
63
|-
64
| style="text-align: center;" | <math>s_{ij} = 2\mu \left(\varepsilon _{ij} - {1 \over 3}\varepsilon _v \delta _{ij}\right)\quad \hbox{with}\quad  \varepsilon _{ij} = {1 \over 2}\left({\partial v_i \over \partial x_j} +  {\partial v_j \over \partial x_i}  \right) </math>
65
|}
66
| style="width: 5px;text-align: right;" | (3)
67
|}
68
69
where <math display="inline">\mu </math> is the viscosity  and <math display="inline">\varepsilon _v</math> is the volumetric strain rate defined as <math display="inline">\varepsilon _v= \varepsilon _{ii} = {\partial v_i \over \partial x_i} </math>.
70
71
===Mass balance equation===
72
73
The standard mass balance equation for a quasi-incompressible fluid can be written as <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-46'></span>[[#cite-3|[3,7,46]]]
74
75
<span id="eq-4"></span>
76
{| class="formulaSCP" style="width: 100%; text-align: left;" 
77
|-
78
| 
79
{| style="text-align: left; margin:auto;" 
80
|-
81
| style="text-align: center;" | <math>r_v =0 </math>
82
|}
83
| style="width: 5px;text-align: right;" | (4a)
84
|}
85
86
with
87
88
<span id="eq-4b"></span>
89
{| class="formulaSCP" style="width: 100%; text-align: left;" 
90
|-
91
| 
92
{| style="text-align: left; margin:auto;" 
93
|-
94
| style="text-align: center;" | <math>r_v:=-\frac{1}{c^2}\frac{Dp}{Dt}+\rho \varepsilon _v </math>
95
|}
96
| style="width: 5px;text-align: right;" | (4b)
97
|}
98
99
In Eq.([[#eq-5|4b]]) <math display="inline">c</math> is the speed of sound in the fluid. For a fully incompressible fluid <math display="inline">c=\infty </math> and Eq.([[#eq-4|4a]]) simplifies to the standard form, <math display="inline">\varepsilon _v =0</math>. In our work we will retain the quasi-incompressible form of <math display="inline">r_v</math> of Eq.([[#eq-5|4b]]) for convenience.
100
101
===Thermal balance===
102
103
<span id="eq-5"></span>
104
{| class="formulaSCP" style="width: 100%; text-align: left;" 
105
|-
106
| 
107
{| style="text-align: left; margin:auto;" 
108
|-
109
| style="text-align: center;" | <math>\rho c \frac{DT}{Dt} - {\partial  \over \partial x_i} \left(k {\partial T \over \partial x_i}\right)+ Q =0  \quad i=1,n_s  \quad \hbox{in }\Omega   </math>
110
|}
111
| style="width: 5px;text-align: right;" | (5)
112
|}
113
114
where <math display="inline">T</math> is the temperature, <math display="inline">c</math> is the thermal capacity, <math display="inline">k</math> is the heat conductivity and <math display="inline">Q</math> is the heat source.
115
116
===Boundary conditions===
117
118
===''Mechanical problem''===
119
120
The boundary conditions at the Dirichlet (<math display="inline">\Gamma _v</math>) and Neumann (<math display="inline">\Gamma _t</math>) boundaries with <math display="inline">\Gamma  = \Gamma _v \cup \Gamma _t</math> are
121
122
<span id="eq-6"></span>
123
{| class="formulaSCP" style="width: 100%; text-align: left;" 
124
|-
125
| 
126
{| style="text-align: left; margin:auto;" 
127
|-
128
| style="text-align: center;" | <math>v_i -v_i^p =0 \qquad \hbox{on }\Gamma _v </math>
129
|}
130
| style="width: 5px;text-align: right;" | (6)
131
|}
132
133
<span id="eq-7"></span>
134
{| class="formulaSCP" style="width: 100%; text-align: left;" 
135
|-
136
| 
137
{| style="text-align: left; margin:auto;" 
138
|-
139
| style="text-align: center;" | <math>\sigma _{ij}n_j -t_i^p =0 \quad \hbox{on }\Gamma _t \quad i,j=1,n_s  </math>
140
|}
141
| style="width: 5px;text-align: right;" | (7)
142
|}
143
144
where <math display="inline">v_i^p</math> and <math display="inline">t_i^p</math> are the prescribed velocities and prescribed tractions on <math display="inline">\Gamma _v</math> and <math display="inline">\Gamma _t</math>, respectively and <math display="inline">n_j</math> are the components of the unit normal vector to the boundary <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-46'></span>[[#cite-3|[3,7,46]]].
145
146
===''Thermal problem''===
147
148
<span id="eq-8"></span>
149
<span id="eq-9"></span>
150
{| class="formulaSCP" style="width: 100%; text-align: left;" 
151
|-
152
| 
153
{| style="text-align: left; margin:auto;" 
154
|-
155
| style="text-align: center;" | <math>\phi - \phi ^p =0 \quad \hbox{on }\Gamma _\phi </math>
156
| style="width: 5px;text-align: right;" | (8)
157
|-
158
| style="text-align: center;" | <math> k {\partial \phi  \over \partial n} + q_n^p =0 \quad \hbox{on }\Gamma _q  </math>
159
| style="width: 5px;text-align: right;" | (9)
160
|}
161
|}
162
163
where <math display="inline">\phi ^p</math> and <math display="inline">q_n^p</math> are the prescribed temperature and the prescribed normal heat flux at the boundaries <math display="inline">\Gamma _\phi </math> and <math display="inline">\Gamma _q</math>, respectively and <math display="inline">n</math> is the direction normal to the boundary.
164
165
'''Remark 1.''' The term <math display="inline">\frac{Dv_i}{Dt}</math> in Eq.([[#eq-1|1]]) is the ''material derivative'' of the <math display="inline">i</math>th velocity component <math display="inline">v_i</math>. This term is typically computed in a Lagrangian framework as
166
167
<span id="eq-10"></span>
168
{| class="formulaSCP" style="width: 100%; text-align: left;" 
169
|-
170
| 
171
{| style="text-align: left; margin:auto;" 
172
|-
173
| style="text-align: center;" | <math>\frac{Dv_i}{Dt} = \frac{{}^{n+1} v_i - {}^n v_i }{\Delta t}     </math>
174
|}
175
| style="width: 5px;text-align: right;" | (10)
176
|}
177
178
with
179
180
<span id="eq-11"></span>
181
{| class="formulaSCP" style="width: 100%; text-align: left;" 
182
|-
183
| 
184
{| style="text-align: left; margin:auto;" 
185
|-
186
| style="text-align: center;" | <math>{}^{n+1} v_i:=v_i ({}^{n+1} {\bf x},{}^{n+1} t)\quad ,\quad {}^n v_i:=v_i ({}^n{\bf x},{}^n t)       </math>
187
|}
188
| style="width: 5px;text-align: right;" | (11)
189
|}
190
191
where <math display="inline">{}^n v_i</math> is the velocity of the material point that has the position <math display="inline">{}^n{\bf x}</math> at time <math display="inline">t={}^nt</math>, where <math display="inline">{\bf x}</math> is the coordinates vector in a fixed Cartesian  system <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-46'></span>[[#cite-3|[3,7,46]]].
192
193
194
==3 STABILIZED MASS BALANCE EQUATION==
195
196
In this work we will use  the ''second order FIC form'' of the mass balance equation in space for a quasi-incompressible fluid <span id='citeF-37'></span><span id='citeF-38'></span>[[#cite-37|[37,38]]], as well as the first order FIC form of the mass balance equation in time. These forms have the following expressions:
197
198
===''Second order FIC mass balance equation in space''===
199
200
<span id="eq-12a"></span>
201
{| class="formulaSCP" style="width: 100%; text-align: left;" 
202
|-
203
| 
204
{| style="text-align: left; margin:auto;" 
205
|-
206
| style="text-align: center;" | <math>r_v + \frac{h_i^2}{12} \frac{\partial ^2 r_v}{\partial x^2_i}=0\qquad \hbox{in }\Omega \qquad i=1,n_s </math>
207
|}
208
| style="width: 5px;text-align: right;" | (12a)
209
|}
210
211
===''First order FIC mass balance equation in time''===
212
213
<span id="eq-12b"></span>
214
{| class="formulaSCP" style="width: 100%; text-align: left;" 
215
|-
216
| 
217
{| style="text-align: left; margin:auto;" 
218
|-
219
| style="text-align: center;" | <math>r_v + \frac{\delta }{2} \frac{D r_v}{D t}=0 \qquad \hbox{in }\Omega  </math>
220
|}
221
| style="width: 5px;text-align: right;" | (12b)
222
|}
223
224
Eq.([[#eq-13|12a]]) is obtained by expressing the balance of mass in a rectangular domain of finite size with dimensions <math display="inline">h_1\times h_2</math> (for 2D problems), where <math display="inline">h_i</math> are arbitrary distances, and retaining up to third order terms in the Taylor series expansions used for expressing the change of mass within the balance domain.
225
226
Eq.([[#eq-14|12b]]), on the other hand, is obtained by expressing the balance of mass in a space-time domain of infinitesimal length in space and finite dimension <math display="inline">\delta </math> in time <span id='citeF-20'></span>[[#cite-20|[20]]]. The derivation of Eqs.([[#''First order FIC mass balance equation in time''|12]]) for a 1D problem are shown in <span id='citeF-41'></span>[[#cite-41|[41]]].
227
228
The FIC terms in Eqs.([[#''First order FIC mass balance equation in time''|12]]) play the role of space and time stabilization terms respectively. In the discretized problem, the space dimensions <math display="inline">h_i</math> and the time dimension <math display="inline">\delta </math> are related to characteristic element dimensions and the time step increment, respectively as it will be explained later. Note that for <math display="inline">h_i =0</math> and <math display="inline">\delta =0</math> the standard infinitesimal form of the mass balance equation, <math display="inline">r_v =0</math>, is obtained.
229
230
After some transformations the stabilized mass balance equation ([[#eq-13|12a]]) is written as <span id='citeF-41'></span>[[#cite-41|[41]]]
231
232
<span id="eq-13"></span>
233
{| class="formulaSCP" style="width: 100%; text-align: left;" 
234
|-
235
| 
236
{| style="text-align: left; margin:auto;" 
237
|-
238
| style="text-align: center;" | <math>-\frac{1}{\kappa }\frac{Dp}{Dt}+\varepsilon _v  - \frac{\tau }{c^2} \frac{D^2p}{Dt^2} +\tau {\partial \hat r_{m_i} \over \partial x_i} =0  </math>
239
|}
240
| style="width: 5px;text-align: right;" | (13)
241
|}
242
243
where <math display="inline">\tau </math> is a ''stabilization parameter'' given by <span id='citeF-41'></span>[[#cite-41|[41]]]
244
245
<span id="eq-14"></span>
246
{| class="formulaSCP" style="width: 100%; text-align: left;" 
247
|-
248
| 
249
{| style="text-align: left; margin:auto;" 
250
|-
251
| style="text-align: center;" | <math>\tau = \left(\frac{8\mu }{h^2}+ \frac{2\rho }{\delta } \right)^{-1}  </math>
252
|}
253
| style="width: 5px;text-align: right;" | (14)
254
|}
255
256
and <math display="inline">\hat r_{m_i}</math> is a ''static momentum term'' defined as
257
258
<span id="eq-15"></span>
259
{| class="formulaSCP" style="width: 100%; text-align: left;" 
260
|-
261
| 
262
{| style="text-align: left; margin:auto;" 
263
|-
264
| style="text-align: center;" | <math>\hat r_{m_i}= {\partial  \over \partial x_j} (2\mu \varepsilon _{ij}) + \frac{\partial p}{\partial x_i} + b_i   </math>
265
|}
266
| style="width: 5px;text-align: right;" | (15)
267
|}
268
269
Eq.([[#eq-13|13]]) is used as the starting point for deriving the stabilized FEM formulation as explained in the following sections.
270
271
==4 VARIATIONAL EQUATIONS==
272
273
===4.1 Momentum equations===
274
275
Multiplying Eq.(1) by arbitrary test functions <math display="inline">w_i</math> with dimensions of velocity and integrating over the analysis domain <math display="inline">\Omega </math> gives the weighted residual form of the momentum equations as <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-46'></span>[[#cite-3|[3,7,46]]]
276
277
<span id="eq-16"></span>
278
{| class="formulaSCP" style="width: 100%; text-align: left;" 
279
|-
280
| 
281
{| style="text-align: left; margin:auto;" 
282
|-
283
| style="text-align: center;" | <math>\int _\Omega w_i \left(\rho \frac{Dv_i}{Dt}- {\partial \sigma _{ij} \over \partial x_j}-b_i\right)d\Omega =0 </math>
284
|}
285
| style="width: 5px;text-align: right;" | (16)
286
|}
287
288
Integrating by parts  the term involving <math display="inline">\sigma _{ij}</math> and using the Neumann boundary conditions ([[#eq-7|7]]) yields the weak variational form of the momentum equations as
289
290
<span id="eq-17"></span>
291
{| class="formulaSCP" style="width: 100%; text-align: left;" 
292
|-
293
| 
294
{| style="text-align: left; margin:auto;" 
295
|-
296
| style="text-align: center;" | <math>\int _\Omega w_i \rho \frac{Dv_i}{Dt} d\Omega + \int _\Omega \delta \varepsilon _{ij} \sigma _{ij} d\Omega - \int _\Omega w_i b_i d\Omega - \int _{\Gamma _t} w_i t_i^p d\Gamma =0 </math>
297
|}
298
| style="width: 5px;text-align: right;" | (17)
299
|}
300
301
where <math display="inline">\delta \varepsilon _{ij}= {\partial w_i \over \partial x_j}+{\partial w_j \over \partial x_i}</math> is an arbitrary (virtual) strain rate field. Eq.([[#eq-17|17]]) is the standard form of the ''principle of virtual power''  <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-46'></span>[[#cite-3|[3,7,46]]].
302
303
Substituting the expression of the stresses from Eq.([[#eq-2|2]]) into ([[#eq-17|17]]) gives
304
305
<span id="eq-18"></span>
306
{| class="formulaSCP" style="width: 100%; text-align: left;" 
307
|-
308
| 
309
{| style="text-align: left; margin:auto;" 
310
|-
311
| style="text-align: center;" | <math>\int _\Omega \! w_i \rho \frac{Dv_i}{Dt} d\Omega + \!\int _\Omega \left[\delta \varepsilon _{ij} 2\mu \left(\!\varepsilon _{ij} - \frac{1}{3}\varepsilon _{v} \delta _{ij}\!\right)+ \delta \varepsilon _{v}p\right]d\Omega - \!\int _\Omega w_i b_i d\Omega - \!\int _{\Gamma _t} w_i t_i^p d\Gamma =0  </math>
312
|}
313
| style="width: 5px;text-align: right;" | (18)
314
|}
315
316
Eq.([[#eq-18|18]]) can be written in matrix form as
317
318
<span id="eq-19"></span>
319
{| class="formulaSCP" style="width: 100%; text-align: left;" 
320
|-
321
| 
322
{| style="text-align: left; margin:auto;" 
323
|-
324
| style="text-align: center;" | <math>\displaystyle  \int _\Omega {\bf w}^T \rho \frac{D{\bf v}}{Dt} d\Omega + \!\int _\Omega \delta {\boldsymbol \varepsilon }^T {\bf D} {\boldsymbol \varepsilon } d\Omega  + \!\int _\Omega \delta {\boldsymbol \varepsilon }^T {\bf m} p d\Omega - \int _\Omega {\bf w}^T {\bf b}d\Omega - \!\int _{\Gamma _t} {\bf w}^T {\bf t}^p d\Gamma =0  </math>
325
|}
326
| style="width: 5px;text-align: right;" | (19)
327
|}
328
329
In Eq.([[#eq-19|19]]) <math display="inline">{\bf w},{\bf v},{\boldsymbol \varepsilon }</math> and <math display="inline">\delta {\boldsymbol \varepsilon }</math> are vectors containing the test functions, the velocities, the strain rates and the virtual strain rates respectively; <math display="inline">{\bf b}</math> and <math display="inline">{\bf t}^p</math> are body force and surface traction vectors, respectively; <math display="inline">{\bf D}</math> is the viscous constitutive matrix and <math display="inline">{\bf m}</math> is an auxiliary vector. These vectors are defined as (for 3D problems)
330
331
<span id="eq-20"></span>
332
{| class="formulaSCP" style="width: 100%; text-align: left;" 
333
|-
334
| 
335
{| style="text-align: left; margin:auto;" 
336
|-
337
| style="text-align: center;" | <math>\begin{array}{l}\textbf{w} =[w_1,w_2,w_3]^T\quad ,\quad \textbf{v} =[v_1,v_2,v_3]^T \quad ,\quad \textbf{b} =[b_1,b_2,b_3]^T \quad ,\quad  \textbf{t}^p =[t_1^p,t_2^p,t_3^p]^T\\[.5cm] {\boldsymbol \varepsilon }= [\varepsilon _{11},\varepsilon _{22}, \varepsilon _{33},\varepsilon _{12},\varepsilon _{13}, \varepsilon _{23}]^T \quad ,\quad  \delta {\boldsymbol \varepsilon }= [\delta \varepsilon _{11},\delta \varepsilon _{22}, \delta \varepsilon _{33},\delta \varepsilon _{12},\delta \varepsilon _{13}, \delta \varepsilon _{23}]^T\\[.5cm]  {\bf D}=\mu \left[                      \begin{array}{cccccc}4/3 & -2/3 & -2/3 & 0 & 0 & 0 \\                         &  4/3 & -2/3 &0  &0  & 0 \\                         &  & 4/3 & 0 & 0 & 0 \\                         &  &  & 2 & 0 & 0 \\                        {Sym.} &  &  &  & 2 & 0 \\                         &  &  &  &  & 2 \\                      \end{array} \right]\qquad ,\qquad {\bf m}=[1,1,1,0,0,0]^T \end{array} </math>
338
|}
339
| style="width: 5px;text-align: right;" | (20)
340
|}
341
342
===4.2 Mass balance equations===
343
344
We multiply Eq.([[#eq-13|13]]) by arbitrary (continuous) test functions <math display="inline">q</math> (with dimensions of pressure) defined over the analysis domain <math display="inline">\Omega </math>. Integrating over <math display="inline">\Omega </math> gives
345
346
<span id="eq-21"></span>
347
{| class="formulaSCP" style="width: 100%; text-align: left;" 
348
|-
349
| 
350
{| style="text-align: left; margin:auto;" 
351
|-
352
| style="text-align: center;" | <math>\int _\Omega -\frac{q}{\kappa } \frac{Dp}{Dt}d\Omega -\int _\Omega q \frac{\tau }{c^2} \frac{D^2p}{Dt^2}d\Omega + \int _\Omega q \varepsilon _v d\Omega  + \int _\Omega q \tau {\partial \hat r_{m_i} \over \partial x_i} d\Omega =0  </math>
353
|}
354
| style="width: 5px;text-align: right;" | (21)
355
|}
356
357
Integrating by parts the last integral in Eq.([[#eq-21|21]]) and using ([[#eq-15|15]]) gives after some transformations <span id='citeF-39'></span><span id='citeF-40'></span>[[#cite-39|[39,40]]]
358
359
<span id="eq-22"></span>
360
{| class="formulaSCP" style="width: 100%; text-align: left;" 
361
|-
362
| 
363
{| style="text-align: left; margin:auto;" 
364
|-
365
| style="text-align: center;" | <math>\begin{array}{r}\displaystyle \int _\Omega \frac{q}{\kappa } \frac{Dp}{Dt}d\Omega + \int _\Omega q \frac{\tau }{c^2} \frac{D^2p}{Dt^2}d\Omega - \int _\Omega q \varepsilon _v d\Omega + \int _\Omega \tau {\partial q \over \partial x_i} \left({\partial  \over \partial x_i} (2\mu \varepsilon _{ij})+ {\partial p \over \partial x_i}+b_i\right)d\Omega \\ \displaystyle - \int _{\Gamma _t} q \tau \left[\rho \frac{Dv_n}{Dt}-\frac{2}{h_n} \left(2\mu {\partial v_n \over \partial n} + p -t_n\right)\right]d\Gamma =0 \end{array}   </math>
366
|}
367
| style="width: 5px;text-align: right;" | (22)
368
|}
369
370
Expression ([[#eq-24|24]]) holds for 2D and 3D problems. The terms involving the first and second material time derivative of the pressure and the boundary term in Eq.([[#eq-24|24]]) are important for preserving the conservation of mass in  free-surface flow problems <span id='citeF-10'></span><span id='citeF-41'></span>[[#cite-10|[10,41]]].
371
372
===4.3 Thermal balance equation===
373
374
Application of the standard weighted residual method to the heat balance equations ([[#eq-5|5]]) and ([[#eq-9|9]]) leads, after standard operations, to <span id='citeF-7'></span><span id='citeF-44'></span>[[#cite-7|[7,44]]]
375
376
<span id="eq-23"></span>
377
{| class="formulaSCP" style="width: 100%; text-align: left;" 
378
|-
379
| 
380
{| style="text-align: left; margin:auto;" 
381
|-
382
| style="text-align: center;" | <math>\int _\Omega \hat w \rho c {\partial T \over \partial t} d\Omega + \int _\Omega {\partial \hat w  \over \partial x_i}  k {\partial T \over \partial x_i}d\Omega - \int _\Omega \hat w Q d\Omega + \int _{\Gamma _q} \hat w q_n^p d\Gamma =0 </math>
383
|}
384
| style="width: 5px;text-align: right;" | (23)
385
|}
386
387
where <math display="inline">\hat w</math> are the space weighting functions for the temperature.
388
389
==5 FEM DISCRETIZATION==
390
391
We discretize  the analysis domain into finite elements with <math display="inline">n</math> nodes in the standard manner leading to a mesh with a total number of <math display="inline">N_e</math> elements and <math display="inline">N</math> nodes. In our work we will choose simple 3-noded linear triangles (<math display="inline">n=3</math>) for 2D problems and 4-noded tetrahedra (<math display="inline">n=4</math>) for 3D problems with local linear shape functions <math display="inline">N_i^e</math> defined for each node <math display="inline">i</math> (<math display="inline">i=1,n</math>) of element <math display="inline">e</math> <span id='citeF-34'></span><span id='citeF-44'></span>[[#cite-34|[34,44]]]. The velocity components, the  pressure and the temperature are interpolated over the mesh in terms of their nodal values in the same manner using the  global linear shape functions <math display="inline">N_j</math> spanning over the elements sharing node <math display="inline">j</math> (<math display="inline">j=1,N</math>)  <span id='citeF-34'></span><span id='citeF-44'></span><span id='citeF-46'></span>[[#cite-34|[34,44,46]]]. In matrix form
392
393
<span id="eq-24"></span>
394
{| class="formulaSCP" style="width: 100%; text-align: left;" 
395
|-
396
| 
397
{| style="text-align: left; margin:auto;" 
398
|-
399
| style="text-align: center;" | <math>{\bf v} = {\bf N}_v\bar {\bf v}  ~,~p = {\bf N}_p\bar {\bf p}\quad  , \quad T = {\bf N}_T \bar {\bf T}  </math>
400
|}
401
| style="width: 5px;text-align: right;" | (24)
402
|}
403
404
where
405
406
<span id="eq-25"></span>
407
{| class="formulaSCP" style="width: 100%; text-align: left;" 
408
|-
409
| 
410
{| style="text-align: left; margin:auto;" 
411
|-
412
| style="text-align: center;" | <math>\begin{array}{c}\displaystyle \bar {\bf v} = \left\{\begin{matrix}\bar{\bf v}^1\\\bar{\bf v}^2\\\vdots \\ \bar{\bf v}^N\end{matrix}  \right\}\quad \hbox{with}~ \bar{\bf v}^i = \left\{\begin{matrix}\bar{v}^i_1\\\bar{v}^i_2\\\bar{v}^i_3\end{matrix}  \right\}~, ~ \bar {\bf p} =\left\{\begin{matrix}\bar{p}^1\\\bar{p}^2\\\vdots \\ \bar{p}^{N}\end{matrix}  \right\}~, ~ {\bf T}= \left\{\begin{matrix}\bar{T}_1\\\bar{T}_2\\\vdots \\ \bar{T}^N\end{matrix}  \right\}\\ \displaystyle {\bf N}_v = [{\bf N}_1, {\bf N}_2,\cdots , {\bf N}_N ]^T ~,~ {\bf N}_p = {\bf N}_T = [{N}_1, { N}_2,\cdots , {N}_N ] \end{array} </math>
413
|}
414
| style="width: 5px;text-align: right;" | (25)
415
|}
416
417
with <math display="inline">{\bf N}_j = N_j {\bf I}_n</math> where <math display="inline">{\bf I}_n</math> is the <math display="inline">n\times n</math> unit matrix.
418
419
In Eq.([[#eq-25|25]]) vectors <math display="inline">\bar{v}</math>, <math display="inline">\bar {p}</math> and <math display="inline">\bar {T}</math>  contain the nodal velocities, the nodal pressures and the nodal temperatures for the whole mesh, respectively and the upperindex denotes the nodal value for each vector or scalar magnitude.
420
421
Substituting Eqs.([[#eq-24|24]]) into Eqs.([[#eq-17|17]]), ([[#eq-22|22]]) and ([[#eq-25|25]]) and choosing a Galerkin formulation with <math display="inline">w_i = q =  \hat w_i =N_i</math> leads to the following system of algebraic equations
422
423
<span id="eq-26"></span>
424
<span id="eq-26a"></span>
425
{| class="formulaSCP" style="width: 100%; text-align: left;" 
426
|-
427
| 
428
{| style="text-align: left; margin:auto;" 
429
|-
430
| style="text-align: center;" | <math>{\bf M}_0 {\dot{\bar{\bf v}}} + {\bf K}\bar{\bf v}+{\bf Q}\bar {\bf p}- {\bf f}_v={\bf 0} </math>
431
|}
432
| style="width: 5px;text-align: right;" | (26a)
433
|}
434
435
<span id="eq-26b"></span>
436
{| class="formulaSCP" style="width: 100%; text-align: left;" 
437
|-
438
| 
439
{| style="text-align: left; margin:auto;" 
440
|-
441
| style="text-align: center;" | <math>\textbf{M}_1 {\dot{\bar{\bf p}}}+\textbf{M}_2 {\ddot{\bar{\bf p}}}-{\bf Q}^T \bar{\bf v} + ({\bf L}+{\bf M}_b)\bar {\bf p}- {\bf f}_p={\bf 0} </math>
442
|}
443
| style="width: 5px;text-align: right;" | (26b)
444
|}
445
446
<span id="eq-26c"></span>
447
{| class="formulaSCP" style="width: 100%; text-align: left;" 
448
|-
449
| 
450
{| style="text-align: left; margin:auto;" 
451
|-
452
| style="text-align: center;" | <math>{\bf C} {\dot{\bar{\bf T}}}+\hat {\bf L} \bar{\bf T} -  {\bf f}_T={\bf 0}  </math>
453
|}
454
| style="width: 5px;text-align: right;" | (26c)
455
|}
456
457
where <math display="inline">{\dot{\bar{\bf a}}}</math> and <math display="inline">{\ddot{\bar{\bf a}}}</math> denote the first and second material time derivatives of the components of  a vector <math display="inline">{a}</math>. The different matrices and vectors in Eqs.([[#eq-26|26]]) are assembled from the element contributions given in Box 1.
458
459
<br/>
460
461
'''Remark 2.''' The boundary terms of vector <math display="inline">{\bf f}_p</math> can be incorporated in the matrices of Eq.([[#eq-26b|26b]]). This leads to a non symmetrical set of equations. These boundary terms are computed here iteratively within the incremental solution scheme.
462
463
'''Remark 3.''' The presence of matrix <math display="inline">{\bf M}_b</math> in Eq.([[#eq-26b|26b]]) allows us to compute the pressure without the need of prescribing its value at the free surface. This eliminates the error introduced when the pressure is prescribed to zero in free boundaries, which leads to considerable mass losses in viscous flows <span id='citeF-15'></span>[[#cite-15|[15]]].
464
465
'''Remark 4.''' For ''transient problems'' the stabilization parameter <math display="inline">\tau </math> of Eq.([[#eq-14|14]]) is computed for each element <math display="inline">e</math> using <math display="inline">h=l^e</math> and <math display="inline">\delta = \Delta t</math> as
466
467
<span id="eq-27"></span>
468
{| class="formulaSCP" style="width: 100%; text-align: left;" 
469
|-
470
| 
471
{| style="text-align: left; margin:auto;" 
472
|-
473
| style="text-align: center;" | <math>\tau = \left(\frac{8\mu }{(l^e)^2} + \frac{2\rho }{\Delta t}  \right)^{-1} </math>
474
|}
475
| style="width: 5px;text-align: right;" | (27)
476
|}
477
478
where <math display="inline">\Delta t</math> is the time step used for the transient solution and <math display="inline">l^e</math> is a characteristic element length computed as <math display="inline">l^e = 2(\Omega ^e)^{1/n_s}</math> where <math display="inline">\Omega ^e</math> is the element area (for 3-noded triangles) or volume (for 4-noded tetrahedra). For fluids with heterogeneous material the values of <math display="inline">\mu </math> and <math display="inline">\rho </math>  are computed at the element center.
479
480
For ''steady state'' problems the stabilization parameter is computed with Eq.([[#eq-27|27]]) substituting <math display="inline">\Delta t</math> by <math display="inline">\frac{l^e}{\vert {\bf v}^e\vert }</math>.  The characteristic boundary length <math display="inline">h_n</math> in the expression of <math display="inline">{\bf f}_p</math> (Box 1) has been taken equal to <math display="inline">l^e</math> in our computations.
481
482
{|  class="floating_tableSCP wikitable" style="text-align: left; margin: 1em auto;min-width:50%;"
483
|-
484
| style="border-left: 2px solid;border-right: 2px solid;border-top: 2px solid;" | <math>\begin{array}{l}  \displaystyle \mathbf{M}_{0_{ij}}^e  =\int _{\Omega ^e}\rho {N}_{i}^e {N}_{j} {\bf I}_3 d\Omega ~,~\mathbf{K}^e_{ij} =\int _{\Omega ^e} \mathbf{B}_i^{eT} \mathbf{D}\mathbf{B}_j^e d\Omega ~,~\mathbf{Q}^e_{ij}  =\int _{\Omega ^e} \mathbf{B}_i^{eT} \mathbf{m} {N}_j^e d\Omega \\[.4cm] \displaystyle {M}_{1_{ij}}^e =\int _{\Omega ^e} \frac{1}{\kappa }{N}_i^e {N}_j^e d\Omega ~,~ {M}_{2_{ij}}^e =\int _{\Omega ^e} \frac{\tau }{ c^2 }{N}_i^e{N}_j^e d\Omega ~,~ {M}_{b_{ij}}^e = \int _{\Gamma _t} \frac{2\tau }{h_n} {N}_i^e{N}_j^e  d\Gamma \\[.4cm] 
485
\displaystyle {L}^e_{ij}= \int _{\Omega ^e} \tau ({\boldsymbol \nabla }^T {N}_i^e) {\boldsymbol \nabla }  N_j^e d\Omega ~,~ \mathbf{f}^e_{v_i}=  \int _{\Omega ^e}\mathbf{N}_{i}^e \mathbf{b} d\Omega + \int _{\Gamma _t}  \mathbf{N}_{i}^e {\bf t}^p d\Gamma \\[.4cm] 
486
\displaystyle {f}^e_{p_i}=\int _{\Gamma _t}\tau N_i^e \left[\rho \frac{Dv_n}{Dt}-\frac{2}{h_n} (2\mu \varepsilon _n -t_n)\right]d\Gamma - \int _{\Omega ^e} \tau  {\boldsymbol \nabla }^T {N}_i^e {b} d\Omega \\[.4cm] 
487
\displaystyle {C}^e_{ij}= \int _{\Omega ^e} \rho c N_i^e N_j^e d\Omega ~,~ \hat L^e_{ij}= \int _{\Omega ^e} k ({\boldsymbol \nabla }^T {N}_i^e) {\boldsymbol \nabla } N_j^e d\Omega ~,~ \displaystyle {f}^e_{T_i}= \int _{\Omega ^e} N_i^e Q d\Omega - \int _{\Gamma _q} N_i^e q^p_n d\Gamma \\[.4cm] \hbox{with } i,j=1,n.\\ \hbox{For 3D problems}\\[.4cm] 
488
\displaystyle{\bf B}_i^e = \left[\begin{matrix}  \displaystyle {\partial N_i^e \over \partial x_1} &0&0\\ \displaystyle{0}& \displaystyle {\partial N_i^e \over \partial x_2}&0\\ \displaystyle{0}&0&\displaystyle {\partial N_i^e \over \partial x_3}\\ \displaystyle {\partial N_i^e \over \partial x_2}&\displaystyle {\partial N_i^e \over \partial x_1}&0\\[.25cm] \displaystyle {\partial N_i^e \over \partial x_3}&0&\displaystyle {\partial N_i^e \over \partial x_1}\\[.25cm] \displaystyle{0}&\displaystyle {\partial N_i^e \over \partial x_3}&\displaystyle {\partial N_i^e \over \partial x_2}          \end{matrix}  \right]~,~ \mathbf{\bf N}_{i}^e = N_i^e {\bf I}_3 \quad \hbox{and} \quad  {\boldsymbol \nabla } = \left\{\begin{matrix}\displaystyle {\partial  \over \partial x_1} \\ \displaystyle {\partial  \over \partial x_2}\\\displaystyle {\partial  \over \partial x_3}  \end{matrix}  \right\} \end{array}</math>
489
|- style="border-bottom: 2px solid;"
490
| style="border-left: 2px solid;border-right: 2px solid;" | <math>N_i^e</math>: Local shape function of node <math display="inline">i</math> of element <math display="inline">e</math> [34,44]
491
|}
492
493
<div class="center" style="font-size: 75%;">'''Box 1'''. Element form of the matrices and vectors in Eqs.(26)</div>
494
495
==6 TRANSIENT SOLUTION OF THE DISCRETIZED EQUATIONS==
496
497
Eqs.([[#eq-26|26]]) are solved in time with an implicit Newton-Raphson type iterative scheme <span id='citeF-3'></span><span id='citeF-7'></span><span id='citeF-44'></span><span id='citeF-46'></span>[[#cite-3|[3,7,44,46]]]. The basic steps within a time increment <math display="inline">[n,n+1]</math> are:<br/>
498
499
* Initialize variables: <math display="inline">({}^{n+1}\hbox{\bf x}^1,{}^{n+1}\bar {\bf v}^1,{}^{n+1}\bar{\bf p}^1,  {}^{n+1}\bar{\bf T}^1, {}^{n+1}\bar{\bf r}^1_m)\equiv  \left\{{}^{n}{\bf x},{}^{n}\bar{\bf v},{}^{n}\bar{\bf p},{}^{n}\bar{\bf T}, {}^{n}\bar{\bf r}_m \right\}</math>.
500
* Iteration loop: <math display="inline">i=1,NITER</math>.<p> For each iteration. 
501
502
</p>
503
504
===''Step 1. Compute the nodal velocity increments <math>\Delta \bar {v}</math>''===
505
506
From Eq.([[#eq-26a|26a]]), we deduce
507
508
<span id="eq-28a"></span>
509
{| class="formulaSCP" style="width: 100%; text-align: left;" 
510
|-
511
| 
512
{| style="text-align: left; margin:auto;" 
513
|-
514
| style="text-align: center;" | <math>{}^{n+1}{\bf H}_v^i \Delta \bar {\bf v} = - {}^{n+1}\bar{{\bf r}}_m^i \rightarrow  \Delta \bar{\bf v} </math>
515
|}
516
| style="width: 5px;text-align: right;" | (28a)
517
|}
518
519
with the momentum residual <math display="inline">\bar{\bf r}_m</math> and the iteration matrix <math display="inline">{\bf H}_v</math>  given by
520
521
<span id="eq-28b"></span>
522
{| class="formulaSCP" style="width: 100%; text-align: left;" 
523
|-
524
| 
525
{| style="text-align: left; margin:auto;" 
526
|-
527
| style="text-align: center;" | <math>\bar{\textbf{r}}_m = \textbf{M}_0 {\dot{\bar{\bf v}}} + \textbf{K}\bar{\bf v}+\textbf{Q}\bar {\bf p}-\textbf{f}_v\quad , \quad \textbf{H}_v = \frac{1}{\Delta t} \textbf{M}_0 + \textbf{K} + \textbf{K}_v  </math>
528
|}
529
| style="width: 5px;text-align: right;" | (28b)
530
|}
531
532
===''Step 2. Update the nodal velocities''===
533
534
<span id="eq-29"></span>
535
{| class="formulaSCP" style="width: 100%; text-align: left;" 
536
|-
537
| 
538
{| style="text-align: left; margin:auto;" 
539
|-
540
| style="text-align: center;" | <math>{}^{n+1}\bar{\bf v}^{i+1}= {}^{n+1}\bar{\bf v}^i + \Delta \bar{\bf v} </math>
541
|}
542
| style="width: 5px;text-align: right;" | (29)
543
|}
544
545
===''Step 3. Compute the nodal pressures'' <math> {}^{n+1}\bar{\bf p}^{i+1}</math>===
546
547
From Eq.([[#eq-26b|26b]]) we obtain
548
549
<span id="eq-30a"></span>
550
{| class="formulaSCP" style="width: 100%; text-align: left;" 
551
|-
552
| 
553
{| style="text-align: left; margin:auto;" 
554
|-
555
| style="text-align: center;" | <math>{}^{n+1} \textbf{H}_p^i  {}^{n+1}\bar{\bf p}^{i+1}= \frac{1}{\Delta t} \textbf{M}_1 {}^{n+1}\bar{\bf p}^i +  \frac{1}{\Delta t^2} \textbf{M}_2 (2 ^n \bar{\bf p} - ^{n-1} \bar{\bf p}) + {\bf Q}^T {}^{n+1}\bar{\bf v}^{i+1}+ {}^{n+1}\bar{\bf f}^{i}_p  \rightarrow  {}^{n+1}\bar{\bf p}^{i+1}   </math>
556
|}
557
| style="width: 5px;text-align: right;" | (30a)
558
|}
559
560
with
561
562
<span id="eq-30b"></span>
563
{| class="formulaSCP" style="width: 100%; text-align: left;" 
564
|-
565
| 
566
{| style="text-align: left; margin:auto;" 
567
|-
568
| style="text-align: center;" | <math>\textbf{H}_p = \frac{1}{\Delta t} \textbf{M}_1+ \frac{1}{\Delta t^2} \textbf{M}_2+\textbf{L} + \textbf{M}_b </math>
569
|}
570
| style="width: 5px;text-align: right;" | (30b)
571
|}
572
573
===''Step 4. Update the nodal coordinates''===
574
575
<span id="eq-31"></span>
576
{| class="formulaSCP" style="width: 100%; text-align: left;" 
577
|-
578
| 
579
{| style="text-align: left; margin:auto;" 
580
|-
581
| style="text-align: center;" | <math>{}^{n+1}{\bf x}^{i+1}= {}^{n+1}{\bf x}^i + \frac{1}{2} ({}^{n+1}\bar{\bf v}^{i+1} + {}^{n}\bar{\bf v})\Delta t </math>
582
|}
583
| style="width: 5px;text-align: right;" | (31)
584
|}
585
586
A more accurate expression for computing <math display="inline">{}^{n+1}{\bf x}^{i+1}</math> can be used involving the  nodal accelerations <span id='citeF-40'></span>[[#cite-40|[40]]].
587
588
===''Step 5.Compute the nodal temperatures''===
589
590
From Eq.([[#eq-26c|26c]]) we obtain
591
592
<span id="eq-32"></span>
593
{| class="formulaSCP" style="width: 100%; text-align: left;" 
594
|-
595
| 
596
{| style="text-align: left; margin:auto;" 
597
|-
598
| style="text-align: center;" | <math>\left[\frac{1}{\Delta t}{\bf C} + \hat{\bf L}   \right]\Delta \bar{\bf T}=- {}^{n+1} \bar{\bf r}^i_T \quad ,\quad  {}^{n+1}\bar{\bf T}^{i+1}= {}^{n}\bar{\bf T}^i + \Delta \bar{\bf T} </math>
599
|}
600
| style="width: 5px;text-align: right;" | (32)
601
|}
602
603
with
604
605
<span id="eq-33"></span>
606
{| class="formulaSCP" style="width: 100%; text-align: left;" 
607
|-
608
| 
609
{| style="text-align: left; margin:auto;" 
610
|-
611
| style="text-align: center;" | <math>{\bf r}_T= {\bf C} {\dot{\bar{\bf T}}} + \hat{\bf L} \bar{\bf T} - {\bf f}_T </math>
612
|}
613
| style="width: 5px;text-align: right;" | (33)
614
|}
615
616
===''Step 6. Check convergence''===
617
618
Verify the following conditions:
619
620
<span id="eq-34"></span>
621
{| class="formulaSCP" style="width: 100%; text-align: left;" 
622
|-
623
| 
624
{| style="text-align: left; margin:auto;" 
625
|-
626
| style="text-align: center;" | <math>\begin{array}{c}\displaystyle \Vert {}^{n+1}\bar {\bf v}^{i+1}- {}^{n+1}\bar{\bf v}^{i}\Vert \le e_v \Vert {}^{n}\bar {\bf v}\Vert \\ \displaystyle \Vert {}^{n+1}\bar {\bf p}^{i+1}-{}^{n+1}\bar {\bf p}^i\Vert \le e_p  \Vert {}^{n}\bar{\bf p}\Vert \\ \displaystyle \Vert {}^{n+1}\bar {\bf T}^{i+1} - {}^{n+1}\bar {\bf T}^i\Vert \le e_T  \Vert {}^{n}\bar{\bf T}\Vert  \end{array}   </math>
627
|}
628
| style="width: 5px;text-align: right;" | (34)
629
|}
630
631
where <math display="inline">e_v</math>, <math display="inline">e_p</math> and <math display="inline">e_T</math> are prescribed error norms. In our examples we have set <math display="inline">e_v = e_p=e_T = 10^{-3}</math>.
632
633
If  conditions ([[#eq-34|34]]) are satisfied then make <math display="inline">n \leftarrow n+1 </math> and proceed to the next  time step. Otherwise, make the iteration counter <math display="inline">i \leftarrow i+1 </math> and repeat Steps 1&#8211;5.
634
635
'''Remark 5.''' In Eqs.([[#eq-28|28]])&#8211;([[#eq-34|34]]) <math display="inline">{}^{n+1}(\cdot )</math> denotes the values of a matrix or a vector computed using the nodal unknowns at time <math display="inline">n+1</math>. In this work the derivatives and integrals in all the matrices and the residual vectors <math display="inline">\bar{r}_m</math>  and <math display="inline">\bar{\bf r}_T</math> are computed on the ''discretized geometry at time'' <math display="inline">n</math>  while the nodal force vectors <math display="inline">{\bf f}_v</math>, <math display="inline">{\bf f}_p</math> and <math display="inline">{\bf f}_v</math> are computed on the current configuration at time <math display="inline">n+1</math>. This is equivalent to using an ''updated Lagrangian formulation'' <span id='citeF-3'></span><span id='citeF-45'></span><span id='citeF-46'></span>[[#cite-3|[3,45,46]]].
636
637
'''Remark 6.'''  Including the  bulk stiffness matrix <math display="inline">\textbf{K}_v</math> in <math display="inline">\textbf{H}_v</math> has proven to be essential for the fast convergence, mass preservation and overall accuracy of the iterative solution <span id='citeF-10'></span><span id='citeF-41'></span>[[#cite-10|[10,41]]].     The element expression of <math display="inline">\textbf{K}_v</math> can be obtained as <span id='citeF-41'></span>[[#cite-41|[41]]]
638
639
<span id="eq-35"></span>
640
{| class="formulaSCP" style="width: 100%; text-align: left;" 
641
|-
642
| 
643
{| style="text-align: left; margin:auto;" 
644
|-
645
| style="text-align: center;" | <math>\hbox{K}_v^e = \int _{\Omega ^e} \textbf{B}^T \texbf{m} \theta \Delta t\kappa \textbf{m}^T \textbf{B}d\Omega  </math>
646
|}
647
| style="width: 5px;text-align: right;" | (35)
648
|}
649
650
where <math display="inline">\theta </math> is a positive number such that <math display="inline">0<   \theta \le 1</math> that has the role of preventing the ill-conditioning of the iteration matrix <math display="inline">{\bf H}_v</math> for highly incompressible fluids. An adequate selection of <math display="inline">\theta </math> also improves the overall accuracy of the numerical solution and the preservation of mass for large time steps <span id='citeF-10'></span>[[#cite-10|[10]]]. For fully incompressible fluids (<math display="inline">c</math> and <math display="inline">\kappa =\infty </math>), a finite  value of <math display="inline">\kappa </math> is used in practice in <math display="inline">{\bf K}_v</math> as this helps to obtaining an accurate solution for velocities and pressure  with reduced mass loss in few iterations per time step <span id='citeF-10'></span>[[#cite-10|[10]]]. These considerations, however, do not affect the value of <math display="inline">\kappa </math> within matrix <math display="inline">{\bf M}_1</math> in Eq.([[#eq-26b|26b]]) that vanishes for a fully incompressible fluid. Clearly, the value of the terms of <math display="inline">{\bf K}_v^e</math> can also be limited by reducing the time step size. This, however, leads to an increase in the cost of the computations. A similar approach for improving mass conservation in incompressible flows was proposed  in <span id='citeF-42'></span>[[#cite-42|[42]]].
651
652
'''Remark 7.''' The iteration matrix <math display="inline">\textbf{H}_v</math> in Eq.([[#eq-28a|28a]]) is an ''approximation of the exact tangent matrix'' in the updated Lagrangian formulation for a quasi-incompressible fluid <span id='citeF-40'></span>[[#cite-40|[40]]]. The simplified form of <math display="inline">\textbf{H}_v</math>  used in this work has yielded good results  with convergence achieved for the nodal velocities,  the pressure and the temperature in 3&#8211;4 iterations in all the problems analyzed.
653
654
'''Remark 8.''' The time step within a time interval <math display="inline">[n,n+1]</math> is chosen as <math display="inline">\Delta t =\min \left(\frac{^n l_{\min }^e}{\vert {}^n{\bf v}\vert _{\max }},\Delta t_b\right)</math> where <math display="inline">^n l_{\min }^e</math> is the minimum characteristic distance  of all elements in the mesh, with <math display="inline">l^e</math> computed as explained in Remark 4, <math display="inline">\vert ^n{\bf v}\vert _{\max }</math> is the maximum value of the modulus of the velocity of all nodes in the mesh  and <math display="inline">\Delta t_b</math> is the critical time step of all nodes approaching a solid boundary defined as <math display="inline">\Delta t_b = \min \left(\frac{^n l_b}{\vert ^n{\bf v}_b\vert _{\max }}\right)</math> where <math display="inline">^n l_b</math> is the distance from the node to the boundary and <math display="inline">^n{\bf v}_b</math> is the velocity of the node. This definition of <math display="inline">\Delta t</math> intends that no node crosses a solid boundary during a time step.
655
656
A method that allows using large time steps in the integration of the PFEM equations can be found in <span id='citeF-16'></span>[[#cite-16|[16]]].
657
658
==7 ABOUT THE PARTICLE FINITE ELEMENT METHOD (PFEM)==
659
660
===7.1 The basis of the PFEM===
661
662
Let us consider a domain <math display="inline">V</math> containing  fluid and solid subdomains. Each subdomain is characterized by a set of points, hereafter termed ''particles''. The particles contain all the information  for defining the geometry and the material and mechanical properties of the underlying subdomain. In the PFEM both subdomains are modelled using an ''updated'' ''Lagrangian formulation'' <span id='citeF-3'></span><span id='citeF-45'></span>[[#cite-3|[3,45]]].
663
664
The solution steps within a time step in the PFEM are as follows:
665
666
<div id='img-1'></div>
667
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
668
|-
669
|[[Image:draft_Samper_264539605-Figure2a.png|600px|Sequence of steps to update a “cloud” of nodes representing a domain containing a fluid and a solid part from time n   (t=ⁿt)  to   time n+2 (t=ⁿt +2∆t)  ]]
670
|- style="text-align: center; font-size: 75%;"
671
| colspan="1" | '''Figure 1:''' Sequence of steps to update a “cloud” of nodes representing a domain containing a fluid and a solid part from time <math>n</math>   (<math>t=^n t</math>)  to   time <math>n+2</math> (<math>t=^n t +2\Delta t</math>)  
672
|}
673
674
<ol>
675
676
<li>The starting point at each time step is the cloud of points <math display="inline">C</math> in the fluid and solid domains. For instance <math display="inline">^{n} C</math> denotes the cloud at time <math display="inline">t={}^n t </math> (Figure [[#img-1|1]]). </li>
677
678
<li>Identify the boundaries defining the analysis domain <math display="inline">^{n} V</math>, as well as the subdomains in the fluid and the solid. This is an essential step as some boundaries (such as the free surface in fluids) may be severely distorted during the solution, including separation and re-entering of nodes. The Alpha Shape method <span id='citeF-8'></span>[[#cite-8|[8]]] is used for the boundary definition. Clearly, the accuracy in the reconstruction of the boundaries depends on the number of points in the vicinity of each boundary and on the Alpha Shape parameter. In the problems solved in this work the Alpha Shape method has been implementation as described in <span id='citeF-12'></span><span id='citeF-28'></span>[[#cite-12|[12,28]]]. </li>
679
680
<li> Discretize the the analysis domain <math display="inline">^{n} V</math> with a finite element mesh <math display="inline">{}^{n} M.</math>We use an efficient mesh generation scheme based on an enhanced Delaunay tesselation <span id='citeF-11'></span><span id='citeF-12'></span>[[#cite-11|[11,12]]]. </li>
681
682
<li> Solve the Lagrangian equations of motion for the overall continuum using the standard FEM. Compute the state variables in at the next (updated) configuration for <math display="inline">^n t+\Delta t</math>: velocities, pressure and viscous stresses in the fluid and displacements, stresses and strains in the solid. </li>
683
684
<li>  Move the mesh nodes to a new position <math display="inline">^{n+1} C</math> where ''n''+1 denotes the time <math display="inline">{}^n t +\Delta t</math>, in terms of the time increment size. </li>
685
686
<li> Go back to step 1 and repeat the solution for the next time step to obtain <math display="inline">{}^{n+2} C</math>. </li>
687
688
</ol>
689
690
Note that the key differences between the PFEM and the classical FEM are the remeshing technique and the identification of the domain boundary at each time step.
691
692
The CPU time required for meshing grows linearly with the number of nodes. As a general rule,  meshing consumes for 3D problems around 15% of the total CPU time per time step, while the solution of the equations (with typically 3 iterations per time step) and the system assembly consume approximately 70% and 15% of the CPU time per time step, respectively. These figures refer to analyses in a single processor Pentium IV PC <span id='citeF-36'></span>[[#cite-36|[36]]]. Considerable speed can be gained using parallel computing techniques.
693
694
In this work we will apply the PFEM to problems involving a rigid domain containing fluid particles only. Application of the PFEM in fluid and solid mechanics and in fluid-structure interaction problems can be found in <span id='citeF-4'></span><span id='citeF-5'></span><span id='citeF-6'></span><span id='citeF-8'></span><span id='citeF-9'></span><span id='citeF-10'></span><span id='citeF-11'></span><span id='citeF-12'></span><span id='citeF-13'></span><span id='citeF-14'></span><span id='citeF-15'></span><span id='citeF-16'></span><span id='citeF-17'></span><span id='citeF-18'></span><span id='citeF-19'></span><span id='citeF-28'></span><span id='citeF-29'></span><span id='citeF-35'></span><span id='citeF-36'></span><span id='citeF-39'></span><span id='citeF-40'></span><span id='citeF-41'></span><span id='citeF-42'></span><span id='citeF-43'></span>[[#cite-4|[4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,28,29,35,36,39,40,41,42,43]]], as well in www.cimne.com/pfem.
695
696
==8 EXAMPLES==
697
698
===8.1 Sloshing of water in prismatic tank===
699
700
The problem has been solved first in 2D. Figure [[#img-2|2]] shows the analysis data. The fluid oscillates due to the hydrostatic forces induced by its original position.
701
702
<div id='img-2'></div>
703
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
704
|-
705
|[[Image:draft_Samper_264539605-Figure2_SL2D_official_input.png|570px|2D analysis of sloshing of water in rectangular tank. Initial geometry, analysis data and mesh of 5064 3-noded triangles discretizing the water in the tank]]
706
|- style="text-align: center; font-size: 75%;"
707
| colspan="1" | '''Figure 2:''' 2D analysis of sloshing of water in rectangular tank. Initial geometry, analysis data and mesh of 5064 3-noded triangles discretizing the water in the tank
708
|}
709
710
The problem has been run using different values of the parameter <math display="inline">\theta </math> in the tangent bulk stiffness matrix <math display="inline">{K}_v^e</math> (Eq.([[#eq-41|41]])). The first set of results (Figures [[#img-3|3]] and [[#img-4|4]]) were obtained with <math display="inline">\theta =1</math>. The problem was then solved for <math display="inline">\theta = 0.08</math>, thereby, reducing in one order the magnitude the diagonal terms in <math display="inline">{K}_v^e</math>.
711
712
Figure  [[#img-3|3]] shows snapshots of the water geometry at different times. Pressure contours are superposed to the deformed geometry of the fluid in the figures.
713
714
Figure [[#img-4|4]] shows the evolution of the percentage of water volume (i.e. mass) loss introduced by the numerical solution scheme. The accumulated volume loss (in percentage versus the initial volume) for the method proposed with <math display="inline">\theta =1</math> is approximately  1.33% over 20 seconds of simulation time (Figure [[#img-4|4]]a). The average volume variation in absolute value per time step is <math display="inline">1.09 \times 10^{-4}%</math> (Figure [[#img-4|4]]b). The total water volume loss is the sum of the losses induced by the numerical scheme and the losses due to the updating of the free surface  using the PFEM. No correction of mass was introduced at the end of each time step. Taking all this into account, the fluid volume loss over the analysis period is remarkably low.
715
716
The volume losses induced by the free surface updating can be reduced using a finer mesh in that region in conjunction with an enhanced alpha shape technique.
717
718
The total fluid volume loss can be reduced to almost zero by introducing a small correction in the free surface at the end of each time step <span id='citeF-41'></span>[[#cite-41|[41]]].
719
720
The fluid volume losses obtained using a standard first order fractional step method <span id='citeF-41'></span>[[#cite-41|[41]]]  and the PFEM are shown in Figure [[#img-4|4]]a  for comparison. Clearly the method proposed in this work leads to a reduction in the overall fluid volume loss, as well as in the volume loss per time step.
721
722
<div id='img-3'></div>
723
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
724
|-
725
|[[Image:draft_Samper_264539605-Figure4a_SL2D_t=5-7s.png|400px|]]
726
|[[Image:draft_Samper_264539605-Figure4b_SL2D_t=7-4s.png|400px|]]
727
|-
728
|[[Image:draft_Samper_264539605-Figure4c_SL2D_t=13-3s.png|400px|]]
729
|[[Image:draft_Samper_264539605-Figure4d_SL2D_t=18-6s.png|400px|2D sloshing of water in rectangular tank. Snapshots of water geometry at two different times (θ= 1). Colours indicate pressure contours]]
730
|- style="text-align: center; font-size: 75%;"
731
| colspan="2" | '''Figure 3:''' 2D sloshing of water in rectangular tank. Snapshots of water geometry at two different times (<math>\theta = 1</math>). Colours indicate pressure contours
732
|}
733
734
<div id='img-4'></div>
735
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
736
|-
737
|[[Image:draft_Samper_264539605-Figure5a_SL2D_allLosses.png|600px|]]
738
|-
739
|[[Image:draft_Samper_264539605-Figure5b_SL2D_lossesPerStep.png|600px|2D sloshing of water in rectangular tank. (a) Time evolution of the percentage of water volume loss  due to the numerical algorithm. (b) Average volume variation per time step. Current method. 1.09×10⁻⁴% Fractional step: 2.07×10⁻⁴% ]]
740
|- style="text-align: center; font-size: 75%;"
741
| colspan="1" | '''Figure 4:''' 2D sloshing of water in rectangular tank. (a) Time evolution of the percentage of water volume loss  due to the numerical algorithm. (b) Average volume variation per time step. Current method. 1.09<math>\times 10^{-4}</math>% Fractional step: 2.07<math>\times 10^{-4}</math>% 
742
|}
743
744
<div id='img-5'></div>
745
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
746
|-
747
|[[Image:draft_Samper_264539605-Comparison-value.png|600px|2D sloshing of water in rectangular tank. Time evolution of percentage of water volume loss obtained using the current method with θ=0.08 (curve A) and θ= 1 (curve B) ∆t = 10⁻³s]]
748
|- style="text-align: center; font-size: 75%;"
749
| colspan="1" | '''Figure 5:''' 2D sloshing of water in rectangular tank. Time evolution of percentage of water volume loss obtained using the current method with <math>\theta =0.08</math> (curve A) and <math>\theta = 1</math> (curve B) <math>\Delta t = 10^{-3}s</math>
750
|}
751
752
<div id='img-6'></div>
753
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
754
|-
755
|[[Image:draft_Samper_264539605-volume-preservation.png|600px|2D sloshing of water in rectangular tank. Time evolution of percentage of water volume loss obtained with the current method. Curve A: θ=1 and ∆t = 10⁻⁴s. Curve B: θ= 1 and ∆t = 10⁻³s]]
756
|- style="text-align: center; font-size: 75%;"
757
| colspan="1" | '''Figure 6:''' 2D sloshing of water in rectangular tank. Time evolution of percentage of water volume loss obtained with the current method. Curve A: <math>\theta =1</math> and <math>\Delta t = 10^{-4}s</math>. Curve B: <math>\theta = 1</math> and <math>\Delta t = 10^{-3}s</math>
758
|}
759
760
<div id='img-7'></div>
761
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
762
|-
763
|[[Image:draft_Samper_264539605-Figure7a_SL3D_AS2D_input.png|600px|]]
764
|-
765
|[[Image:draft_Samper_264539605-Figure7bSL3D_AS2D_5_7.png|300px|]]
766
|-
767
|[[Image:draft_Samper_264539605-Figure7c_SL3D_AS2D_7_4.png|300px|3D analysis of sloshing of water in prismatic tank (θ= 1). Analysis data and snapshots of water geometry at t=5.7s (left) and t=7.4s (right)]]
768
|- style="text-align: center; font-size: 75%;"
769
| colspan="1" | '''Figure 7:''' 3D analysis of sloshing of water in prismatic tank (<math>\theta = 1</math>). Analysis data and snapshots of water geometry at <math>t=5.7</math>s (left) and <math>t=7.4</math>s (right)
770
|}
771
772
<div id='img-8'></div>
773
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
774
|-
775
|[[Image:draft_Samper_264539605-Fig13b_New.png|600px|]]
776
|-
777
|[[Image:draft_Samper_264539605-Fig13c_New.png|600px|3D analysis of sloshing of water in prismatic tank (θ= 1). (a)  Time evolution of accumulated water volume loss (in percentage) due to the numerical algorithm. (b) Volume loss (in %) per time step over 2 seconds of analysis. Average volume loss per time step: 1.64×10⁻⁴%]]
778
|- style="text-align: center; font-size: 75%;"
779
| colspan="1" | '''Figure 8:''' 3D analysis of sloshing of water in prismatic tank (<math>\theta = 1</math>). (a)  Time evolution of accumulated water volume loss (in percentage) due to the numerical algorithm. (b) Volume loss (in %) per time step over 2 seconds of analysis. Average volume loss per time step: 1.64<math>\times 10^{-4}</math>%
780
|}
781
782
<div id='img-9'></div>
783
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
784
|-
785
|[[Image:draft_Samper_264539605-Figure19_ball_3D_input.png|600px|Water sphere falling  in a tank filled with water. Analysis data and initial discretization of the sphere and the water in the tank with 88892 4-noded tetrahedra]]
786
|- style="text-align: center; font-size: 75%;"
787
| colspan="1" | '''Figure 9:''' Water sphere falling  in a tank filled with water. Analysis data and initial discretization of the sphere and the water in the tank with 88892 4-noded tetrahedra
788
|}
789
790
<div id='img-10'></div>
791
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
792
|-
793
|[[Image:draft_Samper_264539605-figure20_ball1.png|400px|]]
794
|[[Image:draft_Samper_264539605-figure20_ball2.png|400px|]]
795
|-
796
|[[Image:draft_Samper_264539605-figure20_ball3.png|400px|]]
797
|[[Image:draft_Samper_264539605-figure20_ball4.png|400px|Water sphere falling  in tank containing water. Evolution of the impact and mixing of the two liquids at different times. Results for θ= 1]]
798
|- style="text-align: center; font-size: 75%;"
799
| colspan="2" | '''Figure 10:''' Water sphere falling  in tank containing water. Evolution of the impact and mixing of the two liquids at different times. Results for <math>\theta = 1</math>
800
|}
801
802
<div id='img-11'></div>
803
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
804
|-
805
|[[Image:draft_Samper_264539605-Fig26a_NEW.png|400px|]]
806
|[[Image:draft_Samper_264539605-Fig26B_NEW.png|400px|Water sphere falling in a tank containing water. (a) Accumulated volume over three seconds of analysis due to the numerical algorithm (θ=1). (b) Volume loss (in %) per time step. Average volume variation per time step: 2.54×10⁻⁴%]]
807
|- style="text-align: center; font-size: 75%;"
808
| colspan="2" | '''Figure 11:''' Water sphere falling in a tank containing water. (a) Accumulated volume over three seconds of analysis due to the numerical algorithm (<math>\theta =1</math>). (b) Volume loss (in %) per time step. Average volume variation per time step: 2.54<math>\times 10^{-4}</math>%
809
|}
810
811
<div id='img-12'></div>
812
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
813
|-
814
|[[Image:draft_Samper_264539605-ThermalSloshingInput.png|400px|]]
815
|[[Image:draft_Samper_264539605-ThermalSLData.png|400px|2D sloshing of a fluid in a heated tank. Initial geometry, problem data, thermal boundary and initial conditions]]
816
|- style="text-align: center; font-size: 75%;"
817
| colspan="2" | '''Figure 12:''' 2D sloshing of a fluid in a heated tank. Initial geometry, problem data, thermal boundary and initial conditions
818
|}
819
820
<div id='img-13'></div>
821
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
822
|-
823
|[[Image:draft_Samper_264539605-ThermalSloshing.png|600px|2D sloshing of a fluid in a heated tank. Snapshots of fluid geometry at six different times. Colours indicate temperature contours]]
824
|- style="text-align: center; font-size: 75%;"
825
| colspan="1" | '''Figure 13:''' 2D sloshing of a fluid in a heated tank. Snapshots of fluid geometry at six different times. Colours indicate temperature contours
826
|}
827
828
<div id='img-14'></div>
829
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 80%;max-width: 100%;"
830
|-
831
|[[Image:draft_Samper_264539605-ThermalSloshingGraph.png|480px|2D sloshing of a fluid in a heated tank. Evolution of temperature with time at the points A, B and C of  Figure [[#img-12|12]]]]
832
|- style="text-align: center; font-size: 75%;"
833
| colspan="1" | '''Figure 14:''' 2D sloshing of a fluid in a heated tank. Evolution of temperature with time at the points <math>A, B</math> and <math>C</math> of  Figure [[#img-12|12]]
834
|}
835
836
Figure [[#img-5|5]] shows a comparison between the fluid volume loss for <math display="inline">\theta =1</math> and <math display="inline">\theta = 0.08</math> using the same time step in both cases (<math display="inline">\Delta t = 10^{-3}s</math>). Results  show that the reduction of the tangent bulk stiffness matrix terms leads to an improvement in the preservation of the initial volume of the fluid. It is noted that the convergence of the iterative solution for <math display="inline">\theta = 0.08</math> was the same as for <math display="inline">\theta =1</math>.
837
838
Figure [[#img-6|6]] shows that a similar improvement in the volume preservation can be obtained using <math display="inline">\theta = 1</math> and reducing the time step to <math display="inline">\Delta t = 10^{-4}s</math>. This, however, increases the cost of the computations.
839
840
These results indicate that accurate numerical results with reduced volume losses can be obtained by appropriately adjusting the parameter <math display="inline">\theta </math> in the tangent bulk modulus matrix while keeping the time step size to competitive values in terms of CPU cost. A study of the influence of <math display="inline">\theta </math> in the numerical solution for quasi-incompressible free surface fluids in terms of volume preservation and overall accuracy using the formulation here presented can be found in <span id='citeF-10'></span>[[#cite-10|[10]]].
841
842
More results for this example can be found in <span id='citeF-41'></span>[[#cite-41|[41]]].
843
844
Figures [[#img-7|7]] and [[#img-8|8]] show a similar set of results for the 3D analysis of the same sloshing problem using a relative coarse initial mesh of 106771 4-noded tetrahedra and <math display="inline">\theta = 1</math>. It is remarkable that the percentage of total fluid volume loss due to the numerical scheme after 10 seconds of analysis is approximately 1%
845
846
===8.2 Falling of a water sphere in a cylindrical tank containing water===
847
848
This example is the 3D analysis of the impact of a sphere made of water as it falls in a cylindrical tank containing water. Both the water in the sphere and in the tank mix in a single fluid after the impact. Figure [[#img-9|9]] shows the material and analysis data and the initial discretization of the sphere and the water in the tank in 88892 4-noded tetrahedra. The problem was solved with the new stabilized method presented in the paper with <math display="inline">\theta = 1</math>. Figure [[#img-10|10]] shows snapshots of the mixing process at different times. An average of four  iterations for convergence of the velocity and the pressure were needed during all the steps of the analysis. The total water mass lost in the sphere and the tank due to the numerical algorithm was <math display="inline">\simeq </math> 2% after 3 seconds of analysis (Figure [[#img-11|11]]a).
849
850
===8.3 Sloshing of a fluid in a heated tank===
851
852
A fluid at initial temperature <math display="inline">T=20\,^{\circ } C</math> oscillates due to the hydrostatic forces induced by its initial position in a rectangular tank heated to a uniform and constant temperature of <math display="inline">T=75\,^{\circ } C</math>. The geometry and the problem data of the 2D simulation are shown in Figure [[#img-12|12]]. The fluid, with a very high thermal conductivity, changes its temperature only due to the contact with the hotter tank walls. The heat flux along the free surface has been considered null. The fluid domain has been initially discretized with 2828 3-noded triangles. The coupled thermal-fluid dynamics simulation has been run for 100 s using a time step increment of <math display="inline">\Delta t</math>=<math display="inline">0.005 s</math>.
853
854
Figure [[#img-13|13]] shows some snapshots of the numerical simulation. The temperature contours have been superposed on the fluid domain at the different time instants.
855
856
In Figure [[#img-14|14]] the evolution of temperature with time at the points <math display="inline">A, B</math> and <math display="inline">C</math> of  Figure [[#img-12|12]] is plotted. The coordinates of these sample points are (<math display="inline">m,0.1m</math>), (<math display="inline">m,0.4m</math>) and (<math display="inline">m,0.1m</math>), respectively. Figures [[#img-13|13]]  and [[#img-14|14]]  show that the fluid does not heat uniformly because of the convection effect automatically captured by the Lagrangian technique here presented.
857
858
===8.4 Falling of a cylindrical  object in a heated tank filled with fluid===
859
860
An elastic object falls in a tank containing a fluid at rest. The tank walls are maintained at temperature <math display="inline">T</math>=<math display="inline">75\,^{\circ } C</math> during the whole analysis, while the fluid and the solid object have an initial temperature of <math display="inline">T=20\,^{\circ } C</math>.  The geometry and the problem data of the 2D simulation as well the thermal initial and boundary conditions, are shown in Figure [[#img-15|15]]. Both the fluid and the solid have a high thermal conductivity. The heat flux along the fluid and solid surfaces in contact with the air has been considered null. The fluid and the solid domains have been discretized with 1986 and 108 3-noded triangular finite elements, respectively. The duration of the simulation is 10 s and the time step increment chosen is <math display="inline">\Delta t</math>=<math display="inline">0.0005 s</math>.
861
862
Figure [[#img-16|16]] collects some representative snapshots of the numerical simulation with the temperature results plotted over the fluid and the solid domains.
863
864
The graph of Figure [[#img-17|17]] is the evolution of temperature at the central point of the solid object. As expected, its temperature tends to <math display="inline">T</math>=<math display="inline">75\,^{\circ } C</math>.
865
866
<div id='img-15'></div>
867
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 95%;max-width: 100%;"
868
|-
869
|[[Image:draft_Samper_264539605-ThermalBallInput.png|570px|]]
870
|-
871
|[[Image:draft_Samper_264539605-FSIData.png|600px|Falling of a solid object in a heated tank filled with fluid. Initial geometry, problem data, thermal boundary and initial conditions]]
872
|- style="text-align: center; font-size: 75%;"
873
| colspan="1" | '''Figure 15:''' Falling of a solid object in a heated tank filled with fluid. Initial geometry, problem data, thermal boundary and initial conditions
874
|}
875
876
<div id='img-16'></div>
877
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
878
|-
879
|[[Image:draft_Samper_264539605-ThermalBall.png|600px|Falling of a solid object in a heated tank filled with fluid. Snapshots at six different times. Colours indicate temperature contours]]
880
|- style="text-align: center; font-size: 75%;"
881
| colspan="1" | '''Figure 16:''' Falling of a solid object in a heated tank filled with fluid. Snapshots at six different times. Colours indicate temperature contours
882
|}
883
884
<div id='img-17'></div>
885
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
886
|-
887
|[[Image:draft_Samper_264539605-FSIGraph.png|600px|Falling of a solid object in a heated tank filled with fluid. Time evolution of the temperature  at the center of the solid.]]
888
|- style="text-align: center; font-size: 75%;"
889
| colspan="1" | '''Figure 17:''' Falling of a solid object in a heated tank filled with fluid. Time evolution of the temperature  at the center of the solid.
890
|}
891
892
==9 CONCLUDING REMARKS==
893
894
We have presented a new FIC-based stabilized Lagrangian finite element method for thermal-mechanical analysis of quasi and fully incompressible flows and FSI problems that has excellent mass preservation properties. The method has been successfully applied to the adiabatic and thermal-mechanical analysis of free-surface quasi-incompressible flows using the PFEM and an updated Lagrangian formulation. These problems are more demanding in terms of the mass preservation features of the numerical algorithm. The method proposed has yielded excellent results for 2D and 3D adiabatic and thermally-coupled free surface flow problems involving surface waves, water splashing, violent impact of flows with containment walls  and FSI situations.
895
896
==ACKNOWLEDGEMENTS==
897
898
This research was partially supported by the Advanced Grant  project SAFECON of the European Research Council.
899
900
==Bibliography==
901
902
<div class="auto" style="width: auto; margin-left: auto; margin-right: auto;font-size: 85%;">
903
904
<div id="cite-1"></div>
905
[[#citeF-1|[1]]]  Aubry R, Idelsohn SR, Oñate E (2005)  Particle finite element method in fluid-mechanics including thermal convection-diffusion. Computers and Structures,  Vol. 83, (17-18), pp 1459&#8211;1475.
906
907
<div id="cite-2"></div>
908
[[#citeF-2|[2]]]   Aubry R, Idelsohn SR, Oñate E (2006)  Fractional step like schemes for free surface problems with thermal coupling using the Lagrangian PFEM. Computational Mechanics,  Vol. 38 (4-5), pp. 294&#8211;309.
909
910
<div id="cite-3"></div>
911
[[#citeF-3|[3]]]  Belytschko T, Liu WK, Moran B, Non linear finite element for continua and structures, 2d Edition, Wiley, 2013.
912
913
<div id="cite-4"></div>
914
[[#citeF-4|[4]]]  Carbonell JM, Oñate E, Suárez B (2010) Modeling of ground excavation with the Particle Finite Element Method. Journal of Engineering Mechanics (ASCE) 136(4):455&#8211;463
915
916
<div id="cite-5"></div>
917
[[#citeF-5|[5]]]  Carbonell JM, Oñate E, Suárez B (2013) Modelling of tunnelling processes and cutting tool wear with the Particle Finite Element Method (PFEM). Accepted in Comput. Mech. (2013) DOI:10.1007/s00466-013-0835-x
918
919
<div id="cite-6"></div>
920
[[#citeF-6|[6]]]  Cremonesi M, Frangi A, Perego U (2011) A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Computers & Structures 89:1086&#8211;1093
921
922
<div id="cite-7"></div>
923
[[#citeF-7|[7]]]   Donea J,  Huerta A  (2003) Finite element method for flow problems. J. Wiley
924
925
<div id="cite-8"></div>
926
[[#citeF-8|[8]]]  Edelsbrunner H,  Mucke EP (1999) Three dimensional alpha shapes. ACM   Trans. Graphics  13:43&#8211;72
927
928
<div id="cite-9"></div>
929
[[#citeF-9|[9]]]  Felippa F, Oñate E (2007)  Nodally exact Ritz discretizations of 1D diffusion-absorption and Helmholtz equations by variational FIC and modified equation methods. Comput. Mech. 39:91&#8211;111
930
931
<div id="cite-10"></div>
932
[[#citeF-10|[10]]]  Franci A, Oñate E, Carbonell JM (2013) On the effect of the  tangent bulk stiffness matrix in the analysis of free surface Lagrangian flows using PFEM. Research Report CIMNE PI402. Submitted to Int. J. Numer. Meth. Biomed. Engng.
933
934
<div id="cite-11"></div>
935
[[#citeF-11|[11]]]  Idelsohn SR, Calvo N, Oñate E (2003c) Polyhedrization of an arbitrary point set. Comput. Method Appl. Mech. Engng. 192(22-24):2649&#8211;2668
936
937
<div id="cite-12"></div>
938
[[#citeF-12|[12]]]  Idelsohn SR, Oñate E, Del Pin F (2004)  The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Numer. Meth. Biomed. Engng.,  61(7):964&#8211;989
939
940
<div id="cite-13"></div>
941
[[#citeF-13|[13]]]  Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Engrg.  197:1762&#8211;1776
942
943
<div id="cite-14"></div>
944
[[#citeF-14|[14]]]  Idelsohn SR, Mier-Torrecilla M, Oñate E  (2009) Multi-fluid flows with the Particle Finite Element Method. Comput Methods Appl Mech Engrg. 198:2750&#8211;2767
945
946
<div id="cite-15"></div>
947
[[#citeF-15|[15]]]  Idelsohn SR,  Oñate E (2010) The challenge of mass conservation in the solution of free-surface flows with the fractional-step method: Problems and solutions. Int. J. Numer. Meth. Biomed. Engng. 26:1313–-1330
948
949
<div id="cite-16"></div>
950
[[#citeF-16|[16]]]  Idelsohn SR, Nigro N, Limache A, Oñate E  (2012) Large time-step explicit integration method for solving problem with dominant convection. Comput. Methods Appl. Mech. Engrg. 217-220:168–-185
951
952
<div id="cite-17"></div>
953
[[#citeF-17|[17]]]  Larese A,  Rossi R, Oñate E, Idelsohn SR (2008)  Validation of the Particle Finite Element Method (PFEM) for simulation of free surface flows. Engineering Computations 25(4):385&#8211;425
954
955
<div id="cite-18"></div>
956
[[#citeF-18|[18]]]  Limache A, Idelsohn, SR, Rossi R, Oñate E (2007) The violation of objectivity in Laplace formulation of the Navier-Stokes equations. Int. J. Numerical Methods in Fluids, 54:639&#8211;664.
957
958
<div id="cite-19"></div>
959
[[#citeF-19|[19]]]  Oliver X, Cante JC, Weyler R, González C, Hernández J (2007) Particle finite element methods in solid mechanics problems. In: Oñate E, Owen R (Eds) Computational Plasticity. Springer, Berlin, pp 87&#8211;103
960
961
<div id="cite-20"></div>
962
[[#citeF-20|[20]]]  Oñate E (1998) Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput. Meth. Appl. Mech. Engng. 151:233&#8211;267
963
964
<div id="cite-21"></div>
965
[[#citeF-21|[21]]]  Oñate E, Manzan M (1999)  A general procedure for deriving stabilized space-time finite element methods for advective-diffusive problems. International Journal for Numerical Methods in Fluids,  Vol. 31, pp. 203&#8211;221.
966
967
<div id="cite-22"></div>
968
[[#citeF-22|[22]]]  Oñate E (2000) A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput Methods Appl Mech Engrg. 182(1&#8211;2):355&#8211;370
969
970
<div id="cite-23"></div>
971
[[#citeF-23|[23]]]   Oñate E, García J (2001)  A finite element method for  fluid-structure interaction with surface waves using a finite calculus formulation. Comput. Meth. Appl. Mech. Engrg. 191:635&#8211;660
972
973
<div id="cite-24"></div>
974
[[#citeF-24|[24]]]  Oñate E (2003) Multiscale computational analysis in mechanics using   finite calculus: an introduction. Comput. Meth. Appl. Mech. Engrg.   192(28-30):3043&#8211;3059
975
976
<div id="cite-25"></div>
977
[[#citeF-25|[25]]]  Oñate E, Taylor RL,  Zienkiewicz OC, Rojek J (2003) A residual correction method based on finite calculus. Engineering Computations 20:629&#8211;658
978
979
<div id="cite-26"></div>
980
[[#citeF-26|[26]]]   Oñate E (2004) Possibilities of finite calculus in computational mechanics. Int. J. Num. Meth. Engng. 60(1):255&#8211;281
981
982
<div id="cite-27"></div>
983
[[#citeF-27|[27]]]   Oñate E, Rojek J, Taylor R, Zienkiewicz O (2004a) Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int. J. Numer. Meth. Engng. 59(11):1473&#8211;1500
984
985
<div id="cite-28"></div>
986
[[#citeF-28|[28]]]  Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004b) The particle   finite element method. An overview. Int. J. Comput. Methods    1(2):267&#8211;307
987
988
<div id="cite-29"></div>
989
[[#citeF-29|[29]]]  Oñate E, M.A. Celigueta, Idelsohn SR (2006a) Modeling bed erosion in   free surface flows by the Particle Finite Element Method, Acta   Geotechnia 1(4):237&#8211;252
990
991
<div id="cite-30"></div>
992
[[#citeF-30|[30]]]  Oñate E, Valls A, García J  (2006b) FIC/FEM formulation   with matrix stabilizing terms for incompressible flows at low and high   Reynold's numbers. Computational Mechanics 38 (4-5):440&#8211;455
993
994
<div id="cite-31"></div>
995
[[#citeF-31|[31]]]  Oñate E, García J,  SR Idelsohn, F. Del Pin (2006c)  FIC   formulations for finite element analysis of incompressible flows. Eulerian,   ALE and Lagrangian approaches.  Comput. Meth. Appl. Mech. Engng.   195(23-24):3001&#8211;3037
996
997
<div id="cite-32"></div>
998
[[#citeF-32|[32]]]  Oñate E, Valls A, García J  (2007) Computation of turbulent flows using a finite calculus-finite element formulation. Int. J. Numer. Meth. Engng. 54:609&#8211;637
999
1000
<div id="cite-33"></div>
1001
[33]  Oñate E, Idelsohn SR,  Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput. Meth. Appl. Mech. Engng. 197(19-20):1777&#8211;1800
1002
1003
<div id="cite-34"></div>
1004
[[#citeF-34|[34]]]  Oñate E (2009)  Structural analysis with the finite element method. Linear statics. Volume 1. Basis and Solids.  CIMNE-Springer
1005
1006
<div id="cite-35"></div>
1007
[[#citeF-35|[35]]]  Oñate E, Rossi R,  Idelsohn SR, Butler K (2010) Melting and spread of polymers in fire with the particle finite element method. Int. J. Numerical Methods in Engineering, 81(8):1046&#8211;1072
1008
1009
<div id="cite-36"></div>
1010
[[#citeF-36|[36]]]  Oñate E, Celigueta MA, Idelsohn SR,  Salazar F, Suárez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Computational Mechanics, 48(3):307&#8211;318.
1011
1012
<div id="cite-37"></div>
1013
[[#citeF-37|[37]]]  Oñate E, Nadukandi P, Idelsohn SR, García J, Felippa C (2011) A family of residual-based stabilized finite element methods for Stokes flows. Int. J. Num. Methods in Fluids, 65 (1-3): 106&#8211;134
1014
1015
<div id="cite-38"></div>
1016
[[#citeF-38|[38]]]  Oñate E, Idelsohn SR, Felippa C (2011) Consistent pressure Laplacian stabilization for incompressible continua via higher-order finite calculus. Int. J. Numer. Meth. Engng, 87 (1-5): 171&#8211;195
1017
1018
<div id="cite-39"></div>
1019
[[#citeF-39|[39]]]  Oñate E, Nadukandi P, Idelsohn SR (2014) P1/P0+ elements for incompressible  flows  with discontinuous material properties. Comput. Meth. Appl. Mech. Engng. 271:185-209
1020
1021
<div id="cite-40"></div>
1022
[[#citeF-40|[40]]]  Oñate E, Carbonell JM  (2013) Updated Lagrangian finite element formulation for quasi-incompressible fluids. Research Report PI393, CIMNE. Submitted to Comput. Mechanics
1023
1024
<div id="cite-41"></div>
1025
[[#citeF-41|[41]]]  Oñate E, Franci A, Carbonell JM (2013) Lagrangian formulation  for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int. J. Num. Meth. Fluids, DOI: 10.1002/fld.3870
1026
1027
<div id="cite-42"></div>
1028
[[#citeF-42|[42]]]  Ryzhakov P, Oñate E, Rossi R, Idelsohn SR (2012) Improving mass conservation in simulation of incompressible flows. Int. J. Numer. Meth. Engng.  90(12):1435&#8211;1451
1029
1030
<div id="cite-43"></div>
1031
[[#citeF-43|[43]]]  Tang B, Li JF, Wang TS (2009) Some improvements on free surface simulation by the particle finite element method. Int. J. Num. Methods in Fluids, 60 (9):1032–-1054
1032
1033
<div id="cite-44"></div>
1034
[[#citeF-44|[44]]]  Zienkiewicz OC,  Taylor RL, Zhu JZ (2005) The finite element method. The basis,  6th Ed., Elsevier
1035
1036
<div id="cite-45"></div>
1037
[[#citeF-45|[45]]]  Zienkiewicz OC,  Taylor RL (2005) The finite element method for   solid and structural mechanics,  6th Ed., Elsevier
1038
1039
<div id="cite-46"></div>
1040
[[#citeF-46|[46]]]  Zienkiewicz OC,  Taylor RL, Nithiarasu P (2005)  The finite element   method for fluid dynamics,  6th Ed.,  Elsevier
1041
</div>
1042

Return to Onate et al 2014e.

Back to Top