You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
3
4
<span id='_Hlk51705514'></span><span id='_Hlk41492253'></span><span id='_Hlk55074535'></span>
5
6
==Consolidation of soil induced by pile installation considering disturbance effect==
7
8
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
9
by</div>
10
11
==Authors: E-mail:==
12
13
<span id='_Hlk82103515'></span><span id='_Hlk82103504'></span>Ping Li<sup>1</sup> [mailto:geopingli@163.com geopingli@163.com]
14
15
Zhijian Chen<sup>1</sup> [mailto:zhijianchen_geo@163.com zhijianchen_geo@163.com]
16
17
Yi Ding<sup>2</sup> [mailto:nsscm_yiding@163.com nsscm_yiding@163.com]
18
19
==Affiliations:==
20
21
<sup>1</sup>College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China.
22
23
<span id='OLE_LINK4'></span><sup>2</sup> Nanjing Supervision Station for Construction Market, Nanjing 210098, China.
24
25
<span id='_Hlk73473327'></span>'''Corresponding author: '''Zhijian Chen<br/>
26
-->
27
28
===Abstract===
29
30
<span id='_Hlk51712226'></span><span id='_Hlk52804842'></span><span id='_Hlk55329738'></span><span id='_Hlk76474676'></span>In practice, the consolidation of soil around the pile has a great influence on the time-dependent bearing capacity of pile. However, most of the consolidation theory of soil around the pile neglects the disturbance effect of pile-driving on surrounding soil and regards the soil as homogeneous, which overestimates the consolidation efficiency of the soil, and obtains a higher pile bearing capacity. In view of this, a consolidation model of soil around a pipe pile considering soil disturbance effect is presented in this paper. Fourier transform and separation of variables are used to obtain the analytical solution, and then the solution is verified by degradation analysis and Finite Difference Method (FDM). Firstly, the radial and vertical distribution of excess pore pressure generated after pile-driving is analyzed. In the radial direction, the excess pore pressure decreases rapidly from the radius of pipe pile to the radius of the disturbed zone, then slowly decays to 0 from'' ''the radius of disturbed zone to the influencing radius of pipe pile. In the vertical direction, the excess pore pressure along the vertical direction grows linearly. Subsequently, the variation of the average excess pore pressure at the pile-soil interface with the permeability coefficient and radius of disturbance zone are analyzed. The permeability coefficient of disturbance zone has a remarkable negative effect on the excess pore pressure during the whole consolidation period. Increasing the radius of the disturbance zone will hinder the dissipation of the excess pore pressure in the intermediate and later stages. Finally, the validity of the proposed analytical solution is illustrated by comparing with the laboratory results.
31
32
<span id='_Hlk73473526'></span>Keyword: pipe pile; disturbance effect; consolidation theory; analytical solution.<br/>
33
34
<span id='_Hlk55074542'></span>
35
36
===1. Introduction===
37
38
Coastal areas are mostly soft soil foundation, which needs to be treated before construction. Static pile technique is a common method to deal with soft soil foundation, which has been widely used in the world (Hwang et al. 2001; Mabsout and Tassoulas 1994; Tran et al. 2011). Although the bearing capacity of the foundation can be improved by pressing the static pile into the soil by the static pile pressing machine, it is inevitable to squeeze the soil in the process of pile installation, resulting in disturbance of the surrounding soil around the static pile (Azimi et al. 2021; Fattah et al. 2016; Mahmood and Qadir 2018). Further, pile installation could produce high excess pore pressure, which results in the slow development of pile bearing capacity (Dijkstra et al. 2011). High excess pore pressure could also cause some negative effects on the pile and surrounding soil, including deviation of pile and ground heave (Li et al. 2017; Randolph and Wroth 1979; Xu et al. 2006). Therefore, it is necessary to put forward a set of prediction scheme to evaluate the excess pore pressure after pile installation, so that engineers can deal with the risks in advance.
39
40
<span id='_Hlk58238552'></span>Axisymmetric consolidation model is often used to evaluate the dissipation of excess pore pressure after pile-driving. (Randolph and Wroth 1979) first proposed an analytical solution of axisymmetric consolidation around an impermeable pile considering radial drainage through pile-driving test. Subsequently, in the theoretical study on the axisymmetric consolidation of the soil around the impermeable pile, (Guo 2000) proposed the analytical solution considering viscoelastic soil, and (Gao and Shi 2008) proposed the analytical solution considering both radial and vertical drainage. Recently, a permeable pile technique has been developed to accelerate the consolidation rate of foundation soil. Therefore, some scholars have further studied axisymmetric consolidation around a permeable pile (Chen et al. 2020; Wang et al. 2019).
41
42
<span id='OLE_LINK3'></span><span id='_Hlk73534518'></span>It should be emphasized that all above-mentioned studies are limited to undisturbed soils. In fact, the existing field data and test data show that the disturbance effect on the soil around the pile is inevitable in the process of pile installation (Bozozuk et al. 1978; Fang et al. 2020). In general, in the process of pile installation, radial compression will occur to the soil around the pile, leading to the decrease of the radial permeability coefficient of the disturbed soil, which will lead to the decrease of the radial drainage performance of the soil. When the vertical drainage distance is long, the soil drainage path is mainly radial. In this case, the disturbance effect of soil should not be ignored.
43
44
Similar to pile installation, the prefabricated vertical drains (i.e., PVDs) installation has been fully studied (Li et al. 2017; Massarsch and Wersäll 2013; Nazir et al. 2017; Zhou and Chai 2017). Compared with the smear effect by PVD installation (Chen et al. 2020; Deng et al. 2017; Holtz et al. 1991; Tian et al. 2019; Wang et al. 2020), the disturbance effect induced by pile installation is much more significant due to its bigger radius. Thus, it is of significance to study the consolidation of soil around the pile considering disturbance effect. Additionally, the growth rate of pile bearing capacity could be overestimated by using the current consolidation model, which leads to some unknown risks (e.g., excessive settlement and insufficient bearing capacity) and reducing the accuracy of building’s reliability analysis (Li et al. 2017; Luo and Dong 2019; Soderberg 1962). Therefore, whether it is the study of consolidation theory of soil around pile or the subsequent analysis of pile bearing capacity, the study of consolidation theory considering disturbance effect is of great significance. Unfortunately, there is no an analytical solution to axisymmetric consolidation of soil considering the disturbance effect around a pipe pile.
45
46
<span id='_Hlk73106423'></span><span id='_Hlk73000322'></span>In order to better predict the dissipation process of excess pore pressure and the increase process of pile bearing capacity after piling, it is necessary to further optimize the existing consolidation theory. On the condition that the disturbance effect cannot be ignored, this paper presents an analytical solution to axisymmetric consolidation of soil considering the disturbance effect around a pipe pile on the basis of previous studies. Fourier transform and separation of variables are used to solve the problem, and the solution is calibrated by degradation analysis and FEM. Subsequently, the distribution of excess pore pressure along vertical and radial directions are analyzed by graphical interpretation. Moreover, the concept of the dimensionless average excess pore pressure at pile-soil interface is put forward and the influence of disturbance parameters on it is analyzed. Most importantly, the validity of the solution is demonstrated by comparing with test data.
47
48
<span id='_Hlk55074582'></span>
49
50
===2. Mathematical model===
51
52
====2.1 Model description====
53
54
<span id='_Hlk73124913'></span><span id='_Hlk52039771'></span>As shown in Fig. 1, all involved parameters include the depth of foundation,  <math>H</math> , the radius of pipe pile,  <math>r_\mbox{0}</math> , the radius of the disturbed zone,  <math>r_\mbox{d}</math> , and the influencing radius of pipe pile,  <math>r_\mbox{e}</math> . In this model, the following assumptions are given:
55
56
(1) The soil around the pipe pile is elastic saturated soil, and the pipe pile is permeable pile;
57
58
(2) The soil around the pile only has disturbance effect in radial direction;
59
60
(3) The soil parameters used in the model remain unchanged during the consolidation process.
61
62
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
63
 [[Image:Draft_Li_939997522-image5.png|246px]] </div>
64
65
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
66
Fig. 1 Schematic diagram of consolidation model for the soil around a pipe pile</div>
67
68
<span id='_Hlk51859672'></span>
69
70
====2.2 Governing equations====
71
72
<span id='_Hlk52300410'></span>According to the findings of (Randolph and Wroth 1979), the excess pore pressure generated during pile-driving will dissipate in both radial and vertical directions. Therefore, the following governing equations are established:
73
74
{| class="formulaSCP" style="width: 100%; text-align: center;" 
75
|-
76
| 
77
{| style="text-align: center; margin:auto;" 
78
|-
79
| <span id='ZEqnNum681049'></span>  [[Image:Draft_Li_939997522-image6.png|306px]]
80
|}
81
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
82
|}
83
84
85
<span id='_Hlk58238881'></span><span id='_Hlk55377739'></span>where  <math>u_\mbox{1}</math> and  <math>u_\mbox{2}</math> are the excess pore pressure of disturbed and undisturbed zones, respectively;  <math>C_\mbox{h}</math> (i.e.,  <math>k_\mbox{h}/\left({\gamma }_\mbox{w}m_\mbox{v}\right)</math> ) and  <math>C_\mbox{d}</math> (i.e.,  <math>k_\mbox{d}/\left({\gamma }_\mbox{w}m_\mbox{v}\right)</math> ) represent the consolidation coefficient in radial direction of undisturbed and disturbed zones, respectively;  <math>C_\mbox{v}</math> (i.e.,  <math>k_\mbox{v}/\left({\gamma }_\mbox{w}m_\mbox{v}\right)</math> ) represent the consolidation coefficient in vertical direction of the undisturbed zone;  <math>k_\mbox{h}</math> and  <math>k_\mbox{d}</math> represent the permeability coefficient in radial direction of disturbed and undisturbed zones, respectively;  <math>k_\mbox{v}</math> represent the permeability coefficient in vertical direction of the influencing zone;  <math>m_\mbox{v}</math> is the volume compression coefficient of soil;  <math>{\gamma }_\mbox{w}</math> is the unit weight of water;  <math>r</math> and  <math>z</math> are the radial distance from the center of pile and the depth from the ground surface, respectively; and  <math>t</math> is consolidation time.
86
87
<span id='_Hlk48922923'></span>
88
89
====2.3 Initial and boundary conditions====
90
91
The initial pore pressure distribution of soil around a pile after pile-driving can generally be obtained through numerical simulation or experimental test (Chen et al. 2014; de Chaunac and Holeyman 2018; Lehane and Gill 2004). Here, the initial excess pore pressure is generalized expressed as
92
93
{| class="formulaSCP" style="width: 100%; text-align: center;" 
94
|-
95
| 
96
{| style="text-align: center; margin:auto;" 
97
|-
98
| <span id='ZEqnNum823648'></span>  <math>{u_1\vert }_{t=0}={u_2\vert }_{t=0}=u_0\left(r,z\right)</math>
99
|}
100
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
101
|}
102
103
104
The pile is impermeable and the excess pore pressure outside the influencing radius  <math>r_\mbox{e}</math> affected by pipe pile is ignored, it yields
105
106
{| class="formulaSCP" style="width: 100%; text-align: center;" 
107
|-
108
| 
109
{| style="text-align: center; margin:auto;" 
110
|-
111
| <span id='ZEqnNum743846'></span>  <math>{\frac{\partial u_1}{\partial r}\vert }_{r=r_0}={u_2\vert }_{r=r_\mbox{e}}=</math><math>0</math>
112
|}
113
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
114
|}
115
116
117
<span id='OLE_LINK1'></span><span id='OLE_LINK2'></span>The interface between the disturbed and undisturbed zones needs to satisfy the flow continuity condition, that is
118
119
{| class="formulaSCP" style="width: 100%; text-align: center;" 
120
|-
121
| 
122
{| style="text-align: center; margin:auto;" 
123
|-
124
| <span id='ZEqnNum201641'></span>  <math>\begin{array}{c}
125
{u_1\vert }_{r=r_\mbox{d}}={u_2\vert }_{r=r_\mbox{d}}\\
126
k_\mbox{d}{\frac{\partial u_1}{\partial r}\vert }_{r=r_\mbox{d}}=k_\mbox{h}{\frac{\partial u_2}{\partial r}\vert }_{r=r_\mbox{d}}
127
\end{array}</math>
128
|}
129
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
130
|}
131
132
133
The top of the ground is permeable, while the bottom is impermeable. Therefore, the vertical boundary can be expressed as
134
135
{| class="formulaSCP" style="width: 100%; text-align: center;" 
136
|-
137
| 
138
{| style="text-align: center; margin:auto;" 
139
|-
140
| <span id='ZEqnNum798795'></span>  <math>\begin{array}{c}
141
{u_1\vert }_{z=0}={\frac{\partial u_1}{\partial z}\vert }_{z=H}=0\\
142
{u_2\vert }_{z=0}={\frac{\partial u_2}{\partial z}\vert }_{z=H}=0
143
\end{array}</math>
144
|}
145
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
146
|}
147
148
149
====2.4 Solving procedures====
150
151
According to the boundary condition of Eq. <span id='cite-ZEqnNum798795'></span>[[#ZEqnNum798795|(5)]], the finite Fourier sine transform is performed on the governing equation (i.e., Eq. <span id='cite-ZEqnNum681049'></span>[[#ZEqnNum681049|(1)]]) and its remaining solving conditions (i.e., Eq. <span id='cite-ZEqnNum823648'></span>[[#ZEqnNum823648|(2)]] ~ <span id='cite-ZEqnNum201641'></span>[[#ZEqnNum201641|(4)]]), which yields
152
153
{| class="formulaSCP" style="width: 100%; text-align: center;" 
154
|-
155
| 
156
{| style="text-align: center; margin:auto;" 
157
|-
158
| <span id='ZEqnNum149568'></span>  <math>\begin{array}{c}
159
\begin{array}{cc}
160
\frac{\partial {\overline{u}}_1}{\partial t}=C_\mbox{d}\left(\frac{{\partial }^2{\overline{u}}_1}{\partial r^2}+\frac{1}{r}\frac{\partial {\overline{u}}_1}{\partial r}\right)-C_\mbox{v}{\left(\frac{N_n}{H}\right)}^2{\overline{u}}_1, & r_\mbox{0}\leq r\leq r_\mbox{d};
161
\end{array}\\
162
\begin{array}{cc}
163
\frac{\partial {\overline{u}}_2}{\partial t}=C_\mbox{h}\left(\frac{{\partial }^2{\overline{u}}_2}{\partial r^2}+\frac{1}{r}\frac{\partial {\overline{u}}_2}{\partial r}\right)-C_\mbox{v}{\left(\frac{N_n}{H}\right)}^2{\overline{u}}_2, & r_\mbox{d}\leq r\leq r_\mbox{e}.
164
\end{array}
165
\end{array}</math>
166
|}
167
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
168
|}
169
170
{| class="formulaSCP" style="width: 100%; text-align: center;" 
171
|-
172
| 
173
{| style="text-align: center; margin:auto;" 
174
|-
175
| <span id='ZEqnNum969494'></span>  <math>{{\overline{u}}_1\vert }_{t=0}={{\overline{u}}_2\vert }_{t=0}=</math><math>{\int }_0^Hu_0\left(r,z\right)sin\frac{N_nz}{H}\mbox{d}z</math>
176
|}
177
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
178
|}
179
180
{| class="formulaSCP" style="width: 100%; text-align: center;" 
181
|-
182
| 
183
{| style="text-align: center; margin:auto;" 
184
|-
185
| <span id='ZEqnNum791600'></span>  <math>{\frac{\partial {\overline{u}}_1}{\partial r}\vert }_{r=r_0}=</math><math>{{\overline{u}}_2\vert }_{r=r_\mbox{e}}=0</math>
186
|}
187
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
188
|}
189
190
{| class="formulaSCP" style="width: 100%; text-align: center;" 
191
|-
192
| 
193
{| style="text-align: center; margin:auto;" 
194
|-
195
| <span id='ZEqnNum399916'></span>  <math>\begin{array}{c}
196
{{\overline{u}}_1\vert }_{r=r_\mbox{d}}={{\overline{u}}_2\vert }_{r=r_\mbox{d}}\\
197
k_\mbox{d}{\frac{\partial {\overline{u}}_1}{\partial r}\vert }_{r=r_\mbox{d}}=k_\mbox{h}{\frac{\partial {\overline{u}}_2}{\partial r}\vert }_{r=r_\mbox{d}}
198
\end{array}</math>
199
|}
200
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
201
|}
202
203
204
where  <math>{\overline{u}}_i={\int }_0^Hu_isin\frac{N_nz}{H}\mbox{d}z,\mbox{ }i=</math><math>1,2</math> ; and  <math>N_n=\left(2n-1\right)\mbox{π}/2</math> .
205
206
According to the separation of variables method,  <math>{\overline{u}}_1</math> and  <math>{\overline{u}}_2</math> can be written as
207
208
{| class="formulaSCP" style="width: 100%; text-align: center;" 
209
|-
210
| 
211
{| style="text-align: center; margin:auto;" 
212
|-
213
| <span id='ZEqnNum108209'></span>  <math>\begin{array}{c}
214
{\overline{u}}_1=R_{1mn}\left(r\right)T_{1mn}\left(t\right)\\
215
{\overline{u}}_2=R_{2mn}\left(r\right)T_{2mn}\left(t\right)
216
\end{array}</math>
217
|}
218
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
219
|}
220
221
222
where  <math>R_{1mn}</math> and  <math>R_{2mn}</math> are functions of  <math>r</math> ;  <math>T_{1mn}</math> and  <math>T_{2mn}</math> are functions of  <math>t</math> .
223
224
Substituting Eq. (10) into Eq. (6), one can obtain
225
226
{| class="formulaSCP" style="width: 100%; text-align: center;" 
227
|-
228
| 
229
{| style="text-align: center; margin:auto;" 
230
|-
231
| <span id='ZEqnNum505543'></span>  <math>\begin{array}{c}
232
\frac{\frac{\mbox{d}T_{1mn}}{\mbox{d}t}}{C_\mbox{d}T_{1mn}}+\frac{C_\mbox{v}}{C_\mbox{d}}{\alpha }_n^2=\frac{1}{R_{1mn}}\left(\frac{\mbox{d}^2R_{1mn}}{\mbox{d}r^2}+\frac{1}{r}\frac{\mbox{d}R_{1mn}}{\mbox{d}r}\right)=-{\beta }_{1mn}^2\\
233
\frac{\frac{\mbox{d}T_{2mn}}{\mbox{d}t}}{C_\mbox{h}T_{2mn}}+\frac{C_\mbox{v}}{C_\mbox{h}}{\alpha }_n^2=\frac{1}{R_{2mn}}\left(\frac{\mbox{d}^2R_{2mn}}{\mbox{d}r^2}+\frac{1}{r}\frac{\mbox{d}R_{2mn}}{\mbox{d}r}\right)=-{\beta }_{2mn}^2
234
\end{array}</math>
235
|}
236
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
237
|}
238
239
240
where  <math>{\alpha }_n=N_n/H</math> ; and  <math>{\beta }_{1mn}</math> and  <math>{\beta }_{2mn}</math> are the separation constants.
241
242
It can be found that Eq. <span id='cite-ZEqnNum505543'></span>[[#ZEqnNum505543|(11)]] is an ordinary differential equation, and the solution to Eq. <span id='cite-ZEqnNum505543'></span>[[#ZEqnNum505543|(11)]] can be easily obtained as follows
243
244
{| class="formulaSCP" style="width: 100%; text-align: center;" 
245
|-
246
| 
247
{| style="text-align: center; margin:auto;" 
248
|-
249
| <span id='ZEqnNum188101'></span>  <math>\begin{array}{c}
250
R_{1mn}=a_{1mn}\mbox{J}_0\left({\beta }_{1mn}r\right)+b_{1mn}\mbox{Y}_0\left({\beta }_{1mn}r\right)\\
251
T_{1mn}=c_{1mn}\mbox{e}^{-\left(C_\mbox{d}{\beta }_{1mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}
252
\end{array}</math>
253
|}
254
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
255
|}
256
257
{| class="formulaSCP" style="width: 100%; text-align: center;" 
258
|-
259
| 
260
{| style="text-align: center; margin:auto;" 
261
|-
262
| <span id='ZEqnNum833305'></span>  <math>\begin{array}{c}
263
R_{2mn}=a_{2mn}\mbox{J}_0\left({\beta }_{2mn}r\right)+b_{2mn}\mbox{Y}_0\left({\beta }_{2mn}r\right)\\
264
T_{2mn}=c_{2mn}\mbox{e}^{-\left(C_\mbox{h}{\beta }_{2mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}
265
\end{array}</math>
266
|}
267
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
268
|}
269
270
271
where  <math>\mbox{J}_0</math> ,  <math>\mbox{Y}_0</math> are the zero-order Bessel functions of the first- and second- kind, respectively.
272
273
Combining Eqs. <span id='cite-ZEqnNum188101'></span>[[#ZEqnNum188101|(12)]] and <span id='cite-ZEqnNum833305'></span>[[#ZEqnNum833305|(13)]],  <math>{\overline{u}}_1</math> and  <math>{\overline{u}}_2</math> can be rewritten as
274
275
{| class="formulaSCP" style="width: 100%; text-align: center;" 
276
|-
277
| 
278
{| style="text-align: center; margin:auto;" 
279
|-
280
| <span id='ZEqnNum354201'></span>  <math>\begin{array}{c}
281
{\overline{u}}_1=\sum_{m=1}^{\infty }\left[A_{1mn}\mbox{J}_0\left({\beta }_{1mn}r\right)+B_{1mn}\mbox{Y}_0\left({\beta }_{1mn}r\right)\right]\mbox{e}^{-\left(C_\mbox{d}{\beta }_{1mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}\\
282
{\overline{u}}_2=\sum_{m=1}^{\infty }\left[A_{2mn}\mbox{J}_0\left({\beta }_{2mn}r\right)+B_{2mn}\mbox{Y}_0\left({\beta }_{2mn}r\right)\right]\mbox{e}^{-\left(C_\mbox{h}{\beta }_{2mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}
283
\end{array}</math>
284
|}
285
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
286
|}
287
288
289
Substituting Eq. <span id='cite-ZEqnNum354201'></span>[[#ZEqnNum354201|(14)]] into the boundary condition of Eq. <span id='cite-ZEqnNum791600'></span>[[#ZEqnNum791600|(8)]], it yields
290
291
{| class="formulaSCP" style="width: 100%; text-align: center;" 
292
|-
293
| 
294
{| style="text-align: center; margin:auto;" 
295
|-
296
| <span id='ZEqnNum665918'></span>  <math>\begin{array}{c}
297
{\overline{u}}_1=\sum_{m=1}^{\infty }A_{1mn}R_1\left({\beta }_{1mn}r\right)\mbox{e}^{-\left(C_\mbox{d}{\beta }_{1mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}\\
298
{\overline{u}}_2=\sum_{m=1}^{\infty }A_{2mn}R_2\left({\beta }_{2mn}r\right)\mbox{e}^{-\left(C_\mbox{h}{\beta }_{2mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}
299
\end{array}</math>
300
|}
301
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
302
|}
303
304
305
where  <math>{\chi }_1\left({\beta }_{1mn}\right)=\frac{\mbox{J}_1\left({\beta }_{1mn}r_0\right)}{\mbox{Y}_1\left({\beta }_{1mn}r_0\right)}</math> ;  <math>{\chi }_2\left({\beta }_{2mn}\right)=\frac{\mbox{J}_0\left({\beta }_{2mn}r_\mbox{e}\right)}{\mbox{Y}_0\left({\beta }_{2mn}r_\mbox{e}\right)}</math> ;  <math>R_1\left({\beta }_{1mn}r\right)=\mbox{J}_0\left({\beta }_{1mn}r\right)-</math><math>{\chi }_1\left({\beta }_{1mn}\right)\mbox{Y}_0\left({\beta }_{1mn}r\right)</math> ; and  <math>R_2\left({\beta }_{2mn}r\right)=\mbox{J}_0\left({\beta }_{2mn}r\right)-</math><math>{\chi }_2\left({\beta }_{2mn}\right)\mbox{Y}_0\left({\beta }_{2mn}r\right)</math> .
306
307
Substituting Eq. <span id='cite-ZEqnNum665918'></span>[[#ZEqnNum665918|(15)]] into the continuous boundary condition (i.e., Eq. <span id='cite-ZEqnNum399916'></span>[[#ZEqnNum399916|(9)]]), it yields
308
309
{| class="formulaSCP" style="width: 100%; text-align: center;" 
310
|-
311
| 
312
{| style="text-align: center; margin:auto;" 
313
|-
314
| <span id='ZEqnNum164985'></span>  <math>R_1\left({\beta }_{1mn}r_\mbox{d}\right)A_{1mn}=R_2\left({\beta }_{2mn}r_\mbox{d}\right)A_{2mn}</math>
315
|}
316
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
317
|}
318
319
320
and
321
322
{| class="formulaSCP" style="width: 100%; text-align: center;" 
323
|-
324
| 
325
{| style="text-align: center; margin:auto;" 
326
|-
327
| <span id='ZEqnNum741519'></span>  <math>\lbrace \begin{array}{c}
328
C_\mbox{d}{\beta }_{1mn}^2=C_\mbox{h}{\beta }_{2mn}^2\\
329
\frac{R_2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1\left({\beta }_{1mn}r_\mbox{d}\right)}=\frac{k_\mbox{h}{\beta }_{2mn}P_2\left({\beta }_{2mn}r_\mbox{d}\right)}{k_\mbox{d}{\beta }_{1mn}P_1\left({\beta }_{1mn}r_\mbox{d}\right)}
330
\end{array}</math>
331
|}
332
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
333
|}
334
335
336
where  <math>P_1\left({\beta }_{1mn}r\right)=\mbox{J}_1\left({\beta }_{1mn}r\right)-</math><math>{\chi }_1\left({\beta }_{1mn}\right)\mbox{Y}_1\left({\beta }_{1mn}r\right)</math> ; and  <math>P_2\left({\beta }_{2mn}r\right)=\mbox{J}_1\left({\beta }_{2mn}r\right)-</math><math>{\chi }_2\left({\beta }_{2mn}\right)\mbox{Y}_1\left({\beta }_{2mn}r\right)</math> .
337
338
Combined with Eq. <span id='cite-ZEqnNum164985'></span>[[#ZEqnNum164985|(16)]], Eq. <span id='cite-ZEqnNum665918'></span>[[#ZEqnNum665918|(15)]] can be rewritten as
339
340
{| class="formulaSCP" style="width: 100%; text-align: center;" 
341
|-
342
| 
343
{| style="text-align: center; margin:auto;" 
344
|-
345
| <span id='ZEqnNum775505'></span>  <math>\begin{array}{c}
346
{\overline{u}}_1=\sum_{m=1}^{\infty }A_{2mn}\frac{R_2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1\left({\beta }_{1mn}r_\mbox{d}\right)}R_1\left({\beta }_{1mn}r\right)\mbox{e}^{-\left(C_\mbox{d}{\beta }_{1mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}\\
347
{\overline{u}}_2=\sum_{m=1}^{\infty }A_{2mn}R_2\left({\beta }_{2mn}r\right)\mbox{e}^{-\left(C_\mbox{h}{\beta }_{2mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}
348
\end{array}</math>
349
|}
350
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
351
|}
352
353
354
<math>{\beta }_{1mn}</math> and  <math>{\beta }_{2mn}</math> can be solved with Eq. <span id='cite-ZEqnNum741519'></span>[[#ZEqnNum741519|(17)]]. Then, using the initial condition of Eq. <span id='cite-ZEqnNum969494'></span>[[#ZEqnNum969494|(7)]] and orthogonality of eigenfunctions, one can obtain
355
356
{| class="formulaSCP" style="width: 100%; text-align: center;" 
357
|-
358
| 
359
{| style="text-align: center; margin:auto;" 
360
|-
361
| <span id='ZEqnNum753186'></span>  <math>\begin{array}{c}
362
A_{2mn}{\int }_{r_0}^{r_\mbox{d}}r{\left[\frac{R_2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1\left({\beta }_{1mn}r_\mbox{d}\right)}R_1\left({\beta }_{1mn}r\right)\right]}^2\mbox{d}r+A_{2mn}{\int }_{r_\mbox{d}}^{r_\mbox{e}}rR_2^2\left({\beta }_{2mn}r\right)\mbox{d}r\\
363
={\int }_{r_0}^{r_\mbox{d}}r\frac{R_2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1\left({\beta }_{1mn}r_\mbox{d}\right)}R_1\left({\beta }_{1mn}r\right){\int }_0^Hu_0\left(r,z\right)sin{\alpha }_nz\mbox{d}z\mbox{d}r+{\int }_{r_\mbox{d}}^{r_\mbox{e}}rR_2\left({\beta }_{2mn}r\right){\int }_0^Hu_0\left(r,z\right)sin{\alpha }_nz\mbox{d}z\mbox{d}r
364
\end{array}</math>
365
|}
366
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
367
|}
368
369
370
According to Eq. <span id='cite-ZEqnNum753186'></span>[[#ZEqnNum753186|(19)]], the coefficient  <math>A_{2mn}</math> can be obtained. Applying finite Fourier inverse transform to Eq. <span id='cite-ZEqnNum775505'></span>[[#ZEqnNum775505|(18)]], the general solutions can be written as
371
372
{| class="formulaSCP" style="width: 100%; text-align: center;" 
373
|-
374
| 
375
{| style="text-align: center; margin:auto;" 
376
|-
377
| <math>\begin{array}{ll}
378
u_1=\frac{2}{H}\sum_{m=1}^{\infty }\sum_{n=1}^{\infty }A_{2mn}\frac{R_2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1\left({\beta }_{1mn}r_\mbox{d}\right)}R_1\left({\beta }_{1mn}r\right)sin{\alpha }_nz\mbox{e}^{-\left(C_\mbox{d}{\beta }_{1mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}� & r_\mbox{0}\leq r\leq r_\mbox{d};\\
379
u_2=\frac{2}{H}\sum_{m=1}^{\infty }\sum_{n=1}^{\infty }A_{2mn}R_2\left({\beta }_{2mn}r\right)sin{\alpha }_nz\mbox{e}^{-\left(C_\mbox{h}{\beta }_{2mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}� & r_\mbox{d}\leq r\leq r_\mbox{e}.
380
\end{array}</math>
381
|}
382
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
383
|}
384
385
386
The initial excess pore pressure is mainly distributed in the plastic zone. It decays along the radius direction and increases along the depth. It is also worthy to highlight the fact that the initial excess pore pressure is calculated after pile-driving, at which time the excess pore pressure of the upper part of surface soil has been completely dissipated (Chen et al. 2020). So, the specific expression form of the initial excess pore pressure is given as follows
387
388
{| class="formulaSCP" style="width: 100%; text-align: center;" 
389
|-
390
| 
391
{| style="text-align: center; margin:auto;" 
392
|-
393
| <span id='ZEqnNum163277'></span>  <math>u_0\left(r,z\right)=\lbrace \begin{array}{cc}
394
0, & z<h_0,r\geq r_\mbox{p};\\
395
a_1\left(z-h_0\right)ln\frac{r_\mbox{p}}{r}, & z\geq h_0,r_0\leq r\leq r_\mbox{p}.
396
\end{array}</math>
397
|}
398
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
399
|}
400
401
402
where  <math>r_\mbox{p}</math> is the radius of plastic zone; <math>a_1</math> and  <math>h_0</math> are constant to be determined.
403
404
Then, the coefficient  <math>A_{2mn}</math> can be specified as
405
406
{| class="formulaSCP" style="width: 100%; text-align: center;" 
407
|-
408
| 
409
{| style="text-align: center; margin:auto;" 
410
|-
411
| <math>A_{2mn}=\frac{a_1\left(\mbox{sin}{\alpha }_nH-\mbox{sin}{\alpha }_nh_0\right)}{{\alpha }_n{}^2}\frac{\frac{R_2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1\left({\beta }_{1mn}r_\mbox{d}\right)}{\delta }_1+{\delta }_2}{\frac{R_2^2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1^2\left({\beta }_{1mn}r_\mbox{d}\right)}{\delta }_3+{\delta }_4}</math>
412
|}
413
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
414
|}
415
416
417
where
418
419
<math>{\delta }_1=\frac{1}{{\beta }_{1mn}}\left\{\frac{1}{{\beta }_{1mn}}\left[R_1\left({\beta }_{1mn}r_\mbox{0}\right)-\right. \right. </math><math>\left. \left. R_1\left({\beta }_{1mn}r_\mbox{d}\right)\right]+\right. </math><math>\left. r_\mbox{d}ln\frac{r_\mbox{p}}{r_\mbox{d}}P_1\left({\beta }_{1mn}r_\mbox{d}\right)-\right. </math><math>\left. r_0ln\frac{r_\mbox{p}}{r_0}P_1\left({\beta }_{1mn}r_\mbox{0}\right)\right\}</math> ;
420
421
<math>{\delta }_2=\frac{1}{{\beta }_{2mn}}\left\{\frac{1}{{\beta }_{2mn}}\left[R_2\left({\beta }_{2mn}r_\mbox{d}\right)-\right. \right. </math><math>\left. \left. R_2\left({\beta }_{2mn}r_\mbox{p}\right)\right]+\right. </math><math>\left. r_\mbox{p}ln\frac{r_\mbox{p}}{r_\mbox{p}}P_2\left({\beta }_{2mn}r_\mbox{p}\right)-\right. </math><math>\left. r_\mbox{d}ln\frac{r_\mbox{p}}{r_\mbox{d}}P_2\left({\beta }_{2mn}r_\mbox{d}\right)\right\}</math> ;
422
423
<math>{\delta }_3=\frac{r_\mbox{d}{}^2}{2}\left[P_1^2\left({\beta }_{1mn}r_\mbox{d}\right)+\right. </math><math>\left. R_1^2\left({\beta }_{1mn}r_\mbox{d}\right)\right]-</math><math>\frac{r_\mbox{0}{}^2}{2}\left[P_1^2\left(m,n,r_\mbox{0}\right)+\right. </math><math>\left. R_1^2\left(m,n,r_\mbox{0}\right)\right]</math> ;
424
425
<math>{\delta }_4=\frac{r_\mbox{e}{}^2}{2}\left[P_2{\left({\beta }_{2mn}r_\mbox{e}\right)}^2+\right. </math><math>\left. R_2^2\left({\beta }_{2mn}r_\mbox{e}\right)\right]-</math><math>\frac{r_\mbox{d}{}^2}{2}\left[P_2^2\left({\beta }_{2mn}r_\mbox{d}\right)+\right. </math><math>\left. R_2^2\left({\beta }_{2mn}r_\mbox{d}\right)\right]</math> .
426
427
===3. Degradation analysis and verification by FEM===
428
429
The verification and subsequent parameter sensitivity analysis using the parameters defined below. The parameters not mentioned can be obtained in the graphical analysis.
430
431
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
432
 <math>\begin{array}{ccc}
433
m_\mbox{v}={10}^{-2}\mbox{ }\mbox{m}^2/\mbox{kN} & {\gamma }_\mbox{w}=10\mbox{kN}/\mbox{m}^3 & k_\mbox{v}=2\times {10}^{-9}\mbox{m}/\mbox{s}\\
434
r_0=0.25\mbox{ m} & r_\mbox{p}=1.2\times r_\mbox{d} & r_\mbox{e}=20\times r_\mbox{0}\\
435
H=20\mbox{ m} & h_0=0.5\mbox{ m} & a_1=5\mbox{kPa}/\mbox{m}
436
\end{array}</math> </div>
437
438
<span id='_Hlk52459816'></span><span id='_Hlk52481419'></span>
439
440
====3.1 Degradation analysis====
441
442
<span id='_Hlk58346120'></span><span id='_Hlk51712381'></span><span id='_Hlk50932241'></span>When  <math>k_\mbox{h}</math> and  <math>k_\mbox{d}</math> are equal, it can be seen from Eq. <span id='cite-ZEqnNum741519'></span>[[#ZEqnNum741519|(17)]] that
443
444
{| class="formulaSCP" style="width: 100%; text-align: center;" 
445
|-
446
| 
447
{| style="text-align: center; margin:auto;" 
448
|-
449
| <span id='ZEqnNum989253'></span>  <math>{\beta }_{1mn}={\beta }_{2mn}</math>
450
|}
451
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
452
|}
453
454
455
and
456
457
{| class="formulaSCP" style="width: 100%; text-align: center;" 
458
|-
459
| 
460
{| style="text-align: center; margin:auto;" 
461
|-
462
| <span id='ZEqnNum808683'></span>  <math>{\chi }_1\left({\beta }_{1mn}\right)={\chi }_2\left({\beta }_{2mn}\right)</math>
463
|}
464
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
465
|}
466
467
468
<math>{\beta }_{1mn}</math> and  <math>{\beta }_{2mn}</math> are obtained by solving Eq. <span id='cite-ZEqnNum808683'></span>[[#ZEqnNum808683|(24)]]. Substituting Eq. <span id='cite-ZEqnNum989253'></span>[[#ZEqnNum989253|(23)]] and Eq. <span id='cite-ZEqnNum808683'></span>[[#ZEqnNum808683|(24)]] back into  <math>R_1\left({\beta }_{1mn}r\right)</math> ,  <math>R_2\left({\beta }_{2mn}r\right)</math> ,  <math>P_1\left({\beta }_{1mn}r\right)</math> and  <math>P_2\left({\beta }_{2mn}r\right)</math> , it yields
469
470
{| class="formulaSCP" style="width: 100%; text-align: center;" 
471
|-
472
| 
473
{| style="text-align: center; margin:auto;" 
474
|-
475
| <span id='ZEqnNum350685'></span>  <math>\lbrace \begin{array}{c}
476
R_1\left({\beta }_{1mn}r\right)=R_2\left({\beta }_{2mn}r\right)\\
477
P_1\left({\beta }_{1mn}r\right)=P_2\left({\beta }_{2mn}r\right)
478
\end{array}</math>
479
|}
480
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
481
|}
482
483
484
Combining Eq. <span id='cite-ZEqnNum164985'></span>[[#ZEqnNum164985|(16)]] with Eq. <span id='cite-ZEqnNum350685'></span>[[#ZEqnNum350685|(25)]], one can obtain
485
486
{| class="formulaSCP" style="width: 100%; text-align: center;" 
487
|-
488
| 
489
{| style="text-align: center; margin:auto;" 
490
|-
491
| <math>A_{1mn}=A_{2mn}</math>
492
|}
493
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
494
|}
495
496
497
So, it is found that  <math>{\overline{u}}_1</math> and  <math>{\overline{u}}_2</math> in Eq. <span id='cite-ZEqnNum665918'></span>[[#ZEqnNum665918|(15)]] are equal. Write them together as
498
499
{| class="formulaSCP" style="width: 100%; text-align: center;" 
500
|-
501
| 
502
{| style="text-align: center; margin:auto;" 
503
|-
504
| <math>\begin{array}{cc}
505
\overline{u}=\sum_{m=1}^{\infty }A_{mn}R\left({\beta }_{mn}r\right)\mbox{e}^{-\left(C_\mbox{h}{\beta }_{mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}, & r_\mbox{0}\leq r\leq r_\mbox{e}.
506
\end{array}</math>
507
|}
508
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
509
|}
510
511
512
where  <math>A_{mn}=A_{1mn}=A_{2mn}</math> ;  <math>{\beta }_{mn}={\beta }_{1mn}={\beta }_{2mn}</math> ;  <math>\chi \left({\beta }_{mn}\right)={\chi }_1\left({\beta }_{1mn}\right)=</math><math>{\chi }_2\left({\beta }_{2mn}\right)</math> ; and <math>P\left({\beta }_{mn}r\right)=P_1\left({\beta }_{1mn}r\right)=</math><math>P_2\left({\beta }_{2mn}r\right)</math> .
513
514
After finite Fourier inverse transform, the final general solution without considering disturbance effect can be obtained as
515
516
{| class="formulaSCP" style="width: 100%; text-align: center;" 
517
|-
518
| 
519
{| style="text-align: center; margin:auto;" 
520
|-
521
| <math>\begin{array}{cc}
522
u=\frac{2}{H}\sum_{m=1}^{\infty }\sum_{n=1}^{\infty }A_{mn}R\left({\beta }_{mn}r\right)sin{\alpha }_nz\mbox{e}^{-\left(C_\mbox{h}{\beta }_{mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}� & r_\mbox{0}\leq r\leq r_\mbox{e}.
523
\end{array}</math>
524
|}
525
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
526
|}
527
528
529
which is consistent with of the solution proposed by (Gao and Shi 2008).
530
531
<span id='_Hlk52481937'></span>
532
533
====3.2 Verification by FDM====
534
535
<span id='_Hlk73027317'></span>In order to further verify the correctness of the proposed solution, the FDM is used for comparison. First, the solution domain  <math display="inline">\left\{\begin{array}{cc}
536
r_0\leq r\leq r_\mbox{e}; & 0\leq z\leq H
537
\end{array}\right\}</math> is discretized, as follow
538
539
{| class="formulaSCP" style="width: 100%; text-align: center;" 
540
|-
541
| 
542
{| style="text-align: center; margin:auto;" 
543
|-
544
| <math>\lbrace \begin{array}{lll}
545
r_i=r_0+i\Delta r & \Delta r=\frac{r_\mbox{e}-r_0}{I} & i=0,1...,I\\
546
z_j=j\Delta z & \Delta z=\frac{H}{J} & j=0,1...,J
547
\end{array}</math>
548
|}
549
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
550
|}
551
552
553
where  <math display="inline">r_i</math> and  <math display="inline">z_j</math> are respectively the radial distance and depth corresponding to point'' i ''or ''j'';  <math display="inline">\Delta r</math> and  <math display="inline">\Delta z</math> are respectively radial mesh and depth mesh.
554
555
The governing equation (i.e., Eq. <span id='cite-ZEqnNum681049'></span>[[#ZEqnNum681049|(1)]]) and solving conditions (i.e., Eqs. <span id='cite-ZEqnNum823648'></span>[[#ZEqnNum823648|(2)]] - <span id='cite-ZEqnNum798795'></span>[[#ZEqnNum798795|(5)]]) are discretized by using the forward-backward implicit difference scheme as shown below
556
557
{| class="formulaSCP" style="width: 100%; text-align: center;" 
558
|-
559
| 
560
{| style="text-align: center; margin:auto;" 
561
|-
562
| <math>\frac{u_{i,j}^k-u_{i,j}^{k-1}}{\Delta t}=C_{\mbox{h}i}\left[\frac{u_{i-1,j}^{k-1}-2u_{i,j}^{k-1}+u_{i+1,j}^{k-1}}{{\left(\Delta r\right)}^2}+\right. </math><math>\left. \frac{1}{r_i}\frac{u_{i+1,j}^{k-1}-u_{i-1,j}^{k-1}}{2\Delta r}\right]+</math><math>C_\mbox{v}\frac{u_{i,j-1}^{k-1}-2u_{i,j}^{k-1}+u_{i,j+1}^{k-1}}{{\left(\Delta z\right)}^2}</math>
563
|}
564
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
565
|}
566
567
{| class="formulaSCP" style="width: 100%; text-align: center;" 
568
|-
569
| 
570
{| style="text-align: center; margin:auto;" 
571
|-
572
| <math>u_{i,j}^0=u_0\left(r_i,z_j\right)</math>
573
|}
574
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
575
|}
576
577
{| class="formulaSCP" style="width: 100%; text-align: center;" 
578
|-
579
| 
580
{| style="text-align: center; margin:auto;" 
581
|-
582
| <math>\begin{array}{c}
583
u_{-1,j}^k=u_{1,j}^k\\
584
u_{I,j}^k=0
585
\end{array}</math>
586
|}
587
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
588
|}
589
590
{| class="formulaSCP" style="width: 100%; text-align: center;" 
591
|-
592
| 
593
{| style="text-align: center; margin:auto;" 
594
|-
595
| <math>k_{\mbox{h}I_\mbox{d}}\frac{u_{I_\mbox{d},j}^k-u_{I_\mbox{d}-1,j}^k}{\Delta r}=</math><math>k_{\mbox{h}I_\mbox{d}+1}\frac{u_{I_\mbox{d}+1,j}^k-u_{I_\mbox{d},j}^k}{\Delta r}</math>
596
|}
597
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
598
|}
599
600
{| class="formulaSCP" style="width: 100%; text-align: center;" 
601
|-
602
| 
603
{| style="text-align: center; margin:auto;" 
604
|-
605
| <math>\begin{array}{c}
606
u_{i,0}^k=0\\
607
u_{i,J-1}^k=u_{i,J+1}^k
608
\end{array}</math>
609
|}
610
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
611
|}
612
613
614
where  <math>k_{\mbox{h}i}=\lbrace \begin{array}{cc}
615
k_\mbox{d}, & 0\leq i\leq I_\mbox{d}\\
616
k_\mbox{h}, & I_\mbox{d}<i\leq I
617
\end{array}</math> and  <math>C_{\mbox{h}i}=\lbrace \begin{array}{cc}
618
C_\mbox{d}, & 0\leq i\leq I_\mbox{d}\\
619
C_\mbox{h}, & I_\mbox{d}<i\leq I
620
\end{array}</math> . The above FDM solution is programmed with MATLAB, and the specific programming steps are as follows:
621
622
For  <math display="inline">i\in \left[0,I\right],j=0</math>
623
624
{| class="formulaSCP" style="width: 100%; text-align: center;" 
625
|-
626
| 
627
{| style="text-align: center; margin:auto;" 
628
|-
629
| <math>u_{i,0}^k=0</math>
630
|}
631
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
632
|}
633
634
635
For  <math display="inline">i=I,j\in \left[1,J\right]</math>
636
637
{| class="formulaSCP" style="width: 100%; text-align: center;" 
638
|-
639
| 
640
{| style="text-align: center; margin:auto;" 
641
|-
642
| <math>u_{I,j}^k=0</math>
643
|}
644
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
645
|}
646
647
648
For  <math display="inline">i=0,j\in \left[1,J\right]</math>
649
650
{| class="formulaSCP" style="width: 100%; text-align: center;" 
651
|-
652
| 
653
{| style="text-align: center; margin:auto;" 
654
|-
655
| <math>u_{0,j}^k=\left\{1-2\Delta t\left[\frac{C_{\mbox{h}0}}{{\left(\Delta r\right)}^2}+\right. \right. </math><math>\left. \left. \frac{C_\mbox{v}}{{\left(\Delta z\right)}^2}\right]\right\}u_{0,j}^{k-1}+</math><math>\frac{2C_{\mbox{h}0}\Delta t}{{\left(\Delta r\right)}^2}u_{1,j}^{k-1}+</math><math>\frac{C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{0,j-1}^{k-1}+</math><math>\frac{C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{0,j+1}^{k-1}</math>
656
|}
657
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
658
|}
659
660
661
For  <math display="inline">i\in \left[1,I-1\right],j=J</math>
662
663
{| class="formulaSCP" style="width: 100%; text-align: center;" 
664
|-
665
| 
666
{| style="text-align: center; margin:auto;" 
667
|-
668
| <math>u_{i,J}^k=\frac{C_{\mbox{h}i}\Delta t\left(2r_{i,j}-\Delta r\right)}{2{\left(\Delta r\right)}^2r_i}u_{i-1,J}^{k-1}+</math><math>\left\{1-2\Delta t\left[\frac{C_{\mbox{h}i}}{{\left(\Delta r\right)}^2}+\right. \right. </math><math>\left. \left. \frac{C_\mbox{v}}{{\left(\Delta z\right)}^2}\right]\right\}u_{i,J}^{k-1}+</math><math>\frac{C_{\mbox{h}i}\Delta t\left(2r_{i,j}+\Delta r\right)}{2{\left(\Delta r\right)}^2r_i}u_{i+1,J}^{k-1}+</math><math>\frac{2C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{i,J-1}^{k-1}</math>
669
|}
670
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
671
|}
672
673
674
For  <math display="inline">i\in \left[1,I-1\right],\mbox{ }j\in \left[1,J-1\right]</math>
675
676
{| class="formulaSCP" style="width: 100%; text-align: center;" 
677
|-
678
| 
679
{| style="text-align: center; margin:auto;" 
680
|-
681
| <math>u_{i,j}^k=\frac{C_{\mbox{h}i}\Delta t\left(2r_{i,j}-\Delta r\right)}{2{\left(\Delta r\right)}^2r_i}u_{i-1,j}^{k-1}+</math><math>\left\{1-2\Delta t\left[\frac{C_{\mbox{h}i}}{{\left(\Delta r\right)}^2}+\right. \right. </math><math>\left. \left. \frac{C_\mbox{v}}{{\left(\Delta z\right)}^2}\right]\right\}u_{i,j}^{k-1}+</math><math>\frac{C_{\mbox{h}i}\Delta t\left(2r_{i,j}+\Delta r\right)}{2{\left(\Delta r\right)}^2r_i}u_{i+1,j}^{k-1}+</math><math>\frac{C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{i,j-1}^{k-1}+</math><math>\frac{C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{i,j+1}^{k-1},\mbox{ }\begin{array}{c}
682
I=1,\mbox{ }2,\mbox{ }\cdots \mbox{ }I-1\\
683
j=1,\mbox{ }2,\mbox{ }\cdots \mbox{ }J-1
684
\end{array}</math>
685
|}
686
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
687
|}
688
689
690
The time step is divided into 90 segments uniformly by the time of each order of magnitude (e.g., the time step is  <math>{10}^1\mbox{ s}</math> when  <math>t</math> between  <math>{10}^2\mbox{ s}</math> and  <math>{10}^3\mbox{ s}</math> ). The grid of the model is uniform, and the grid size is  <math display="inline">\Delta r</math> (0.25m) ×  <math display="inline">\Delta z</math> (0.25m) (Fig. 2(a)). Three positions (i.e., Point 1 at  <math>\left(r_0,H\right)</math> , Point 2 at  <math>\left(3r_0,\mbox{0}\mbox{.8}H\right)</math> and Point 3 at  <math>\left(5r_0,\mbox{0}\mbox{.6}H\right)</math> ) of the excess pore pressure are selected to compare the FDM solution and the analytical solution. As shown in Fig. 2(b), the proposed solution coincides with the FDM solution almost completely, which indicates the correctness of the proposed solution.
691
692
<div id="_Hlk76470900" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
693
 
694
{|
695
|-
696
| [[Image:Draft_Li_939997522-image132.png|90px]]
697
| [[Image:Draft_Li_939997522-image133.png|center|300px]]
698
|}
699
</div>
700
701
(a)                      (b)
702
703
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
704
Fig. 2 (a) mesh of the model, and (b) curves of relation between time and excess pore pressure.</div>
705
706
===4. Results and Discussion===
707
708
For convenience of analysis, the time factor,  <math>T_\mbox{v}</math> , and the dimensionless excess pore pressure,  <math>\overline{u}</math> are defined as follows
709
710
{| class="formulaSCP" style="width: 100%; text-align: center;" 
711
|-
712
| 
713
{| style="text-align: center; margin:auto;" 
714
|-
715
| <math>T_\mbox{v}=C_\mbox{v}t/H^2,\mbox{ }\overline{u}=</math><math>u/u_0\left(r_0,H\right)</math>
716
|}
717
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
718
|}
719
720
==4.1 Parameter analysis==
721
722
Fig. 3(a) illustrates the distribution of excess pore pressure along the depth. The excess pore pressure increases with the increase in depth. After consolidation for a period of time (i.e.,  <math>T_\mbox{v}={10}^{-3}</math> ), the excess pore pressure at different depths in the disturbed zone was still higher than that in the undisturbed zone (i.e.,  <math>r>r_\mbox{d}</math> ). Fig. 3(b) shows that the excess pore pressure increases linearly with depth direction under different ''r''. The growth rate of the excess pore pressure with depth is large in the disturbed zone (i.e.,  <math>r\leq r_\mbox{d}</math> ), while the growth rate of the excess pore pressure with depth is small in the undisturbed zone (i.e.,  <math>r>r_\mbox{d}</math> ).
723
724
<div id="_Hlk76470911" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
725
 
726
{|
727
|-
728
| [[Image:Draft_Li_939997522-image141.png|300px]]
729
| [[Image:Draft_Li_939997522-image142.png|center|300px]]
730
|}
731
</div>
732
733
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
734
Fig. 3 (a) Distribution of  <math>\overline{u}</math> along  <math>r</math> direction under different  <math>z</math> and (b) distribution of  <math>\overline{u}</math> along  <math>z</math> direction under different  <math>r</math> .</div>
735
736
<span id='_Hlk58959226'></span>According to the research works proposed by (Li et al. 2017), time-dependent bearing capacity is mainly affected by the dissipation of the excess pore pressure at the pile-soil interface. In order to study the influence of the soil disturbance induced by pile installation on the excess pore pressure at pile-soil interface, this paper introduces the dimensionless average excess pore pressure at pile-soil interface ( <math>u_{\mbox{ave}}\left(t\right)</math> ) for analysis:
737
738
{| class="formulaSCP" style="width: 100%; text-align: center;" 
739
|-
740
| 
741
{| style="text-align: center; margin:auto;" 
742
|-
743
| <math>u_{\mbox{ave}}\left(t\right)=\frac{{\int }_\mbox{0}^H2\mbox{π}r_0u_1\left(t,r_0,z\right)\mbox{d}z}{{\int }_\mbox{0}^H2\mbox{π}r_0u_0\left(r_0,z\right)\mbox{d}z}</math>
744
|}
745
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
746
|}
747
748
749
In Fig. 4, the influence of permeability coefficient ratio  <math>k_\mbox{d}/k_\mbox{h}</math> on the excess pore pressure under deep and shallow foundations, where  <math>k_\mbox{d}/k_\mbox{h}</math> reflects the disturbance degree of pile installation. When  <math>k_\mbox{d}/k_\mbox{h}\mbox{=1}</math> , this solution can degenerate into the solution of homogeneous soil around a pile (Gao and Shi 2008). Whether it's Case of shallow foundation (i.e., Case of  <math>H=5\mbox{ m}</math> ) or Case of deep foundation (i.e., Case of  <math>H=20\mbox{ m}</math> ), the dissipation rate of the excess pore pressure gradually decreases with decreases in  <math>k_\mbox{d}/k_\mbox{h}</math> , which indicates that  <math>u_{\mbox{ave}}\left(t\right)</math> could be overestimated at the anytime without considering the disturbance effect. The dissipation rate of the average excess pore pressure at pile-soil interface decreases obviously with the increase of  <math>k_\mbox{d}/k_\mbox{h}</math> , which indicated that soil disturbance has a significant hindering effect on  <math>u_{\mbox{ave}}\left(t\right)</math> . By comparing Case of shallow foundation and Case of deep foundation, it is clearly known that the disturbance effect has a greater influence on deep foundation than on shallow foundation. Moreover, the difference of drainage performance of deep and shallow foundations is gradually obvious with the increase of  <math>k_\mbox{d}/k_\mbox{h}</math> .
750
751
<div id="_Hlk76470922" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
752
 [[Image:Draft_Li_939997522-image161.png|300px]] </div>
753
754
<div id="_Hlk76471195" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
755
Fig 4. Influence of permeability coefficient ratio  <math>k_\mbox{d}/k_\mbox{h}</math> on the excess pore pressure.</div>
756
757
Unlike  <math>k_\mbox{d}/k_\mbox{h}</math> which reflect the degree of disturbance, the radius of the disturbed zone,  <math>r_\mbox{d}</math> , reflects the disturbance range. The impact of  <math>r_\mbox{d}/r_\mbox{0}</math> on the excess pore pressure is introduced in Fig. 5. This solution can degenerate into the solution of homogeneous soil around a pile when  <math>r_\mbox{d}/r_\mbox{0}\mbox{=1}</math> (Gao and Shi 2008). Additionally, compared with the case without disturbed zone (i.e.,  <math>r_\mbox{d}/r_\mbox{0}\mbox{=1}</math> ), the dissipation rate of  <math>u_{\mbox{ave}}\left(t\right)</math> decreases gradually with the increase of  <math>r_\mbox{d}</math> in the intermediate and later stages. Moreover, it is found that the consolidation rate of the deep foundation is smaller than that of the shallow foundation with the increase of  <math>r_\mbox{d}/r_\mbox{0}</math> .
758
759
<div id="_Hlk76470928" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
760
 [[Image:Draft_Li_939997522-image171.png|300px]] </div>
761
762
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
763
Fig 5. Influence of the disturbance radius ratio  <math>r_\mbox{d}/r_\mbox{0}</math> on the excess pore pressure.</div>
764
765
==4.2 Test analysis==
766
767
To demonstrate the validity of the proposed solution, a set of published laboratory test data is used for comparison (Ni et al. 2018). As shown in Figure 6 (a), the test box is a cube with a side length of 1000 mm, and the test pile is a PVC pipe with a radius of 30 mm and length of 900 mm (length of 700 mm in the soil). The literature suggests that ''r''<sub>e</sub> is equal to 20 times ''r''<sub>0</sub> (Ni et al. 2018). Because the Piezometer 1 ~ 3 (i.e., P1 ~ P3, at distance of ''r'' = 90 mm) are close to the pile, the measurement data fluctuates greatly, so only the data of P4 ~ P9 are used for analysis. P4 ~P6 are located at distance of ''r'' = 210 mm and P7 ~ P9 are located at distance of ''r'' = 330 mm. According to the initial excess pore pressures of P4 ~ P9, the parameters of the initial excess pore pressure is determined as shown in Fig. 6 (b).
768
769
<div id="_Hlk76471231" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
770
 
771
{|
772
|-
773
| [[Image:Draft_Li_939997522-image173.png|240px]]
774
| [[Image:Draft_Li_939997522-image174-c.png|center|300px]]
775
|}
776
</div>
777
778
<div id="_Hlk58349943" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
779
Fig. 6. (a) Schematic diagram of laboratory test for a pipe pile and (b) distribution diagram of initial pore pressure by pile-driving.</div>
780
781
The calculated and measured values of the excess pore pressure are shown in Figure 7. It is observed that the calculated value is a good fit with the measured value. That indicates the proposed mathematical model has a good ability to predict the variation trend of the excess pore pressure.
782
783
<div id="_Hlk76470940" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
784
 
785
{|
786
|-
787
| [[Image:Draft_Li_939997522-image175.png|300px]]
788
| [[Image:Draft_Li_939997522-image176.png|center|300px]]
789
|}
790
</div>
791
792
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
793
Fig. 7. Data of 6 measured points and corresponding calculated values: (a) P4 ~ P6, and (b) P7 ~ P9.</div>
794
795
<span id='_Hlk30159828'></span>
796
797
===5. Conclusions===
798
799
<span id='_Hlk76423000'></span><span id='_Hlk76422546'></span>In this paper, an analytical solution to consolidation problem with disturbance effect in the soil around a pile is derived and its accuracy is verified by degradation analysis and the FDM. The influence of disturbance effect on the excess pore pressure dissipation of the soil around a pile under long and short foundation is analyzed. It was concluded that the excess pore pressure in the disturbed zone is more difficult to dissipate than that in the undisturbed zone; The dissipation rate of the average excess pore pressure gradually decreased obviously with the increase of permeability coefficient ratio,  <math>k_\mbox{d}/k_\mbox{h}</math> , on the whole dissipation period at pile-soil interface; The impact of radius ratio,  <math>r_\mbox{d}/r_\mbox{0}</math> , on the excess pore pressure is interesting. When  <math>r_\mbox{d}/r_\mbox{0}</math> is small,  <math>r_\mbox{d}/r_\mbox{0}</math> only impedes dissipation rate of excess pore pressure in the early and intermediate dissipation periods. But, with  <math>r_\mbox{d}/r_\mbox{0}</math> increases,  <math>r_\mbox{d}/r_\mbox{0}</math> can impedes dissipation rate of excess pore pressure on the whole dissipation period. Disturbance effect (e.g.,  <math>k_\mbox{d}/k_\mbox{h}</math> and  <math>r_\mbox{d}/r_\mbox{0}</math> ) has obvious negative effect on both shallow and deep foundation, and the negative effect on deep foundations is greater than that on shallow foundation. Finally, the proposed solution is used to predict a test case, which shows that the proposed solution has a good ability to predict the variation trend of the excess pore pressure. However, this model only assumes that the soil is elastic and ignores the effect of the external load, which will be the objective of subsequent research.
800
801
===Author Contributions===
802
803
Conceptualization: Ping Li; writing—original draft preparation: Ping Li and Zhijian Chen; writing—review and editing: Yi Ding.
804
805
<br/>
806
807
===Institutional Review Board Statement===
808
809
This study did not require ethical approval.<br/>
810
811
===Informed Consent Statement===
812
813
Not applicable.<br/>
814
815
===Data Availability Statement===
816
817
All data, models, and code generated or used during the study appear in the submitted article.
818
819
<br/>
820
821
===Conflict of Interest===
822
823
The authors declared that they have no conflicts of interest to this work.<br/>
824
825
===References===
826
827
Azimi P, Karimpour-Fard M, Shariatmadari N, Tsuha C (2021) A new approach to estimate the bearing capacity of driven piles. Arabian Journal of Geosciences 14(13): 1-12. [https://doi.org/10.1007/s12517-021-07517-1 https://doi.org/10.1007/s12517-021-07517-1]
828
829
Bozozuk M, Fellenius BH, Samson L (1978) Soil disturbance from pile driving in sensitive clay. Canadian Geotechnical Journal 15(3): 346-361. [https://doi.org/10.1139/t78-032 https://doi.org/10.1139/t78-032]
830
831
Chen QM, Haque MN, Abu-Farsakh M, Fernandez BA (2014) Field investigation of pile setup in mixed soil. Geotechnical Testing Journal 37(2): 268-281. [https://doi.org/10.1520/GTJ20120222 https://doi.org/10.1520/GTJ20120222]
832
833
Chen Z, Ni PP, Mei GX, Chen YF (2020) Semi-analytical solution for consolidation of ground with partially penetrating PVDs under the free-strain condition. Journal of Engineering Mechanics 147(2): 04020148. [https://doi.org/10.1061/(ASCE)EM.1943-7889.0001884 https://doi.org/10.1061/(ASCE)EM.1943-7889.0001884]
834
835
Chen Z, Xiao T, Feng JX, Ni PP, Chen DQ, Mei GX, Chen YF (2020) Mathematical characterization of pile-soil interface boundary for consolidation analysis of soil around permeable pipe pile. Canadian Geotechnical Journal(ja). [https://doi.org/10.1139/cgj-2020-0337 https://doi.org/10.1139/cgj-2020-0337]
836
837
de Chaunac H, Holeyman A (2018) Numerical analysis of the set-up around the shaft of a closed-ended pile driven in clay. Géotechnique 68(4): 332-344. [https://doi.org/10.1680/jgeot.16.P.229 https://doi.org/10.1680/jgeot.16.P.229]
838
839
Deng YB, Liu GB, Indraratna B, Rujikiatkamjorn C, Xie KH (2017) Model test and theoretical analysis for soft soil foundations improved by prefabricated vertical drains. International Journal of Geomechanics 17(1): 04016045. [https://doi.org/10.1061/(ASCE)GM.1943-5622.0000711 https://doi.org/10.1061/(ASCE)GM.1943-5622.0000711]
840
841
Dijkstra J, Broere W, Heeres OM (2011) Numerical simulation of pile installation. Computers and Geotechnics 38(5): 612-622. [https://doi.org/10.1016/j.compgeo.2011.04.004 https://doi.org/10.1016/j.compgeo.2011.04.004]
842
843
Fang T, Huang M, Tang K (2020) Cross-section piles in transparent soil under different dimensional conditions subjected to vertical load: an experimental study. Arabian Journal of Geosciences 13(21): 1-8. [https://doi.org/10.1007/s12517-020-06136-6 https://doi.org/10.1007/s12517-020-06136-6]
844
845
Fattah MY, Al-Soudani WH, Omar M (2016) Estimation of bearing capacity of open-ended model piles in sand. Arabian Journal of Geosciences 9(3): 1-14. [https://doi.org/10.1007/s12517-015-2194-8 https://doi.org/10.1007/s12517-015-2194-8]
846
847
Gao ZK, Shi JY (2008) Consolidation solution of soil around single-pile after pile sinking. Rock and Soil Mechanics 29(4): 979-982.
848
849
Guo WD (2000) Visco-elastic consolidation subsequent to pile installation. Computers and Geotechnics 26(2): 113-144. [https://doi.org/10.1016/S0266-352X(99)00028-2 https://doi.org/10.1016/S0266-352X(99)00028-2]
850
851
Holtz RD, Jamiolkowski MB, Lancellotta R, Pedroni R (1991). ''Prefabricated vertical drains: design and performance''.
852
853
Hwang JH, Liang N, Chen CH (2001) Ground response during pile driving. Journal of Geotechnical and Geoenvironmental Engineering 127(11): 939-949. [https://doi.org/10.1061/(ASCE)1090-0241(2001)127:11(939 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:11(939])
854
855
Lehane BM, Gill DR (2004) Displacement fields induced by penetrometer installation in an artificial soil. International Journal of Physical Modelling in Geotechnics 4(1): 25-36. [https://doi.org/10.1680/ijpmg.2004.040103 https://doi.org/10.1680/ijpmg.2004.040103]
856
857
Li L, Li JP, Sun DA, Zhang LX (2017) Time-dependent bearing capacity of a jacked pile: An analytical approach based on effective stress method. Ocean Engineering 143: 177-185. [https://doi.org/10.1016/j.oceaneng.2017.08.010 https://doi.org/10.1016/j.oceaneng.2017.08.010]
858
859
Li ZY, Wang KH, Wu WB, Leo CJ, Wang N (2017) Vertical vibration of a large-diameter pipe pile considering the radial inhomogeneity of soil caused by the construction disturbance effect. Computers and Geotechnics 85: 90-102. [https://doi.org/10.1016/j.compgeo.2016.12.016 https://doi.org/10.1016/j.compgeo.2016.12.016]
860
861
Luo ZL, Dong FH (2019) Statistical investigation of bearing capacity of pile foundation based on Bayesian reliability theory. Advances in Civil Engineering 2019. [https://doi.org/10.1155/2019/9858617 https://doi.org/10.1155/2019/9858617]
862
863
Mabsout ME, Tassoulas JL (1994) A finite element model for the simulation of pile driving. International Journal for Numerical Methods in Engineering 37(2): 257-278. 10.1002/nme.1620370206
864
865
<span id='_Hlk76508797'></span>Mahmood MR, Qadir SJA (2018) Effect of particle size distribution of cohesionless soils on the ultimate carrying capacity of open ended pipe piles under different saturation conditions. Arabian Journal of Geosciences 11(21): 1-15. [https://doi.org/10.1007/s12517-018-4016-2 https://doi.org/10.1007/s12517-018-4016-2]
866
867
Massarsch KR, Wersäll C (2013). "Cumulative lateral soil displacement due to pile driving in soft clay." ''Sound Geotechnical Research to Practice: Honoring Robert D. Holtz II'', 462-479.
868
869
Nazir R, Moayedi H, Subramaniam P, Ghareh S (2017) Ground improvement using SPVD and RPE. Arabian Journal of Geosciences 10(23): 1-21. [https://doi.org/10.1007/s12517-017-3284-6 https://doi.org/10.1007/s12517-017-3284-6]
870
871
Ni PP, Mangalathu S, Mei GX, Zhao YL (2018) Laboratory investigation of pore pressure dissipation in clay around permeable piles. Canadian Geotechnical Journal 55(9): 1257-1267. [https://doi.org/10.1139/cgj-2017-0180 https://doi.org/10.1139/cgj-2017-0180]
872
873
Randolph MF, Wroth CP (1979) An analytical solution for the consolidation around a driven pile. International Journal for Numerical Analytical Methods in Geomechanics 3(3): 217-229. [https://doi.org/10.1002/nag.1610030302 https://doi.org/10.1002/nag.1610030302]
874
875
Soderberg LO (1962) Consolidation theory applied to foundation pile time effects. Geotechnique 12(3): 217-225. [https://doi.org/10.1680/geot.1962.12.3.217 https://doi.org/10.1680/geot.1962.12.3.217]
876
877
Tian Y, Wu WB, Jiang GS, El Naggar MH, Mei GX, Ni PP (2019) Analytical solutions for vacuum preloading consolidation with prefabricated vertical drain based on elliptical cylinder model. Computers Geotechnics 116: 103202. [https://doi.org/10.1016/j.compgeo.2019.103202 https://doi.org/10.1016/j.compgeo.2019.103202]
878
879
Tran KT, McVay M, Herrera R, Lai P (2011) A new method for estimating driven pile static skin friction with instrumentation at the top and bottom of the pile. Soil Dynamics and Earthquake Engineering 31(9): 1285-1295. [https://doi.org/10.1016/j.soildyn.2011.05.007 https://doi.org/10.1016/j.soildyn.2011.05.007]
880
881
Wang J, Yang YL, Fu HT, Cai YQ, Hu XQ, Lou XM, Jin YW (2020) Improving consolidation of dredged slurry by vacuum preloading using prefabricated vertical drains (PVDs) with varying filter pore sizes. Canadian Geotechnical Journal 57(2): 294-303. [https://doi.org/10.1016/j.compgeo.2019.103202 https://doi.org/10.1016/j.compgeo.2019.103202]
882
883
Wang SH, Ni PP, Chen Z, Mei GX (2019) Consolidation solution of soil around a permeable pipe pile. Marine Georesources Geotechnology: 1-9. [https://doi.org/10.1080/1064119X.2019.1655119 https://doi.org/10.1080/1064119X.2019.1655119]
884
885
Xu XT, Liu HL, Lehane BM (2006) Pipe pile installation effects in soft clay. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 159(4): 285-296. [https://doi.org/10.1680/geng.2006.159.4.285 https://doi.org/10.1680/geng.2006.159.4.285]
886
887
Zhou Y, Chai JC (2017) Equivalent ‘smear’effect due to non-uniform consolidation surrounding a PVD. Géotechnique 67(5): 410-419. [https://doi.org/10.1680/jgeot.16.P.087 https://doi.org/10.1680/jgeot.16.P.087]
888

Return to Li et al 2021d.

Back to Top

Document information

Published on 17/03/22
Accepted on 06/03/22
Submitted on 04/11/21

Volume 38, Issue 1, 2022
DOI: 10.23967/j.rimni.2022.03.008
Licence: CC BY-NC-SA license

Document Score

5

Views 518
Recommendations 1

Share this document

claim authorship

Are you one of the authors of this document?