You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
==Combination of 3D solid finite elements with rotation-free beam elements for non-linear analysis of fiber reinforced polymer  rebars==
3
4
'''Francisco Zárate<math>^{1}</math>,  Thibault Villette<math>^{2}</math>, Xavier Martínez<math>^{1,3}</math>,  
5
6
Fernando Rastellini<math>^{1}</math>, David Cendón<math>^{4}</math>,  Carmen Andrade<math>^{1}</math> and Eugenio Oñate<math>^{1,3}</math>
7
8
<math>^{1}</math> Centre Internacional de Metodes Numerics a l'Enginyeria (CIMNE),
9
10
Gran Capitán s/n, 08034 Barcelona, Spain
11
12
zarate@cimne.upc.edu; frastellini@cimne.upc.edu; candrade@cimne.upc.edu; 
13
14
xmartinez@cimne.upc.edu; onate@cimne.upc.edu
15
16
<math>^{2}</math> Aramco UK,  thibault.villette@aramco.com
17
18
<math>^{3}</math> Universitat Politecnica de Catalunya (UPC), Jordi Girona 1-3
19
20
08034 Barcelona, Spain
21
22
<math>^{4}</math> Centro de Investigación en Materiales Estructurales (CIME)
23
24
Technical University of Madrid (UPM), Madrid, Spain
25
26
david.cendon.franco@upm.es'''
27
-->
28
29
==Abstract==
30
31
We present  a combination of three dimensional (3D) solid elements and rotation-free beam elements for non-linear analysis of fiber-reinforced polymer (FRP) of rebars. The matrix material is modelled by 3D solid elements while the fibers are modelled with rotation-free beam elements. The absence of rotation  variables in the beam elements allows the straightforward coupling of 3D solid and beam elements using a formulation with displacement nodal degrees of freedom only. Both solid and beam elements are formulated in an updated Lagrangian description. The behavior of the matrix and the fiber material are modelled with an elastic-damage model.  The efficiency and accuracy of the combined 3D-beam element formulation are verified in examples of application to the analysis of FRP rebars up to fracture in axial, bending and shear tests for which experimental results are available.
32
33
'''Keywords:''' 3D solid finite elements, rotation-free beam elements, polymer fiber rebars
34
35
==1 Introduction==
36
37
There is an increasing interest in the use of non-metallic materials, such as polymers, in the building and construction (B&C) sector as an alternative to standard materials, such as steel and cement <span id='citeF-1'></span><span id='citeF-2'></span>[[#cite-1|[1,2]]]. These new materials have many advantages, compared to traditional ones, in terms of strength-weight and stiffness-weigh ratios, corrosion resistance to chemical agents, and fatigue performance, to name a few. All these advantages can extend the life-frame of structures and minimize the maintenance required, thus contributing to improve the sustainability of the sector. Current research efforts aim to develop resistant, sustainable and cost-effective materials incorporating polymers for a number of applications in building and construction.
38
39
Polymers and composite materials can be used in B&C in many forms: as external reinforcements of concrete beams and slabs <span id='citeF-3'></span><span id='citeF-4'></span>[[#cite-3|[3,4]]], as short fibers embedded in concrete <span id='citeF-5'></span>[[#cite-5|[5]]], or as pultruded elements which can be used as rebars for concrete reinforcement <span id='citeF-6'></span>[[#cite-6|[6]]] or as beams elements to construct different structures such as bridges <span id='citeF-7'></span>[[#cite-7|[7]]], or lighthouses <span id='citeF-8'></span>[[#cite-8|[8]]] (Figs. [[#img-1|1]]a and [[#img-1|1]]b), to name some examples.
40
41
<div id='img-1a'></div>
42
<div id='img-1b'></div>
43
<div id='img-1'></div>
44
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
45
|-
46
|[[Image:Draft_Onate_870101189-Figure1-intro-a.png|393px|]]
47
|[[Image:Draft_Onate_870101189-Figure1-intro-b.png|121px|]]
48
|- style="text-align: center; font-size: 75%;"
49
| (a) 
50
| (b) 
51
|- style="text-align: center; font-size: 75%;"
52
| colspan="2" | '''Figure 1:''' Applications of pultruded beams in construction <span id='citeF-7'></span><span id='citeF-8'></span>[[#cite-7|[7,8]]]
53
|}
54
55
The use of pultruded FRP as reinforcement in concrete has several advantages compared to steel reinforcement such as corrosion resistance, high longitudinal (unidirectional) strength (2 or 3 times higher than steel for equivalent bar diameter), high fatigue endurance (which depends on the type of reinforcing fiber and bar), magnetic transparency, lightweight (25% of steel weight) and low thermal and electric conductivity (for glass and aramid fibers) <span id='citeF-9'></span>[[#cite-9|[9]]]. Glass fibers are the common choice due to their good performance and reduced cost, compared to other synthetic fibers that have improved properties but are more expensive, such as carbon. Research efforts are currently carried out for developing new families of rebars with synthetic fibers, as reinforcement for concrete structures <span id='citeF-10'></span><span id='citeF-11'></span>[[#cite-10|[10,11]]]. This type of synthetic fiber rebars could be an alternative to current FRP rebars using glass fibers, and even to steel rebars for specific applications.
56
57
Pultrusion beams are obtained by pulling the reinforcement fibers, which have previously impregnated with a matrix resin, through a heated die where the composite is cured <span id='citeF-12'></span>[[#cite-12|[12]]]. The shape of the die defines the shape of the final beam produced. Due to the fabrication process, the final composite contains mainly fibers aligned with the beam axis, and the efficiency of the method allows having fiber participations that can reach 80% of the total composite weight content <span id='citeF-13'></span>[[#cite-13|[13]]].
58
59
This paper presents a new computational approach for assessing the non-linear behavior of pultruded composites beams using a combination of 3D solid finite elements with rotation-free beam elements. These last ones are included in the model to characterize the longitudinal performance of the composite.
60
61
The formulation presented is of special interest for pultruded beams, as in these elements fibers are mainly oriented in the longitudinal direction, which simplifies the distribution of the rotation-free beams in the numerical model. As it will be shown, the adaptability of the beam elements in the model geometry allows characterizing complex failure mechanisms such as shear failure, which depends highly on the tensile forces taken by the fibers once the matrix has failed. To do so, the geometrical non-linear effects in the solid and beam elements are taken into account by using an updated Lagrangian description, allowing for large displacements effects that can occur in specific loading cases, such as in shear tests and in post-failure situations. The fact that both the 3D solid elements and the rotation-free beam element are formulated in terms of displacement degrees of freedom (DOFs) only facilitates the integration of both types of elements in a unified formulation. An elastic-damage model is used for characterizing the behavior of both the matrix and the fibers.
62
63
The content of the paper is as follows. In the next section we present the overall finite element approach for non-linear analysis of FRP rebars combining solid elements and rotation-free beam elements. Then we describe the 3D solid finite element formulation for modelling the behavior of the matrix material. This is followed by the finite element formulation for the fibers using rotation-free beam elements based on a cell-vertex approach. The coupling of 3D-solid elements and rotation-free beam elements is detailed. The finite element formulation is validated in the non-linear analysis up to failure of FRP bar specimens formed by an epoxy matrix and carbon fibers tested under axial, bending and shear loads. Numerical results are compared with experimental results for the same tests. Excellent agreement is obtained in the comparison.
64
65
==2 Combination of 3D solid elements and rotation-free elements for analysis of polymer fiber rebars==
66
67
Fig. [[#img-2|2]] depicts the modelling  strategy for analysis of FRP rebars with the FEM <span id='citeF-14'></span><span id='citeF-15'></span>[[#cite-14|[14,15]]]. The procedure proposed dissociates the longitudinal contribution of fibers to the composite strength and stiffness, from their contribution in the transversal and shear directions. This is done by modeling a transverse reinforced resin, that accounts for the resin and the transverse and shear performance of the fibers, with standard 3D solid elements; and by modeling the longitudinal contribution of fibers to the composite with a collection of beams embedded in the 3D solid model.
68
69
<div id='img-2'></div>
70
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
71
|-
72
|[[Image:Draft_Onate_870101189-Figure1.png|600px|Finite element modelling  of FRP rebar]]
73
|- style="text-align: center; font-size: 75%;"
74
| colspan="1" | '''Figure 2:''' Finite element modelling  of FRP rebar
75
|}
76
77
Both the 3D solid elements and the beam elements are formulated using an updated Lagrangian description in order to account for geometrically non-linear effects in the deformation of the FRP bars. Following standard finite element procedures, the discretized equilibrium equation for the bar structure, expressed in the current configuration at time <math display="inline">t</math>, can be written in the following quasi-static form <span id='citeF-15'></span>[[#cite-15|[15]]]
78
79
<span id="eq-1"></span>
80
{| class="formulaSCP" style="width: 100%; text-align: left;" 
81
|-
82
| 
83
{| style="text-align: left; margin:auto;width: 100%;" 
84
|-
85
| style="text-align: center;" | <math>{}^t {\boldsymbol r} ({}^t {\boldsymbol a}):= {}^t {\boldsymbol p} ({}^t {\boldsymbol a})-{}^t {\boldsymbol f}=0 </math>
86
|}
87
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
88
|}
89
90
with
91
92
<span id="eq-2"></span>
93
{| class="formulaSCP" style="width: 100%; text-align: left;" 
94
|-
95
| 
96
{| style="text-align: left; margin:auto;width: 100%;" 
97
|-
98
| style="text-align: center;" | <math>{}^t {\boldsymbol p} ({}^t {\boldsymbol a})= \int _{{}^t V} {}^t {\boldsymbol B}{}^t \boldsymbol{\sigma }dV </math>
99
|}
100
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
101
|}
102
103
In Eqs.[[#eq-1|(1)]] and [[#eq-2|(2)]], <math display="inline">{\boldsymbol r}</math> is the vector of residual forces, <math display="inline">{\boldsymbol a}</math> is the vector of nodal displacement, <math display="inline">{\boldsymbol p}</math> is the vector of internal nodal forces, <math display="inline">{\boldsymbol B}</math> is the strain matrix relating the strains with the nodal displacements, <math display="inline">\boldsymbol{\sigma }</math> is the Cauchy stress vector, <math display="inline">{\boldsymbol f}</math> is the vector of equivalent nodal forces, <math display="inline">V</math> is the volume of the FRP bar and the upper left index <math display="inline">t</math> denotes the time <math display="inline">t</math>.
104
105
The vector of internal forces <math display="inline">{}^t {\boldsymbol p}</math> is computed by sum of the contributions from the solid elements and the beam elements, i.e.
106
107
<span id="eq-3"></span>
108
{| class="formulaSCP" style="width: 100%; text-align: left;" 
109
|-
110
| 
111
{| style="text-align: left; margin:auto;width: 100%;" 
112
|-
113
| style="text-align: center;" | <math>{}^t {\boldsymbol p}({}^t {\boldsymbol a})= {}^t {\boldsymbol p}_s ({}^t {\boldsymbol a}) + {}^t {\boldsymbol p}_b({}^t {\boldsymbol a}) </math>
114
|}
115
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
116
|}
117
118
where indices <math display="inline">s</math> and <math display="inline">b</math> denote the contribution of the 3D solid elements and the beam elements to vector <math display="inline">{}^t {\boldsymbol p}</math>, respectively.
119
120
The equilibrium solution at time <math display="inline">t +\Delta t</math> is found by solving Eq.[[#eq-1|(1)]] using a standard Newton-Raphson procedure briefly outlined below.
121
122
For each iteration of the Newton-Raphson scheme <span id='citeF-15'></span>[[#cite-15|[15]]] we perform the following computations:
123
124
Computation of displacement increments
125
126
<span id="eq-4"></span>
127
{| class="formulaSCP" style="width: 100%; text-align: left;" 
128
|-
129
| 
130
{| style="text-align: left; margin:auto;width: 100%;" 
131
|-
132
| style="text-align: center;" | <math>{}^t {\boldsymbol K}_T \Delta {\boldsymbol a}^i = - {}^t {\boldsymbol r}^i </math>
133
|}
134
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
135
|}
136
137
with
138
139
<span id="eq-5"></span>
140
{| class="formulaSCP" style="width: 100%; text-align: left;" 
141
|-
142
| 
143
{| style="text-align: left; margin:auto;width: 100%;" 
144
|-
145
| style="text-align: center;" | <math>{}^t {\boldsymbol r}^i = {}^t {\boldsymbol p} ({}^{t+\Delta t} {\boldsymbol a}^i) - {}^{t+\Delta t} {\boldsymbol f} </math>
146
|}
147
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
148
|}
149
150
Displacement update
151
152
<span id="eq-6"></span>
153
{| class="formulaSCP" style="width: 100%; text-align: left;" 
154
|-
155
| 
156
{| style="text-align: left; margin:auto;width: 100%;" 
157
|-
158
| style="text-align: center;" | <math>{}^{t+\Delta t} {\boldsymbol a}^{i+1} =  {}^{t+\Delta t} {\boldsymbol a}^i + \Delta  {\boldsymbol a}^i </math>
159
|}
160
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
161
|}
162
163
Stress update
164
165
<span id="eq-7"></span>
166
{| class="formulaSCP" style="width: 100%; text-align: left;" 
167
|-
168
| 
169
{| style="text-align: left; margin:auto;width: 100%;" 
170
|-
171
| style="text-align: center;" | <math>\Delta \boldsymbol{\varepsilon }^i =  {}^t {\boldsymbol B}   \Delta  {\boldsymbol a}^i </math>
172
|}
173
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
174
|}
175
176
<span id="eq-8"></span>
177
{| class="formulaSCP" style="width: 100%; text-align: left;" 
178
|-
179
| 
180
{| style="text-align: left; margin:auto;width: 100%;" 
181
|-
182
| style="text-align: center;" | <math>\Delta \boldsymbol{\sigma }^i =  {\boldsymbol D}_T    \Delta \boldsymbol{\varepsilon }^i </math>
183
|}
184
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
185
|}
186
187
<span id="eq-9"></span>
188
{| class="formulaSCP" style="width: 100%; text-align: left;" 
189
|-
190
| 
191
{| style="text-align: left; margin:auto;width: 100%;" 
192
|-
193
| style="text-align: center;" | <math>{}^{t+\Delta t} \boldsymbol{\sigma }^{i+1} = {}^{t+\Delta t} \boldsymbol{\sigma }^i + \Delta \boldsymbol{\sigma }^i </math>
194
|}
195
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
196
|}
197
198
Residual force vector computation
199
200
<span id="eq-10"></span>
201
{| class="formulaSCP" style="width: 100%; text-align: left;" 
202
|-
203
| 
204
{| style="text-align: left; margin:auto;width: 100%;" 
205
|-
206
| style="text-align: center;" | <math>{}^{t+\Delta t} {\boldsymbol r}^{i+1} =  \int _{{}^{t+\Delta t}V} {}^{t+\Delta t}{\boldsymbol B} {}^{t+\Delta t} \boldsymbol{\sigma }^{i+1}dV - {}^{t+\Delta t} {\boldsymbol f} </math>
207
|}
208
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
209
|}
210
211
Convergence check
212
213
The iteration stop when
214
215
<span id="eq-11"></span>
216
{| class="formulaSCP" style="width: 100%; text-align: left;" 
217
|-
218
| 
219
{| style="text-align: left; margin:auto;width: 100%;" 
220
|-
221
| style="text-align: center;" | <math>\Vert {}^{t+\Delta t} r^{i+1}\Vert < \boldsymbol{\varepsilon } </math>
222
|}
223
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
224
|}
225
226
where <math display="inline">\boldsymbol{\varepsilon }</math> is a prescribed error value. In our computations we have taken <math display="inline"> \varepsilon = 10^{-3}</math>.
227
228
In Eq.[[#eq-4|(4)]] <math display="inline">{}^t {\boldsymbol K}_T </math> is the tangent stiffness matrix. We have computed this matrix as
229
230
<span id="eq-12"></span>
231
{| class="formulaSCP" style="width: 100%; text-align: left;" 
232
|-
233
| 
234
{| style="text-align: left; margin:auto;width: 100%;" 
235
|-
236
| style="text-align: center;" | <math>{}^t {\boldsymbol K}_T = {}^t {\boldsymbol K}_{T_s} + {}^t {\boldsymbol K}_{T_b} </math>
237
|}
238
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
239
|}
240
241
where indices <math display="inline">s</math> and <math display="inline">b</math> denote the contribution of the solid elements and the beam elements to the tangent stiffness matrix, respectively. These contributions are computed as
242
243
<span id="eq-13"></span>
244
{| class="formulaSCP" style="width: 100%; text-align: left;" 
245
|-
246
| 
247
{| style="text-align: left; margin:auto;width: 100%;" 
248
|-
249
| style="text-align: center;" | <math>{}^t {\boldsymbol K}_{T_r} = \int _{V_r} {}^t{\boldsymbol B}_r^T {}^t {\boldsymbol D}_{T_r} {}^t{\boldsymbol B}_r dV\, , \qquad \mbox{with } r=s,b </math>
250
|}
251
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
252
|}
253
254
where <math display="inline">{}^t{\boldsymbol B}_r</math> and <math display="inline">{}^t {\boldsymbol D}_{T_r} </math> with <math display="inline">r=s,b</math> denote the deformation matrix and the tangent constitutive matrix for the solid elements and the beam elements, respectively at time <math display="inline">t</math>.
255
256
The computation of these matrices is detailed in the next sections.
257
258
==3 Formulation of 3D solid elements for the transverse reinforced resin material==
259
260
===3.1 Definition of displacements, strains and stresses===
261
262
Let us consider a FRP rebar discretized using 3D-solid elements of <math display="inline">n</math> nodes. The displacement field within the element can be expressed in terms of the nodal displacements in the standard finite element form as <span id='citeF-14'></span><span id='citeF-15'></span>[[#cite-14|[14,15]]]
263
264
<span id="eq-14"></span>
265
{| class="formulaSCP" style="width: 100%; text-align: left;" 
266
|-
267
| 
268
{| style="text-align: left; margin:auto;width: 100%;" 
269
|-
270
| style="text-align: center;" | <math>{\boldsymbol u} =[u,v,w]^T = {\boldsymbol N}^e {\boldsymbol a}^e </math>
271
|}
272
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
273
|}
274
275
where <math display="inline">{\boldsymbol u}</math> is the displacement vector, <math display="inline">u, v </math> and <math display="inline">w</math> are the displacements along the cartesian axes <math display="inline">x,y,z</math>, respectively, <math display="inline">{\boldsymbol N}^e</math> and <math display="inline">{\boldsymbol a}^e</math> are the shape functions matrix and the nodal displacement vector for the element <math display="inline">e</math> given by
276
277
<span id="eq-15"></span>
278
{| class="formulaSCP" style="width: 100%; text-align: left;" 
279
|-
280
| 
281
{| style="text-align: left; margin:auto;width: 100%;" 
282
|-
283
| style="text-align: center;" | <math>{\boldsymbol N}^e = [{\boldsymbol N}^e_1,{\boldsymbol N}^e_2, \cdots , {\boldsymbol N}^e_n] \quad , \quad              {\boldsymbol a}^e = \left\{\begin{matrix}{\boldsymbol a}^e_1\\{\boldsymbol a}^e_2\\\vdots \\{\boldsymbol a}^e_n\end{matrix}\right\} </math>
284
|}
285
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
286
|}
287
288
where
289
290
<span id="eq-16"></span>
291
{| class="formulaSCP" style="width: 100%; text-align: left;" 
292
|-
293
| 
294
{| style="text-align: left; margin:auto;width: 100%;" 
295
|-
296
| style="text-align: center;" | <math>{\boldsymbol N}^e_i = N_i^e \left[\begin{matrix}1 &0&0\\ 0&1&0\\ 0&0&1\end{matrix}\right]\quad , \quad              {\boldsymbol a}^e = \left\{\begin{matrix}u_i\\v_i\\w_i\end{matrix}\right\} </math>
297
|}
298
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
299
|}
300
301
are the nodal components of matrix <math display="inline">{\boldsymbol N}^e</math> and vector <math display="inline">{\boldsymbol a}^e</math>, and <math display="inline">N_i^e</math> is the shape function matrix of node <math display="inline">i</math>.
302
303
The strains within the element can be readily expressed in terms of the nodal displacements as
304
305
<span id="eq-17"></span>
306
{| class="formulaSCP" style="width: 100%; text-align: left;" 
307
|-
308
| 
309
{| style="text-align: left; margin:auto;width: 100%;" 
310
|-
311
| style="text-align: center;" | <math>\boldsymbol{\varepsilon } ={\boldsymbol B}^e {\boldsymbol a}^e </math>
312
|}
313
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
314
|}
315
316
where
317
318
<span id="eq-18"></span>
319
{| class="formulaSCP" style="width: 100%; text-align: left;" 
320
|-
321
| 
322
{| style="text-align: left; margin:auto;width: 100%;" 
323
|-
324
| style="text-align: center;" | <math>\boldsymbol{\varepsilon } = \left\{\begin{matrix}\varepsilon _x\\ \varepsilon _y\\ \varepsilon _z \\ \gamma _{xy}\\\gamma _{xz}\\\gamma _{yz}   \end{matrix} \right\}= \left\{\begin{matrix}\displaystyle \frac{\partial u}{\partial x}\\ \displaystyle \frac{\partial v}{\partial y}\\[.3cm]\displaystyle \frac{\partial w}{\partial z}\\[.3cm] \displaystyle \frac{\partial u}{\partial y} + \displaystyle \frac{\partial v}{\partial x}\\[.3cm] \displaystyle \frac{\partial u}{\partial z} + \displaystyle \frac{\partial w}{\partial x}\\[.3cm] \displaystyle \frac{\partial v}{\partial z} + \displaystyle \frac{\partial w}{\partial y}\end{matrix} \right\} \quad ,\quad {\boldsymbol B}^e = [{\boldsymbol B}_1^e, {\boldsymbol B}_2^e, \cdots , {\boldsymbol B}_n^e] \quad ,\quad  {\boldsymbol B}_i = \left[\begin{matrix}\displaystyle{{\partial N_i} \over {\partial x} } & 0 & 0\\[.3cm] 0 & \displaystyle { {\partial N_i} \over {\partial y} } & 0\\[.3cm] 0 & 0 & \displaystyle{ {\partial N_i} \over {\partial z} }\\[.3cm] \displaystyle{ {\partial N_i} \over {\partial y} } & \displaystyle{ {\partial N_i} \over  {\partial x} } & 0\\[.4cm] \displaystyle{{\partial N_i} \over {\partial z} } & 0 & \displaystyle{ {\partial N_i} \over {\partial x} }\\[.4cm] 0 & \displaystyle { {\partial N_i} \over {\partial z} } & \displaystyle{ {\partial N_i} \over  { \partial y} }\\\end{matrix}\right] </math>
325
|}
326
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
327
|}
328
329
where <math display="inline">{\boldsymbol B}^e</math> and <math display="inline">{\boldsymbol B}^e_i</math> are the strain matrices for the element and the <math display="inline">i</math>th node, respectively.
330
331
The stress-strain relationship is written in incremental form (neglecting initial strains and initial stressed) as
332
333
<span id="eq-19"></span>
334
{| class="formulaSCP" style="width: 100%; text-align: left;" 
335
|-
336
| 
337
{| style="text-align: left; margin:auto;width: 100%;" 
338
|-
339
| style="text-align: center;" | <math>d\boldsymbol{\sigma } = {\boldsymbol D}_T d\boldsymbol{\varepsilon } </math>
340
|}
341
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
342
|}
343
344
where
345
346
<span id="eq-20"></span>
347
{| class="formulaSCP" style="width: 100%; text-align: left;" 
348
|-
349
| 
350
{| style="text-align: left; margin:auto;width: 100%;" 
351
|-
352
| style="text-align: center;" | <math>\boldsymbol{\sigma } = [\sigma _x, \sigma _y, \sigma _z , \tau _{xy}, \tau _{xz},\tau _{yz}]^T </math>
353
|}
354
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
355
|}
356
357
is the Cauchy stress vector and <math display="inline">{\boldsymbol D}_T</math> is the tangent constitutive matrix. In our computations we have modelled the matrix material with an elastoplastic model based on a Drucker-Prager yield functions and an elastic-plastic-damage model. The damage model is described in the next section.
358
359
The expressions of the strain matrix and the Cauchy stress vector are used for computing the nodal forces (Eq.[[#eq-2|(2)]]) and the tangent constitutive matrix.
360
361
The validation examples presented in the paper have been solved using three-linear 8-noded hexahedral elements <span id='citeF-14'></span>[[#cite-14|[14]]].
362
363
===3.2 Material model for solid elements===
364
365
The material model defined for the solid elements has to reproduce the performance of what has been called transverse reinforced resin. This is, a resin with improved properties in its transversal and shear directions, due to the presence of fibers. The transversal directions are defined as those directions perpendicular to the fiber longitudinal orientation.
366
367
As stated by Rastellini et al. when defining the serial parallel mixing theory <span id='citeF-17'></span>[[#cite-17|[17]]] and used by Martinez et al. in the simplified model presented in <span id='citeF-16'></span>[[#cite-16|[16]]], the contribution of the fibers to the composite in the transversal and shear directions can be captured by applying the inverse mixing theory. This states that the constitutive matrix of the composite (<math display="inline">\hat {\boldsymbol D}</math>) can be obtained by the inverse combination of the stiffness matrix of its constituents (<math display="inline">{\boldsymbol D}_m</math> and <math display="inline">{\boldsymbol D}_f</math>), proportionally to their volumetric participation (<math display="inline">V_m</math> and <math display="inline">V_f</math>), being <math display="inline">m</math> and <math display="inline">f</math> matrix and fiber, respectively. This is
368
369
<span id="eq-21"></span>
370
{| class="formulaSCP" style="width: 100%; text-align: left;" 
371
|-
372
| 
373
{| style="text-align: left; margin:auto;width: 100%;" 
374
|-
375
| style="text-align: center;" | <math>\hat{\boldsymbol D}^{-1}=V_m {\boldsymbol D}^{-1}_m + V_f {\boldsymbol D}^{-1}_f </math>
376
|}
377
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
378
|}
379
380
The constitutive matrices <math display="inline">{\boldsymbol D}_m</math> and <math display="inline">{\boldsymbol D}_f</math> are shown in Eq.[[#eq-22|(22)]]
381
382
<span id="eq-22"></span>
383
{| class="formulaSCP" style="width: 100%; text-align: left;" 
384
|-
385
| 
386
{| style="text-align: left; margin:auto;width: 100%;" 
387
|-
388
| style="text-align: center;" | <math>{\boldsymbol D}_i = \left[\begin{matrix}H_i & F_i & F_i & 0 & 0 &0 \\   & H_i &F_i  & 0 & 0 & 0 \\ &  &  H_i & 0 & 0 & 0 \\ &  &  &  G_i  & 0 & 0 \\  & & &  & G_i & 0\\ Sym.& & & & & G_i \end{matrix}\right]\, , \quad i=m,f </math>
389
|}
390
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
391
|}
392
393
with
394
395
<span id="eq-23"></span>
396
{| class="formulaSCP" style="width: 100%; text-align: left;" 
397
|-
398
| 
399
{| style="text-align: left; margin:auto;width: 100%;" 
400
|-
401
| style="text-align: center;" | <math>H_i= \displaystyle \frac{E_i (1-\nu _i)}{(1+\nu _i)(1-2\nu _i)}\, ,  \quad  F_i = \displaystyle \frac{E_i \nu _i}{(1+\nu _i)(1-2\nu _i)} \, ,  \quad  G_i = \displaystyle \frac{(1-2\nu _i)}{2(1-\nu _i)} </math>
402
|}
403
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
404
|}
405
406
We note that the  constitutive matrix <math display="inline">\hat{\boldsymbol D}</math> accounts for  the effect of the fiber matrix <math display="inline">{\boldsymbol D}_f</math> where <math display="inline">H_f</math> has a null value  in the fiber direction (in practice a small value is chosen to avoid numeric instability). The stiffness in the fiber direction is provided by the RFB elements.
407
408
The distinct form of matrices <math display="inline">{\boldsymbol D}_f</math> and <math display="inline">{\boldsymbol D}_m</math> is needed in order to accurately reproduce the shear stiffness  in the resulting matrix <math display="inline">\hat{\boldsymbol D}</math>.  In this manner, the combination of solid elements and RFB elements can reproduce a parallel mixed material behavior along the longitudinal direction of the RFB elements (deformations in the fiber direction are compatible between all materials) and a serial mixed material behavior in the orthogonal direction to the fibers (stresses in the normal fiber direction are compatible between all materials), according to the inverse mixing theory <span id='citeF-17'></span>[[#cite-17|[17]]]. An advantage of this approach versus the standard serial-parallel material mixing model is the compatibility between the stresses in the concrete and the fibers in the orthogonal direction to the fibers, which facilitates the convergence of the nonlinear iterative process.
409
410
Non-linear effects in the response of the material are modelled by a simple isotropic damage model <span id='citeF-18'></span><span id='citeF-19'></span>[[#cite-18|[18,19]]]. According to this, Eq.[[#eq-21|(21)]] is modified as
411
412
<span id="eq-24"></span>
413
{| class="formulaSCP" style="width: 100%; text-align: left;" 
414
|-
415
| 
416
{| style="text-align: left; margin:auto;width: 100%;" 
417
|-
418
| style="text-align: center;" | <math>\hat{\boldsymbol D}^{-1} = V_m [{\boldsymbol D}_m(1-d_m)]^{-1} + V_f {\boldsymbol D}_f(1-d_f)]^{-1} </math>
419
|}
420
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
421
|}
422
423
where <math display="inline">\hat{\boldsymbol D}</math> is the damaged constitutive matrix for the solid element and the damage parameters <math display="inline">d_i (i=m,f)</math> are an scalar numbers between 0 and 1  defined as
424
425
<span id="eq-25"></span>
426
{| class="formulaSCP" style="width: 100%; text-align: left;" 
427
|-
428
| 
429
{| style="text-align: left; margin:auto;width: 100%;" 
430
|-
431
| style="text-align: center;" | <math>d_i=\frac{2\left({\sigma }_{0_i}-{\sigma }_I\right)\left(E_i G_i-h{\sigma }_{0_i} \right)}{(2E_iG_i-h{\sigma }_{0_i}){\sigma }_I}\quad \quad i=m,f </math>
432
|}
433
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
434
|}
435
436
In Eq.[[#eq-25|(25)]] <math display="inline">\sigma _{0_i}</math> is the elastic limit, <math display="inline">\sigma _I</math> is the maximum principal stress, <math display="inline">G_i</math> is the fracture energy, <math display="inline">E_i</math> is the Young's modulus and index <math display="inline">i</math> (<math display="inline">i=m,f</math>) refers to the matrix or fiber material, respectively. In addition, <math display="inline">h</math> is  the characteristic length of the element.
437
438
The above constitutive model can accurately reproduce axial and pure bending stress states in which the RFB elements are mainly subjected to tensile forces. The model has proved to work well in shear-dominated regions in which two different stress situations appear in the shear zone and in the region where the loads are applied. In the shear zone the matrix material is soon fully damaged (i.e. <math display="inline">\hat{\boldsymbol D}\to 0</math>) and  the stiffness is mainly contributed by the fibers as they rotate and change their orientation. In zones where the loads are applied in a direction orthogonal to the fibers, the fibers are agglomerated in packages that allow the transmission of compression stresses to the resin material, inducing damage. The contribution of matrix <math display="inline">\hat{\boldsymbol D} </math> is important in these zones. This distinct phenomenon has been modelled by limiting the maximum value of the damage parameters in Eq.[[#eq-25|(25)]] in these regions as
439
440
<span id="eq-26"></span>
441
{| class="formulaSCP" style="width: 100%; text-align: left;" 
442
|-
443
| 
444
{| style="text-align: left; margin:auto;width: 100%;" 
445
|-
446
| style="text-align: center;" | <math>0\le d_i\le 0.5 \quad \quad i=m,f </math>
447
|}
448
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
449
|}
450
451
==4 Formulation of  rotation-free beam elements for the fibers==
452
453
The elimination of the rotations as nodal degrees of freedom in bending-type elements (such as beams, plates and shells) leads to the so-called ''rotation-free'' elements <span id='citeF-20'></span><span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-20|[20,21,22]]]. Rotations can be simply eliminated by expressing the curvature field in a node, or a point within an element, in terms of the displacements of nodes contained in an appropriate ''patch of elements'' surrounding the node or the point. This procedure emanates from the efforts of finite difference practitioners for analysis of thin plates based on Kirchhoff plate theory using displacement variables only <span id='citeF-20'></span>[[#cite-20|[20]]]. The idea evolved in the last decades of the 20th century and lead to the formulation of different families of rotation-free elements for analysis of plates and shells. Oñate and Zárate <span id='citeF-20'></span>[[#cite-20|[20]]] developed a unified formulation for this type of rotation-free plate and shell elements combining ideas from the finite volume method with the FEM. Some of the rotation-free shell elements have enjoyed much popularity for non-linear analysis of shells structures under dynamic and impact loads and sheet stamping processes using explicit and implicit dynamic formulations <span id='citeF-23'></span>[[#cite-23|[23]]].
454
455
The use of rotation-free beam elements has been less popular in practice. The derivation of this type of elements based on Euler-Bernoulli beam theory can be found in <span id='citeF-14'></span><span id='citeF-22'></span><span id='citeF-24'></span>[[#cite-14|[14,22,24]]]. Extensions of these elements to account for shear deformation effect was reported by Zarate and Oñate <span id='citeF-21'></span>[[#cite-21|[21]]].
456
457
A distinct feature of all rotation-free elements is that the discretized equilibrium equations can be expressed in terms of displacement degrees of freedom only. This makes these elements advantageous for their coupling with solid elements, that are also formulated in terms of  nodal displacement DOFs, in a straightforward manner. In this work we will model the mechanical behavior of the fibers with rotation-free Euler-Bernoulli beam elements formulated using an updated Lagrangian description and a  ''cell-vertex'' approach <span id='citeF-14'></span><span id='citeF-20'></span>[[#cite-14|[14,20]]]. We present below details of the element formulation.
458
459
===4.1 Straight cell-vertex rotation-free beam elements===
460
461
A particular class of rotation-free beam element  can be derived by computing  the curvature ''at each node'' using a  finite difference scheme. The resulting element is termed CVB (for Cell-Vertex Beam element) <span id='citeF-14'></span><span id='citeF-20'></span>[[#cite-14|[14,20]]].
462
463
For the sake of simplicity we will show the derivation of the stiffness equation of a  rotation-free straight beam element that bends in the <math display="inline">x-z</math> plane (Fig. [[#img-3|3]]). A similar process can be followed for deriving the stiffness equations for bending in the <math display="inline">x-y</math> plane. Due to the particular one-dimensional (1D) features of the rebars considered in this work, we will neglect  torsional effects in the fibers.
464
465
<div id='img-3'></div>
466
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
467
|-
468
|[[Image:Draft_Onate_870101189-Figure2.png|600px|Modelling  strategy for analysis of FRP with the FEM]]
469
|- style="text-align: center; font-size: 75%;"
470
| colspan="1" | '''Figure 3:''' Modelling  strategy for analysis of FRP with the FEM
471
|}
472
473
Let us formulate the deformation of a straight beam element for a current configuration at time <math display="inline">t</math>. The bending behavior of the beam is modelled by considering the control domain formed by half of the lengths of the elements adjacent to a node. The curvature at node <math display="inline">i</math>  is  computed as
474
475
<span id="eq-27"></span>
476
{| class="formulaSCP" style="width: 100%; text-align: left;" 
477
|-
478
| 
479
{| style="text-align: left; margin:auto;width: 100%;" 
480
|-
481
| style="text-align: center;" | <math>\kappa _i ={1\over l_i} \left[\left({\partial w\over \partial  x}\right)_{\!\scriptscriptstyle R_i }-   \left({\partial w\over \partial x}\right)_{\!\scriptscriptstyle L_i}\right] </math>
482
|}
483
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
484
|}
485
486
where <math display="inline">l_i={1\over 2} (l^e+ l^{e-1})</math> and subscripts <math display="inline">R_i</math> and <math display="inline">L_i</math> denote the midpoints of the elements located at the right and left of node <math display="inline">i</math> (Fig. [[#img-4|4]]). The curvature <math display="inline">\kappa _i</math> is assumed to be constant in the control domain <math display="inline">l_i</math> assigned to node <math display="inline">i</math> (Fig. [[#img-4|4]]).
487
488
<div id='img-4'></div>
489
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
490
|-
491
|[[Image:Draft_Onate_870101189-Fig1_15.png|440px|CVB element. Control domains around two nodes i and i+1]]
492
|- style="text-align: center; font-size: 75%;"
493
| colspan="1" | '''Figure 4:''' CVB element. Control domains around two nodes <math>i</math> and <math>i+1</math>
494
|}
495
496
The rotations <math display="inline">\left(\displaystyle {\partial w\over \partial      x}\right)_{\!\scriptscriptstyle R_i}</math> and <math display="inline">\left(\displaystyle {\partial w\over \partial x}\right)_{\!\scriptscriptstyle L_i}</math> are  expressed in terms of the nodal deflections as
497
498
<span id="eq-28"></span>
499
{| class="formulaSCP" style="width: 100%; text-align: left;" 
500
|-
501
| 
502
{| style="text-align: left; margin:auto;width: 100%;" 
503
|-
504
| style="text-align: center;" | <math>\left({\partial w\over \partial x}\right)_{\scriptscriptstyle R}={w_{\scriptscriptstyle i+1}-w_{\scriptscriptstyle i}\over l^e}\quad , \quad \left({\partial w\over \partial x}\right)_{\scriptscriptstyle L}={w_{\scriptscriptstyle i}-w_{\scriptscriptstyle i-1}\over l^{e-1}} </math>
505
|}
506
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
507
|}
508
509
Substituting Eqs.[[#eq-28|(28)]] into [[#eq-27|(27)]] gives
510
511
<span id="eq-29"></span>
512
{| class="formulaSCP" style="width: 100%; text-align: left;" 
513
|-
514
| 
515
{| style="text-align: left; margin:auto;width: 100%;" 
516
|-
517
| style="text-align: center;" | <math>\kappa _i ={2\over  l^e l^{e-1}(l^e+ l^{e-1})}[l^e ,-(l^e+ l^{e-1}),l^{e-1},0] \left\{\begin{matrix}w_{\scriptscriptstyle i-1}\\ w_{\scriptscriptstyle i}\\ w_{\scriptscriptstyle  i+1}\\w_{\scriptscriptstyle i+2}\end{matrix}\right\}={\boldsymbol  B}_i \bar{\boldsymbol w}^{(e)} </math>
518
|}
519
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
520
|}
521
522
where
523
524
<span id="eq-30"></span>
525
{| class="formulaSCP" style="width: 100%; text-align: left;" 
526
|-
527
| 
528
{| style="text-align: left; margin:auto;width: 100%;" 
529
|-
530
| style="text-align: center;" | <math>{\boldsymbol B}_i = {2\over  l^e l^{e-1}(l^e+ l^{e-1})}[l^e ,-(l^e+ l^{e-1}),l^{e-1},0]~~ ,~~ \bar{\boldsymbol w}^{(e)} = \left\{\begin{matrix}w_{\scriptscriptstyle  i-1}\\ w_{\scriptscriptstyle i}\\ w_{\scriptscriptstyle  i+1}\\w_{\scriptscriptstyle i+2}\end{matrix}\right\} </math>
531
|}
532
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
533
|}
534
535
Similarly, the curvature  at node <math display="inline">i+1</math> is found as
536
537
<span id="eq-31"></span>
538
{| class="formulaSCP" style="width: 100%; text-align: left;" 
539
|-
540
| 
541
{| style="text-align: left; margin:auto;width: 100%;" 
542
|-
543
| style="text-align: center;" | <math>\kappa _{\scriptscriptstyle i+1}={2\over (l^e+ l^{e+1})} \left[{w_{\scriptscriptstyle i+2}-w_{\scriptscriptstyle  i+1}\over l^{e+1}}-   {w_{\scriptscriptstyle i+1}-w_{\scriptscriptstyle i}\over l^e}\right]=   {\boldsymbol B}_{\scriptscriptstyle i+1}\bar{\boldsymbol w}^{(e)} </math>
544
|}
545
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
546
|}
547
548
with
549
550
<span id="eq-32"></span>
551
{| class="formulaSCP" style="width: 100%; text-align: left;" 
552
|-
553
| 
554
{| style="text-align: left; margin:auto;width: 100%;" 
555
|-
556
| style="text-align: center;" | <math>{\boldsymbol B}_{i+1} = {1\over l^e l^{e+1}(l^e+ l^{e+1})}[0,l^{e+1},-(l^e+ l^{e+1}),l^e] </math>
557
|}
558
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
559
|}
560
561
The internal virtual work over the element <math display="inline">e</math> is obtained by adding up the contributions from the two control domains <math display="inline">l_i</math> and <math display="inline">l_{i+1}</math> as
562
563
<span id="eq-33"></span>
564
{| class="formulaSCP" style="width: 100%; text-align: left;" 
565
|-
566
| 
567
{| style="text-align: left; margin:auto;width: 100%;" 
568
|-
569
| style="text-align: center;" | <math>\delta U^{(e)} = \int _{{l_i\over 2}} \delta  \kappa _i (E_f I)  \kappa _i dx + \int _{{l_{i+1}\over 2}} \delta  \kappa _{\scriptscriptstyle i+1} (E_f I) \kappa _{\scriptscriptstyle i+1}dx </math>
570
|}
571
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
572
|}
573
574
<span id="eq-34"></span>
575
576
Substituting Eqs.([[#eq-27|27]]) and ([[#eq-31|31]]) into ([[#eq-33|33]]) and following the standard assembly process of the FEM  yields the element stiffness matrix as
577
578
<span id="eq-34.a"></span>
579
{| class="formulaSCP" style="width: 100%; text-align: left;" 
580
|-
581
| 
582
{| style="text-align: left; margin:auto;width: 100%;" 
583
|-
584
| style="text-align: center;" | <math>{\boldsymbol K}^{(e)} = {\boldsymbol K}^{(e)}_i+{\boldsymbol  K}^{(e)}_{\scriptscriptstyle i+1} </math>
585
|}
586
| style="width: 5px;text-align: right;white-space: nowrap;" | (34.a)
587
|}
588
589
where
590
591
<span id="eq-34.b"></span>
592
{| class="formulaSCP" style="width: 100%; text-align: left;" 
593
|-
594
| 
595
{| style="text-align: left; margin:auto;width: 100%;" 
596
|-
597
| style="text-align: center;" | <math>\begin{array}{l}\displaystyle {\boldsymbol K}^{e}_i = \int _{{l_i\over 2}} {\boldsymbol B}_i^T (E_f I) {\boldsymbol B}_i dx = {l_i\over 2} {\boldsymbol B}_i^{T} (E_f I)^{(e)} {\boldsymbol B}_i \\[.5cm] \displaystyle {\boldsymbol K}^{e}_{\scriptscriptstyle i+1} = \int _{{l_{i+1}\over 2}} {\boldsymbol B}_{i+1}^{T} (E_f I) {\boldsymbol    B}_{i+1} dx = {l_{\scriptscriptstyle i+1}\over 2}{\boldsymbol B}_{i+1}^{T} (E_f I)^{(e)} {\boldsymbol    B}_{\scriptscriptstyle {i+1}} \end{array} </math>
598
|}
599
| style="width: 5px;text-align: right;white-space: nowrap;" | (34.b)
600
|}
601
602
In Eqs.([[#eq-33|33]]) and ([[#eq-34|34]]) <math display="inline">E_f</math> and <math display="inline">I</math> are the Young modulus of the fiber material and the moment of inertia of the fiber section with respect the bending axis, respectively. In the computation of the above integrals, we have assumed that <math display="inline">E_f</math> and <math display="inline">I</math> are constant over the control domains.
603
604
Note that, as it is usual in rotation-free beam, plate and shell elements,  the stiffness matrix of an element involves the nodal deflections of the adjacent elements.
605
606
The global equivalent nodal force <math display="inline">{f}_i</math> is computed
607
608
{| class="formulaSCP" style="width: 100%; text-align: left;" 
609
|-
610
| 
611
{| style="text-align: left; margin:auto;width: 100%;" 
612
|-
613
| style="text-align: center;" | <math>{f}_i={P}_{z_i} + {f}_{z_i} {(l^e + l^{e+1})\over 2} </math>
614
|}
615
| style="width: 5px;text-align: right;white-space: nowrap;" | (35.a)
616
|}
617
618
with
619
620
{| class="formulaSCP" style="width: 100%; text-align: left;" 
621
|-
622
| 
623
{| style="text-align: left; margin:auto;width: 100%;" 
624
|-
625
| style="text-align: center;" | <math>{f}_{z_i} ={1\over 2} \left[f_z^{(e)}+ {f}_z^{(e+1)} \right] </math>
626
|}
627
| style="width: 5px;text-align: right;white-space: nowrap;" | (35.b)
628
|}
629
630
where <math display="inline">{P}_{z_i}</math> is the external nodal force acting at node <math display="inline">i</math> and and <math display="inline"> {f}_z^{(e)}</math> and <math display="inline">{f}_z^{(e+1)}</math> are uniformly distributed loads acting in the vertical direction over elements <math display="inline">e</math> and <math display="inline">e+1</math>, respectively.
631
632
===4.2 Boundary conditions===
633
634
The prescribed values for the deflection are imposed when solving the global system of equations, as usual. We briefly explain next how to compute the curvature at a free end and at simply supported and clamped nodes. For details see <span id='citeF-14'></span>[[#cite-14|[14]]].
635
636
<span id="eq-36"></span>
637
638
The curvature at a ''free end node and at a simply supported node'' is ''zero''. This  condition is  implemented by neglecting the contribution of the boundary node to the element stiffness matrix. For a boundary element  with a free or simply supported node the stiffness matrix is (Fig. [[#img-5|5]]a)
639
640
{| class="formulaSCP" style="width: 100%; text-align: left;" 
641
|-
642
| 
643
{| style="text-align: left; margin:auto;width: 100%;" 
644
|-
645
| style="text-align: center;" | <math>{\boldsymbol K}^{(e)} = {\boldsymbol K}^{(e)}_{\scriptscriptstyle i+1} \quad  \hbox{if }\quad \kappa _i =0 </math>
646
|}
647
| style="width: 5px;text-align: right;white-space: nowrap;" | (36.a)
648
|}
649
650
{| class="formulaSCP" style="width: 100%; text-align: left;" 
651
|-
652
| 
653
{| style="text-align: left; margin:auto;width: 100%;" 
654
|-
655
| style="text-align: center;" | <math>{\boldsymbol K}^{(e)} = {\boldsymbol K}^{(e)}_{\scriptscriptstyle i} \quad  \hbox{if }\quad \kappa _{i+1} =0 </math>
656
|}
657
| style="width: 5px;text-align: right;white-space: nowrap;" | (36.b)
658
|}
659
660
<div id='img-5'></div>
661
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
662
|-
663
|[[Image:Draft_Onate_870101189-Fig1_16.png|600px|CVB element. (a) Boundary condition of zero curvature at a free or   simply supported node B. (b) Control domain for a clamped or symmetry node]]
664
|- style="text-align: center; font-size: 75%;"
665
| colspan="1" | '''Figure 5:''' CVB element. (a) Boundary condition of zero curvature at a free or   simply supported node <math>B</math>. (b) Control domain for a clamped or symmetry node
666
|}
667
668
The curvature at a ''clamped or symmetry left-end node'' <math display="inline">i</math> is  computed as (Fig. [[#img-5|5]]b)
669
670
{| class="formulaSCP" style="width: 100%; text-align: left;" 
671
|-
672
| 
673
{| style="text-align: left; margin:auto;width: 100%;" 
674
|-
675
| style="text-align: center;" | <math>\kappa _i ={2\over  l^e}{(w_{\scriptscriptstyle i+1}-w_{\scriptscriptstyle i})\over  l^e} ={2\over (l^e)^2} [1,-1,1,0]\left\{\begin{matrix}w_{\scriptscriptstyle i-1}\\ w_{\scriptscriptstyle i}\\ w_{\scriptscriptstyle i+1}\\ w_{\scriptscriptstyle i+2}\end{matrix}\right\}={\boldsymbol B}_i \bar {\boldsymbol w}^{(e)} </math>
676
|}
677
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
678
|}
679
680
where <math display="inline">w_{\scriptscriptstyle i-1}</math> is an auxiliary fictitious deflection.
681
682
Similarly, for a right-end clamped or symmetry node (Fig. [[#img-5|5]]b)
683
684
{| class="formulaSCP" style="width: 100%; text-align: left;" 
685
|-
686
| 
687
{| style="text-align: left; margin:auto;width: 100%;" 
688
|-
689
| style="text-align: center;" | <math>\kappa _{\scriptscriptstyle i+1} = {2\over  l^e}{(w_{\scriptscriptstyle i+1}-w_{\scriptscriptstyle i})\over  l^e}={2\over    (l^e)^2}[0,-1,1,1]\left\{\begin{matrix}w_{\scriptscriptstyle i-1}\\ w_{\scriptscriptstyle i}\\ w_{\scriptscriptstyle i+1}\\ w_{\scriptscriptstyle  i+2}\end{matrix}\right\}={\boldsymbol B}_{\scriptscriptstyle  i+1}\bar {\boldsymbol w}_i </math>
690
|}
691
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
692
|}
693
694
where <math display="inline">w_{\scriptscriptstyle i+2}</math> is an auxiliary fictitious deflection.
695
696
The element stiffness matrix  is computed in both cases by Eq.[[#eq-36|(36)]] with <math display="inline">{\boldsymbol B}_i</math> or <math display="inline">{\boldsymbol B}_{\scriptscriptstyle i+1}</math> equal to zero, as appropriate. The fictitious nodal deflections <math display="inline">w_{i-1}</math> or <math display="inline">w_{i+2}</math> (and indeed <math display="inline">w_i</math>) are prescribed to a zero value when solving the global system of equations.
697
698
The above rotation-free formulation can be extended to account for the bending behavior of the beam in the <math display="inline">y-z</math> plane in a straightforward manner. The nodal degrees of freedom are the vertical displacement along the <math display="inline">y</math> and <math display="inline">z</math> axes <span id='citeF-14'></span>[[#cite-14|[14]]].
699
700
The extension of the bending formulation of rotation-free beam element to account for transverse shear deformation effect is possible. The details can be found in <span id='citeF-21'></span>[[#cite-21|[21]]].
701
702
===4.3 Material model for the rotation-free beam element===
703
704
The material behavior of the rotation-free CVB element is simply characterized by the Young modulus. Accounting for non-linear effects in the fiber material under axial stresses has been modelled with a standard one-dimensional elastic-damage constitutive law,  i.e.
705
706
{| class="formulaSCP" style="width: 100%; text-align: left;" 
707
|-
708
| 
709
{| style="text-align: left; margin:auto;width: 100%;" 
710
|-
711
| style="text-align: center;" | <math>\hat E_f = E_f (1-d_f^b)</math>
712
|}
713
|}
714
715
where <math display="inline">\hat E_f</math> and <math display="inline">E_f</math> are the Young modulus of the fiber in the undamaged and damaged states, respectively.
716
717
The evolution of the damage parameter <math display="inline">d_f^b</math> for the beam element is governed the maximum deformation of the fiber at failure, i.e.
718
719
{| class="formulaSCP" style="width: 100%; text-align: left;" 
720
|-
721
| 
722
{| style="text-align: left; margin:auto;width: 100%;" 
723
|-
724
| style="text-align: center;" | <math>d_f^b =1 + \frac{\sigma _{0_f} (\varepsilon - 2\varepsilon _{0_f} + \varepsilon _{u_f})}{\varepsilon E_f (\varepsilon _{0_f} + \varepsilon _{u_f})}</math>
725
|}
726
|}
727
728
where <math display="inline">\varepsilon </math> is the axial deformation of the fiber, <math display="inline">\varepsilon _{0_f}</math> is the deformation at the elastic limit, <math display="inline">\sigma _{0_f}</math>, and <math display="inline">\varepsilon _{u_f}</math> is the deformation at the ultimate (fracture) strength value.
729
730
===4.4 Extension to curved rotation-free CVB elements===
731
732
A curved rebar will be modelled by a collection of straight rotation-free CVB elements. Fig. [[#img-6|6]] shows a curved rebars under bending loads in a plane <math display="inline">x-z</math>, discretized with three CVB elements.
733
734
<div id='img-6'></div>
735
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
736
|-
737
|[[Image:Draft_Onate_870101189-Fig9_26.png|570px|Cell-vertex rotation-free  beam element. Control domains for computing the average  curvature. A, B and C are element mid-points]]
738
|- style="text-align: center; font-size: 75%;"
739
| colspan="1" | '''Figure 6:''' Cell-vertex rotation-free  beam element. Control domains for computing the average  curvature. A, B and C are element mid-points
740
|}
741
742
The stiffness matrix is obtained as the sum of the axial stiffness matrix (<math display="inline">{\boldsymbol K}_A</math>) and the bending stiffness matrix (<math display="inline">{\boldsymbol K}_B</math>).
743
744
====4.4.1 Axial stiffness matrix====
745
746
The axial strain matrix <math display="inline">{\boldsymbol B}_a</math> is obtained as
747
748
<span id="eq-39"></span>
749
{| class="formulaSCP" style="width: 100%; text-align: left;" 
750
|-
751
| 
752
{| style="text-align: left; margin:auto;width: 100%;" 
753
|-
754
| style="text-align: center;" | <math>\varepsilon _a = \frac{\partial u'}{\partial x'}= \lambda _s= {\partial u' \over \partial x'} = \frac{1}{l^e}[-1,1] \left\{\begin{matrix}{u'}^{e}_{i}\\ {u'}^{e}_{i+1}\end{matrix} \right\}=\underbrace{\frac{1}{l^e} [{\boldsymbol 0},-{\boldsymbol t}^e,{\boldsymbol t}^e,{\boldsymbol 0}]}_{{\boldsymbol B}_{a}}{\boldsymbol a}^e =  {\boldsymbol B}_{a} {\boldsymbol a}^e </math>
755
|}
756
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
757
|}
758
759
with <math display="inline">{\boldsymbol t}^e = [\cos \phi ^e ,\sin \phi ^e]</math> and <math display="inline">()'</math> denotes variables in the local coordinates system.
760
761
The axial stiffness matrix is computed as
762
763
<span id="eq-40"></span>
764
{| class="formulaSCP" style="width: 100%; text-align: left;" 
765
|-
766
| 
767
{| style="text-align: left; margin:auto;width: 100%;" 
768
|-
769
| style="text-align: center;" | <math>{\boldsymbol K}_A^{e} =(E_f I)^{(e)} {\boldsymbol B}_a^T {\boldsymbol B}_a l^e   </math>
770
|}
771
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
772
|}
773
774
====4.4.2 Bending stiffness matrix====
775
776
The procedure for computing the bending stiffness matrix is an extension of that followed for  straight CVB elements in Section 4.2. <span id="eq-41"></span>
777
778
The  curvature at node <math display="inline">i</math> is computed in terms of the gradients of the normal deflection at points <math display="inline">A</math> and <math display="inline">B</math> (Fig. [[#img-6|6]])
779
780
<span id="eq-41.a"></span>
781
{| class="formulaSCP" style="width: 100%; text-align: left;" 
782
|-
783
| 
784
{| style="text-align: left; margin:auto;width: 100%;" 
785
|-
786
| style="text-align: center;" | <math>\kappa _{i}= \frac{2}{l^e + l^{e-1}}\left[\left({\partial w' \over \partial x'}\right)_B-\left({\partial w' \over \partial x'}\right)_A \right]= \frac{2}{l^e + l^{e-1}}\left[\frac{{w'}^{e}_{i+1}{-w_i'}^e}{l^e} - \frac{{w'}^{e-1}_{i}-w_{i-1'}^{e-1}}{l^{e-1}}\right]=</math>
787
|-
788
| style="text-align: center;" | <math> =\underbrace{\frac{1}{l^e l^{e-1}(l^e +l^{e-1})}[l^{e},-l^{e},-l^{e-1},l^{e-1}]}_ {{\bar{\boldsymbol B}'}_{b_i}}\left\{\begin{matrix}{w'}^{e-1}_{i-1}\\{w'}^{e-1}_{i} \\ {w'}^{e}_{i+1}\\{ w'}^{e}_{i+1} \end{matrix}\right\}={\boldsymbol B'}_{b_i} \mathbf{w}^{'}={\boldsymbol B}_{b_i}{\boldsymbol a}^e </math>
789
|}
790
| style="width: 5px;text-align: right;white-space: nowrap;" | (41.a)
791
|}
792
793
In Eqs.([[#eq-41.a|41.a]]) <math display="inline">{w'}_j</math> are the nodal deflections in the local axes of the element defined in Fig. [[#img-7|7]] and
794
795
<span id="eq-41.b"></span>
796
{| class="formulaSCP" style="width: 100%; text-align: left;" 
797
|-
798
| 
799
{| style="text-align: left; margin:auto;width: 100%;" 
800
|-
801
| style="text-align: center;" | <math>{\boldsymbol B}_{b_i}={\boldsymbol B'}_{b_i}{\boldsymbol T} \quad \hbox{with  }~ {\boldsymbol T}= \left[\begin{matrix}{\boldsymbol n}^{e-1} & {\boldsymbol 0} &  {\boldsymbol 0}& {\boldsymbol 0}\\ {\boldsymbol 0} &{\boldsymbol n}^{e-1} & {\boldsymbol 0} & {\boldsymbol 0}\\ {\boldsymbol 0} & {\boldsymbol 0}& {\boldsymbol n}^{e} &{\boldsymbol 0}\\ {\boldsymbol 0} & {\boldsymbol 0}& {\boldsymbol 0}& {\boldsymbol n}^{e} \end{matrix} \right]  </math>
802
|}
803
| style="width: 5px;text-align: right;white-space: nowrap;" | (41.b)
804
|}
805
806
and
807
808
<span id="eq-41.c"></span>
809
{| class="formulaSCP" style="width: 100%; text-align: left;" 
810
|-
811
| 
812
{| style="text-align: left; margin:auto;width: 100%;" 
813
|-
814
| style="text-align: center;" | <math>{\boldsymbol a}^e = \left\{\begin{matrix}{\boldsymbol a}_{i-1}\\{\boldsymbol a}_i\\{\boldsymbol a}_{i+1}\\{\boldsymbol a}_{i+2} \end{matrix} \right\}\quad \hbox{with}\quad {\boldsymbol a}_i=\left\{\begin{matrix}u_i\\ w_i \end{matrix} \right\} </math>
815
|}
816
| style="width: 5px;text-align: right;white-space: nowrap;" | (41.c)
817
|}
818
819
<div id='img-7'></div>
820
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
821
|-
822
|[[Image:Draft_Onate_870101189-Figure3.png|600px|Local coordinate system of curved rotation-free CVB element bending in the xz plane]]
823
|- style="text-align: center; font-size: 75%;"
824
| colspan="1" | '''Figure 7:''' Local coordinate system of curved rotation-free CVB element bending in the <math>xz</math> plane
825
|}
826
827
Similarly, for node <math display="inline">i+1</math>
828
829
<span id="eq-42.a"></span>
830
{| class="formulaSCP" style="width: 100%; text-align: left;" 
831
|-
832
| 
833
{| style="text-align: left; margin:auto;width: 100%;" 
834
|-
835
| style="text-align: center;" | <math>\kappa _{i+1}= \frac{2}{l^e + l^{e+1}}\left[\left({\partial w' \over \partial x'}\right)_C- \left({\partial w' \over \partial x'}\right)_B \right]= \frac{2}{l^e + l^{e+1}}\left[\frac{{w'}^{e+1}_{i+2}{-w'}^{e}_{i+1}}{l^{e+1}} - \frac{{w'}^{e}_{i+1}-w_{i'}^{e}}{l^{e}}\right]=</math>
836
|-
837
| style="text-align: center;" | <math> =\underbrace{\frac{2}{l^e l^{e+1}(l^e +l^{e+1})}[l^{e+1},-l^{e+1},-l^{e},l^{e}]}_ {\bar{\boldsymbol B}_{b_{i+1}}}\left\{\begin{matrix}{w'}^{e}_i\\{w'}^{e}_{i+1} \\ {w'}^{e+1}_{i+1}\\{ w'}^{e+1}_{i+2}\end{matrix}\right\}={\boldsymbol B'}_{b_{i+1}} \mathbf{w}^{'}= {\boldsymbol B}_{b_{i+1}}{\boldsymbol a}^e  </math>
838
|}
839
| style="width: 5px;text-align: right;white-space: nowrap;" | (42.a)
840
|}
841
842
with
843
844
<span id="eq-42.b"></span>
845
{| class="formulaSCP" style="width: 100%; text-align: left;" 
846
|-
847
| 
848
{| style="text-align: left; margin:auto;width: 100%;" 
849
|-
850
| style="text-align: center;" | <math>{\boldsymbol B}_{b_{i+1}}={\boldsymbol B'}_{b_{i+1}}{\boldsymbol T}  </math>
851
|}
852
| style="width: 5px;text-align: right;white-space: nowrap;" | (42.b)
853
|}
854
855
and
856
857
<span id="eq-42.c"></span>
858
{| class="formulaSCP" style="width: 100%; text-align: left;" 
859
|-
860
| 
861
{| style="text-align: left; margin:auto;width: 100%;" 
862
|-
863
| style="text-align: center;" | <math>{\boldsymbol T}= \left[\begin{matrix}{\boldsymbol n}^{e-1} & {\boldsymbol 0} & {\boldsymbol 0}& {\boldsymbol 0}\\ {\boldsymbol 0} &{\boldsymbol n}^{e-1} &{\boldsymbol 0}& {\boldsymbol 0}\\ {\boldsymbol 0} & {\boldsymbol 0}&{\boldsymbol n}^{e+1} &{\boldsymbol 0}\\ {\boldsymbol 0} & {\boldsymbol 0}& {\boldsymbol 0}&{\boldsymbol n}^{e+1} \end{matrix} \right]\quad ,\quad {\boldsymbol n}^e =[-\sin \phi ^e, \cos \phi ^e]\quad ,\quad {\boldsymbol 0}=[0,0] </math>
864
|}
865
| style="width: 5px;text-align: right;white-space: nowrap;" | (42.c)
866
|}
867
868
The bending stiffness matrix for the CVB element is expressed as the sum of the stiffness contributions from the two control subdomains 1 and 2 that form the element (Fig. [[#img-6|6]]), i.e.
869
870
{| class="formulaSCP" style="width: 100%; text-align: left;" 
871
|-
872
| 
873
{| style="text-align: left; margin:auto;width: 100%;" 
874
|-
875
| style="text-align: center;" | <math>{\boldsymbol K}^{e}_B =  l^e\Bigl[{\boldsymbol B}_i^T (E_f I) {\boldsymbol B}_i  + {\boldsymbol B}_{i+1}^T (E_f I){\boldsymbol B}_{i+1} \Bigr] </math>
876
|}
877
| style="width: 5px;text-align: right;white-space: nowrap;" | (43)
878
|}
879
880
The total stiffness matrix for the element is finally obtained by
881
882
<span id="eq-44"></span>
883
{| class="formulaSCP" style="width: 100%; text-align: left;" 
884
|-
885
| 
886
{| style="text-align: left; margin:auto;width: 100%;" 
887
|-
888
| style="text-align: center;" | <math>{\boldsymbol K}^e = {\boldsymbol K}_A^e + {\boldsymbol K}_B^e </math>
889
|}
890
| style="width: 5px;text-align: right;white-space: nowrap;" | (44)
891
|}
892
893
where <math display="inline">{\boldsymbol K}_A</math> is given by Eq.[[#eq-40|(40)]].
894
895
We note that the size of <math display="inline">{\boldsymbol K}^{(e)}</math> for the CVB element bending in the <math display="inline">x-z</math> plane is <math display="inline">8\times 8</math>, as it involves the two DOFs of nodes <math display="inline">i-1,i,i+1</math> and <math display="inline">i+2</math>. A similar procedure will be followed for the case of bending in the plane <math display="inline">y-z</math> <span id='citeF-14'></span>[[#cite-14|[14]]].
896
897
The assembly process follows the general rule of the FEM <span id='citeF-14'></span>[[#cite-14|[14]]].
898
899
==5 Coupling of 3D solid elements and rotation-free beam elements==
900
901
Fig. [[#img-8|8]] shows a conceptual representation of a FRP bar of rectangular section containing of a number of fibers embedded in the (bulk) matrix material. The bar geometry is discretized into 3D solid elements (8-noded hexahedral are shown). The fibers contained within each solid element are assumed to be concentrated in one-dimensional (1D) packs of fibers distributed within the 3D solid elements. Fig. [[#img-8|8]] shows the concentration of fibers in four 1D packs placed at the <math display="inline">2\times 2</math> Gauss points locations in each cross section <span id='citeF-14'></span>[[#cite-14|[14]]]. Each fiber pack is modelled as a rotation-free beam element with a cross-section area equivalent to the amount of fibers considered in the pack.
902
903
The displacements of the rotation-free beam element nodes are related to the nodal displacement of the 3D solid element by a simple interpolation.
904
905
<div id='img-8'></div>
906
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
907
|-
908
|[[Image:Draft_Onate_870101189-Figure4.png|600px|Patch of 3D solid and rotation-free beam elements]]
909
|- style="text-align: center; font-size: 75%;"
910
| colspan="1" | '''Figure 8:''' Patch of 3D solid and rotation-free beam elements
911
|}
912
913
The discretized equilibrium equations for the coupled solid-beam system can be written as explained in Section [[#2 Combination of 3D solid elements and rotation-free elements for analysis of polymer fiber rebars|2]]. The numerical response of the FRP bars for different incremental load up to failure is computed using the standard Newton-Raphson iterative procedure described in Eqs.[[#eq-4|(4)]]-[[#eq-13|(13)]].
914
915
==6 Examples of application==
916
917
===6.1 Composite material properties===
918
919
The three examples shown hereafter demonstrate the good behavior of the formulation described for analysis of FRP rebars. The examples include the analysis of a FRP rebar in three standard laboratory tests: an axial test, a three-point bending test and a shear test. The numerical results  are compared with results from laboratory tests carried out at the experimental lab for structural materials of the Centro de Investigación en Materiales Estructurales (CIME) of the Technical University of Madrid (UPM), using  rebars made of ECR-Glass and a matrix of DERAKANE<math display="inline">\_</math>8084<math display="inline">\_</math>Epoxy<math display="inline">\_</math>Vinyl<math display="inline">\_</math>ester.
920
921
The rebar nominal diameter is 10mm, including helicoidal ribs. As these ribs are manufactured by machining the originally pultruded rebars, the effective diameter of the bars is reduced to 9.58 mm, on average. This diameter is the one adopted for creating the model  of the bar geometries.
922
923
The mechanical parameters of the fibers  are: Young modulus: 74.61 GPa, Poisson ratio:  0.22, Elastic limit (tension): 1,653 MPa, Elastic limit (compression): 1,322 MPa, Fracture energy: 126,778 J/m2, Deformation at failure: 0.0277, Volume fraction: 70%
924
925
The mechanical parameters of the matrix material  are: Young modulus: 3.17 GPa, Poisson coefficient:  0.38, Elastic limit: 72 MPa, Fracture energy: 45,657 J/m2, Deformation at failure: 0.11, Volume fraction 30%
926
927
===6.2 Axial tension test===
928
929
Fig. [[#img-9|9]] shows the bar modelled with 960 8-noded hexahedral elements and  1197 nodes. The fibers have been modelled using 1140 RFB elements. The length of the sample is 100 mm long with 9.58 mm diameter. Symmetry conditions have been considered by prescribing  a zero axial displacement in the normal direction to the surface at a bar end, while the other end has a prescribed axial displacement condition to induce tensile stresses in the bar. The bar axis has the displacements in the normal plane yz constrained to zero.
930
931
<div id='img-9'></div>
932
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
933
|-
934
|[[Image:Draft_Onate_870101189-Figure_8.png|540px|Tensile test geometry: 3D solid and RFB elements mesh]]
935
|- style="text-align: center; font-size: 75%;"
936
| colspan="1" | '''Figure 9:''' Tensile test geometry: 3D solid and RFB elements mesh
937
|}
938
939
Fig. [[#img-10|10]] shows a typical bar tested at UPM after failure.
940
941
<div id='img-10'></div>
942
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
943
|-
944
|[[Image:Draft_Onate_870101189-Fig6_2.png|270px|Tensile test of the PFR performed at UPM]]
945
|- style="text-align: center; font-size: 75%;"
946
| colspan="1" | '''Figure 10:''' Tensile test of the PFR performed at UPM
947
|}
948
949
The numerical results obtained are shown in  Figs. [[#img-11|11]] and [[#img-12|12]]. The displacement field obtained presents a linear distribution, until the rebar reaches brittle failure.
950
951
<div id='img-11'></div>
952
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
953
|-
954
|[[Image:Draft_Onate_870101189-Fig6_3.png|600px|Displacement field [m] in deformed geometry]]
955
|- style="text-align: center; font-size: 75%;"
956
| colspan="1" | '''Figure 11:''' Displacement field [m] in deformed geometry
957
|}
958
959
<div id='img-12'></div>
960
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
961
|-
962
|[[Image:Draft_Onate_870101189-Fig6_4.png|574px|Axial tension tests stress-strain curves. Numerical and experimental values]]
963
|- style="text-align: center; font-size: 75%;"
964
| colspan="1" | '''Figure 12:''' Axial tension tests stress-strain curves. Numerical and experimental values
965
|}
966
967
The numerical load-displacement curve obtained is converted into a stress-strain curve to be compared with the experimental results. A good correlation can be seen between the numerical and experimental values (Fig. [[#img-12|12]]).
968
969
Table [[#table-1|1]] shows the good correlation between the numerical and experimental stiffness and strength magnitudes.
970
971
972
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
973
|+ style="font-size: 75%;" |<span id='table-1'></span>Table. 1 Tensile test. Comparison of numerical and experimental results
974
|- style="border-top: 2px solid;"
975
| style="border-left: 2px solid;border-right: 2px solid;" |  '''Property''' 
976
| style="border-left: 2px solid;border-right: 2px solid;" | '''Lab tests''' 
977
| style="border-left: 2px solid;border-right: 2px solid;" | '''Numerical''' 
978
|- style="border-top: 2px solid;"
979
| style="border-left: 2px solid;border-right: 2px solid;" |  Tensile strength (MPa) 
980
| style="border-left: 2px solid;border-right: 2px solid;" | 1150 <math>\boldsymbol{\pm }</math> 34  (MPa) 
981
| style="border-left: 2px solid;border-right: 2px solid;" | 1173.33 (MPa) 
982
|- style="border-top: 2px solid;"
983
| style="border-left: 2px solid;border-right: 2px solid;" |  Strain to max strength 
984
| style="border-left: 2px solid;border-right: 2px solid;" | 2.3 <math>\pm </math> 0.1 (%) 
985
| style="border-left: 2px solid;border-right: 2px solid;" | 2.22 (%) 
986
|- style="border-top: 2px solid;border-bottom: 2px solid;"
987
| style="border-left: 2px solid;border-right: 2px solid;" |  Young Modulus (GPa) 
988
| style="border-left: 2px solid;border-right: 2px solid;" | 55 <math>\pm </math> 4 (GPa) 
989
| style="border-left: 2px solid;border-right: 2px solid;" | 53.03 (GPa) 
990
991
|}
992
993
===6.3 Bending test===
994
995
The experiment performed for measuring the bending properties, corresponds to the standard three-point bending test showed in Fig. [[#img-14|14]]. The tests were carried out on bars of full circular section, instead of using cut specimens as indicated in the ASTMD-4476 norm. Fig. [[#img-13|13]] shows the bar modelled with 5400 8-noded hexahedral elements (6327 nodes) and 6156 rotation-free beam elements. The length of the bar sample is 100 mm long with 9.58 mm diameter. Symmetry and boundary conditions have been considered, as shown in Fig. [[#img-13|13]]. To avoid problems with the stress concentration at the loading points, a small part of the beam (the blue zone in Fig. [[#img-13|13]]) has been defined with an unbreakable material. The elastic properties of this material are the same as for the rest of the bar.
996
997
<div id='img-13'></div>
998
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
999
|-
1000
|[[Image:Draft_Onate_870101189-Fig6_5.png|600px|Three point bending test for PFR rebar. Dimensions, FEM mesh and boundary conditions]]
1001
|- style="text-align: center; font-size: 75%;"
1002
| colspan="1" | '''Figure 13:''' Three point bending test for PFR rebar. Dimensions, FEM mesh and boundary conditions
1003
|}
1004
1005
Fig. [[#img-14|14]] shows a snapshot of the laboratory test for the FRP rebar in a three-point bending configuration. Note the rollers used as a pin-supports of the beam.
1006
1007
<div id='img-14'></div>
1008
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1009
|-
1010
|[[Image:Draft_Onate_870101189-Fig6_6.png|534px|Three-point bending test of FRP rebars performed at UPM]]
1011
|- style="text-align: center; font-size: 75%;"
1012
| colspan="1" | '''Figure 14:''' Three-point bending test of FRP rebars performed at UPM
1013
|}
1014
1015
Fig. [[#img-15|15]] shows the strain distribution over the deformed bar   (Fig. [[#img-15|15]]a) and the mesh of hexahedra (Fig. [[#img-15|15]]b) in a load state close to the onset of damage. The damage distribution for each element is displayed in Fig. [[#img-16|16]].
1016
1017
<div id='img-15'></div>
1018
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1019
|-
1020
|[[Image:Draft_Onate_870101189-Fig6_7.png|600px|Three-point bending tests. Numerical results. Deformed bar. (a) Strain distribution for  RFB elements. (b) Strain distribution in  3D solid elements]]
1021
|- style="text-align: center; font-size: 75%;"
1022
| colspan="1" | '''Figure 15:''' Three-point bending tests. Numerical results. Deformed bar. (a) Strain distribution for  RFB elements. (b) Strain distribution in  3D solid elements
1023
|}
1024
1025
<div id='img-16'></div>
1026
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1027
|-
1028
|[[Image:Draft_Onate_870101189-Figure_15.png|600px|Contour field of damage variable in longitudinal and transverse sections on the deformed geometry (1x)]]
1029
|- style="text-align: center; font-size: 75%;"
1030
| colspan="1" | '''Figure 16:''' Contour field of damage variable in longitudinal and transverse sections on the deformed geometry (1x)
1031
|}
1032
1033
In Fig. [[#img-17|17]], the numerical load-deflection curve is shown together with that obtained in the laboratory for comparison purposes. The maximum loading force and the flexural stiffness captured by the numerical simulation are in good agreement with the experimental results.
1034
1035
At the laboratory,  samples of 240mm of total length were cut for the 10mm diameter full cylinder tests. The span of the tests was set to 200mm. Tests were carried out under displacements control, with a crosshead displacement velocity of 3mm/min. Fig. [[#img-18|18]] shows the test set-up and one  specimen after failure.
1036
1037
<div id='img-17'></div>
1038
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1039
|-
1040
|[[Image:Draft_Onate_870101189-Fig6_9.png|586px|Three-point bending tests. Force-deflection curves for shearing testing. Numerical results compared with laboratory tests]]
1041
|- style="text-align: center; font-size: 75%;"
1042
| colspan="1" | '''Figure 17:''' Three-point bending tests. Force-deflection curves for shearing testing. Numerical results compared with laboratory tests
1043
|}
1044
1045
<div id='img-18'></div>
1046
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1047
|-
1048
|[[Image:Draft_Onate_870101189-Fig6_10.png|600px|Three-point bending tests. Failed specimen of PFR rebar]]
1049
|- style="text-align: center; font-size: 75%;"
1050
| colspan="1" | '''Figure 18:''' Three-point bending tests. Failed specimen of PFR rebar
1051
|}
1052
1053
===6.4 Shear test===
1054
1055
The experiment carried out for evaluating the shear properties, corresponds to the ASTM-7617 standard test showed in Fig. [[#img-19|19]] <span id='citeF-25'></span>[[#cite-25|[25]]]. For the numerical analysis, the symmetry of the geometry and the imposed displacement have been taken into account as shown in Fig. [[#img-20|20]]a in order to speed up the calculations. Fig. [[#img-20|20]]b displays the bar modelled with  5225 8-noded hexahedral elements (4608 nodes) and 5016 rotation-free beam elements. The length of the sample is 100 mm long with 9.58 mm diameter.
1056
1057
<div id='img-19'></div>
1058
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1059
|-
1060
|[[Image:Draft_Onate_870101189-Fig6_11a.png|200px|]]
1061
|[[Image:Draft_Onate_870101189-Fig6_11b.png|176px|]]
1062
|-
1063
| colspan="2" style=" padding:10px;" |[[Image:Draft_Onate_870101189-Fig6_11c.png|350px|Shear test.  Double shear fixture  according to ASTM D-7617 standard <span id='citeF-25'></span>[[#cite-25|[25]]]]]
1064
|- style="text-align: center; font-size: 75%;"
1065
| colspan="2" | '''Figure 19:''' Shear test.  Double shear fixture  according to ASTM D-7617 standard <span id='citeF-25'></span>[[#cite-25|[25]]]
1066
|}
1067
1068
<div id='img-20'></div>
1069
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1070
|-
1071
|[[Image:Draft_Onate_870101189-Fig6_12a.png|600px|]]
1072
|[[Image:Draft_Onate_870101189-Fig6_12b.png|600px|Shear test geometry. (a) Boundary conditions. (b) mesh and dimensions]]
1073
|- style="text-align: center; font-size: 75%;"
1074
| colspan="2" | '''Figure 20:''' Shear test geometry. (a) Boundary conditions. (b) mesh and dimensions
1075
|}
1076
1077
In Fi. [[#img-20|20]] a gap of 0.001 m can be observed between the loaded and supported zones of the specimen. This zone is necessary to capture accurately the shear forces and to avoid stress concentration in the numerical model.
1078
1079
Fig. [[#img-21|21]] shows a representative configuration of the numerical results. Fig. [[#img-21|21]]a displays the deformed bar and the localized damage in the resin material at the shear zone. Fig. [[#img-21|21]]b is a close-up of the shear zone were the RFB are presented. The curvature of these elements due to the shear deformation is depicted.
1080
1081
Fig. [[#img-22|22]] shows the numerical load-deflection curve superimposed to a set of curves obtained in the laboratory tests for comparison purposes. In the curves the non-linear load phenomena of the fiber reorientation can be clearly observed. For an applied load slightly larger than 5kN there is an initial plateau in the experimental tests, also reproduced by the numerical model, that corresponds to the cracking of the matrix. At this point there is a fiber reorientation that provides the stiffness increase and the final composite failure, due to fiber failure, for a load close to 35kN. The good agreement obtained between the numerical and the experimental results, especially in this case, highly non-linear, proves the validity of the proposed procedure to simulate pultruded fiber reinforced polymer rebars.
1082
1083
<div id='img-21'></div>
1084
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1085
|-
1086
|[[Image:Draft_Onate_870101189-Fig6_13.png|600px|Shear test. Contour field of damage variable in the matrix. Deformed geometry (1x)]]
1087
|- style="text-align: center; font-size: 75%;"
1088
| colspan="1" | '''Figure 21:''' Shear test. Contour field of damage variable in the matrix. Deformed geometry (1x)
1089
|}
1090
1091
<div id='img-22'></div>
1092
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1093
|-
1094
|[[Image:Draft_Onate_870101189-Figure_21.png|600px|Shear test. Force-deflection curves. Numerical results compared with laboratory tests]]
1095
|- style="text-align: center; font-size: 75%;"
1096
| colspan="1" | '''Figure 22:''' Shear test. Force-deflection curves. Numerical results compared with laboratory tests
1097
|}
1098
1099
==7 Concluding remarks==
1100
1101
The combination of 3D solid finite elements with rotation-free beam elements has shown to be adequate for modelling axial, bending and shear deformation states in fiber reinforced polymer rebars. The fact that both types of elements are formulated in terms of displacement DOFs only simplifies the combination of the best features of both elements for modelling the 3D behavior of the matrix material and the 1D behavior of the fibers, as well as the coupling interactions during complex deformation modes.
1102
1103
The good agreement of the numerical results for several benchmark laboratory tests with experimental  data for the same tests have, validated the accuracy of the combined 3D-1D model presented. The combined model can be therefore be used confidently  in practical applications of the fiber polymer rebars as reinforcement of concrete structures.
1104
1105
The approach presented in this work for combining 3D solid elements with rotation-free beam elements can be implemented in more sophisticated formulations for modelling fiber reinforced materials, such as that proposed in <span id='citeF-26'></span>[[#cite-26|[26]]].
1106
1107
==8 Data Availability Statement==
1108
1109
Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.
1110
1111
==9 Acknowledgements==
1112
1113
This research was carried out as a part of the project “Development of polymer fiber reinforced rebars” funded by Saudi Aramco. The authors also acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa Programme for Centres of Excellence in R&D” (CEX2018-000797-S).
1114
1115
===BIBLIOGRAPHY===
1116
1117
<div id="cite-1"></div>
1118
'''[[#citeF-1|[1]]]'''  Pacheco-Torgal F., Jalali S., Labrincha J., John V.M. Eco-efficient concrete. Woodhead Publishing Series in Civil and Structural Engineering. 2013 ISBN: 9780857098993.
1119
1120
<div id="cite-2"></div>
1121
'''[[#citeF-2|[2]]]'''  Bank L.C. Composites for construction: Structural design with FRP materials. John Wiley & Sons, Inc.2006. ISBN 9780471681267
1122
1123
<div id="cite-3"></div>
1124
'''[[#citeF-3|[3]]]'''   Marí A.R., Oller E.,  Bairán J.M. Predicting the response of FRP-strengthened reinforced-concrete flexural members with nonlinear evolutive analysis models. J. Compos. Constr., 15(5), 799–809, 2011.
1125
1126
<div id="cite-4"></div>
1127
'''[[#citeF-4|[4]]]'''   Martínez X., Oller S., Rastellini F., Barbat A.H. A numerical procedure for simulating RC structures reinforced with FRP using the serial/parallel mixing theory. Computers & Structures, 86(15-16), 1604-1618, 2008. doi:10.1016/j.compstruc.2008.01.007
1128
1129
<div id="cite-5"></div>
1130
'''[[#citeF-5|[5]]]'''  Nogales A.,  Tosić N.,  de la Fuente A. Rotation and moment redistribution capacity of fiber-reinforced concrete beams: Parametric analysis and code compliance. Struct. Concr., 23(1), 220-239, 2021.
1131
1132
<div id="cite-6"></div>
1133
'''[[#citeF-6|[6]]]'''  Pultron Composites. [Online]. Available: https://www.pultron.com/products/features/. [Accessed: 17-Apr-2020].
1134
1135
<div id="cite-7"></div>
1136
'''[[#citeF-7|[7]]]'''  Lleida GFRP Pedestrian Bridge. [Online]. Available: http://www.pedelta.com/lleida-gfrp-pedestrian-bridge-p-52-en. [Accessed: 17-Apr-2020].
1137
1138
<div id="cite-8"></div>
1139
'''[[#citeF-8|[8]]]'''  Hernández S., et al. Design and development of an innovative structural system based on composites applied on the constrction of maritme lighthouses with lower maintenance requeriments (FAROCOMP). Mater. Compuestos, 3(2), 54–58, 2019.
1140
1141
<div id="cite-9"></div>
1142
'''[[#citeF-9|[9]]]'''   GangaRao H.V.S.,  Taly N.,  Vijay P.V. Reinforced concrete design with FRP composites. 1st Edition, CRC Press, 2019.
1143
1144
<div id="cite-10"></div>
1145
'''[[#citeF-10|[10]]]'''  Sharifianjazi F., Zeydi P.,  Bazli M.,  Esmaeilkhanian A., Rahmani R., Bazli  L.,  Khaksar S. Fibre-reinforced polymer reinforced concrete members under elevated temperatures: a review on structural performance.  Polymers, 14(3), 472, 2022. https://doi.org/10.3390/polym14030472
1146
1147
<div id="cite-11"></div>
1148
'''[[#citeF-11|[11]]]'''  Sagar B.,  Sivakumar M.V.N.  Performance evaluation of basalt fibre-reinforced polymer rebars in structural concrete members–a review. Innovative Infrastructure Solutions, 6(2), 1-18, 2021. https://doi.org/10.1007/s41062-020-00452-2
1149
1150
<div id="cite-12"></div>
1151
'''[[#citeF-12|[12]]]'''   Strau S.,  Senz A.,  Ellinger J., Comparison of the processing of epoxy resins in pultrusion with open bath impregnation and closed-injection pultrusion. J. Compos. Sci., 3(3), 87, 2019.
1152
1153
<div id="cite-13"></div>
1154
'''[[#citeF-13|[13]]]'''  Starr T.F. Pultrusion for engineers. Woodhead Publishing Series in Composites Science and Engineering, pp. 336, 2000. ISBN: 978-1-85573-425-8
1155
1156
<div id="cite-14"></div>
1157
'''[[#citeF-14|[14]]]''' Oñate E. ''Structural Analysis with the Finite Element Method. Linear statics. Vol 1: Basis and Solids'', 2009. ''Vol. 2: Beams, plates and shells'', 2013. Springer-CIMNE.
1158
1159
<div id="cite-15"></div>
1160
'''[[#citeF-15|[15]]]'''  O.C Zienkiewicz and R.L. Taylor. ''The Finite Element Method for Solids and Structural Mechanics''. 6th edition, Elsevier, 2005
1161
1162
<div id="cite-16"></div>
1163
'''[[#citeF-16|[16]]]'''  Martínez X., Rastellini F., Oller S., Flores F. and Oñate E.  Computationally optimized formulation for the simulation of composite materials and delamination failures. Composites Part B: Engineering,  42(2), 134-144, 2011. 10.1016/j.compositesb.2010.09.013
1164
1165
<div id="cite-17"></div>
1166
'''[[#citeF-17|[17]]]'''  Rastellini F., Oller O., Salomón O., Oñate E. Composite materials non-linear modelling for long fibre-reinforced laminates: Continuum basis, computational aspects and validations. ''Computers & Structures'', Vol. 86(9), 879&#8211;896, 2008. https://doi.org/10.1016/j.compstruc.2007.04.009.
1167
1168
<div id="cite-18"></div>
1169
'''[[#citeF-18|[18]]]'''  Oller S., Oñate E., Oliver J. and Lubliner J.  Finite element non-linear analysis of concrete structures using a plastic-damage model. Int. Journal of Engineering Fracture Mechanics,  35(1/2/3), 219-231, 1990. 10.1016/0013-7944(90)90200-Z
1170
1171
<div id="cite-19"></div>
1172
'''[[#citeF-19|[19]]]'''  Lubliner J., Oller S., Oliver J. and Oñate E.  A plastic damage model for concrete. Int. Journal of Solids and Structures,  25(3), 299-326, 1989. 10.1016/0020-7683(89)90050-4
1173
1174
<div id="cite-20"></div>
1175
'''[[#citeF-20|[20]]]'''  Oñate E., Zárate F. Rotation-free triangular plate and shell elements. ''Int. J. Numer. Meth. Engng.'', 47(1-3), 557&#8211;603, 2000.
1176
1177
<div id="cite-21"></div>
1178
'''[[#citeF-21|[21]]]'''  Oñate E., Zárate F. Extended rotation-free plate and beam elements with shear deformation effects. ''Int. J. Numer. Meth. Engng.'', Vol. 82(2), 196&#8211;227, 2010.
1179
1180
<div id="cite-22"></div>
1181
'''[[#citeF-22|[22]]]'''  Jovicevic J. and Oñate E.  Analysis of beams and shells using a rotation - free finite element - finite volume formulation. Monograph M43,  CIMNE, ISBN: 84-89925-36-4, Barcelona, 1999.    Analysis of beams and shell using a rotation - free finite element - finite volume formulation - Jovicevic Onate 2018a - Scipedia.
1182
1183
<div id="cite-23"></div>
1184
'''[[#citeF-23|[23]]]'''  Oñate E. and Flores F.G.  Advances in the formulation of the rotation-free basic shell triangle. Computer Methods in Applied Mechanics and Engineering,  194 (21-24), 2406-2443, 2005. 10.1016/j.cma.2004.07.039
1185
1186
<div id="cite-24"></div>
1187
'''[[#citeF-24|[24]]]'''  Flores F. and Oñate E.  Rotation-free finite element for the non-linear analysis of beams and axisymmetric shells. Computer Methods in Applied Mechanics and Engineering,  195(41-43), 5297-5315, 2006. 10.1016/j.cma.2005.08.021
1188
1189
<div id="cite-25"></div>
1190
'''[[#citeF-25|[25]]]'''  ASTM-International, ASTM D7617/D7617M - 11(2017) Standard Test Method for Transverse Shear Strength of Fiber-reinforced Polymer Matrix Composite Bars, West Conshohocken, PA, 2017.
1191
1192
<div id="cite-26"></div>
1193
'''[[#citeF-26|[26]]]'''  Khristenko U., Schu S., Krüger M., Schmidt F., Wohlmuth B. and Hesch C. Multidimensional coupling: A variationally consistent approach to fiber-reinforced materials. Computer Methods in Applied Mechanics and Engineering, 382:113869, 2021. 10.1016/j.cma.2021.113869
1194

Return to Zarate et al 2023b.

Back to Top