You do not have permission to edit this page, for the following reason:
You can view and copy the source of this page.
== Abstract ==
<p><span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">The Internet is a public source of information, where information can be found at minimum search cost. Social media are becoming increasingly popular among web users trying to find and analyze information about the current economic situation. Web users get the opportunity to exchange views or discuss various issues in the news communities of social networks. This information can be used by economic agents to make decisions. Thus, the study of user behavior in social networks makes it possible to identify the expectations and preferences of economic agents.</span><br style="color: rgb(80, 80, 80); font-size: 16px;">
<br style="color: rgb(80, 80, 80); font-size: 16px;">
<span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">The goal of this study is to assess the expectations and sentiments of economic agents based on textual analysis of social media data.</span><br style="color: rgb(80, 80, 80); font-size: 16px;">
<br style="color: rgb(80, 80, 80); font-size: 16px;">
<span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">The study addresses the following objectives:</span><br style="color: rgb(80, 80, 80); font-size: 16px;">
<br style="color: rgb(80, 80, 80); font-size: 16px;">
<span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">Analysis of the mechanisms of influence of the information dissemination and networking effects on the behavior of economic agents;</span><br style="color: rgb(80, 80, 80); font-size: 16px;">
<br style="color: rgb(80, 80, 80); font-size: 16px;">
<span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">Systematization of the results of theoretical and empirical analysis of the economic agents’ expectations;</span><br style="color: rgb(80, 80, 80); font-size: 16px;">
<br style="color: rgb(80, 80, 80); font-size: 16px;">
<span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">An overview of machine learning methods used in text processing;</span><br style="color: rgb(80, 80, 80); font-size: 16px;">
<br style="color: rgb(80, 80, 80); font-size: 16px;">
<span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">Development of an algorithm for identifying sources of information for web scraping and rules for selecting text information to create a body of posts and comments;</span><br style="color: rgb(80, 80, 80); font-size: 16px;">
<br style="color: rgb(80, 80, 80); font-size: 16px;">
<span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">Collecting a database and preparing posts and comments for text analysis;</span><br style="color: rgb(80, 80, 80); font-size: 16px;">
<br style="color: rgb(80, 80, 80); font-size: 16px;">
<span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">Application of topic modeling to the identification of topics and keywords in social media data;</span><br style="color: rgb(80, 80, 80); font-size: 16px;">
<br style="color: rgb(80, 80, 80); font-size: 16px;">
<span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">Assessment of high-frequency indicators of the public sentiment.</span><br style="color: rgb(80, 80, 80); font-size: 16px;">
<br style="color: rgb(80, 80, 80); font-size: 16px;">
<span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">The subject of the research is a quantitative assessment of the sentiment of web users based on Russian data.</span><br style="color: rgb(80, 80, 80); font-size: 16px;">
<br style="color: rgb(80, 80, 80); font-size: 16px;">
<span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">The novelty of the study is the assessment of inflation expectations, sentiments in the foreign exchange market and indices of economic conditions using structured and unstructured internet data. Methods: topic modeling; machine learning methods and econometric methods of time series analysis.</span><br style="color: rgb(80, 80, 80); font-size: 16px;">
<br style="color: rgb(80, 80, 80); font-size: 16px;">
<span style="color: rgb(80, 80, 80); font-size: 16px; font-style: normal; font-weight: 400;">The study is based on data for Russia in 2014-2021. The study shows that social media posts, search queries and online news articles can be good proxy variables for the economic agents’ expectations. We construct three types of public confidence indicators based on internet data: inflation expectations; sentiment in the foreign exchange market and index of economic conditions. The results of econometric analysis indicate that the quality of macroeconomic performance models with sentiment indicators is higher than without these indicators. Additionally, indicators based on VK posts, RBC news articles and Google Trends search queries are more informative compared to comments. The main conclusion of the study is that internet data can improve the quality of macroeconomic performance models. In a further study, we plan to expand the list of indicators of the sentiment of economic agents and to evaluate advanced time series models</span></p>
== Full document ==
<pdf>Media:Draft_Семенов_303445714-4918-document.pdf</pdf>
Return to Gracheva Семенов 2022a.
Published on 30/11/22
Submitted on 22/11/22
Licence: CC BY-NC-SA license
Are you one of the authors of this document?