You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
2
3
<span id='_Hlk482186465'></span><div id="_Hlk482180625" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
4
U. Argarate<sup>a</sup>, E. Arregi<sup>a</sup>, G. J. Acosta<sup>a</sup>, M. Baskaran<sup>b</sup>, </div>
5
6
<div id="_GoBack" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
7
J. Aurrekoetxea<sup>b</sup>, L. Aretxabaleta<sup>b</sup></div>
8
9
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
10
<span style="text-align: center; font-size: 75%;"><sup>a</sup>Fagor Arrasate-Koniker, 20500, Arrasate,  BasqueCountry</span></div>
11
12
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
13
<span style="text-align: center; font-size: 75%;"><sup>b</sup>Mondragon Goi Eskola Politeknikoa, 20500, Arrasate, Basque Country</span></div>
14
15
{| style="width: 87%;border-collapse: collapse;" 
16
|-
17
|  colspan='2'  style="vertical-align: top;"|<big>Caracterización del proceso CRTM aplicado al refuerzo de una puerta</big>
18
|-
19
|  style="border-bottom: 1pt solid black;vertical-align: top;"|<span style="text-align: center; font-size: 75%;"> [[Image:Argarate_et_al_2019a-image1.png|54px]] </span>
20
|  style="vertical-align: top;"|
21
|-
22
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;vertical-align: top;"|<span id='_Hlk482179870'></span><span style="text-align: center; font-size: 75%;">Historia del artículo:</span>
23
24
<span style="text-align: center; font-size: 75%;">Recibido 5 de Mayo 2017</span>
25
26
<span style="text-align: center; font-size: 75%;">En la versión revisada 5 de Mayo 2017</span>
27
28
<span style="text-align: center; font-size: 75%;">Aceptado 31 de Mayo 2017</span>
29
30
<span style="text-align: center; font-size: 75%;">Accesible online 21 de Junio 2017 </span>
31
|  rowspan='4' style="vertical-align: top;"|<span style="text-align: center; font-size: 75%;">La industria automovilística ya se beneficia en cierta medida de los composites desde hace varias décadas, sobre todo para aplicaciones estructurales no primarias. Tecnologías como GMT, LFT o SMC se utilizan para fabricar componentes del interior, piezas funcionales o piezas de carrocería, con estándares de productividad y precios muy competitivos. Pero a pesar de estas aplicaciones exitosas, su expansión a piezas más estructurales no es posible por las limitadas propiedades de los materiales y en gran medida porque los procesos e instalaciones de fabricación actuales no están preparados para la fabricación en masa.</span>
32
33
<span style="text-align: center; font-size: 75%;">Cuando se pretende fabricar piezas con elevados contenidos en fibra y/o piezas de grandes dimensiones, el incremento del contenido en fibra disminuye la permeabilidad de la preforma, necesitando mayores tiempos de llenado, y generando problemas de impregnación y elevados contenidos en poros. A fin de resolver estos inconvenientes asociados al RTM convencional se han explorado diferentes alternativas: aumentar la presión de inyección, inyectar por múltiples entradas o reducir la viscosidad de la resina entre otras. Una de las más prometedoras es la combinación del RTM con la compresión, denominada CRTM (</span><span style="text-align: center; font-size: 75%;">Compression RTM). A diferencia del RTM convencional, el molde se mantiene parcialmente abierto en la fase de inyección, generando un espacio no ocupado por las fibras que ejerce de camino preferente de flujo para la resina sin necesidad de penetrar en la preforma.</span>
34
35
<span style="text-align: center; font-size: 75%;">El objetivo del proyecto ha sido caracterizar del proceso CRTM y aplicar este conocimiento en la fabricación de un refuerzo lateral de puerta.</span>
36
37
38
|-
39
|  style="border-top: 1pt solid black;vertical-align: top;"|<span style="text-align: center; font-size: 75%;">Palabras clave:</span>
40
41
<span style="text-align: center; font-size: 75%;">Advanced RTM</span>
42
43
<span style="text-align: center; font-size: 75%;">CFRP</span>
44
|-
45
|  style="border-top: 1pt solid black;vertical-align: top;"|
46
|-
47
|  colspan='2'  style="vertical-align: top;"|<big>Characterization of the CRTM process applicated to a door reinforcement</big>
48
|-
49
|  style="border-bottom: 1pt solid black;vertical-align: top;"|<span style="text-align: center; font-size: 75%;"> [[Image:Argarate_et_al_2019a-image2.png|54px]] </span>
50
|  style="vertical-align: top;"|
51
|-
52
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;vertical-align: top;"|<span style="text-align: center; font-size: 75%;">Keywords:</span>
53
54
<span style="text-align: center; font-size: 75%;">Advanced RTM</span>
55
56
<span style="text-align: center; font-size: 75%;">CFRP</span>
57
|  rowspan='2' style="vertical-align: top;"|<span style="text-align: center; font-size: 75%;">The automotive industry has benefited to some extent from composites for several decades, especially for non-primary structural applications. Technologies such as GMT, LFT or SMC are used to manufacture interior components, functional parts or body parts, with productivity standards and very competitive prices. But despite these successful applications, their expansion to more structural parts is not possible because of the limited properties of the materials and largely because the current manufacturing processes and facilities are not ready for mass manufacturing.</span>
58
59
<span style="text-align: center; font-size: 75%;">When it is intended to manufacture pieces with high fiber contents and / or large pieces, the increase in fiber content decreases the permeability of the preform, necessitating longer filling times, and generating impregnation problems and high pore contents. In order to solve these drawbacks associated with conventional RTM, different alternatives have been explored: increasing the injection pressure, injecting through multiple entries or reducing the viscosity of the resin among others. One of the most promising is the combination of RTM and compression, called CRTM (Compression RTM). Comparing with conventional RTM, the mold remains partially open in the injection phase, generating a space not occupied by the fibers that exerts a preferred flow path for the resin without having to penetrate the preform.</span>
60
61
<span style="text-align: center; font-size: 75%;">The objective of the project has been to characterize the CRTM process and apply this knowledge in the manufacture of a side door reinforcement.</span>
62
63
64
|-
65
|  style="border-top: 1pt solid black;vertical-align: top;"|
66
|}
67
68
69
=='''1''' Introducción==
70
71
<span id='_Hlk482284890'></span>The main project drivers, have been CO<sub>2</sub> emission restrictions and the potentiality of composite materials(CFRP) for saving weight and improve other characteristics like; impact energy dissipation, specific stiffness and strength and fatigue resistance [1-2].
72
73
Project challenges have been to get a competitive manufacturing process and installation that will be able to get short cycle time, good quality, repeatability and high automation level. Finally, the process should be validated with a real part; in this case, a door reinforcement.
74
75
=='''2''' RTM variants. Cost analysis comparison==
76
77
<span id='_Hlk482284917'></span>The starting point of the project was to analyze with a real case study and using simulation like tool, the cost of this process compared with other RTM variants [3].
78
79
[[Image:Argarate_et_al_2019a-image5.png|600px]]
80
81
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
82
<span style="text-align: center; font-size: 75%;">'''Figure 1.''' Case Study.</span></div>
83
84
Mold filling simulations have been carried out using PAM-RTM software. The number of injection gates affects the filling time and is a key issue when optimizing the RTM process. However, as the aim was to compare the RTM variants, a single injection point for CRTM, and 4 inlet points for the RTM and HP-RTM have been set. The positions of the injection points, however, have been optimized in order to reduce the filling time as much as possible.
85
86
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
87
<span style="text-align: center; font-size: 75%;"> [[Image:Argarate_et_al_2019a-image6.png|240px]] </span></div>
88
89
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
90
<span style="text-align: center; font-size: 75%;">'''Figure 2. '''Injection pressure</span></div>
91
92
[[Image:Argarate_et_al_2019a-image7.png|600px]]
93
94
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
95
<span style="text-align: center; font-size: 75%;">'''Figure 3. '''Filling and impregnation in each variant.</span></div>
96
97
The cost of the presses, the injection machine, the molds, the robots and the occupied plant area are reported in the shown table. The cost of the presses for each RTM variant is calculated using the clamping force and if parallelism control is needed or not. Press speeds are considered to be the same for all processes, as there’s no influence when working with a close mould.
98
99
The final roof costs, with the main contributions factors, are summarized in the shown table. Taking the CRTM as reference, roof cost manufactured by HP-RTM is 2.5 times higher, and RTM one 5 times. The equipment and tooling costs, and specially the number of units, are the most relevant contributors, since they represent approximately the 90% of the total cost at the three studied RTM variants. Otherwise, the number of presses has a direct effect on the cell area, so the incidence could be stated as high as 94%. From the energy-efficient point of view CRTM is also the best, while RTM is the less competitive.
100
101
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
102
<span style="text-align: center; font-size: 75%;">''' [[Image:Argarate_et_al_2019a-image8.png|330px]] '''</span></div>
103
104
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
105
<span style="text-align: center; font-size: 75%;">'''Figure 4. '''Cost comparison of each process equipment.</span></div>
106
107
As a conclusion, we can say that:
108
109
- CRTM is the fastest process.
110
111
- Investment level is the lowest.
112
113
- Bigger Plant area for RTM and HP-RTM than for CRTM.
114
115
- Part cost considering investment payback and energy consumption in CRTM is much lower.
116
117
- CRTM has limitations for complex geometrical parts.
118
119
=='''3''' CRTM process characterization==
120
121
Fagor Arrasate wanted to do a depth analysis of the CRTM process and take a more fundamental knowledge of the physics of impregnation: the compression impregnation step leads to an interaction of the preform compressibility and the flow front which is usually not considered in conventional RTM. The thickness of the gap on the preform during injection or mold closure strategy during compression must be carefully selected according to the objective (minimize the filling time or reduce the closing force) [4-7]. Therefore, to develop this innovative process it is necessary to use a holistic approach encompassing both mold design and configuration of the press, an understanding of variable preform compaction by the through-thickness flow front using advanced experimental techniques (materials characterization, process control and monitoring parameters) and robust computational models [8].
122
123
The material that has been used:
124
125
-Epoxy (XB 3585 / Aradur 3475, HUNSTMAN)
126
127
-Biaxial fabric (HPT 610 C090, 50k, SGL)
128
129
-Binder (Araldite LT 3366 BD)
130
131
<span id='_Hlk482190664'></span>
132
133
==='''3.1''' Injection stage===
134
135
By simulation and experimental analysis there have been studied the next parameters:
136
137
-Resin viscosity
138
139
-Preform permeability
140
141
-Gap thickness
142
143
-Injection pressure
144
145
-Injection flow-rate
146
147
-Injected resin volume
148
149
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
150
 [[Image:Argarate_et_al_2019a-image9.png|510px]] </div>
151
152
<div id="_Hlk482278511" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
153
<span style="text-align: center; font-size: 75%;">'''Figure 5. '''Injection test bench'''.'''</span></div>
154
155
After several trials, we can say that there are two injection patterns:
156
157
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
158
 [[Image:Argarate_et_al_2019a-image10-c.png|600px]] </div>
159
160
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
161
<span style="text-align: center; font-size: 75%;">'''Figure 6. '''Two impregnation patterns'''.'''</span></div>
162
163
At the firs one there is a bottom impregnation an at the second one there isn´t.
164
165
The main conclusion obtained from these characterization is that resin distribution depends mainly on:
166
167
-Gap thickness.
168
169
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
170
-Permeability of the preform through thickness.</div>
171
172
==='''3.2''' Compression stage===
173
174
By simulation and experimental analysis there have been studied the next parameters:
175
176
-Initial resin distribution.
177
178
-Compression speed.
179
180
-Compression pressure.
181
182
[[Image:Argarate_et_al_2019a-image11.png|600px]]
183
184
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
185
<span style="text-align: center; font-size: 75%;">'''Figure 7. '''Compression test bench.</span></div>
186
187
The main conclusion obtained from these characterization is that Compression time and loads depends mainly on:
188
189
-Resin volume.
190
191
-Speed control of the compression phase.
192
193
The stroke of the gap should be done us fast is it possible in order to save time but at the stroke of the preform you can´t save so much time so, as the force is bigger, not worth to go so fast.  [[Image:Argarate_et_al_2019a-image12.png|600px]]
194
195
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
196
<span style="text-align: center; font-size: 75%;">'''Figure 8. '''Compression force vs speed.</span></div>
197
198
=='''4''' Door reinforcement==
199
200
An anti-intrusion bar has been designed and manufactured for the door of a car. It is a type demonstrator, not a real component, which nevertheless has almost all the geometric characteristics of an actual component of this type. The design process was carried out based on finite elements and the manufacturing process was also designed using the PAM-RTM software. In addition, a prototype was developed before launching the fabrication of the metal mold, using a mold made in 3D printing.
201
202
[[Image:Argarate_et_al_2019a-image13.png|600px]]
203
204
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
205
<span style="text-align: center; font-size: 75%;">'''Figure 9. '''Anti-intrusion bar designing process.</span></div>
206
207
Once the mold was manufactured, different filling strategies were analyzed; both by RTM and CRTM. At the next figure, it can be seen that for this case and with the available resources, it was not possible to fill the mold using traditional RTM either because of the low permeability of the preform or because of the appearance of preferential filling paths that prevented the impregnation of certain areas of the mold. In contrast, using CRTM and using different strategies, the mold was adequately filled.
208
209
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
210
 [[Image:Argarate_et_al_2019a-image14.png|600px]] </div>
211
212
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
213
<span style="text-align: center; font-size: 75%;">'''Figure 10. '''Anti-intrusion trials with different strategies.</span></div>
214
215
<span id='_Hlk482283183'></span>
216
217
=='''5''' New press and cell for Advanced CRTM==
218
219
A new press architecture has been developed adjusted for composite processes and with a specific control system customized for CRTM process. Other characteristics of the press are:
220
221
-Reduced Height.
222
223
-Integrated Parallelism Control.
224
225
-Bolster Deformation Control.
226
227
-Rapid Closing Speed of the Slide.
228
229
-Short Pressure Build up Time.
230
231
-Reduced Energy Consumption.
232
233
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
234
<span style="text-align: center; font-size: 75%;">''' [[Image:Argarate_et_al_2019a-image15.png|294px]] '''</span></div>
235
236
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
237
<span style="text-align: center; font-size: 75%;">'''Figure 11. '''New press architecture.</span></div>
238
239
In addition, and in order to prepare a complete solution for manufacturing parts in CRTM, Fagor Arrasate has defined a manufacturing cell.
240
241
[[Image:Argarate_et_al_2019a-image16.png|474px]]
242
243
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
244
<span style="text-align: center; font-size: 75%;">'''Figure 12. '''CRTM manufacturing cell.</span></div>
245
246
=='''6''' Conclusions==
247
248
-CRTM is the most suitable manufacturing process from cost, energy consumption and cycle time point of view.
249
250
-Specific CRTM process knowledge has been developed and has been implemented in our press and cell control.
251
252
-A tight cell solution has been defined for CRTM.
253
254
==References==
255
256
[1] Bein T, Bös J, Mayer D, Melz T. ''Advanced Materials in Automotive Engineering''. 2012.
257
258
[2] P Feraboli, A. Masini. ''Advanced composites for the body and chassis of a production high''. ''Performance car.'' Int J Veh Des 2007;Volume 44.
259
260
[3] M. Baskaran, I. Ortiz de Mendibil M, Sarrionandia M, Aurrekoetxea J, Acosta J, Argarate U,Chico D. ''Manufacturing cost comparison of RTM, HP-RTM and CRTM for an automotive roof''.16<sup>TH</sup> Eur Conf Compos Mater Seville, Spain, 22-26 June 2014 n.d.:22–6.
261
262
[4] Simacek P, Advani SG, Iobst S. ''Modeling Flow in Compression Resin Transfer Molding for Manufacturing of Complex Lightweight High-Performance Automotive Parts''. J Compos Mater 2008;42:2523–45.
263
264
[5] Bhat P, Merotte J, Simacek P, Advani SG. ''Process analysis of compression resin transfer molding''. Compos Part A Appl Sci Manuf 2009;40:431–41.
265
266
[6] Walbran W, Verleye B, Bickerton S, Kelly P. ''Reducing setup costs: tooling force prediction in resin transfer moulding ( RTM ) and compression RTM of Mechanical Engineering'' , 2 Department of Engineering Science , n.d.:1–18.
267
268
[7] Merotte J, Simacek P, Advani SG. ''Flow analysis during compression of partially impregnated fiber preform under controlled force''. Compos Sci Technol 2010;70:725–33.
269
270
[8] Shojaei A. ''Numerical simulation of three-dimensional flow and analysis of filling process in compression resin transfer moulding''. Compos Part A Appl Sci Manuf 2006;37:1434–50.
271

Return to Argarate et al 2019a.

Back to Top
GET PDF

Document information

Published on 14/04/19
Accepted on 14/04/19
Submitted on 14/04/19

Volume 03 - Comunicaciones Matcomp17 (2019), Issue Núm. 2 - Aplicaciones, uniones y reparaciones de los materiales compuestos, 2019
DOI: 10.23967/r.matcomp.2019.04.008
Licence: Other

Document Score

0

Views 1
Recommendations 0

Share this document

Keywords

claim authorship

Are you one of the authors of this document?